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Abstract

A new method for the binary classification problem is studied. It relies on empirical

minimization of the hinge loss over an increasing sequence of finite-dimensional spaces. A

suitable dimension is picked by minimizing the regularized loss, where the regularization term

is proportional to the dimension. An oracle-type inequality is established, which ensures

adequate convergence properties of the method.

We suggest to select the considered sequence of subspaces by applying kernel principal

components analysis. In this case the asymptotical convergence rate of the method can be

better than what is known for the Support Vector Machine. Exemplary experiments are

presented on benchmark datasets where the practical results of the method are comparable

to the SVM.

1 Introduction.

1.1 The classification framework.

In this paper, we consider the framework of supervised binary classification. Let (X,Y ) denote
a random variable with values in X × {−1,+1} and probability distribution P . The marginal
distribution of X is denoted by Q. Y is the label associated to the input variable X . We observe
a set of n independent and identically distributed (i.i.d.) pairs (Xi, Yi)

n
i=1 sampled according to

P . These observations form the training set. (We will suppose n ≥ 3 to avoid inconsistencies in
the sequel.)

A classifier is a mapping f from X to {−1,+1} assigning to every point x ∈ X a prediction
of its label. The quality of such a classifier is naturally measured by its generalization error
P[f(X) 6= Y ]. Consequently, the aim is to estimate (using only the information of the training
set) the classifier having minimal generalization error, called Bayes classifier. We will denote this
optimal classifier f∗ ; it is well-known that f∗(x) = 21{η(x)>1/2} − 1 a.s. on the set {η(x) 6= 1/2} ,
where η(x) = P[Y = 1|X = x].

Given a certain set of classifiers C fixed in advance, the Empirical Risk Minimization procedure
(see, e.g., [1]) consists in finding a classifier f ∈ C minimizing the empirical classification error
1
n

∑n
i=1 1{f(Xi) 6=Yi} . Here, the function ℓ(f, (x, y)) = 1{f(x) 6=y}, also called 0-1 loss, is the natural

loss function for the classification framework. Unfortunately, minimizing exactly the empirical
classification error is, in most cases, practically intractable, mainly because it is not a convex
optimization procedure.

This is the reason why numerous classification algorithms, such as the support vector machine
(SVM for short in the sequel), or boosting, do not consider the 0-1 loss, but minimize instead a
convex surrogate loss function γ over some real-valued (instead of {−1; 1}-valued) function space
F , opening way to the use of efficient convex programming methods. A real output function f
over X can then be transformed into a binary classifier by considering sign(f). We will in this
work concentrate on the surrogate loss function used by the SVM, called the hinge loss :

γh(g, (x, y)) = (1 − yg(x))+ ,
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where (a)+ = a1{a≥0} denotes the positive part.

1.2 Regularization in classification and in regression

Overfitting is the phenomenon of excessive discrepancy between empirical loss (observed on the
sample) and generalization loss on fresh samples, and leads to performance degradation and in-
consistency. To avoid overfitting, a common remedy is to consider regularization: it consists in
adding to the empirical loss an additional balancing term Ω(f), which, roughly speaking, should
be representative of how irregular the considered function is. The function f ∈ F minimizing
the sum of these two terms is then picked. For SVMs, the regularization Ω(f) = C ‖f‖2 is taken
proportional to the squared norm of f in a certain functional Hilbert space H.

The latter form of regularizer is also known as Arsenin-Tikhonov’s regularization (Tikhonov’s
regularization for short in the sequel), and has already been widely used and studied in statistics
in the framework of least squares regression. In this case, and if the proportionality constant C
is chosen in a suitable way as a function of the training sample size, it can be shown that the
resulting estimator enjoys minimaxity properties over the Hilbert balls B(R) = {f ∈ H, ‖f‖ ≤ R}
(see, e.g., [2] for a survey). Note that B(R) can equally be seen as an (Hilbert-Schmidt) ellipsoid
of L2(Q).

However, in the case of least square regression, an also widely used alternative strategy to
Tikhonov’s regularization is to consider least squares fitting over an increasing sequence of linear,
finite dimensional subspaces S1 ⊂ S2 ⊂ . . . , and to use a regularization term proportional to the
subspace dimension (the “number of parameters”). The selected dimension then minimizes the
sum of the residual least squares and of the regularization term (see, e.g., [3] for a extended study
and [4] for regression on a random design).

The interesting thing here is that these two regularization approaches for regression can be
compared. More precisely, the following has been shown in the particular case of Gaussian white
noise regression (see [5], section 4.3): if the subspace SD is taken to be the span of the D first
principal axes of B(R) (as an ellipsoid in L2(Q)), then the finite-projection estimator is also
minimax over B(R). More than that, it is even minimax for any other Hilbert-Schmidt ellipsoid of
L2(Q) having the same principal axes. This, on the other hand, is not the case for the estimator
obtained by Tikhonov’s regularization. In conclusion, the finite-dimensional approach can actually
be more adaptive than Tikhonov’s regularization.

The reason for this long discussion of the regression setting is to motivate the goals of this
paper. Namely, it does not appear that an approach similar to the finite-dimensional projection
has been studied for classification. This is precisely the aim of the present work.

The paper is organized as follows. In section 2, we present the finite-dimensional projection
method and give our main theoretical result, an oracle inequality about the performance of the
method. For this, we use theoretical tools of M-estimation ( [6], [7]). In section 3, we compare
the bound obtained to those obtained for SVMs. In section 4, we propose to use Kernel principal
component analysis to estimate the subspaces used for projection. The resulting algorithm is
dubbed the kernel projection machine (KPM): the model selection used in this new algorithm
is guided by the previous theoretical result. Testing it on some benchmark datasets, we find
results comparable to the SVM. While we do not outperform the SVM, the main point we want
to convey in the present work is to show that finite dimensional projection is a viable alternative
to Tikhonov’s regularization.

2 Finite dimensional projection for classification.

2.1 The finite dimensional projection estimator.

Remember our main loss function is the hinge loss γh(g, (x, y)) = (1 − yg(x))+. The hinge loss is
consistent in the sense that the Bayes classifier satisfies (see [8])

f∗ = argmin
g

E [γh(g)] .
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It is straightforward that the hinge loss upper-bounds the classification error (0-1 loss):

γh(g, (x, y)) ≥ 1{g(x) 6=y} .

Moreover, the excess hinge loss with respect to the Bayes classifier upper-bounds the excess clas-
sification error:

E [γh(g)] − E [γh(f∗)] ≥ P (Y g(X) ≤ 0) − P (Y f∗(X) ≤ 0) . (1)

This means that the rate of convergence to the Bayes classifier for the hinge loss implies the same
rate for the classification error excess risk.

We will now consider the following setting. Let (Ψ1,Ψ2, . . .) be an arbitrary family of functions
fixed beforehand. We denote SD = span {Ψ1, · · · ,ΨD} the functional subspace spanned by the
first D functions in the family. The following classifier is associated to each dimension D ∈ N

∗ by
minimization of the empirical hinge loss over SD:

f̂D = arg min
f∈SD

1

n

n∑

i=1

(1 − Yif(Xi))+ . (2)

At an intuitive level, we can think about the function family as a smoothness basis (think, e.g., a
Fourier basis): subspaces SD with lower dimension D contain smoother functions. Note that there

is no regularization term of any kind in the definition of f̂D. Instead, it the dimension parameter
D will play the role of a complexity penalty. We now devise a method for the selection of the
dimension.

Some technical problems arising when analyzing the statistical properties of f̂D are caused by
the unboundedness of the loss function γh. In order to alleviate these, we introduce here the clip
function (which was already considered in [9] in a regression framework, in [10], and in [11] in
relation to the SVM) :

clip(g(x)) =





1 if g(x) ≥ 1

g(x) if − 1 < g(x) < 1

−1 if g(x) ≤ −1 .

Note that the hinge loss of a clipped function corresponds to ’trimming’ the hinge loss of the
original function:

γh(clip(f), (x, y)) = min(γh(f, (x, y)), 2) .

