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Abstract. We study the properties of the eigenvalues of Gram matri-
ces in a non-asymptotic setting. Using local Rademacher averages, we
provide data-dependent and tight bounds for their convergence towards
eigenvalues of the corresponding kernel operator. We perform these com-
putations in a functional analytic framework which allows to deal implic-
itly with reproducing kernel Hilbert spaces of infinite dimension. This can
have applications to various kernel algorithms, such as Support Vector
Machines (SVM). We focus on Kernel Principal Component Analysis
(KPCA) and, using such techniques, we obtain sharp excess risk bounds
for the reconstruction error. In these bounds, the dependence on the
decay of the spectrum and on the closeness of successive eigenvalues is
made explicit.

1 Introduction

Due to their versatility, kernel methods are currently very popular as data-
analysis tools. In such algorithms, the key object is the so-called kernel matrix
(the Gram matrix built on the data sample) and it turns out that its spectrum
can be related to the performance of the algorithm. This has been shown in
particular in the case of Support Vector Machines [19]. Studying the behav-
ior of eigenvalues of kernel matrices, their stability and how they relate to the
eigenvalues of the corresponding kernel integral operator is thus crucial for un-
derstanding the statistical properties of kernel-based algorithms.

Principal Component Analysis (PCA), and its non-linear variant, kernel-PCA
are widely used algorithms in data analysis. They extract from the vector space
where the data lie, a basis which is, in some sense, adapted to the data by look-
ing for directions where the variance is maximized. Their applications are very
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diverse, ranging from dimensionality reduction, to denoising. Applying PCA to
a space of functions rather than to a space of vectors was first proposed by Besse
[5] (see also [15] for a survey). Kernel-PCA [16] is an instance of such a method
which has boosted the interest in PCA as it allows to overcome the limitations
of linear PCA in a very elegant manner.

Despite being a relatively old and commonly used technique, little has been done
on analyzing the statistical performance of PCA. Most of the previous work has
focused on the asymptotic behavior of empirical covariance matrices of Gaussian
vectors (see e.g. [1]). In the non-linear setting where one uses positive definite
kernels, there is a tight connection between the covariance and the kernel matrix
of the data. This is actually at the heart of the kernel-PCA algorithm, but it
also indicates that the properties of the kernel matrix, in particular its spectrum,
play a role in the properties of the kernel-PCA algorithm.

Recently, J. Shawe-Taylor, C. Williams, N. Cristianini and J. Kandola [17] have
undertaken an investigation of the properties of the eigenvalues of kernel matri-
ces and related 1t to the statistical performance of kernel-PCA.

In this work, we mainly extend the results of [17]. In particular we treat the
infinite dimensional case with more care and we refine the bounds using recent
tools from empirical processes theory. We obtain significant improvements and
more explicit bounds.

The fact that some of the most interesting positive definite kernels (e.g. the Gaus-
sian RBF kernel), generate an infinite dimensional reproducing kernel Hilbert
space (the ”feature space” into which the data is mapped), raises a technical
difficulty. We propose to tackle this difficulty by using the framework of Hilbert-
Schmidt operators and of random vectors in Hilbert spaces. Under some reason-
able assumptions (like separability of the RKHS and boundedness of the kernel),
things work nicely but some background in functional analysis is needed which
is introduced below.

Our approach builds on ideas pioneered by Massart [13], on the fact that Tala-
grand’s concentration inequality can be used to obtain sharp oracle inequalities
for empirical risk minimization on a collection of function classes when the vari-
ance of the relative error can be related to the expected relative error itself. This
idea has been exploited further in [2].

The paper is organized as follows. Section 2 introduces the necessary back-
ground on functional analysis and the basic assumptions. We then present, in
Section 3 bounds on the difference between sums of eigenvalues of the kernel
matrix and of the associated kernel operator. Finally, Section 4 gives our main
results on kernel-PCA.

2 Preliminaries

In order to make the paper self-contained, we introduce some background, and
give the notations for the rest of the paper.



