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Springer-VerlagAbstract. We study the properties of the eigenvalues of Gram matri-ces in a non-asymptotic setting. Using local Rademacher averages, weprovide data-dependent and tight bounds for their convergence towardseigenvalues of the corresponding kernel operator. We perform these com-putations in a functional analytic framework which allows to deal implic-itly with reproducing kernel Hilbert spaces of in�nite dimension. This canhave applications to various kernel algorithms, such as Support VectorMachines (SVM). We focus on Kernel Principal Component Analysis(KPCA) and, using such techniques, we obtain sharp excess risk boundsfor the reconstruction error. In these bounds, the dependence on thedecay of the spectrum and on the closeness of successive eigenvalues ismade explicit.1 IntroductionDue to their versatility, kernel methods are currently very popular as data-analysis tools. In such algorithms, the key object is the so-called kernel matrix(the Gram matrix built on the data sample) and it turns out that its spectrumcan be related to the performance of the algorithm. This has been shown inparticular in the case of Support Vector Machines [19]. Studying the behav-ior of eigenvalues of kernel matrices, their stability and how they relate to theeigenvalues of the corresponding kernel integral operator is thus crucial for un-derstanding the statistical properties of kernel-based algorithms.Principal Component Analysis (PCA), and its non-linear variant, kernel-PCAare widely used algorithms in data analysis. They extract from the vector spacewhere the data lie, a basis which is, in some sense, adapted to the data by look-ing for directions where the variance is maximized. Their applications are very? Supported by a grant of the Humboldt Foundation



2diverse, ranging from dimensionality reduction, to denoising. Applying PCA toa space of functions rather than to a space of vectors was �rst proposed by Besse[5] (see also [15] for a survey). Kernel-PCA [16] is an instance of such a methodwhich has boosted the interest in PCA as it allows to overcome the limitationsof linear PCA in a very elegant manner.Despite being a relatively old and commonly used technique, little has been doneon analyzing the statistical performance of PCA. Most of the previous work hasfocused on the asymptotic behavior of empirical covariance matrices of Gaussianvectors (see e.g. [1]). In the non-linear setting where one uses positive de�nitekernels, there is a tight connection between the covariance and the kernel matrixof the data. This is actually at the heart of the kernel-PCA algorithm, but italso indicates that the properties of the kernel matrix, in particular its spectrum,play a role in the properties of the kernel-PCA algorithm.Recently, J. Shawe-Taylor, C. Williams, N. Cristianini and J. Kandola [17] haveundertaken an investigation of the properties of the eigenvalues of kernel matri-ces and related it to the statistical performance of kernel-PCA.In this work, we mainly extend the results of [17]. In particular we treat thein�nite dimensional case with more care and we re�ne the bounds using recenttools from empirical processes theory. We obtain signi�cant improvements andmore explicit bounds.The fact that some of the most interesting positive de�nite kernels (e.g. the Gaus-sian RBF kernel), generate an in�nite dimensional reproducing kernel Hilbertspace (the "feature space" into which the data is mapped), raises a technicaldi�culty. We propose to tackle this di�culty by using the framework of Hilbert-Schmidt operators and of random vectors in Hilbert spaces. Under some reason-able assumptions (like separability of the RKHS and boundedness of the kernel),things work nicely but some background in functional analysis is needed whichis introduced below.Our approach builds on ideas pioneered by Massart [13], on the fact that Tala-grand's concentration inequality can be used to obtain sharp oracle inequalitiesfor empirical risk minimization on a collection of function classes when the vari-ance of the relative error can be related to the expected relative error itself. Thisidea has been exploited further in [2].The paper is organized as follows. Section 2 introduces the necessary back-ground on functional analysis and the basic assumptions. We then present, inSection 3 bounds on the di�erence between sums of eigenvalues of the kernelmatrix and of the associated kernel operator. Finally, Section 4 gives our mainresults on kernel-PCA.2 PreliminariesIn order to make the paper self-contained, we introduce some background, andgive the notations for the rest of the paper.