We now apply the following dimension selection strategy: we first “clip” the estimated function
f̂D for each D, defining f̃D = clip(f̂D). We define our final estimator by performing the model

selection step over values of D using the clipped estimators f̃D . This is obtained by penalized
minimization of the empirical loss: the final classifier is sign(f̃ bD) where

D̂ = arg min
D≥1

(
1

n

n∑

i=1

(1 − Yif̃D(Xi))+ + λD

)
, (3)

and the constant λ has to be suitably chosen. The linear penalty λD will be justified from a
statistical point of view in the next section.

Some preliminary comments are in order. First, note that the clipping operation does not alter
the associated classifier function since clipping leaves the sign unchanged. As a second point, note
that the clipping is only performed for the dimension selection step. We could, of course, consider
the option of minimizing the ’trimmed’ loss min(γh, 2) over each model SD to get completely rid
of boundedness issues. But since the trimmed loss is not convex, it would be difficult to devise a
practical procedure to minimize this function over a model SD. This is why we first minimize the
true hinge loss γh on every model SD (which is a convex optimization problem, hence amenable to
convex programming techniques), and then choose the dimension D by minimizing the penalized

trimmed loss of the functions f̂D . This, again, is a practically feasible step, since we only have
to compare a finite – and relatively small – number of functions (we typically expect that the
maximum dimension Dmax taken into consideration satisfies Dmax ≤ n). To sum up, the above
procedure is practically feasible.
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2.2 Main result.

We are now ready to formulate our main theoretical result: it aims at giving a precise statistical
justification to the model selection procedure (3) involved in the finite dimensional regularization,
and will be used for theoretical comparison with the SVM in the next section.

Theorem 1. Let (SD)D≥1 be a family of linear subspaces of L2(P ) where SD is of dimension at

most D and f̂D denotes the minimizer of the empirical loss:

f̂D = arg min
f∈SD

n∑

i=1

(1 − Yif(Xi))+ . (4)

Let η be defined as η(x) = P [Y = 1|X = x]. We suppose that the following “noise margin”
condition holds:

∃h0 > 0, ∀x ∈ X ,
∣∣∣∣η(x) −

1

2

∣∣∣∣ ≥ h0 . (5)

Let f̃D = clip(f̂D) . The dimension of the final estimator is selected by

D̂ = arg min
D≥1

(
1

n

n∑

i=1

(1 − Yif̃D(Xi))+ + penn(D)

)
. (6)

Then, there exist universal constants C1 and C2 such that, for any K > 1 , the following holds:
provided that

∀D ≥ 1, penn(D) ≥ C1K

h0

D logn

n
, (7)

then

E

[
Lh(f̃ bD, f

∗)
]
≤ K

K − 1

(
inf

D≥1

(
inf

f∈SD

Lh(f, f∗) + 2E[penn(D)]

))
+
C2K

h0n
, (8)

where Lh(g, f∗) = E [γh(g)] − E [γh(f∗)] is the excess hinge loss.

This result is proved in appendix A in a more generic framework. We now give some comments.

• The above theorem takes the form of a so-called oracle inequality (8), where the risk of the
penalized estimator can be compared to the risk of the best possible choice of function over
each model. There is a tradeoff appearing between approximation error, decreasing with D,
and estimation error (represented by the penalization term on the right-hand side) which
increases with D. If we make additional assumptions about the approximation properties of
SD with respect to the target f∗, this can be used to derive rates of convergence (this will
be elaborated in the next section). A crucial point, however, is that the oracle inequality
itself, and the penalty, are independent of any such assumptions on f∗ . It means that the
resulting estimator enjoys adaptivity properties.

• This result means that the penalty λD linear with the dimension used in the criterion (3) is
statistically justified. However, admittedly, the multiplicative constant C1 obtained by this
theoretical study is too large to be directly used in practice. This theorem therefore should
be seen essentially as a theoretical guarantee that using this form of penalty is well-founded
from a statistical point of view, and will have suitable convergence properties as the sample
size n grows large.

• Using inequality (1), inequality (8) also provides an upper bound of the excess classification
error (0-1 loss) with respect to the Bayes classifier.

• One important drawback of this result is the dependence of the penalty on the unknown
margin parameter h0. Results of [12] (see also [13, 14]) show that this parameter plays a
crucial role for rates of convergence in classification. Procedures that can be shown to be
adaptive to this parameter (or a related condition) have only been studied very recently
[15, 16].
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3 Comparison with the risk bound for the SVM.

In this section, we try to compare the rate of convergence that can be obtained for the finite-
dimensional approach via Theorem 1 to the Tikhonov regularization approach. The natural can-
didate to compare against is therefore the Support Vector Machine (SVM), which uses this form
of regularization with the same loss function as above.

If we draw a parallel to what can be shown in the least squares regression case [5], we must
however consider several caveats. This will result in the picture of the present situation being
unfortunately noticeably less complete.

• There is, up to our knowledge, no definite reference bound agreed upon that would accurately
depict the behavior of the SVM, but there is a diversity of performance bounds to choose
from in the recent literature (e.g., [11,17,18]). Here, we have chosen to compare the bound of
Theorem 1 to the performance bound shown in [19]. The main reason for this choice is that
the bounds in [19] have a very similar ’oracle-type’ form involving approximation properties
of models (in the case of SVMs, these models are ellipsoids) for the excess hinge loss. This
makes a comparison easier.

• For least squares regression, minimax rates have been extensively studied, and provide a
definite yardstick for establishing when a convergence bound is optimal and cannot be im-
proved. For classification with the hinge loss, up to our knowledge, no minimax bounds have
been established (and we do not know of lower bound results on the rate of convergence of
the SVM). Here, the comparison will be therefore limited to an upper bound comparison.

• In regression again, the least squares loss is associated to function approximation in L2 dis-
tance, which is particularly well suited to compare approximation properties of ellipsoids and
finite dimensional subspaces. For the hinge loss, comparing such approximation properties
is far from obvious. We will therefore resort to bounding the excess hinge loss by the L2

distance and compare the obtained bounds.

3.1 Background material on the SVM.

In this subsection, we recall briefly some points crucial to the support vector machine. Although
it was not originally derived this way, the (soft-margin) SVM algorithm can be formulated as the
minimization of the regularized empirical hinge loss [20], [21]:

ĝ = arg min
g∈Hb

1

n

n∑

i=1

(1 − Yig(Xi))+ + Λn‖g‖2
H . (9)

Here Hb = {g(x) + b, g ∈ H, b ∈ R} and H is a reproducing kernel Hilbert space (RKHS) of
functions on X , with Hilbert norm ‖·‖H . We will actually consider a restricted case of the above
where the minimization is over H instead of Hb , i.e., the arbitrary constant b is set to zero. We
will denote the resulting function ĝ0. This simplified setting is frequently (although not always)
used in theoretical studies of the SVM, among which [19], which exposes the bound we wish to
compare ourselves to. It is expected that this modification does no change fundamentally the
asymptotical properties of the SVM.

Note that the optimization problem (9) (with the above simplification to b = 0) can be rewritten
in the following way: ĝ0 = ĝ bR where

ĝR = arg min
g∈E(R)

1

n

n∑

i=1

(1 − Yig(Xi))+ ,

and

R̂ = argmin
R≥0

(
1

n

n∑

i=1

(1 − YiĝR(Xi))+ + CR2

)
, (10)
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where E(R) are balls of radius R in H . Thus, we can equivalently interpret the regularization (9)
as model selection, where the models are balls E(R) , ĝR is the minimum empirical risk estimator
on each model, and criterion (10) is used to select the radius R.