2.1 Background Material on Functional Analysis

Let H be a separable Hilbert space. A linear operator L from H to #H is called
Hilbert-Schmidt if ", ||Le;||3 < oo, where (€i)i>1 is an orthonormal basis of
H. This sum is independent of the chosen orthonormal basis and is the squared
of the Hilbert-Schmidt norm of L. when it is finite. The set of all Hilbert-Schmidt
operators on A is denoted by HS(#). Endowed with the following inner product
(L, N)usn) = Zi,j21<Leia e;){Ne; e;), it is a separable Hilbert space.

A Hilbert-Schmidt operator is compact, it has a countable spectrum and an
eigenspace associated to a non-zero eigenvalue is of finite dimension. A compact,
self-adjoint operator on a Hilbert space can be diagonalized 1.e. there exists an
orthonormal basis of H made of eigenfunctions of this operator. If L is a compact,
positive self-adjoint operator A(L) denotes its spectrum sorted in non-increasing
order, repeated according to their multiplicities (A1(A) > A2(A) > ...). An
operator L is called trace-class if > ;5 (e;, Le;) is a convergent series. In fact,
this series is independent of the chosen orthonormal basis and is called the trace
of L, denoted by tr L. By Lidskii’s theorem tr L = >~,5, Ai(L).

We will keep switching from H to HS(#) and treat their elements as vec-
tors or as operators depending on the context, so we will need the follow-
ing identities. Denoting, for f,g € H, by f ® g the rank one operator de-
fined as f ® g(h) = (g, h) f, it easily follows from the above definitions that

1 @ 9llusay = 11l ll9lly » and for A € HS(#),
<f®gaA>Hs(7-t) = (A9, N - (1)

We recall that an orthogonal projector in H is an operator U such that U? = U
and U = U* (hence positive). In particular one has ||U(h)||§_[ = (h,Uh)y . U
has rank d < oo (i.e. it is a projection on a finite dimensional subspace), if and
only if it is Hilbert-Schmidt with ||U||HS(H) =+V/d and tr U = d. In that case it

can be decomposed as U = Zgzl ¢; @ ¢; where (¢;)%; is an orthonormal basis
of the image of U.

If V denotes a closed subspaces of H, we denote by Iy the unique orthogonal
projector such that ran Iy = V and ker IIyy = V. When V is of finite dimen-
sion, Iy 1 1s not Hilbert-Schmidt, but we will denote, for a trace-class operator
A Ty, A) =tr A — <HV,A>HS(H) with some abuse of notation.

2.2 Kernel and Covariance Operators

We recall basic facts about random elements in Hilbert spaces. A random element
7 in a separable Hilbert space has an expectation ¢ € H when E||Z|| < o0 and
e is the unique vector satisfying (e, f),, = E(Z, f),,, Vf € H. Moreover, when
IE',HZH2 < 00, there exists a unique operator C': H — H such that (f, Cg), =
E[(f, Z)3 (9, Z)4]), ¥f,9 € H. C is called the covariance operator of Z and is
self-adjoint, positive, trace-class operator, with tr C' = IE',HZH2 (see e.g. [4]).
The core property of kernel operators that we will use is its intimate rela-
tionship with a covariance operator and it is summarized in next theorem. This



property was first used in a similar but more restrictive context (finite dimen-
sional) by Shawe-Taylor, Williams, Cristianini and Kandola [17].

Theorem 1. Let (X, P) be a probability space, H be a separable Hilbert space
and @ be a map from X to H such that for all h € H, (h,®(.))y is measurable
and IE,||§Z5(X)||2 < 0. Let C be the covariance operator associated to $(X) and
K : La(P) = Lao(P) be the integral operator defined as

(KD)@) = [ 1) @) 0wy dPly).

Then AM(K) = A(C).
In particular, K is a positive self-adjoint trace-class operator and tr(K) =

E[[ @) = 55, Ai(K).

2.3 Eigenvalues Formula

We denote by Vg4 the set of subspaces of dimension d of H. The following theorem
whose proof can be found in [18] gives a useful formula to compute sums of
eigenvalues.