32.1 Background Material on Functional AnalysisLet H be a separable Hilbert space. A linear operator L from H to H is calledHilbert-Schmidt ifPi�1 kLeik2H <1 ; where (ei)i�1 is an orthonormal basis ofH. This sum is independent of the chosen orthonormal basis and is the squaredof the Hilbert-Schmidt norm of L when it is �nite. The set of all Hilbert-Schmidtoperators on H is denoted by HS(H). Endowed with the following inner producthL;N iHS(H) =Pi;j�1hLei; ejihNei; eji ; it is a separable Hilbert space.A Hilbert-Schmidt operator is compact, it has a countable spectrum and aneigenspace associated to a non-zero eigenvalue is of �nite dimension. A compact,self-adjoint operator on a Hilbert space can be diagonalized i.e. there exists anorthonormal basis ofHmade of eigenfunctions of this operator. If L is a compact,positive self-adjoint operator �(L) denotes its spectrum sorted in non-increasingorder, repeated according to their multiplicities (�1(A) � �2(A) � : : : ). Anoperator L is called trace-class if Pi�1hei; Leii is a convergent series. In fact,this series is independent of the chosen orthonormal basis and is called the traceof L, denoted by trL : By Lidskii's theorem trL =Pi�1 �i(L).We will keep switching from H to HS(H) and treat their elements as vec-tors or as operators depending on the context, so we will need the follow-ing identities. Denoting, for f; g 2 H, by f 
 g the rank one operator de-�ned as f 
 g(h) = hg; hif , it easily follows from the above de�nitions thatkf 
 gkHS(H) = kfkH kgkH ; and for A 2 HS(H),hf 
 g;AiHS(H) = hAg; fiH : (1)We recall that an orthogonal projector in H is an operator U such that U2 = Uand U = U� (hence positive). In particular one has kU (h)k2H = hh; UhiH : Uhas rank d < 1 (i.e. it is a projection on a �nite dimensional subspace), if andonly if it is Hilbert-Schmidt with kUkHS(H) = pd and trU = d. In that case itcan be decomposed as U =Pdi=1 �i 
 �i where (�i)di=1 is an orthonormal basisof the image of U .If V denotes a closed subspaces of H, we denote by �V the unique orthogonalprojector such that ran�V = V and ker�V = V ?. When V is of �nite dimen-sion, �V? is not Hilbert-Schmidt, but we will denote, for a trace-class operatorA, h�V? ; Ai = trA � h�V ; AiHS(H) with some abuse of notation.2.2 Kernel and Covariance OperatorsWe recall basic facts about random elements in Hilbert spaces. A random elementZ in a separable Hilbert space has an expectation e 2 H when E kZk < 1 ande is the unique vector satisfying he; fiH = E hZ; fiH ; 8f 2 H. Moreover, whenE kZk2 < 1, there exists a unique operator C : H ! H such that hf; CgiH =E [hf; ZiH hg; ZiH] ; 8f; g 2 H. C is called the covariance operator of Z and isself-adjoint, positive, trace-class operator, with trC = E kZk2 (see e.g. [4]).The core property of kernel operators that we will use is its intimate rela-tionship with a covariance operator and it is summarized in next theorem. This



4property was �rst used in a similar but more restrictive context (�nite dimen-sional) by Shawe-Taylor, Williams, Cristianini and Kandola [17].Theorem 1. Let (X ; P ) be a probability space, H be a separable Hilbert spaceand � be a map from X to H such that for all h 2 H, hh; �(:)iH is measurableand E k�(X)k2 < 1. Let C be the covariance operator associated to �(X) andK : L2(P )! L2(P ) be the integral operator de�ned as(Kf)(x) = Z f(y) h�(x); �(y)iH dP (y) :Then �(K) = �(C) :In particular, K is a positive self-adjoint