At this point, it is interesting to recall that the balls in the RKHS space H can be viewed as
ellipsoids in L2(Q). Let us recall some facts about the structure of a RKHS H: such a space is
uniquely characterized by a symmetric, positive definite kernel function k : X × X → R . We will
assume that X is a metric compact space and k a continuous kernel, which allows us to apply
Mercer’s theorem. Let Tk be the following integral kernel operator of L2(Q):

Tk : g →
∫

X
k(x, .)g(x)dQ(x) . (11)

The operator Tk is compact and self-adjoint, and can therefore be diagonalized: let (Ψi)i≥1 be
an L2(Q)-orthonormal basis of eigenfunctions corresponding to the non-increasing sequence of
eigenvalues (λi)i≥1. Mercer’s Theorem allows to get a representation of H in terms of spectral
quantities associated to Tk. Precisely, H can be characterized as

H =



g ∈ L2(Q) : g =

∑

i≥1

aiΨi such that ‖g‖2
H =

∑

i≥1

a2
i

λi
<∞



 . (12)

We then have

E(R) = {g ∈ H, ‖g‖H ≤ R} =



g ∈ L2(Q), g =

∑

i≥1

aiΨi ;
∑

i≥1

a2
i

λi
≤ R2



 .

Consequently, a ball of the RKHS is an ellipsoid of L2(P ) whose principal axes are precisely the
eigenfunctions of Tk.

In [19], the following result was proved for the SVM: assuming k(x, x) ≤ M for all x ∈ X ,
and under the same margin condition (5) as in Theorem 1, the function ĝ0 defined in equation (9)
satisfies with probability at least 1 − δ , over the i.i.d. draw of the training sample:

Lh(ĝ0, f
∗) ≤ 2

(
inf
g∈H

Lh(g, f∗) + C(M)Λn ‖g‖2
H

)
+ C′Λn , (13)

provided that Λn is bounded from below by a certain function depending on the eigenvalue sequence
(λi) . If the eigenvalues are of the form λj = O(j−2γ) for some γ ≥ 1 , then the corresponding

condition reads Λn ≥ C(M,h0, δ)n
− 2γ

2γ+1 . Finally, it is reported in [19] that a similar bound holds
for the expected excess loss ELh(ĝ0, f

∗) (averaged over the draw of the training sample), up to
additional logarithmic factors in the penalty. We will use this averaged loss version for comparison
with Theorem 1.

3.2 Bound comparison.

To set up the comparison with the finite-dimensional subspace method, we will consider the
subspaces SD spanned using the sequence of functions (Ψ1,Ψ2, . . .) defined in the previous section
as the eigenfunctions of operator Tk. Note that in the present section, we assume that the marginal
Q is known, and therefore that both (Ψi) and (λi) are known to be able to compare the performance
bounds. (In the next section, we will discuss a practical procedure in order to approximate the
sequence (Ψi) when Q is unknown.)

We will compare the obtained bounds in the following specific setting:

(a) the eigenvalues satisfy a polynomial decay λj = O(j−2γ) . (Note that γ > 1
2 since the

eigenvalues series must be summable.)

(b) the coefficients of the Bayes classifier f∗ in the L2(Q) orthogonal basis (Ψi) satisfy 〈f∗,Ψj〉 =
O(j−α) . (Note that α > 1

2 since f∗ ∈ L2(Q) .)
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As previously discussed in the caveats, in order to compare the approximation properties of the
balls of H and the subspaces SD, we will additionally upper-bound (for both compared bounds)
the excess hinge loss in the following way:

Lh(f, f∗) ≤ ‖f − f∗‖Q,1 ≤ ‖f − f∗‖Q,2 , (14)

where the first inequality holds because the hinge loss γh is Lipschitz.
We are now left with comparing the following bounds: for the SVM classifier ĝ0, we have from

(13), (14) and condition (a):

E[L(ĝ0, f
∗)] . inf

g∈H

(
‖g − f∗‖Q,2 + n− 2γ

2γ+1 ‖g‖2
H

)
, (15)

while Theorem 1 together with (14) yields for the finite-dimensional estimator f̃ :

E[L(f̃ , f∗)] . inf
D≥1

(
inf

g∈SD

‖g − f∗‖Q,2 +
D

n

)
, (16)

where . means that the bound holds up to a fixed multiplicative constant and possibly an addi-
tional factor log(n) .

We sum up some necessary computations in the following lemma:

Lemma 2. Assume condition (b) above holds.Then the right-hand side of inequality (16) is
bounded the following way:

inf
D≥1

(
inf

g∈SD

‖g − f∗‖Q,2 +
D

n

)
≤ O

(
n− 2α−1

2α+1

)
.

On the other hand, if conditions (a) and (b) above hold, and α < 2γ + 1
2 , the right-hand side of

inequality (15) is at least

inf
g∈H

(
‖g − f∗‖Q,2 + n− 2γ

2γ+1 ‖g‖2
H

)
≥ O

(
n− 2(2α−1)γ

(2γ+1)(4γ−2α+1)

)
.

In can be checked easily that 2α−1
2α+1 > 2(2α−1)γ

(2γ+1)(4γ−2α+1) is implied by the sufficient condition

α ≤ γ+ 3
8 . Of course, since we are only comparing upper bounds, the above result does not imply

that the finite dimensional projection classifier is necessarily better than the SVM: more to the
point, whenever the above condition is satisfied, the known bound on the rate of convergence of
the finite dimensional projection classifier outperforms the known bound on the rate of the SVM.

It is now legitimate to ask in what situation the condition α ≤ γ + 3
8 is satisfied. We argue

that, if the eigenvalues and the expansion coefficients follow a polynomial decrease as assumed
above, then the condition actually covers most of the possible range of values for α and γ . A
simple observation is namely that the Bayes classifier f∗ cannot belong to the RKHS H, since it is
discontinuous (except for the trivial case where it is constant), while we assumed that the kernel
was continuous, implying that all functions in H are also continuous. This therefore means that
the series

∑
i>0 f

2
i /λi must diverge, implying in turn necessarily that α < γ + 1

2 . Therefore, the
condition α ≤ γ + 3

8 covers a very large part of the available range. It also trivially implies the
condition needed for the second part of the lemma.

Let us finally briefly describe a very simple example illustrating the above situation. Assume
that X is the real interval [0, 1] , that the marginal Q is the Lebesgue measure; and consider the
following kernel:

k(x, y) = 1 + 2
∑

j≥1

λj (cos(2πjx) cos(2πjy) + sin(2πjx) sin(2πjy)) ,

where, for j ≥ 2, λj = (2πj)−2γ with γ > 1
2 . In this case, {Ψi}i≥1 is the trigonometric basis

of L2([0, 1]) . It is known (see e.g. [2], chapter 2 ) that, if γ is an integer, the RKHS associ-

ated with this kernel is the Sobolev space of order γ with periodic boundary conditions H
(γ)
per.
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Precisely, H
(γ)
per is the set of functions of L2([0, 1]) with γ − 1 continuous derivatives satisfying

f(0) = f(1), · · · , f (γ−1)(0) = f (γ−1)(0) , and with f (γ) ∈ L2([0, 1]). It is endowed with the

Sobolev norm ‖f‖2
Sob =

∫ 1

0 |f (γ)(t)|2dt+
(∫ 1

0 f(t)dt
)2

. This norm coincides with the RKHS norm

implicitly defined by k.
In this situation, the non-continuity of f∗ prevents normal convergence of its Fourier series, so

that necessarily α ≤ 1 . On the other hand, the parameter γ represents the regularity of the kernel
and it is not customary to choose very irregular kernels, so that we would expect in a reasonable
practical situation that γ > 1 : in this case, the sufficient condition giving the advantage to the
finite dimensional bound is satisfied.

As a final note, it is reported in [19] that the quadratic penalty Λn ‖g‖2
H in the ’standard’

SVM (i.e., Tikhonov’s regularization) could in principle be reduced to a lighter linear (instead
of quadratic) penalty of the form Λn ‖g‖H . With this type of regularization, different from
Tikhonov’s, it is still possible to ensure good statistical properties, i.e., an oracle inequality similar
to (13) holds. It is possible that, for this modified SVM with linear penalty, the corresponding
oracle bound would also give rise to a faster convergence rate. Here however, our point here was to
compare the finite dimensional approach to the “standard” SVM only, so that we did not consider
this alternative regularization.