Theorem 2 (Fan). Let C' a compact self-adjoint operator on H, then

2N (0) = max (v, C) sy

and the mazimum s reached when V s the space spanned by the first d eigen-
vectors of C'.

We will also need the following formula for single eigenvalues.

Theorem 3 (Courant-Fischer-Weyl, see e.g. [9]). Let C' a compact self-
adjoint operator on H, then for all d > 1,

(,¢f)

A = 1
A= B

bl

where the minimum is attained when V s the span of the first d — 1 eigenvectors

of C.

2.4 Assumptions and Basic Facts

Let X denote the input space (an arbitrary measurable space) and P denote a
distribution on A" according to which the data is sampled 1.i.d.

We will denote by P, the empirical measure associated to a sample Xy, ..., X,
from P,i.e. P, = %Z dx,. With some abuse of notation, for a function f : X —
R, we may use the notation Pf := E[f(X)] and P,f := %2?21 F(Xi). Also,



£1,...,&n will denote a sequence of Rademacher random variables (i.e. indepen-
dent with value +1 or —1 with probability 1/2).

Let & be a positive definite function on X' and Hy the associated reproducing ker-
nel Hilbert space. They are related by the reproducing property: Vf € Hg,Va €
X, {(f k(x, ) n, = f(z). We denote by Vy the set of all vector subspaces of di-
mension d of Hy.

We will always work with the following assumption.

Assumption 1 We assume that

— Forallx € X, k(x,.) is P-measurable.
— There exists M > 0 such that k(X,X) < M P-almost surely.
— Hy s separable.

For € X, we denote ¢, = k(z,.) understood as an element of Hy.
Let C}; the operator defined on Hj by

(f,Ceg)p, = f(2)g(x).

It is easy to see that Cp = ¢, ® ¢, and Cy is trace-class with trCp = k(z, )
and [Colys oy = Kl )2

Also, from the definitions and by (1) we have for example (Cy, Cy)usu,) =
k*(x,y) and , for any projector U, ||Uge||3;, = (U, Co)rs(ay.) -

We will denote by Cy : Hy — Hy (resp. Ca : HS(Hy) — HS(#Hy)) the covariance
operator associated to the random element ¢x in Hy, (resp. C'x in HS(#Hy)). Also,
let Ky (resp. K2) be the integral operator with kernel k(z,y) (resp. k(z,y)?).

Lemma 1. Under Assumption 1 the operators Cy,Cy, K1, K2 defined above are
trace-class with trC; = E[k(X, X)], trCs = E[kz(X,X)]. They satisfy the

following properties

(i) A(C1) = MKy) and A(Cs) = A(K>) .
(ii) C1 is the expectation in HS(Hy) of Cx.
(iii) Cy is the expectation in HS(HS(Hy)) of Cx ® Cx.

Proof. (i) To begin with, we prove that tr C; = EL(X, X) and A(Cy) = A(K7)
by applying Theorem 1 with @(x) = ¢,: since k(x,-) is measurable, all linear
combinations and pointwise limits of such combinations are measurable, so that
all the functions in Hjy are measurable. Hence measurability, for A € H; of
z = (P, )y, follows and we have EH@XHZ =Fk(X, X) < .

Then, we prove that tr Cy = Ek?(X, X) and A(C2) = A(K2) by applying Theo-
rem 1 with &(z) = C,: for h € HS(Hy,) with finite rank (i.e. h = > 1| ¢; @ ¢
for an orthonormal set ¢; and ¢; = h*¢;), the function z — <Cx’h>HS(Hk) =
St #i(x)i(x) is measurable (since ¢; and i; are measurable as elements
of Hyi). Moreover, since the finite rank operators are dense in HS(H;) and
h — <Cxah>HS(Hk) is continuous, we have measurability for all h € HS(Hy).

Finally, we have EHC’XHES(HU = Fk*(X, X) < .