trace-class operator and tr(K) =E k�(X)k2 =Pi�1 �i(K) :2.3 Eigenvalues FormulaWe denote by Vd the set of subspaces of dimension d ofH. The following theoremwhose proof can be found in [18] gives a useful formula to compute sums ofeigenvalues.Theorem 2 (Fan). Let C a compact self-adjoint operator on H, thendXi=1 �i(C) = maxV 2Vd h�V ; CiHS(H) ;and the maximum is reached when V is the space spanned by the �rst d eigen-vectors of C.We will also need the following formula for single eigenvalues.Theorem 3 (Courant-Fischer-Weyl, see e.g. [9]). Let C a compact self-adjoint operator on H, then for all d � 1,�d(C) = minV 2Vd�1 maxf?V hf; Cfikfk2 ;where the minimum is attained when V is the span of the �rst d�1 eigenvectorsof C.2.4 Assumptions and Basic FactsLet X denote the input space (an arbitrary measurable space) and P denote adistribution on X according to which the data is sampled i.i.d.We will denote by Pn the empirical measure associated to a sample X1; : : : ; Xnfrom P , i.e. Pn = 1nP �Xi . With some abuse of notation, for a function f : X !R, we may use the notation Pf := E [f(X)] and Pnf := 1nPni=1 f(Xi). Also,



5"1; : : : ; "n will denote a sequence of Rademacher random variables (i.e. indepen-dent with value +1 or �1 with probability 1=2).Let k be a positive de�nite function on X andHk the associated reproducing ker-nel Hilbert space. They are related by the reproducing property: 8f 2 Hk; 8x 2X ; hf; k(x; :)iHk = f(x) : We denote by Vd the set of all vector subspaces of di-mension d of Hk.We will always work with the following assumption.Assumption 1 We assume that{ For all x 2 X , k(x; :) is P -measurable.{ There exists M > 0 such that k(X;X) �M P -almost surely.{ Hk is separable.For x 2 X , we denote 'x = k(x; :) understood as an element of Hk.Let Cx the operator de�ned on Hk byhf; CxgiHk = f(x)g(x) :It is easy to see that Cx = 'x 
 'x and Cx is trace-class with trCx = k(x; x)and kCxk2HS(Hk) = k(x; x)2.Also, from the de�nitions and by (1) we have for example hCx; CyiHS(Hk) =k2(x; y) and , for any projector U , kU'xk2Hk = hU;CxiHS(Hk) :We will denote by C1 : Hk !Hk (resp. C2 : HS(Hk)! HS(Hk)) the covarianceoperator associated to the random element 'X inHk (resp. CX in HS(Hk)). Also,let K1 (resp. K2) be the integral operator with kernel k(x; y) (resp. k(x; y)2).Lemma 1. Under Assumption 1 the operators C1; C2;K1;K2 de�ned above aretrace-class with trC1 = E [k(X;X)], trC2 = E �k2(X;X)�. They satisfy thefollowing properties(i) �(C1) = �(K1) and �(C2) = �(K2) :(ii) C1 is the expectation in HS(Hk) of CX .(iii) C2 is the expectation in HS(HS(Hk)) of CX 
CX .Proof. (i) To begin with, we prove that trC1 = Ek(X;X) and �(C1) = �(K1)by applying Theorem 1 with �(x) = 'x: since k(x; �) is measurable, all linearcombinations and pointwise limits of such combinations are measurable, so thatall the functions in Hk are measurable. Hence measurability, for h 2 Hk ofx 7! h�x; hiHk follows and we have E k�Xk2 = Ek(X;X) <1.Then, we prove that trC2 = Ek2(X;X) and �(C2) = �(K2) by applying Theo-rem 1 with �(x) = Cx: for h 2 HS(Hk) with �nite rank (i.e. h =Pni=1 �i 
  ifor an orthonormal set �i and  i = h��i), the function x 7! hCx; hiHS(Hk) =Pni=1 �i(x) i(x) is measurable (since �i and  i are measurable as elementsof Hk). Moreover, since the �nite rank operators are dense in HS(Hk) andh 7! hCx; hiHS(Hk) is continuous, we have measurability for all h 2 HS(Hk).Finally, we have E kCXk2HS(Hk) = Ek2(X;X) <1.