The above bound comparison suggests that it should be a good idea to use the basis (Ψ1,Ψ2, . . .)
of eigenfunctions of Tk for the finite-dimensional projection approach. However, these functions
are in general not available, since the marginal Q is not known. In the next section, we will
propose a practical procedure to approximate these functions using Kernel PCA.

4 Kernel projection machine and numerical results.

In this section, we will try to compare the finite dimensional projection approach to the classical
SVM on real data. The theoretical study in the previous section suggests to use a basis of functions
which is, in some sense, adapted to the underlying distribution Q of the input data, by considering

SD = span {Ψ1, . . . ,ΨD} ,

where (Ψ1, . . . ,ΨD) are the eigenfunctions (in order of decreasing eigenvalues) of the operator Tk

given by (11). In practice, Q is not known exactly, so that the functions (Ψi) are also unknown.
A standard approach, the so-called Nyström approximation [22], consists in replacing Q by the
empirical distribution of the Xi in the definition of the kernel operator.

Formally, we will therefore consider the eigenfunctions Ψ̂i of the operator

Tk,nf(x) =
1

n

n∑

i=1

f(xi)k(x, xi) (17)

to define the models SD . Finding the eigenfunctions of Tk,n is equivalent to performing the well-
known kernel principal components analysis (KPCA) algorithm [23]. A very convenient fact used
to perform this step efficiency is to note that it suffices to diagonalize the n × n kernel Gram
matrix K1,n = 1

n (k(Xi, Xj))1≤i,j≤n to obtain the eigenfunctions of Tk,n. Indeed, for j ≥ 1 such

that λ̂j > 0,

Ψ̂j(x) =
1√
λ̂jn

n∑

i=1

V
(i)
j k(Xi, x) , (18)

where (Vj)1≤j≤n is an orthonormal basis of eigenvectors of K1,n associated to the eigenvalues

(λ̂j)1≤j≤n , sorted in decreasing order. The above normalization ensures ‖Ψ̂j‖H = 1.
This choice of functions and models SD is now data-dependent; for this reason, strictly speak-

ing, this does not enter in the framework of Theorem 1 where models are assumed to be fixed.
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An exact study of the whole data-dependent procedure, also taking precisely into account the
variability in the data-dependent models, is however out of the scope of the present paper. Let us
only mention here that it is well-known that Ψ̂i converges to Ψi as n→ ∞ and details of this con-
vergence have been studied (see, e.g., [24–26]), so that using this approximation is a well-founded
heuristic.

Furthermore, there is a particular data-dependent setting where Theorem 1 strictly applies,
namely when the eigenfunctions are estimated on a distinct data sample. Let us assume that we
have an independent (unlabeled) sample (X ′

i) drawn according to the same input distribution Q .
This situation is not uncommon in a lot of practical applications where only a part of the available
data has been labeled. The eigenfunctions (Ψ̂i) are estimated using this second sample. These are
then used to perform the finite-dimensional projection estimation on the original sample (Xi, Yi) .
In this case, conditionally to (X ′

i) Theorem 1 applies. We therefore have the following:

Corollary 1. Assume that the noise margin condition (5) holds. Let D = (Xi, Yi)i=1,...,n be an
i.i.d. sample drawn from P and D′ = (X ′

j)j=1,...,m be an indepent, unlabeled i.i.d. sample.

Assume the unlabeled sample D′ is used to construct a family of functions (Ψ̂i) and put ŜD =

span
{

Ψ̂1, . . . , Ψ̂D

}
.

Follow the same estimation procedure as in Theorem 1 with the data-dependent subspace family
ŜD used in place of SD , i.e. definitions (4), (6), giving rise to estimator f̃ ′

bD
.

Then, there exist universal constants C1, C2 such that for any K > 1 , if condition (7) on the
penaly function holds, then

ED,D′

[
Lh(f̃ ′

bD
, f∗)

]
≤ K

K − 1
ED′

[
inf

D≥1

(
inf

f∈bSD

Lh(f, f∗) + 2ED [penn(D)]

)]
+
C2K

h0n
. (19)

Proof. Conditionally to the unlabeled sample D′ the functions (Ψ̂i) , and the models ŜD are fixed;
therefore Theorem 1 applies. We then take the expectation of (8) with respect to D′ . �

In the next section, we will however only consider the situation where we use only one sample
for simplicity and give a detailed account of the obtained algorithm.

4.1 The kernel projection machine (KPM) algorithm.

Using the approximate eigenfunctions, the first step consists in computing the empirical minimizers
over 〈1, Ψ̂1, · · · , Ψ̂D〉 :

f̂D = arg min
f∈〈1,bΨ1,··· ,bΨD〉

n∑

i=1

(1 − Yif(Xi))+ . (20)

Note that the constant function 1 equal to one is systematically included in the models in order
to take into account translation on the data: this function corresponds to the threshold b in
the original SVM algorithm. This optimization problem can be put under the form of a linear
programming (LP) problem (see (21) below).

If we adopt the parametrization by (γ̂, b̂) of f̂ , of the form f̂D =
∑D

j=1
bγj√
nbλj

φ̂j + b∗ , then

equation (18) leads to φ̂j(Xi) =

(√
n
bλi

K1,nVj

)(i)

=

√
nλ̂jV

(i)
j , so that (γ̂, b̂) are given as the

solutions of

(γ̂, b̂) = arg min
γ∈R

D
,b∈R

n∑

i=1


1 − Yi




D∑

j=1

γjV
(i)
j + b






+

.

To conclude, the KPM algorithm can be summarized as follows:
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1. given data X1, . . . , Xn ∈ X and a positive kernel k defined on X × X , compute the kernel
matrix K1,n and its eigenvectors V1, . . . , Vn together with its eigenvalues in decreasing order

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n.

2. for each dimension D such that λ̂D > 0 solve the linear optimization problem

(
γ̂, b̂
)

= arg min
γ,b,ξ

n∑

i=1

ξi

under the constraints: ∀i = 1 . . . n : ξi ≥ 0 , and Yi




D∑

j=1

γjV
(i)
j + b



 ≥ 1 − ξi . (21)

Next, put α̂i =

D∑

j=1

γ̂j

nλ̂j

V
(i)
j , and finally f̂D =

∑n
i=1 α̂ik(xi, .) + b̂ .

3. The last step is the model selection problem consisting in choosing the dimension D ; for
this step, we use the penalized clipped hinge loss as studied earlier:

D̂ = arg min
D≥1

(
1

n

n∑

i=1

(1 − Yif̃D(Xi))+ + λD

)
, (22)

where f̃D = clip(f̂D).

4.2 Some numerical results.

We first illustrate the Nyström approximation on a controlled example where the theoretical
eigenfunctions are known. Then, in our main experiment, the performances of KPM are compared
with the SVM on several benchmark classification datasets.

First, we consider the idealized case of a perfect model selection step. This amounts to choosing
the regularization parameter for both methods (denoted C in equation (9) for the SVM and λ
for the KPM) on the test set. This allows to compare directly the best estimators within the
families considered by the SVM and the KPM, respectively. Remember that the “KPM classifier
family” is formed of empirical risk minimization (ERM) estimators on linear subspaces of increasing
dimension, while the “SVM classifier family” can be understood as ERM estimators on RKHS balls
of increasing radii. Although selecting the model on the test set does not correspond to a realistic
situation, this comparison is useful to decouple and understand separately the quality of the
classifier families considered, independently of the additional error introduced by model selection.

In our final experiments, we consider in turn a comparison for a realistic practical scenario: in
this case, 5-fold cross-validation is used to select the regularization parameter for each method.

4.2.1 Numerical experiments for the Nyström approximation

The KPM algorithm relies on the Nyström approximation formulated in equations (17), (18). In
order to illustrate it, a Gaussian kernel is considered along with a Gaussian input distributionQ. In
this case, Theorem 9, recalled for completeness in the appendix, gives explicitly the eigenfunctions;
they are of multiplicity 1. The empirical eigenfunctions are computed by using formula (18) and
a random draw of 500 points. Figure 1 is obtained with a = 1

4 and b = 1
18 where b determines the

width of the gaussian kernel k(x, y) = e−b(x−y)2 and a the gaussian law dP (x) = 1√
2π
e−2ax2

dx of

X .
The straight lines (resp. the circles) represent the theoretical (resp. empirical) eigenfunctions.