(ii) Since EHCXHHS(’Hk) = Ek(X,X) < oo the expectation of Cx is well de-
fined in HS(#y). Moreover for all f,g € Hi, (ECxf,9) = (ECx,9 @ f) =
E(Cx,9 @ f) = E(Cx f,g9) = BEf(X)g(X) = (C1f,9)

(iii) Using [|Cx © Cx[lgspus(a,y = 1Cx s,y = k(X, X)? and a similar ar-
gument gives the last statement. d

The generality of the above results implies that we can replace the distribu-
tion P by the empirical measure P, associated to an 1.1.d. sample Xq,..., X,
without any changes. If we do so, the associated operators are denoted by K; ,
(which is identified [12] with the normalized kernel matrix of size n x n, Ky , =
(k(X;,X;)/n)i j=1,..n) and Cy, which is the empirical covariance operator
(ie. {f,Cing) = %Z?:l F(X;)9(Xi)). We can also define K5, and C5, simi-
larly. In particular, Theorem 1 implies that A(K1 ,) = A(C1 ) and A(K»,) =
A(Cop) and tr Ky, = trCh, = %Z?Il k(X;, X;) while tr Ky, = trCqp, =
2ot K7 (X0, XG).

3 General Results on Eigenvalues of Gram Matrices

We first relate sums of eigenvalues to a class of functions of type  — (ITy, Cy).
This will allow us to introduce classical tools of Empirical Processes Theory to
study the relationship between eigenvalues of the empirical Gram matrix and of
the corresponding integral operator.

Corollary 1. Under Assumption 1, we have

d
;Ak(m) = max E[(Ily, Cx)] and DZM (K1) = min E[(ITys, Cx)] -

Proof. The result for the sums of the largest eigenvalues follows from Theorem
2 applied to €7 and Lemma 1. For the smallest ones, we use the fact that
trCh =EtrCx = Zk21 /\k((]l) , and <Hv,Cx> + <HVJ_,Cx> =trCx. O

Notice that similar results hold for the empirical versions (replacing P by P,).

3.1 Global Approach

In this section, we obtain concentration result of the sum of the largest eigen-
values and of the sum of the lowest towards eigenvalues of the integral operator.
We start with an upper bound on the Rademacher averages of the corresponding
classes of functions.

Lemma 2.

1

& 1 & /d
E. | — sup ZEj<HvL,CXj> = |— sup ZEj<Hv,CXj> < gteryn

n n
VeEVy J=1 VeEVa J=1



Proof. We use the symmetry of ¢;, Theorem 8 with » — oo and h = 0, and
Lemma 1. |

We now give the main result of this section, which consists in data-dependent
upper and lower bounds for the largest and smallest eigenvalues.

Theorem 4. Under Assumption 1, with probability at least 1 — 3e*¢

d d
£ . . d . £
My 2= <Y O N(Krn) = DO Ai(E) <24/ tr K =
M o = 2 /\z ([Xl,n) 2 /\z ([Xl) < 2 n tr [\2771 + 3M m (2)

Also, with probability at least 1 — 3e*¢,

/ /d
-M Z Ai(Ky) — Z Ai(Ki1,) <2 —tr[x2n+3M ;n. (3)

i>d+1 i>d+1
Proof. We start with the first statement. Recall that

d d
Z:/\i(hln Z;/\ (K1) _‘I/HEE%)X<HV’01H>_H1€%§<HV’01> .
This gives, denoting by V; the subspace attaining the second maximum,

d d

(Pn— P)(Ilv,,Cx) < Y Ni(K1n) = > Xi(Ky) < sup (P, — P) Iy, Cx) .
i=1 i=1 VEVa

To prove the upper bound, we use McDiarmid’s inequality and symmetrization
as in [3] along with the fact that, for a projector U, (U, Cy) < ||g0x||2 < M. We
conclude the proof by using Lemma 2. The lower bound is a simple consequence
of Hoeflding’s inequality [10]. The second statement can be proved via similar
arguments. |

It 1s important to notice that the upper and lower bounds are different. To
explain this, following the approach of [17] where McDiarmid’s inequality is

applied to Zd Ai (K1 ) directly®, we have with probability at least 1 — et

_Mf Z/\ (K1) — Z/\i(Kl,n) L

o
Then by Jensen’s mequahty, symmetrization and Lemma 2 we get

d
[d
E Ai (K1) E Ai(K7) <E[sup (P, —P)(HV,C'X>] <2 —tr[xz.
Vevy

i=1 i=1

<M

0<E

We see that the empirical eigenvalues are biased estimators of the population
ones whence the difference between upper and lower bound in (2). Note that
applying McDiarmid’s inequality again would have given precisely (2), but we
prefer to use the approach of the proof of Theorem 4 as it can be further refined
(see next section).