6(ii) Since E kCXkHS(Hk) = Ek(X;X) < 1 the expectation of CX is well de-�ned in HS(Hk). Moreover for all f; g 2 Hk, hECXf; gi = hECX ; g 
 fi :=EhCX ; g 
 fi = E hCXf; gi = Ef(X)g(X) = hC1f; gi(iii) Using kCX 
CXkHS(HS(Hk)) = kCXk2HS(Hk) = k(X;X)2 and a similar ar-gument gives the last statement. �The generality of the above results implies that we can replace the distribu-tion P by the empirical measure Pn associated to an i.i.d. sample X1; : : : ; Xnwithout any changes. If we do so, the associated operators are denoted by K1;n(which is identi�ed [12] with the normalized kernel matrix of size n� n, K1;n �(k(Xi; Xj)=n)i;j=1;::: ;n) and C1;n which is the empirical covariance operator(i.e. hf; C1;ngi = 1nPni=1 f(Xi)g(Xi)). We can also de�ne K2;n and C2;n simi-larly. In particular, Theorem 1 implies that �(K1;n) = �(C1;n) and �(K2;n) =�(C2;n) and trK1;n = trC1;n = 1nPni=1 k(Xi; Xi) while trK2;n = trC2;n =1nPni=1 k2(Xi; Xi).3 General Results on Eigenvalues of Gram MatricesWe �rst relate sums of eigenvalues to a class of functions of type x 7! h�V ; Cxi.This will allow us to introduce classical tools of Empirical Processes Theory tostudy the relationship between eigenvalues of the empirical Gram matrix and ofthe corresponding integral operator.Corollary 1. Under Assumption 1, we havedXk=1�k(K1) = maxV2Vd E [h�V ; CXi] and Xk�d+1�k(K1) = minV2Vd E [h�V ?; CXi] :Proof. The result for the sums of the largest eigenvalues follows from Theorem2 applied to C1 and Lemma 1. For the smallest ones, we use the fact thattrC1 = E trCX =Pk�1 �k(C1) ; and h�V ; CXi+ h�V? ; CXi = trCX . �Notice that similar results hold for the empirical versions (replacing P by Pn).3.1 Global ApproachIn this section, we obtain concentration result of the sum of the largest eigen-values and of the sum of the lowest towards eigenvalues of the integral operator.We start with an upper bound on the Rademacher averages of the correspondingclasses of functions.Lemma 2.E" 24 1n supV 2Vd nXj=1 "j 
�V? ; CXj�35 = E" 24 1n supV 2Vd nXj=1 "j 
�V ; CXj�35 �rdn trK2;n



7Proof. We use the symmetry of "i, Theorem 8 with r ! 1 and h = 0, andLemma 1. �We now give the main result of this section, which consists in data-dependentupper and lower bounds for the largest and smallest eigenvalues.Theorem 4. Under Assumption 1, with probability at least 1� 3e��,�Mr �2n � dXi=1 �i(K1;n) � dXi=1 �i(K1) � 2rdn trK2;n + 3Mr �2n : (2)Also, with probability at least 1� 3e��;�Mr �2n � Xi�d+1�i(K1)� Xi�d+1�i(K1;n) � 2rdn trK2;n + 3Mr �2n : (3)Proof. We start with the �rst statement. Recall thatdXi=1 �i(K1;n)� dXi=1 �i(K1) = maxV 2Vd h�V ; C1;ni � maxV 2Vd h�V ; C1i :This gives, denoting by Vd the subspace attaining the second maximum,(Pn � P ) h�Vd ; CXi � dXi=1 �i(K1;n) � dXi=1 �i(K1) � supV2Vd(Pn � P ) h�V ; CXi :To prove the upper bound, we use McDiarmid's inequality and symmetrizationas in [3] along with the fact that, for a projector U , hU;Cxi � k'xk2 � M . Weconclude the proof by using Lemma 2. The lower bound is a simple consequenceof Hoe�ding's inequality [10]. The second statement can be proved via similararguments. �It is important to notice that the upper and lower bounds are di�erent. Toexplain this, following the approach of [17] where McDiarmid's inequality isapplied to Pdi=1 �i(K1;n) directly4, we have with probability at least 1� e��,�Mr �2n � dXi=1 �i(K1;n)� E " dXi=1 �i(K1;n)# �Mr �2n :Then by Jensen's inequality, symmetrization and Lemma 2 we get0 � E " dXi=1 �i(K1;n)#� dXi=1 �i(K1) � E � supV 2Vd(Pn � P ) h�V ; CXi� � 2r dn trK2 :We see that the empirical eigenvalues are biased estimators of the populationones whence the di�erence between upper and lower bound in (2). Note thatapplying McDiarmid's inequality again would have given precisely (2), but weprefer to use the approach of the proof of Theorem 4 as it can be further re�ned(see next section).4 Note that one could actually apply the inequality of [7] to this quantity to obtain asharper bound. This is in the spirit of next section.