These graphics highlight a consequence of results of [24]: the accuracy of Nyström approximation
decreases with the eigenvalues, suggesting that the approximation of the theoretical eigenfunctions
by the empirical ones is more suitable for large eigenvalues, i.e., for the first eigenfunctions.
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Figure 1: From the left to the right: approximation of the first, the second, the third eigenfunctions
of the kernel integral operator for a Gaussian kernel and Gaussian input distribution.
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4.2.2 Numerical results for the KPM algorithm

The KPM was implemented in Matlab using the free library GLPK for solving the linear opti-
mization problem. Since the algorithm involves the eigendecomposition of the kernel matrix, only
relatively small datasets have been considered at this point.

It has been tested on benchmark datasets taken from [27]: they consist in some data originally
coming from the UCI repository, to which some standardization transforms have been applied.
All datasets consist of 100 samples, each sample being split into a training sample and a test
sample. [27] reports the results obtained by applying several state-of-art classification algorithms,

including the SVM with Gaussian kernel k(x, y) = e−
‖x−y‖2

2σ2 . In this case, suitable values (chosen
by cross-validation) for parameters σG (kernel width) and CG (SVM regulatization parameter)
are also reported. These values are specific to each benchmark dataset G.

In all experiments presented here, we used the Gaussian kernel with parameter σG fixed to
the value reported in [27]. Without selecting the regularization parameter, the family of classifiers

obtained by the KPM algorithm is (f̃D)D≥1 and the family obtained by the SVM algorithm is

(f̂C)C∈C . The set C of possible regularization constants that we consider for the SVM are tailored
to each benchmark G by forming a geometric sequence of 101 points running over CG/100 to
100CG and containing the “optimal” CG.

Comparison of the family of SVM classifiers and KPM classifiers. Remember that here we
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aim at comparing the two families by shunting off the model selection procedure . In table 1, for
each sample, the smallest test error of the KPM (w.r.t. the parameter D) is compared with the
smallest test error of the SVM (w.r.t. the parameter C). Each time, the winner is given one point.

Table 1: Best classifier in the family (nb. of wins)

KPM SVM

Banana 31 67
Breast Cancer 44 50
Diabetis 55 42
Flare Solar 19 63
German 43 49
Heart 27 64

Parameter selection by cross-validation. Table 2 presents results of SVM (resp. KPM) where
the regularization parameters C (resp. λ) is chosen by 5 fold-cross-validation separately on each
of the samples. The results are presented in the form { mean of the 100 test errors } ± { variance
of the 100 test errors }.

Table 2: Test errors

SVM KPM

Banana (σ = 0.7071) 10.69 ± 0.67 10.91±0.57
Breast Cancer(σ = 5) 26.68 ± 5.23 28.73±4.42
Diabetis (σ = 3.1623) 23.79 ± 2.01 23.77±1.69
Flare Solar (σ = 3.8730) 32.62 ± 1.86 32.52±1.78
German (σ = 5.2440 ) 23.79 ± 2.12 24.09±2.38
Heart (σ = 7.7460 ) 16.23 ± 3.18 17.35±3.54

These two tables highlight that the performances of KPM are comparable with the SVM.
Considering table 1, the SVM appears to have a slight advantage over the KPM which also
appears in table 2 when the parameters are selected by cross-validation. However, note that
average differences are quite small, in particular relative to the variance. Moreover, it is worth
noticing that the same fixed parameter σG is used for the KPM and the SVM, whereas it was
originally tailored in [27] for good performance of the SVM only.

Finally, from an algorithmic optimization point of view, a nice property of the KPM is that
the classifier f̂D can be used as a “hot start” point in the optimization search for f̂D+1 since f̂D ∈
SD+1 . This will gnerally make the procedure faster than restarting separately the optimization
for each value of D .

5 Conclusion and discussion.

5.1 Highlight of the present work.

We described the finite dimensional approach in the classification framework and deduced an
effective algorithm: the KPM. The model selection aspect is tackled using a penalized criterion: we
gave theoretical results justifying the use of a penalty which is a linear function of the dimension.
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We presented a theoretical study comparing known bounds on convergence rates of the finite-
dimensional projection approach as compared to the SVM. We also compared performances of the
KPM against the SVM in a realistic scenario in which the KPM appeared to be almost as efficient
as the SVM although some parameters shared by both methods were chosen to optimize the SVM
performance.

The main point of all the presented results is to highlight that

regularization can be performed thanks to a dimensionality reduction method such as
Kernel-PCA .

Consequently, the finite dimensional projection is a credible alternative to the Tikhonov’s regu-
larization used, for example, in the SVM algorithm.

An interesting view of the KPM is is that the training labels are used to select the optimal
dimension D in a dimension-reduction method – optimal means that the resulting D-dimensional
representation of the data contains the right amount of information needed to classify the inputs.
To sum up, the KPM can be seen as a dimensionality-reduction-based classification method that
takes into account the labels for choosing the right dimension in the dimensionality reduction step.

5.2 Comparison with other work.

We provided a detailed comparison of the theoretical bounds obtained for the KPM and of the
bounds obtained in [19] for the SVM. It is more difficult to draw a meaningful comparison with
other known bounds on the SVM; for example, in [17], a Gaussian kernel with width depending
on the sample size n as well as on some “geometric” assumptions on P (Y |X) is considered. Here
our focus was on a fixed kernel.

In [15], estimators with a finite expansion on a fixed function basis are considered, which is
related to the present setting. A ℓ1-penalty in the coefficients is considered, and the procedure is
shown to be adapative to the “Tsybakov noise exponent” parameter (a more general version of
(5)). Here, we study a ℓ0-penalty and our results are not adaptive to the noise margin parameter.
However, [15] needs additional hypotheses on the L2(Q) structure of the function family considered
as well as on their supremum norm. In contrast, our focus here for the theoretical part was to
obtain results on arbitrary function subspaces SD without additional hypotheses.

5.3 Discussion: inverse problems and the spectral point of view.

It is interesting to note that, in the case of least squares regression, both Tikhonov’s regularization
and the finite-dimensional projection (when the projection dimension is fixed) can be seen as
special cases of a large class of linear estimators that have a diagonal form when expanded on
the eigenfunction basis of a certain autoadjoint operator A . In the present case, A is the kernel
integral operator, but in a broader point of view, A could be more general. This is precisely
the setting which is traditionally the basis of the inverse problems litterature. A recent and very
general account of this point of view for linear least squares estimation can be found in [28] , where
a much broader situation is studied (i.e. the operator A is not assumed to be compact, so that the
spectrum may not be discrete, in which case the most elegant way to describe linear estimators is
really directly by their action on the spectrum).

Interpreting classification problems as inverse problems is not new (seminal ideas are found
in [29]), but has received renewed attention recently due in particular to the strong link of support
vector machines with inverse problems, as studied notably in [18]. In the present paper, what we
called finite dimensional projection is generally referred to as spectral cut-off method in the inverse
problems litterature.

A major part of the difficulties arising in the study of such methods for classification problems
resides in the non-least squares cost function, so that the penalized empirical risk minimizer does
not give rise to a linear estimator. In the present work, we have studied convergence rates for
an equivalent of spectral cut-off in this setting (more precisely, combined with adequate model
selection). Clearly, it would be of great interest to develop this point of view in more generality
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for classification problems and possibly try to recover the extent of results available for inverse
problems in regression.

5.4 Ending remarks and future work.

The main drawback of Theorem 1 is the lack of adaptativity to the noise margin: the penalty
function involves the unknown noise margin. This leads to difficulties to calibrate the penaliza-
tion constant in practice. We plan to investigate other calibration techniques for λ than cross-
validation. One interesting direction is the so-called “slope heuristic” where the behavior of the
empirical error of f̂D as a function of D is used to select a suitable parameter λ.