* Note that one could actually apply the inequality of [7] to this quantity to obtain a
sharper bound. This is in the spirit of next section.



3.2 Local Approach

We now use recent work based on Talagrand’s inequality (see e.g. [13,2]) to
obtain better concentration for the large eigenvalues of the Gram matrix. We
obtain a better rate of convergence, but at the price of comparing the sums of
eigenvalues up to a constant factor.

Theorem 5. Under Assumption 1, for all « > 0 and & > 0, with probability at
least 1 — e*t,

d d 11
S (K1) — 1+a2 (K1) < T04(1 + at )y 4 MEQLA+ @) $26(1 +a77))

n
rd<111;f0 7—1—2 [ — 2/\ (Ka2)
J

Moreover, with probability at least 1 — eLé, for all o € (0, 1),

SR — (1= a) S MR > T (g ). (5)

where

Notice that the complexity term obtained here 1s always better than the one
of (2) (take h = 0). As an example of how this bound differs from (2), assume
that A;(K2) = O(j+%) with o > 1, then (2) gives a bound of order \/d/n, while
the above Theorem gives a bound of order d'/(+®) /n®/(1+2) which is better. In
the case of an exponential decay (A;(K2) = O(et?) with v > 0), the rate even
drops to log(nd)/n.

4 Application to Kernel-PCA

We wish to find the linear space of dimension d that conserves the maximal
variance, i.e. which minimizes the error of approximating the data by their pro-
jections.

1 n
V, — argmin— ox, — v (ex;)|” -
ramin | (ex,)l

Vy 1s the vector space spanned by the first d eigenfunctions of € ,,. Analogously,
we denote by Vy the space spanned by the first d eigenfunctions of C;. We will
adopt the following notation:

1 n
Ra(V) = ;ZHSDXj — v (px,)|I” = Pu (Ily+,Cx) .
i=1
R(V)=E[llex — Hvex|’] = P(IIys,Cx) .

One has R, (V,) = Zi>dAi([(1y”) and R(Vy) = Zz’>d/\i(K1)~



4.1 Bound on the Reconstruction Error
We give a data dependent bound for the reconstruction error.

Theorem 6. Under Assumption 1, with probability at least 1 — 2e*¢,

- /d

i=d+1
Proof. We have

R(Vn) — Rn(Vn) = (P — Pn) <HV7j-aCX> S sup (P — Pn) <HVJ_,Cx> .
Vevy

We have already treated this quantity in the proof of Theorem 4. a

In order to compare the global and the local approach, we give a theoretical
bound on the reconstruction error. By definition of V;,, we have R(V,,) — R(Vy) <
2supy ¢y, (R — Ry)(Vi) so that from the proof of Theorem 4 one gets

RV = R(Va) < 4y S1r(1s) + 2M@.

4.2 Relative Bound

We now show that when the eigenvalues of the kernel operator are well sepa-
rated, estimation becomes easier in the sense that the excess error of the best
empirical d-dimensional subspace over the error of the best d-dimensional sub-
space can decay at a much faster rate.

The following lemma captures the key property which allows this rate improve-
ment.

Lemma 3. For any subspace V C Hy,
Var {<HVL,(JX> — <HV;,CX>} <E [<HVL — HV;,(JX>2] ,

and for all V€ Vg, with Aq(C1) > Agy1(Ch),
\/ﬁ
< 2/EEY X, X") B
Aa(C1) — Aag1(Ch)
where X' is an independent copy of X.

E [<HVL - HV;,CX>2] KHVL - HV;,CXH . (6)

Here is the main result of the section.