83.2 Local ApproachWe now use recent work based on Talagrand's inequality (see e.g. [13, 2]) toobtain better concentration for the large eigenvalues of the Gram matrix. Weobtain a better rate of convergence, but at the price of comparing the sums ofeigenvalues up to a constant factor.Theorem 5. Under Assumption 1, for all � > 0 and � > 0, with probability atleast 1� e�� ,dXk=1�k(K1;n)� (1 + �) dXk=1�k(K1) � 704(1 + ��1)r�d + M�(11(1 + �) + 26(1 + ��1))n ;(4)where r�d � infh�08<:Mhn + 2sdnXj>h�j(K2)9=; :Moreover, with probability at least 1� e��, for all � 2 (0; 1),dXk=1�k(K1;n) � (1� �) dXk=1�k(K1) � �M�n (13 + 12�) : (5)Notice that the complexity term obtained here is always better than the oneof (2) (take h = 0). As an example of how this bound di�ers from (2), assumethat �j(K2) = O(j��) with � > 1, then (2) gives a bound of order pd=n, whilethe above Theorem gives a bound of order d1=(1+�)=n�=(1+�) which is better. Inthe case of an exponential decay (�j(K2) = O(e�
j) with 
 > 0), the rate evendrops to log(nd)=n.4 Application to Kernel-PCAWe wish to �nd the linear space of dimension d that conserves the maximalvariance, i.e. which minimizes the error of approximating the data by their pro-jections. Vn = argminV2Vd 1n nXj=1 k'Xj ��V ('Xj )k2 :Vn is the vector space spanned by the �rst d eigenfunctions of C1;n. Analogously,we denote by Vd the space spanned by the �rst d eigenfunctions of C1. We willadopt the following notation:Rn(V ) = 1n nXj=1 k'Xj ��V ('Xj )k2 = Pn h�V ?; CXi :R(V ) = E �k'X ��V 'Xk2� = P h�V? ; CXi :One has Rn(Vn) =Pi>d �i(K1;n) and R(Vd) =Pi>d �i(K1).



94.1 Bound on the Reconstruction ErrorWe give a data dependent bound for the reconstruction error.Theorem 6. Under Assumption 1, with probability at least 1� 2e��,R(Vn) � nXi=d+1�i(K1;n) + 2rdn trK2;n + 3Mr �2n :Proof. We haveR(Vn)� Rn(Vn) = (P � Pn) 
�V ?n ; CX� � supV 2Vd(P � Pn) h�V? ; CXi :We have already treated this quantity in the proof of Theorem 4. �In order to compare the global and the local approach, we give a theoreticalbound on the reconstruction error. By de�nition of Vn, we have R(Vn)�R(Vd) �2 supV2Vd (R� Rn)(Vn) so that from the proof of Theorem 4 one getsR(Vn) �R(Vd) � 4r dntr(K2) + 2Mr �2n :4.2 Relative BoundWe now show that when the eigenvalues of the kernel operator are well sepa-rated, estimation becomes easier in the sense that the excess error of the bestempirical d-dimensional subspace over the error of the best d-dimensional sub-space can decay at a much faster rate.The following lemma captures the key property which allows this rate improve-ment.Lemma 3. For any subspace V � Hk,Var hh�V? ; CXi � D�V?d ; CXEi � E �D�V? ��V ?d ; CXE2� ;and for all V 2 Vd, with �d(C1) > �d+1(C1),E �D�V? ��V ?d ; CXE2� � 2pEk4(X;X 0)�d(C1)� �d+1(C1)E hD�V? ��V ?d ; CXEi ; (6)where X 0 is an independent copy of X.Here is the main result of the section.Theorem 7. Under Assumption 1, for all d such that �d(C1) > �d+1(C1), forall � > 0, with probability at least 1� e��R(Vn) �R(Vd) � 705 infh�08<:Bdhn + 4sdn Xj�h+1�j(K2)9=; + �(22M + 27Bd)n ;where Bd = 2pEk4(X;X 0)=(�d(C1)� �d+1(C1)):



10It is easy to see that the term pEk4(X;X 0) is upper bounded by Ek2(X;X).Similarly to the observation after Theorem 5, the complexity term obtained herewill decay faster than the one of Theorem 6, at a rate which will depend on therate of decay of the eigenvalues.5 DiscussionDauxois and Pousse [8] studied asymptotic convergence of PCA and proved al-most sure convergence in operator norm of the empirical covariance operator tothe population one. These results were further extended to PCA in a Hilbertspace by [6]. However, no �nite sample bounds were presented.Compared to the work of [12] and [11], we are interested in non-asymptotic (i.e.