An interesting potential advantage of the KPM with respect to the SVM is that it can easily be
extended to use different kernels simultaneously by considering finite dimensional spaces spanned
by eigenfunctions of kernel operators associated to several different kernels. Oracle inequalities can
be obtained in this case using the same methodology (it suffices to change accordingly the weight
xD appearing in the proof of Theorem 1). To avoid additional technicalities, in this paper, only
the simplest version involving one model for each dimension is stated. However, it is clear that an
extension where several subspaces with the same dimension D are available is straightforward.

Taking into account precisely the variability in the data-dependent models is also an interesting
topic. One possible lead is to use stability results on the estimated models (see, e.g., [26]); another
is to extend the study of the method in a semi-supervised setting where unlabeled data is available,
thereby developing the ideas of Section 4.

Appendix

A Risk bounds for the clipped finite dimensional approach.

In this appendix, Theorem 1 is proved considering a slightly more generic setting. The training
data ((X1, Y1), . . . , (Xn, Yn)) belong to (X × Y)n and we only assume that the loss function is
Lipschitz.

A.1 Clipped empirical risk minimization on one model.

In this section, we obtain a risk bound for a clipped empirical error minimizer s̃D over a fixed
vector space SD of dimension at most D with a generic loss function γ:

ŝD = argmin
t∈SD

1

n

n∑

i=1

γ(t, (Xi, Yi)) ,

and
s̃D = clip(ŝD) .

The goal is to estimate the target function s minimizing the average loss over a “large” class
S ⊃ SD:

s∗ = arg min
s∈S

E[γ(s, (X,Y ))] .

The excess risk with respect to γ is:

L(g, s∗) = E [γ(g, (X,Y ))] − E [γ(s∗, (X,Y ))] .

In the sequel, s∗ is supposed to take values in [−1, 1].
All the results will be stated under the following assumption on the loss which we will refer to

as “assumption (A)” in the sequel:

(A1) ∀y ∈ Y, γ(y, .) is Lipschitz.
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(A2) ∀ s ∈ S, ∀ y ∈ Y, ∀x ∈ X , γ(y, s(x)) ≥ γ(y, clip(s(x))) .

We will prove two results; the first one (Theorem 5) provides a risk bound for a fixed model
SD ; then, a similar technique will be used to prove a model selection result (Theorem 6). The
proofs of these two theorems rely on a very fundamental result coming from [7], providing a control
of the empirical processes over a function class using localized Rademacher averages. We recall it
now.

We need to introduce some notation first. A function Ψ : [0,∞) → [0,∞) is called sub-root if

it is non-negative, non-decreasing and if r → Ψ(r)√
r

is non-increasing for r > 0. It can be shown

that the fixed point equation Ψ(r) = r has a unique positive solution (except for the trivial case
Ψ ≡ 0).

Let F be a set of functions. The following notation for the Rademacher average of F will be
useful:

RnF = sup
f∈F

1

n

n∑

i=1

εif(Xi) ,

where (εi)i=1···n are independent and identically distributed Rademacher variables (P[ε1 = 1] =
P[ε1 = −1] = 1/2). The notation Eε means that the expectation is concidered only with respect
to ε: the variables X1, . . . , Xn are “fixed”.

We now recall the following result:

Theorem 3 ( [7], Theorem 4.1). Let F be a class of functions with ranges in [−1,+1] and
assume that there is some constant κ such that for every f ∈ F , Pf2 ≤ κPf . Denote star(F) =

{λf, 0 ≤ λ ≤ 1 , f ∈ F} . Let Ψ̂n be a (possibly data-dependent) sub-root function and let r̂∗ be

the fixed point of Ψ̂n. Fix ξ > 0 and assume that Ψ̂n satisfies, for any r ≥ r̂∗,

Ψ̂n(r) ≥ 2(10 ∨ κ)EǫRn{f ∈ star(F);Pnf
2 ≤ 2r} + (2(10 ∨ κ) + 11)

ξ

n
. (23)

Then, for any K > 1 with probability at least 1 − 3e−ξ,

∀f ∈ F , Pf ≤ K

K − 1
Pnf +

6K

κ
r̂∗ +

ξ(11 + 5κK)

n
.

The crux of the results to come will rely on the application of Theorem 3 to the excess loss
function class on a model SD , defined as

FD = {(x, y) → γ(s(x), y) − γ(s∗(x), y), s ∈ clip(SD)} . (24)

An important technical result is therefore to have an estimate of the fixed point r∗ appearing in
Theorem 3, for the above class. This is the goal of the following result, whose proof is postponed
to section A.4.

Theorem 4. Let FD be defined as in (24); assume |s∗(x)| ≤ 1 , and that (A1) is satisfied. Let

r∗D,n denote the fixed point of the sub-root function ψ̂(r) = EεRn

{
f ∈ star(FD) , Pnf

2 ≤ 2r
}

.
Then, the following holds:

r̂∗D,n ≤ A1
D + 1

n

((
log

n

D

)

+
+ 1

)
. (25)

where A1 is a constant (A1 = 1200 is suitable).

With these prerequisites in hand, we are now in a position to state and prove our main results.
The first one concerns estimation on a fixed model SD.

Theorem 5. Let SD be a vector space of dimension at most D. Assume the following conditions
are met:
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(i) The target function is bounded by 1: |s(x)| ≤ 1 .

(ii) γ satisfies assumption (A) .

(iii) ∀s ∈ clip(SD) , ‖γ(s) − γ(s∗)‖2
2 ≤ κL(s, s∗) .

Then, for all K > 1 , the following inequality holds:

E [L(s̃D, s
∗)] ≤ K

K − 1

(
inf

t∈SD

L(t, s∗) + C3K
(10 ∨ κ)2

κ

D

n
logn

)
+ C4

K(κ ∨ 10)

n
,

where C3 and C4 are numerical constants.

Proof of Theorem 5 . Let sD be an arbitraty element of SD . First, note that

Pn(γ(s̃D) − γ(s)) ≤ Pn(γ(ŝD) − γ(s)) ≤ Pn(γ(sD) − γ(s)) , (26)

where the first inequality follows from assumption (A2) and the last from the definition of the
empirical minimizer. Thus,

L(s̃D, s
∗) = P (γ(s̃D) − γ(s∗) ≤ (P − Pn)(γ(s̃D) − γ(s∗)) + Pn(γ(sD) − γ(s∗)) . (27)

In order to control (P − Pn)(γ(s̃D) − γ(s∗)), we apply as announced Theorem 3 to the class
of functions FD = {γ(s) − γ(s∗), t ∈ clip(SD)}. Note that by assumptions (i) and (A1), all
functions in FD have range in [−1, 1] which is the first requirement to apply Theorem 3. Then,
assumption (iii) ensures that Pf2 ≤ κPf for all f ∈ FD , which was the second condition required
to apply Theorem 3. We now need to find the fixed point of the function appearing in (23). Let
ξ > 0 be fixed. Theorem 4 gives us a bound on the fixed point r∗D,n of the sub-root function

ψ̂(r) = EεRn

{
f ∈ star(FD) , Pnf

2 ≤ 2r
}

. In sight of (23) , we need a bound on the fixed point

r̃∗D,n of an affine tranform aψ̂(x) + b of ψ̂ (with a = 2(10∨ κ), b = (2(10∨ κ) + 11) ξ
n ). Elementary

arguments not reproduced here (see [30], Lemma 4.10) show that

r̃∗D,n ≤ 4a2r∗D,n + 2b ≤ 16(10 ∨ κ)2A1
D + 1

n

((
log

n

D

)

+
+ 1

)
+

2ξ

n
(2(10 ∨ κ) + 11) .

Consequently, Theorem 3 implies that ∀K > 1, with probability at least 1 − 3e−ξ, ∀f ∈ FD,

(P − Pn)f ≤ 1

K − 1
Pnf +

6K

κ
r̃∗D,n +

ξ(11 + 5κK)

n
.