Theorem 7. Under Assumption 1, for all d such that Aq(C1) > Ag41(Cy), for
all € > 0, with probability at least 1 — e+t

. Baih d . &(22M 4 27By)
R(V,) — R(Vy) <705 égfo —t 4 ,n '>Eh+1 Aj(Ka) p + - :
P>

where By = 2/EkY X, X")/(Aa(C1) — Agg1(Ch)).
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It is easy to see that the term \/Ek*(X, X’) is upper bounded by Ek?(X, X).
Similarly to the observation after Theorem 5, the complexity term obtained here
will decay faster than the one of Theorem 6, at a rate which will depend on the
rate of decay of the eigenvalues.

5 Discussion

Dauxois and Pousse [8] studied asymptotic convergence of PCA and proved al-
most sure convergence in operator norm of the empirical covariance operator to
the population one. These results were further extended to PCA in a Hilbert
space by [6]. However, no finite sample bounds were presented.

Compared to the work of [12] and [11], we are interested in non-asymptotic (i.e.
finite sample sizes) results. Also, as we are only interested in the case where
k(z,y) is a positive definite function, we have the nice property of Theorem 1
which allows to consider the empirical operator and its limit as acting on the
same space (since we can use covariance operators on the RKHS). This is crucial
in our analysis and makes precise non-asymptotic computations possible unlike
in the general case studied in [12,11].

Comparing with [17], we overcome the difficulties coming from infinite dimen-
sional feature spaces as well as those of dealing with kernel operators (of infinite
rank). Moreover their approach for eigenvalues is based on the concentration
around the mean of the empirical eigenvalues and on the relationship between
the expectation of the empirical eigenvalues and the operator eigenvalues. But
they do not provide two-sided inequalities and they do not introduce Rademacher
averages which are natural to measure such a difference. Here we use a direct ap-
proach and provide two-sided inequalities with empirical complexity terms and
even get refinements. Also, when they provide bounds for KPCA, they use a
very rough estimate based on the fact that the functional is linear in the feature
space associated to k?. Here we provide more explicit and tighter bounds with
a global approach. Moreover, when comparing the expected residual of the em-
pirical minimizer and the ideal one, we exploit a subtle property to get tighter
results when the gap between eigenvalues i1s non-zero.

6 Conclusion

We have obtained sharp bounds on the behavior of sums of eigenvalues of Gram
matrices and shown how this entails excess risk bounds for kernel-PCA. In par-
ticular our bounds exhibit a fast rate behavior in the case where the spectrum of
the kernel operator decays fast and contains a gap. These results significantly im-
prove previous results of [17]. The formalism of Hilbert-Schmidt operator spaces
over a RKHS turns out to be very well suited to a mathematically rigorous treat-
ment of the problem, also providing compact proofs of the results. We plan to
investigate further the application of the techniques introduced here to the study
of other properties of kernel matrices, such as the behavior of single eigenvalues
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instead of sums, or eigenfunctions. This would provide a non-asymptotic version

of results like those of [1] and of [6].
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A Localized Rademacher Averages on Ellipsoids

We give a bound on Rademacher averages of ellipsoids intersected with balls
using a method introduced by Dudley.

Theorem 8. Let ‘H be a separable Hilbert space and Z be a random variable
with values i H. Assume E[||Z||2] < 00, and let C be the covariance operator
of Z. For an i.i.d. sample® Z,,...,Z,, denote by C, the associated empirical
covariance operator. Let B, = {||v|| < a}, & = {(v,Cv) < r} and &, , =
{{v,Crv) < r}. We have

n

1
sup —ZEZ'<U,ZZ'>

n
vEBLNE, i=1

[

and

n

1
sup — ZEZ'<U, Zi)

n
vEBLNE, i=1

E

1.
gﬁégfo Vhr+a | > A . (8
Jzh+1

Proof. We will only prove (8), the same argument gives (7). Let (®;);>1 be an
orthonormal basis of A of eigenvectors of C. Define p = min{i : A;(C) = 0}. If
we prove the result for A < p we are done, so we assume h < p. For v € B, NE,,
we have

Zn:@<v,zi>:<zh: (v, ®;) ],Zel > <U,Z<geizi,¢j>@j>

i=1 i>h

n

Z /\Z ZEJ ta Z <ZEJZJ ?;)

i=1 = i>h+1 j=1

IN
=

5 The result also holds if the Z; are not independent but have the same distribution.
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where we used Cauchy-Schwarz inequality and (v, Cv) = 3,5, A (C){v, &;)?.
Moreover B

25] E[(Z,®;)%] = ($:,CP;) = X (C).

We finally obtain (8) by Jensen’s inequality. d

Notice that Mendelson [14] shows that these upper bounds cannot be improved.
We also need the following lemma. Recall that a sub-root function [2] is a
non-decreasing non-negative function on [0,00) such that ¢¥(x /\/_x is non-
increasing.

Lemma 4. Under the conditions of Theorem 8, denoting by i the function

1
¥(r) ._\/ﬁénf Vhr 4+ a /jzzh;l_lx\j(C) ,

we have that v 1s a sub-root function and the unique positive solution r* of
¥(r) = r/c where ¢ > 0 satisfies

2
r* < inf ¢ — @ Z A (
j>h+1

Proof. 1t is easy to see that the minimum of two sub-root functions i1s sub-
root, hence ¢ as the minimum of a collection of sub-root function is sub-root.
Existence and uniqueness of a solution is proved in [2]. To compute it, we use
the fact that » < Ay/x + B implies # < A? + 2B.

We finish this section with two corollaries of Theorem 8 and Lemma 4.

2
Corollary 2. Define Wy = {V €Vq :E<HvJ_ — HVdJ_,CX> < r} , then

1
< JL / g
_ﬁégg vVrh+2 djéh/\]([xz)

Proof. This is a consequence of Theorem 8 since ||ITy — HVdHIerS(’Hk) < 4d, so
that for V. € Wy, Py € BiaNE, with & = {v € HS(Hx), (v, C2v)us(z,) < 7). O

n

1
sup — 6i<H L= 1II J_,CX1>
VEdeiZ:; v Vi

E

Corollary 3. Define Wy = {V €Vy: E(Py, C’X>2 < r} then,

_fmf vVrh 4+ de\khz
E>h+1

Proof. Use the same proof as in Corollary 2. |

E sup —262 (v, Cx,)

VeW, i=1
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B Proofs

Proof (of Theorem 1). Then ¢(X) is a random element of . By assump-
tion, each element i € H can be identified to a measurable function # —
(f,®(x)). Also, if E[|(X)|]] < oo, ¢(X) has an expectation which we de-
note by E[¢(X)] € H. Consider the linear operator 7' : H — Ly(P) de-
fined as (Th)(x) = (h,®(x)),. By Cauchy-Schwarz inequality, E(h, &(X))* <
[|A[]?E[|@(X)||?. Thus, T is well-defined and continuous, thus it has a continuous
adjoint T*. Let f € Lo(P), then (E||f(X)®(X)]])? < ||f||2IE||Q5(X)||2 . So, the
expectation of f(X)®(X) € H can be defined. But for all g € H, (1™ f,9), =
(. Tg)y ) = Elg, F(X)B(X)).] which shows that T(f) = E[B(X) /(X)) .
We now prove that C' = T*T and K = T7T™*. By the definition of the expectation,
forall h, A" € H, (h, T*T(h")) = (R, E[®(X) (@(X), )] = E[(h,P(X)) (W, P(X))] .
Thus, by the uniqueness of a covariance operator, we get ¢' = T*T. Similarly
(TT" 1)) = (" [, 0(2)) = E[(F(X)B(X), 0())] = | F(2) (@), &(x)) dP(y)
so that K = T7T*. By singular value decomposition, it is easy to see that
A(C) = MK) if T is a compact operator. Actually, T is Hilbert-Schimdt. In-
deed, [[Trggrey = Yoo ITeillF = o E [(es, (X)) = E[[6(X)|] . Hence,
T is compact, C'is trace-class (tr C' = ||T||%IS(H)) and since tr 17" = tr T*T, K
is trace-class too. d

Proof (of Theorem 5). As in the proof of Theorem 4, we have to bound supy- ¢y, (P, —
P){Ily,Cx). We will use a slight modification of Theorem 3.3 of [2]. Tt is easy

to see that applying Lemma 3.4 of [2] to the class of functions {f' = —f; f € F},
with the assumption T'(f') < —BPf’, one obtains (with the notations of this
lemma),

K r

ABK "’

Pf < K+1Pnf’+

so that under the assumptions of Theorem 3.3, one can obtain the following
version of the result
K T04K £(11(b—a) + 26 BK)

Pn/ *
Kyl Tt n ’

Pf <
which shows (for the initial class) that

ppg T+ 1) €0 = a) (K + /K + 26B(K +1))

<I(—|:1
B n

P,
I= K

We apply this result to the class of functions x — (ITy, Cy) for V € V4, which
satisfies P (ITy, C’x>2 < MP{Iyv,Cy) , and {IIy,Cy) € [0, M], and use Lemma
4. We obtain that for all o > 0 and £ > 0, with probability at least 1 — et
every V € V; satisfies

ME(11(1 4 o) + 26(1 4 att)) .

P, {(Ily,Cx) < (1 4+ )P (Iy,Cx) +704(1 + at1)r; +

n
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where r; = % and MWy(r*) = r*. Wq(r) is the sub-root function that appeared
in Corollary 3 This concludes the proof. Inequality (5) is a simple consequence
of Bernstein’s inequality. a

Proof (of Lemma 3). The first inequality is clear. For the second we start with

2
E |:<HVJ- - HVdJ—aCX> ] = (Ilv, — Iy, Colly, — v )usu)

< 1CalllHTv, = v [z
= 2[|Ca||(d = {Iv, v, ) s () - (9)

By Lemma 1, & |:<HVJ_ — HVdJ_,CX>i| = {Ily, — Iy, C4) . We now introduce an

orthonormal basis (f;)i=1,. ¢ of V and the orthonormal basis (¢;)i=1, . 4 of the
first d eigenvectors of Cf.
Moreover, we have

d d
<HVd_HVa01>:Z Zfz,clfz .
i=1 i=1

We decompose f; = Zj:1<fia ¢;)¢; + g;, where g; € span(¢1,...,¢a)t so that

d
(i, CLE) =D N (C){Fi 6)” + (g1, Cagi)

j=1

Theorem 3, implies {g;, C1¢;) < Ag+1(C1)(1 — Zj:1<fia $;)?) , hence we get

d d d
(Iv, — Iy, Ch) ZZ L= (f5,60)) = Aasa (C(d = Y (i, 65)7) -
i=1 j=1 i,j=1

Using 1 — Z] Afiv0i)? = [y (4)])* > 0, and the fact that the eigenvalues
of C'; are in a non-decreasing order we finally obtain
d

(Ilv, — Iy, C1) > (Aa(C1) = Aagr (C1))(d = D (i, 6)%).- (10)
i,7=1
Also we notice that [|Ca|| < [|Collusmsa,)) = I[Kallusz,py) (by Lemma 1)

and since K, is an integral operator Wlth kernel k*(x, y) HK?H%IS(HS(H,C)) =

[ k*(z, y)dP(x)dP(y). Now, Equation (1) gives (/Iy, Hvd>HS(q.[) = Zij:1<fi’ N
Combining this with Inequalities (9) and (10) we get the result. O
Proof (of Theorem 7). We will apply Theorem 3.3 of [2] to the class of functions
fvix— <HvJ_ - HVdJ_, C’x> for V € V; and taking V = V), will give the result.
With the notations of [2], we set T(fv) = E[fv (X)Z] and by Lemma 3 we
have T'(fv) < B4E[fv(X)]. Also, fy(x) € [-M, M]. Moreover, we can upper
bound the localized Rademacher averages of the class fy using Corollary 2,
which combined with Lemma 4 gives the result. d