�nite sample sizes) results. Also, as we are only interested in the case wherek(x; y) is a positive de�nite function, we have the nice property of Theorem 1which allows to consider the empirical operator and its limit as acting on thesame space (since we can use covariance operators on the RKHS). This is crucialin our analysis and makes precise non-asymptotic computations possible unlikein the general case studied in [12, 11].Comparing with [17], we overcome the di�culties coming from in�nite dimen-sional feature spaces as well as those of dealing with kernel operators (of in�niterank). Moreover their approach for eigenvalues is based on the concentrationaround the mean of the empirical eigenvalues and on the relationship betweenthe expectation of the empirical eigenvalues and the operator eigenvalues. Butthey do not provide two-sided inequalities and they do not introduce Rademacheraverages which are natural to measure such a di�erence. Here we use a direct ap-proach and provide two-sided inequalities with empirical complexity terms andeven get re�nements. Also, when they provide bounds for KPCA, they use avery rough estimate based on the fact that the functional is linear in the featurespace associated to k2. Here we provide more explicit and tighter bounds witha global approach. Moreover, when comparing the expected residual of the em-pirical minimizer and the ideal one, we exploit a subtle property to get tighterresults when the gap between eigenvalues is non-zero.6 ConclusionWe have obtained sharp bounds on the behavior of sums of eigenvalues of Grammatrices and shown how this entails excess risk bounds for kernel-PCA. In par-ticular our bounds exhibit a fast rate behavior in the case where the spectrum ofthe kernel operator decays fast and contains a gap. These results signi�cantly im-prove previous results of [17]. The formalism of Hilbert-Schmidt operator spacesover a RKHS turns out to be very well suited to a mathematically rigorous treat-ment of the problem, also providing compact proofs of the results. We plan toinvestigate further the application of the techniques introduced here to the studyof other properties of kernel matrices, such as the behavior of single eigenvalues
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1217. J. Shawe-Taylor, C. Williams, N. Cristianini, and J. Kandola. Eigenspectrum ofthe gram matrix and its relationship to the operator eigenspectrum. In AlgorithmicLearning Theory : 13th International Conference, ALT 2002, volume 2533 of Lec-ture Notes in Computer Science, pages 23{40. Springer-Verlag, 2002. Extended ver-sion available at http://www.support-vector.net/papers/eigenspectrum.pdf.18. M. Torki. Etude de la sensibilit�e de toutes les valeurs propres non nulles d'un op�era-teur compact autoadjoint. Technical Report LAO97-05, Universit�e Paul Sabatier,1997. Available at http://mip.ups-tlse.fr/publi/rappLAO/97.05.ps.gz.19. R. C. Williamson, J. Shawe-Taylor, B. Sch�olkopf, and A. J. Smola. Sample-basedgeneralization bounds. IEEE Transactions on Information Theory, 1999. Submit-ted. Also: NeuroCOLT Technical Report NC-TR-99-055.A Localized Rademacher Averages on EllipsoidsWe give a bound on Rademacher averages of ellipsoids intersected with ballsusing a method introduced by Dudley.Theorem 8. Let H be a separable Hilbert space and Z be a random variablewith values in H. Assume E �kZk2� � 1, and let C be the covariance operatorof Z. For an i.i.d. sample5 Z1; : : : ; Zn, denote by Cn the associated empiricalcovariance operator. Let B� = fkvk � �g, Er = fhv; Cvi � rg and En;r =fhv; Cnvi � rg. We haveE" " supv2B�\En;r 1n nXi=1 "ihv; Zii# � 1pn inf0�h�n8<:phr + �vuut nXj=h+1 �j(Cn)9=; ; (7)and E " supv2B�\Er 1n nXi=1 "ihv; Zii# � 1pn infh�08<:phr + �s Xj�h+1�j(C)9=; : (8)Proof. We will only prove (8), the same argument gives (7). Let (�i)i�1 be anorthonormal basis of H of eigenvectors of C. De�ne p = minfi : �i(C) = 0g. Ifwe prove the result for h < p we are done, so we assume h < p. For v 2 B� \Er,we havenXi=1 "ihv; Zii = * hXj=1 hv; �ji�j; nXi=1 "iZi+ +*v;Xj>h* nXi=1 "iZi; �j+�j+�vuutr hXi=1 1�i(C) h nXj=1 "jZj ; �ii2 + �vuut Xi�h+1h nXj=1 "jZj; �ii2 ;5 The result also holds if the Zi are not independent but have the same distribution.