Since the bound is available simultaneously for all functions in FD, we can apply it to the random
function f = γ(s̃D) − γ(s∗) ∈ FD. This yields that, with probability at least 1 − 3e−ξ,

(P − Pn)(γ(s̃D) − γ(s∗)) ≤ 1

K − 1
Pn(γ(s̃D) − γ(s∗)) +

6K

κ
r̃∗D,n +

ξ(11 + 5κK)

n
. (28)

Using again inequality (26), we get:

(P − Pn)(γ(s̃D) − γ(s∗)) ≤ 1

K − 1
Pn(γ(sD) − γ(s∗)) +

6K

κ
r̃∗D,n +

ξ(11 + 5κK)

n
.

We now plug this inequality into (27) to obtain

L(s̃D, s
∗) ≤ K

K − 1
Pn(γ(sD) − γ(s∗)) +

6K

κ
r̃∗D,n +

ξ(11 + 5κK)

n
.

This concludes the proof of Theorem 5 by integrating with respect to the sample, then taking the
infimum over sD ∈ SD . �
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A.2 Model selection by penalization.

We now present a relatively general result about penalized minimization of the clipped empirical
loss over finite dimensional vector spaces. Theorem 1 will then be derived as a corollary.

Theorem 6. Let {SD}D≥1 be a collection of vector spaces such that dim(SD) ≤ D. Assume the
following:

(i) The target function is bounded by 1: |s∗(x)| ≤ 1 .

(ii) γ satisfies assumption (A) .

(iii) ∀s ∈ clip(SD) , ‖γ(s) − γ(s∗)‖2
2 ≤ κL(s, s∗) .

Let K > 1. Choosing the dimension with the following penalized criterion

D̂ = arg min
D≥1

(
1

n

n∑

i=1

γ(s̃D, (Xi, Yi)) + penn(D)

)
,

with a possibly data dependent penalty function penn such that

∀D ≥ 1 , penn(D) ≥ C5K
(κ ∨ 10)2

κ

D

n
logn , (29)

the following inequality holds

E[L(s̃ bD, s
∗)] ≤ K

K − 1

(
inf

D≥1

(
inf

s∈SD

L(s, s∗) + E[penn(D)]

))
+
C6K(κ ∨ 10)

n
,

where C5 and C6 are numerical constants.

Proof. Let sD be a fixed element of SD. The definition of ŝ bD leads to the following chain of
inequalities: ∀D ≥ 1,

Pnγ(s̃ bD) + penn(D̂) ≤ Pnγ(s̃D) + penn(D) ≤ Pnγ(ŝD) + penn(D) ≤ Pnγ(sD) + penn(D) , (30)

where the second inequality is due to assumption (A2). Thus, ∀D ≥ 1 ,

L(s̃ bD, s
∗) = (P − Pn)(γ(s̃ bD) − γ(s∗)) + Pn(γ(s̃ bD) − γ(s∗))

≤ (P − Pn)(γ(s̃ bD) − γ(s∗)) + Pn(γ(sD) − γ(s∗)) + penn(D) − penn(D̂) . (31)

Let D′ ≥ 1. Let xD be such that
∑

D≥1 e
−xD ≤ 1. We now follow the same reasoning leading

to inequality (28) in the proof of Theorem 5, obtaining that ∀K > 1 , with probability at least
1 − 3e−ξ−xD′ ,

(P − Pn)(γ(s̃D′) − γ(s∗)) ≤ 1

K − 1
Pn(γ(s̃D′) − γ(s∗)) + C

K(10 ∨ κ)2
κ

D′

n
log(n) + C′K(ξ + xD′)(10 ∨ κ)

n
,

We now use a union bound to obtain the previous inequality simultaneously for all D′ ≥ 1 and
apply it to D′ = D̂. With probability at least 1− 3e−ξ,

(P − Pn)(γ(s̃ bD) − γ(s∗)) ≤ 1

K − 1
Pn(γ(s̃ bD) − γ(s∗)) + C

K(10 ∨ κ)2
κ

D̂

n
log(n) + C′K(ξ + x bD)(10 ∨ κ)

n
.

Plugging this inequality into (31) and using again (30) leads to:

L(s̃ bD, s
∗) ≤ C

K(10 ∨ κ)2
κ

D̂

n
log(n)+C′K(ξ + x bD)(10 ∨ κ)

n
+

K

K − 1

(
Pn(γ(sD) − γ(s∗)) + penn(D) − penn(D̂)

)
.
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Choosing xD = 2 log(D + 1), condition (29) entails

L(s̃ bD, s
∗) ≤ C′Kξ(10 ∨ κ)

n
+

K

K − 1
(Pn(γ(sD) − γ(s∗)) + penn(D)) .

Taking the infimum over D ≥ 1 and integrating with respect to the sample:

L(s̃ bD, s
∗) ≤ K

K − 1
E

[
inf

D≥1
(Pn(γ(sD) − γ(s∗)) + penn(D))

]
+ C′ 3K(10 ∨ κ)

n
,

and finally:

L(s̃ bD, s
∗) ≤ K

K − 1
inf

D≥1
(P (γ(sD) − γ(s∗)) + E[penn(D)]) + C′(M,B)

3K(10 ∨ κ)
n

.

This concludes the proof of Theorem 6. �

A.3 Application to classification: proof of Theorem 1.

Theorem 1 is now a simple consequence of Theorem 6 whose conditions are met for the hinge loss
with S = L2(Q) and s∗ = f∗ (the Bayes classifier). Checking for conditions (i)-(ii) of Theorem
6 is straightforward, and the lemma below ensures that assumption (iii) is met with κ = 1

h0
. (A

related result appears in [19], but we provide a proof here for completeness.) This concludes the
proof of Theorem 1.

Lemma 7. Let f : X → [−1, 1]. We suppose that |p(x) − 1
2 | ≥ h0 where p(x) = P [Y = 1|X = x].

Then

‖γh(f) − γh(f∗)‖2
2 ≤ 1

h0
Lh(f, f∗) .

Proof of Lemma 7. We can write explicilty

Lh(f, f∗) =

∫
p(x)[(1 − f(x))+ − (1 − f∗(x))+] + (1 − p(x))[(1 + f(x))+ − (1 + f∗(x))+] dP (x) ,

and

‖γh(f)−γh(f∗)‖2
2 =

∫
p(x)[(1−f(x))+−(1−f∗(x))+]2+(1−p(x))[(1+f(x))+−(1+f∗(x))+]2 dP (x) .

Without loss of generality, we suppose that f∗(x) = 1 i.e. p(x) ≥ 1
2 . Since −1 ≤ f(x) ≤ 1,

p(x)[(1− f(x))+ − (1− f∗(x))+]2 +(1− p(x))[(1+ f(x))+− (1+ f∗(x))+]2 = (1− f(x))2 . It yields
(f(x)−1)2

p(x)[(1−f(x))+)]+(1−p(x))[(1+f(x))+−2] = 1−f(x)
2p(x)−1 . We therefore obtain

p(x)[(1 − f(x))+)]2 + (1 − p(x))[(1 + f(x))+ − 2]2

p(x)[(1 − f(x))+)] + (1 − p(x))[(1 + f(x))+ − 2]
≤ 1

h0
,

and the statement follows by integrating with respect to x. �

A.4 Proof of Theorem 4.

Below we will use the standard covering number notation: let N (ǫ,G, d) (resp. M(ǫ,G, d)) denote
the covering number (resp. packing number) of set G for distance d. The proof of Theorem 4
is inspired by the work of L. Györfi and al. [9]. In particular, it relies on Theorem 9.4 of this
reference for the control of packing numbers on VC-subgraph sets of functions. We reproduce it
here:
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Theorem 8 (Györfi et al.). Let G be a class of functions g : X −→ [0, A] with V (G) ≥ 2. Let
p ≥ 1 and ν be a probability measure on X . Let ε such that 0 < ε < A

4 . Then the following holds :

M(ε,G, ‖.‖Lp(ν)) ≤ 3

(
2eAp

εp
log

3eAp

εp

)V (G)

,

where V (G) is the VC-dimension of all subgraphs of functions of G , i.e., the set {{(z, t) ∈ X ×
R; t ≤ g(z)}; g ∈ G} .

To begin with, we control the L2(Pn)-covering numbers of star(FD) . Note that since this set
contains the null function and has diameter bounded by 1, any covering number for ε > 1 is equal
to 1. In what follows we therefore assume ε ≤ 1 .

Following [7], since any g ∈ star(F) is of the form g = λf with λ ∈ [0, 1] , f ∈ F , we can
construct an ε-cover of star(F) by taking the direct product of an ε

2 -cover for F and an ε
2 -cover

for the interval [0, 1], which implies

N (ε, star(F), L2(Pn)) ≤
(⌈

2

ε

⌉
+ 1

)
N
(ε

2
,F , L2(Pn)

)
. (32)

Moreover,

N
(ε

2
,F , L2(Pn)

)
≤ M

(ε
2
,F , L2(Pn)

)

≤ M
(ε

2
, {t− s, t ∈ clip(SD)}, L2(Pn)

)

= M
(ε

2
, {t+ 1, t ∈ clip(SD)}, L2(Pn)

)
,

where the second inequality holds because γ is Lipschitz, and the last equality holds because
covering and packing numbers are translation invariant.

We now apply Theorem 8 with A = 2 , thus, for 0 < ε < 1,

M
(ε

2
, {t+ 1, t ∈ clip(SD)}, L2(Pn)

)
≤ 3

(
32e

ε2
log

(
48e

ε2

))V (clip(SD)+1)

≤
(

11

ε

)4V (clip(SD)+1)

.

The second inequality is obtained by using log(x) ≤ x
e .

Moreover, V (clip(SD) + 1) = V (clip(SD)) ≤ V (SD) ≤ D+ 1 . The first equality holds because
the subgraph VC-dimension is translation invariant. The last inequality is a well-known property
of finite dimensional function spaces (see, e.g., Lemma 2.6.15 of [31]). Finally, the middle inequality
comes from the observation that a discrete set shattered by the subgraph class of clip(G) is also
shattered by the subgraph class of G . Namely, let (zi, ti)1≤i≤K be a finite set shattered by the
subgraph class of clip(G) . We must have −1 < ti ≤ 1 for all i , since otherwise the corresponding
point would belong to (resp. be outside of) the subgraph of all functions. Using this property, it is
easy to check that, if a function family (clip(gj))1≤j≤2K is a witness of the shattering in clip(G) ,
then so is (gj) in G .

Now, gathering inequality (32) and the previous ones, we get for 0 < ε < 1,

logN (ε, star(F), L2(Pn)) ≤ log

(
4

ε

)
+ 4(D + 1) log

(
20

ε

)

≤ 5(D + 1) log

(
11

ε

)
.
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We now use Dudley’s entropy integral (also known as chaining technique, see [32]) theorem, which
states that

EεRn(G) ≤ 4
√

2√
n

∫ ∞

0

√
logN (u,G, L2(Pn))du .

Therefore, using the above upper bound on the covering numbers and standard calculus,

EǫRn

(
f ∈ star(F), Pnf

2 ≤ 2r
)
≤ 4

√
2√
n

∫ √
2r∧1

0

√
logN (ε, star(F), L2(Pn))du

≤ 4
√

10√
n

√
D + 1

∫ √
2r∧1

0

√

log

(
20

u

)
du

≤ 22

(
rn−1 (D + 1) log

(
11√

2r ∧ 1

)) 1
2

:= φ̂(r) .

We easily check that φ̂ is a sub-root function. We now want to upper bound the fixed point of

φ̂ . Let us denote r̃∗D,n = A1
D+1

n

((
log n

D

)
+

+ 1
)

; in order (25) to hold, A1 has to be chosen such

that

φ̂
(
r̃∗D,n

)
≥ r̃∗D,n . (33)

If A1 ≥ 112/(2e), then it can be checked that

log



 11√
2r̃∗D,n ∧ 1



 = log



 11√
2r̃∗D,n



 ∨ log(11) ≤ log(11)

((
log

n

D

)

+
+ 1

)
,

and therefore

φ̂

(
A1

D + 1

n

((
log

n

D

)

+
+ 1

))
≤ C

D + 1

n

((
log

n

D

)

+
+ 1

)
,

where C = 22
√
A1 log(11) .We obtain (33) by noting that C ≤ A1 if A1 ≥ 1200 .

B Proof of Lemma 2.

Let β∗
i = 〈f∗, φi〉L2(P ) . Obviously infg∈SD

‖g − f∗‖Q,2 is attained for g =
∑D

i=1 β
∗
i φi , therefore

inf
D≥1

(
inf

g∈SD

‖g − f∗‖Q,2 +
D

n

)
= inf

D≥1




(
∑

i>D

β∗2
i

) 1
2

+
D

n



 = O
(

inf
D≥1

(
D

1
2−α +

D

n

))
= O

(
n− 2α−1

2α+1

)
,

where we have used β∗
i = O(j−α) and taken D = ⌊n 2

2α−1 ⌋ .

For the second inequality of the lemma, putting Λn = n− 2γ
2γ+1 , we have

inf
g∈H

(
d(g, f∗) + Λn‖g‖2

H
)

= inf
(βi)



µβ + Λn

∑

i≥1

β2
i

λi



 ,

where µβ =

√∑

i≥1

(βi − β∗
i )2. The infimum point (β◦

i ) is such that every partial derivative with

respect to βi cancels, so that

β◦
i =

β∗
i λi

λi + 2Λnµβ◦

,
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and

µβ◦ = 2

√√√√
∑

i≥1

(
β∗

i Λnµβ◦

λi + 2Λnµβ◦

)2

≥ 1

2

√ ∑

i≥1,λi≤2Λnµβ◦

β∗2
i .

Since β∗
i = O(j−α) , this leads to

µβ◦ ≥ O
(
n− 2α−1

4γ+2 µ
2α−1
4γ

β◦

)
.

Finally solving this inequality for 2α− 1 < 4γ entails

µβ◦ ≥ O
(
n

−4(2α−1)γ
(4γ+2)(4γ−2α+1)

)
,

so that

inf
g∈H

(
‖g − f∗‖2 + Λn‖g‖2

H
)
≥ O

(
n

−4(2α−1)γ
2(2γ+1)(4γ−2α+1)

)
.

This concludes the proof of the lemma. �

C Additional material: eigenfunctions in the Gaussian case

We use the following normalization for the Hermite polynomials: Hn is an orthogonal system of

L2(e
−x2

) i.e. e2λx−λ2

=
∑

n≥0Hn(x)λn

n! . In this case, if fn(x) = Hn(x)e−
x2

2 then 〈fn, fm〉L2(R) =

δn,m
√
π2nn!.

Theorem 9 ( [33] and [34]). Let dµ(x) = 1√
2π
e−2ax2

dx and Tk be the integral operator associated

with the Gaussian kernel k(x, y) = e−b(x−y)2.

Tk : L2(µ) → L2(µ)

f →
∫
R
f(x)e−b(x−y)2dµ(x)

An explicit orthonormal basis of L2(µ) of eigenvectors of Tk associated to λj =
√

1
2A

(
b
A

)j−1
is

given by:

Ψj(x) =
(4c)

1
4 e−(c−a)x2

Hj−1(
√

2cx)

(2j−1(j − 1)!)
1
2

where c =
√
a2 + 2ab and A = a+ b+ c and j ≥ 1.
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[3] A. Barron, L. Birgé, and P. Massart, “Risk bounds for model selection via penalization,”
Proba. Theory Relat. Fields, vol. 113, pp. 301–413, 1999.

21



[4] Y. Baraud, “Model selection for regression on a random design,” ESAIM Probab. Statist. 6
127–146, 2002.

[5] P. Massart, Concentration Inequalities and Model Selection. Springer-Verlag, 2003, prob-
ability summer school, Saint Flour 2003 (to appear), available at http://www.math.u-
psud.fr/ massart/stf2003 massart.pdf.

[6] ——, “Some applications of concentration inequalities to statistics,” Annales de la Faculté
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