13where we used Cauchy-Schwarz inequality and hv; Cvi =Pi�1 �i(C)hv; �ii2:Moreover 1nE h nXj=1 "jZj; �ii2 = E �hZ;�ii2� = h�i; C�ii = �i(C) :We �nally obtain (8) by Jensen's inequality. �Notice that Mendelson [14] shows that these upper bounds cannot be improved.We also need the following lemma. Recall that a sub-root function [2] is anon-decreasing non-negative function on [0;1) such that  (x)=p(x) is non-increasing.Lemma 4. Under the conditions of Theorem 8, denoting by  the function (r) := 1pn infh�08<:phr + �s Xj�h+1�j(C)9=; ;we have that  is a sub-root function and the unique positive solution r� of (r) = r=c where c > 0 satis�esr� � infh�08<:c2hn + 2c�pns Xj�h+1�j(C)9=;Proof. It is easy to see that the minimum of two sub-root functions is sub-root, hence  as the minimum of a collection of sub-root function is sub-root.Existence and uniqueness of a solution is proved in [2]. To compute it, we usethe fact that x � Apx+B implies x � A2 + 2B.We �nish this section with two corollaries of Theorem 8 and Lemma 4.Corollary 2. De�ne Wd = �V 2 Vd : E D�V? ��V?d ; CXE2 � r� ; thenE " supV 2Wd 1n nXi=1 "i D�V? ��V?d ; CXiE# �r 1n infh�08<:prh+ 2sdXj>h�j(K2)9=;Proof. This is a consequence of Theorem 8 since k�V � �Vdk2HS(Hk) � 4d ; sothat for V 2 Wd, PV 2 B4d \Er with Er = fv 2 HS(Hk); hv; C2viHS(Hk) � rg. �Corollary 3. De�ne fWd = nV 2 Vd : E hPV ; CXi2 � ro then,E " supV2fWd 1n nXi=1 "i h�V ; CXii# �r 1n infh�00@prh+sd Xk�h+1�k(K2)1A :Proof. Use the same proof as in Corollary 2. �



14B ProofsProof (of Theorem 1). Then �(X) is a random element of H. By assump-tion, each element h 2 H can be identi�ed to a measurable function x 7!hf; �(x)i. Also, if E [k�(X)k] < 1, �(X) has an expectation which we de-note by E [�(X)] 2 H. Consider the linear operator T : H ! L2(P ) de-�ned as (Th)(x) = hh; �(x)iH. By Cauchy-Schwarz inequality, E hh; �(X)i2 �khk2Ek�(X)k2: Thus, T is well-de�ned and continuous, thus it has a continuousadjoint T �. Let f 2 L2(P ), then (E kf(X)�(X)k)2 � kfk2E k�(X)k2 : So, theexpectation of f(X)�(X) 2 H can be de�ned. But for all g 2 H, hT �f; giH =hf; TgiL2(P ) = E [hg; f(X)�(X)iH] which shows that T �(f) = E [�(X)f(X)] :We now prove that C = T �T andK = TT �. By the de�nition of the expectation,for all h; h0 2 H, hh; T �T (h0)i = hh; E [�(X) h�(X); h0i]i = E [hh; �(X)i hh0; �(X)i] :Thus, by the uniqueness of a covariance operator, we get C = T �T: Similarly(TT �f)(x) = hT �f; �(x)i = E [hf(X)�(X); �(x)i] = R f(y) h�(y); �(x)i dP (y)so that K = TT �: By singular value decomposition, it is easy to see that�(C) = �(K) if T is a compact operator. Actually, T is Hilbert-Schimdt. In-deed, kTk2HS(H) =Pi�1 kTeik2 =Pi�1 E �hei; �(X)i2� = E �k�(X)k2� : Hence,T is compact, C is trace-class (trC = kTk2HS(H)) and since trTT � = trT �T , Kis trace-class too. �Proof (of Theorem 5). As in the proof of Theorem 4, we have to bound supV 2Vd(Pn�P ) h�V ; CXi. We will use a slight modi�cation of Theorem 3.3 of [2]. It is easyto see that applying Lemma 3.4 of [2] to the class of functions ff 0 = �f ; f 2 Fg,with the assumption T (f 0) � �BPf 0, one obtains (with the notations of thislemma), Pf 0 � KK + 1Pnf 0 + r�BK ;so that under the assumptions of Theorem 3.3, one can obtain the followingversion of the resultPf 0 � KK + 1Pnf 0 + 704KB r� + �(11(b� a) + 26BK)n ;which shows (for the initial class) thatPnf � K + 1K Pf + 704(K + 1)B r� + �(11(b� a)(K + 1)=K + 26B(K + 1))n :We apply this result to the class of functions x 7! h�V ; Cxi for V 2 Vd, whichsatis�es P h�V ; Cxi2 �MP h�V ; Cxi ; and h�V ; Cxi 2 [0;M ] ; and use Lemma4. We obtain that for all � > 0 and � > 0, with probability at least 1 � e�� ,every V 2 Vd satis�esPn h�V ; CXi � (1 + �)P h�V ; CXi + 704(1 + ��1)r�d + M�(11(1 + �) + 26(1 + ��1))n :



15where r�d = r�M and M	d(r�) = r�. 	d(r) is the sub-root function that appearedin Corollary 3 This concludes the proof. Inequality (5) is a simple consequenceof Bernstein's inequality. �Proof (of Lemma 3). The �rst inequality is clear. For the second we start withE �D�V ? ��V?d ; CXE2� = h�Vd ��V ; C2�Vd ��V iHS(H)� kC2kk�Vd ��V k2HS(H)= 2kC2k(d� h�V ;�VdiHS(H)) : (9)By Lemma 1, E hD�V ? ��V?d ; CXEi = h�Vd ��V ; C1i :We now introduce anorthonormal basis (fi)i=1;::: ;d of V and the orthonormal basis (�i)i=1;::: ;d of the�rst d eigenvectors of C1.Moreover, we haveh�Vd ��V ; C1i = dXi=1 �i(C1) � dXi=1hfi; C1fii :We decompose fi =Pdj=1hfi; �ji�j + gi ; where gi 2 span(�1; : : : ; �d)? so thathfi; C1fii = dXj=1 �j(C1)hfi; �ji2 + hgi; C1gii ;Theorem 3, implies hgi; C1gii � �d+1(C1)(1�Pdj=1hfi; �ji2) ; hence we geth�Vd ��V ; C1i � dXi=1 �i(C1)(1� dXj=1hfj ; �ii2)� �d+1(C1)(d� dXi;j=1hfi; �ji2) :Using 1 �Pdj=1hfj ; �ii2 = k�V?(�i)k2 � 0 ; and the fact that the eigenvaluesof C1 are in a non-decreasing order we �nally obtainh�Vd ��V ; C1i � (�d(C1)� �d+1(C1))(d� dXi;j=1hfi; �ji2) : (10)Also we notice that kC2k � kC2kHS(HS(Hk)) = kK2kHS(L2(P )) (by Lemma 1)and since K2 is an integral operator with kernel k2(x; y), kK2k2HS(HS(Hk)) =R k4(x; y)dP (x)dP (y). Now, Equation (1) gives h�V ;�VdiHS(H) =Pdi;j=1hfi; �ji2H.Combining this with Inequalities (9) and (10) we get the result. �Proof (of Theorem 7). We will apply Theorem 3.3 of [2] to the class of functionsfV : x 7! D�V? ��V?d ; CxE for V 2 Vd and taking V = Vn will give the result.With the notations of [2], we set T (fV ) = E �fV (X)2� and by Lemma 3 wehave T (fV ) � BdE [fV (X)] : Also, fV (x) 2 [�M;M ]. Moreover, we can upperbound the localized Rademacher averages of the class fV using Corollary 2,which combined with Lemma 4 gives the result. �


