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STATISTICAL PROPERTIES OF KERNEL PRINCIPAL
COMPONENT ANALYSIS

Gilles Blanchard! & Olivier Bousquet & Laurent Zwald?

Y Fraunhofer First (IDA), Kékuléstr. 7, D-12/89 Berlin, Germany.
2 Département de Mathématiques, Université Paris-Sud, Bat.]25, F-91/05, France.

Abstract

The main goal of this paper is to prove non-asymptotic inequalities on the recon-
struction error for Kernel Principal Component Analysis. Our contribution to this
topic is two-fold: (1) we give bounds that explicitly take into account the empirical
centering step in this algorithm, and (2) we show that a “localized” approach allows
to show “fast rates” of convergence towards the minimum reconstruction error, more
precisely we prove that the convergence rate is related to the decay of eigenvalues
and is typically faster than n=1/2.

A secondary goal, for which we present similar contributions, is to obtain conver-
gence bounds for the partial sums of the biggest or smallest eigenvalues of the Gram
matrix towards eigenvalues of the corresponding kernel operator. These quantities
are naturally linked to the KPCA procedure; furthermore these results can have
applications to the study of various other kernel algorithms.

The results are presented in a functional analytic framework, which is suited to
deal rigorously with reproducing kernel Hilbert spaces of infinite dimension.

1 Introduction

Due to their versatility, kernel methods are currently very popular as data-analysis tools.
In such algorithms, the key object is the so-called kernel matrix (the Gram matrix built
on the data sample) and it turns out that its spectrum can be related to the performance
of the algorithm. This has been shown in particular in the case of Support Vector Ma-
chines (Williamson, Shawe-Taylor, Scholkopf, and Smola, 1999). Studying the behavior
of eigenvalues of kernel matrices, their stability and how they relate to the eigenvalues of
the corresponding kernel integral operator is thus crucial for understanding the statistical
properties of kernel-based algorithms.

In the present work we focus on Principal Component Analysis (PCA), and its non-
linear variant, kernel-PCA, which are widely used algorithms in data analysis. Their goal
is to extract a basis adapted to the data, by looking for directions where the variance is
maximized. Their applications are very diverse, ranging from dimensionality reduction to
denoising. Applying PCA to a space of functions rather than a space of vectors was first
proposed by Besse (1979) (see also the survey of Ramsay and Dalzell, 1991). Kernel-PCA
(Scholkopf, Smola, and Miiller, 1999) is an instance of such a method which has boosted
the interest in PCA as it allows to overcome the limitations of linear PCA in a very elegant
manner.



Despite being a relatively old and commonly used technique, little has been done on
analyzing the statistical performance of PCA. Most of the previous work has focused on
the asymptotic behavior of empirical covariance matrices of Gaussian vectors (Anderson,
1963). For the kernelized version, there is a tight connection between the covariance and
the kernel matrix of the data. This is actually at the heart of the kernel-PCA algorithm
itself, and also indicates that the properties of the kernel matrix, in particular its spectrum,
play a crucial role in the properties of the kernel-PCA algorithm.

Recently Shawe-Taylor, Williams, Cristianini, and Kandola (2002, 2005) have under-
taken an investigation of the properties of the eigenvalues of kernel matrices and related
it to the statistical performance of kernel-PCA. Our goal in the present work is mainly to
extend their results in several directions:

e In practice, for PCA or KPCA, an (empirical) recentering of the data is generally
performed. This is because PCA is viewed as a technique to analyze the variance of
the data; it is often desirable to treat the mean independently as a preliminary step
(although, arguably it is also feasible to perform PCA on uncentered data). This
centering was not considered in the cited previous work while we take this step into
account explicitly and show that it leads to comparable convergence properties.

e to control the estimation error, Shawe-Taylor et al. (2002, 2005) use what we would
call a global approach which typically leads to convergence rates of order n=*/2, Nu-
merous recent theoretical works on M-estimation have shown that improved rates
can be obtained by using a so-called local approach, which very coarsely speaking
consists in taking the estimation variance precisely into account. We refer the reader
to the works of Massart (2000), Bartlett, Bousquet, and Mendelson (2003a), Bartlett,
Jordan, and McAuliffe (2003b) (between others). Here we show that this principle
leads to improved convergence bounds.

Note that we consider these two types of extension separately, not simultaneously. While
we believe it possible to combine these two extensions, in the framework of this paper we
choose to treat them independently to avoid additional technicalities and leave this issue
as an open problem.

To state and prove our results we have chosen to use a functional analysis formalism.
Its main justification is that some of the most interesting positive definite kernels (e.g.
the Gaussian RBF kernel) generate an infinite dimensional reproducing kernel Hilbert
space (the "feature space” into which the data is mapped). This infinite dimensionality
potentially raises a technical difficulty. In part of the literature on kernel methods a matrix
formalism of finite-dimensional linear algebra is used for the feature space and it is generally
assumed more or less explicitly that the results “carry over” to infinite dimension because
(separable) Hilbert spaces have good regularity properties. In the present work we wanted
to state rigorous results directly in an infinite-dimensional space using the correponding
formalism of Hilbert-Schmidt operators and of random variables in Hilbert spaces. We
hope the necessary notational background which we introduce first will not tax the reader
excessively and hope to convince her that it leads to a more rigorous and elegant analysis.



Finally, let us emphasize some open problems that will be discussed in more detail in
the concluding part. We want to underline that in our results we consider the number
of components d kept in the PCA procedure (or the number of eigenvalues) as a fixed
constant. Our focus here is in the dependence of the bounds in the sample size n. As for
the dependence in d for fixed n, unfortunately it is clear that our results do not capture
the correct behavior: our bound on the reconstruction error eventually increases as a
function of d while it basic considerations show that the true reconstruction error is always
decreasing in d. In other words, for fixed n there exists a certain dimension d(n) such that
the bound obtained for d' > d(n) is actually less informative than the bound obtained
for d(n). The same issue surfaces in the work of Shawe-Taylor et al. (2005) and as far
as we know, this problem has not been solved. An indirectly linked issue is how define a
sensible criterion for what would be an optimal dimension choice in KPCA. Obviously the
(true) reconstruction error alone is not enough since it is always a decreasing function of
the dimension. We believe these two issues to be the most interesting open problems of
this paper.

The paper is organized as follows. Section 2 introduces the necessary background
on functional analysis, the basic assumptions and some preliminary fundamental results.
Section 3 concentrates on bounding the difference between sums of eigenvalues of the
kernel matrix and of the associated kernel operator. Finally, Section 4 gives our main
results, bounds on the reconstruction error of kernel-PCA. We conclude with an extended
discussion on the open issues sketched above.

2 Preliminaries

The core of our results is concerned with estimating eigenvalues of certain operators in a
reproducing Hilbert kernel space Hi. The most convenient way to deal with these objects
is to use formalism from functional analysis, and in particular to introduce the space of
Hilbert-Schmidt operators on H; endowed with a suitable Hilbert structure. The present
section is devoted to introducing the necessary notation and base properties that will be
used repeatedly.

2.1 The Hilbert space of Hilbert-Schmidt operators

Let H be a separable Hilbert space. A linear operator L from H to H is called Hilbert-
Schmidt if 2221 | Le:ll3, = Zm‘zl <Lei,ej>2 < oo, where (€;);>1 is an orthonormal basis
of H. This sum is independent of the chosen orthonormal basis and is the squared of
the Hilbert-Schmidt norm of I when it is finite. The set of all Hilbert-Schmidt operators
on H is denoted by HS(#). Endowed with the following inner product <L7N>HS(H) =
2221 (Le;, Nej) = Em‘zl (Lej,e;) (Nej,ej) , it is a separable Hilbert space.

A Hilbert-Schmidt operator is compact, it has a countable spectrum and an eigenspace
associated to a non-zero eigenvalue is of finite dimension. A compact, self-adjoint operator
on a Hilbert space can be diagonalized i.e. there exists an orthonormal basis of H made



of eigenfunctions of this operator. If L is a compact, positive self-adjoint operator, we
will denote A(L) = (A(L) > A2(L) > ...) the sequence of its positive eigenvalues sorted
in non-increasing order, repeated according to their multiplicities; this sequence is well-
defined and contains all nonzero eigenvalues since these are all non-negative and the only
possible limit point of the spectrum is zero. Note that A(L) may be a finite sequence. An
operator L is called trace-class if ) .., (€;, Le;) is a convergent series. In fact, this series is
independent of the chosen orthonormal basis and is called the trace of L, denoted by tr L .
By Lidskii’s theorem tr L = Yo, A\;(L) for a self-adjoint operator L.

We will keep switching from H to HS(H) and treat their elements as vectors or as
operators depending on the context. At times, for more clarity we will index norms and
dot products by the space they are to be performed in, although this should always be
clear from the objects involved. The following summarizes some notation and identities
that will be used in the sequel.

Rank one operators. For f,g € H\{0} we denote by f @ ¢* the rank one operator
defined as f @ g*(h) = (g,h) f. The following properties are straightforward from the
above definitions:

1/ ®9*HHS(H) = |If 1l gl 5 (1)
trf @ g™ =(f,9)y; (2)
(f® g*,A}HS(H) = <Ag,f>H for any A € HS(H). (3)

Orthogonal projectors. We recall that an orthogonal projector in H is an operator U
such that U? = U = U* (hence positive). In particular one has

1T (R)15 = (s Ul < Nl
<f®g*7U>HS(H) =(Uf,Ug)y -

U has rank d < oo (i.e. it is a projection on a finite dimensional subspace), if and only if
it is Hilbert-Schmidt with

HUHHS(H) = \/87 (4)
trU =d. (5)

In that case it can be decomposed as U = 2?21 é; @ ¢, where (¢;)L, is an orthonormal
basis of the image of U.

If V' denotes a closed subspace of ‘H, we denote by Ily the unique orthogonal projector
such that rangelly = V and kerlly = V1. When V is of finite dimension, Iy is
not Hilbert-Schmidt, but we will denote (with some abuse of notation), for a trace-class
operator A,

(Ily, A) :=tr A— (lly, A) . (6)



Eigenvalues formulas. We denote by V,; the set of subspaces of dimension d of H.
The following theorem sums up important formulas concerning the individual or summed
eigenvalues of self-adjoint compact operators; the first one is due to Fan (see Torki, 1997, for
a proof) while the second is the so-called Courant-Fischer-Weyl formula (see e.g. Dunford
and Schwartz, 1963).

Theorem 2.1. Let C' a compact self-adjoint operator on ‘H, then for all d > 0,

Z i ~ Vv (Ilv, C>HS(7—{) ’ (7)

(£,

min max 3
Vevy fLV Hf”

and Aa1(C) = (8)

where in both cases, the optimum is attained when V' is the span of the first d eigenvectors

of C'.

2.2 Second order integral operators

We recall basic facts about random elements in Hilbert spaces. A random element Z in a
separable Hilbert space has an expectation e € H when E||Z]| < oo and e is the unique
vector satisfying (e, f),, = E(Z, f),,,Vf € H. We now introduce the (noncentered)
covariance operator through this theorem and definition:

Theorem 2.2. IfE||Z|* < oo, there exists a unique operator C' : H — H such that
<fvcg>7-{ = E[<f7Z>H <97Z>7-{]7 vag €EH.
This operator is self-adjoint, positive, trace-class with tr C = R||Z||* , and satisfies
C=E[Z®Z.

We call C' the noncentered covariance operator of Z .

The core property of covariance operators that we will use is its intimate relationship
with another integral operator summarized in the next theorem. This property was first
used in a similar but more restrictive context (finite dimensional) by Shawe-Taylor et al.

(2002, 2005).

Theorem 2.3. Let (X, P) be a probability space, H be a separable Hilbert space and ® be
a map from X to H such that for all h € H, (h,®(.)) is measurable and E||®(X)||* < oo.
Let Cg be the covariance operator associated to ®(X) and Ko : L2(P) — Lo(P) be the
integral operator defined as

(Ko f)(t) = E[f(X)(@(X), ®(1))] = /f(x)<<1>(w),<1>(t)>dP(w)-
Then K is a Hilbert-Schmidt, positive self-adjoint operator, and
MEKg) = MCo).
In particular, Kg is a trace-class operator and tr(Ke) = E[|®(X)|* = Y5, i(Ka).

5



If we denote (®(x), P(y)) = k(x,y), then K is called the integral operator with kernel
k.

2.3 Main framework and assumptions

Let A’ denote the input space (an arbitrary measurable space) and P denote a distribution
on X according to which the data is sampled i.i.d. We will denote by P, the empirical
measure associated to a sample Xy,..., X, from P, i.e. P, = %E dx,. With some abuse
of notation, for a function f : X — R, we may use the notation Pf := E[f(X)] and

P.f = % E?:l f(Xi).

Let k be a positive definite function on X' and Hj the associated reproducing kernel
Hilbert space (RKHS for short in the sequel). We recall that Hy, is a Hilbert space of real
functions on X, containing functions k(z,-) for all + € Hj and such that the following
reproducing property is satisfied:

VieH, Veed o (fik(z,.))=f(z), (9)
and in particular
\V/l',yEHk <k($,-),k(y,')>:k($,y).

Finally, let V; denote the set of all vector subspaces of dimension d of Hy.
We will always work with the following assumptions which we will refer collectively to
as “assumption (A)” in the sequel:

(A1) Hy is separable.
(A2) Forall x € X, k(x,.) is P-measurable.

(A83) There exists M > 0 such that (X, X) < M P-almost surely.

Note that assumptions (A1)-(A2) ensure the measurability of all functions in H, since
they are obtained by linear combinations and pointwise limits of functions k(x, -).

Notation for the noncentered case. For x € X, we denote

o = k(x,.) €H,
Cr = s @, € HS(H).

The following properties are then straightforward from the preceding sections:

tr Cp = [|Callpsae,) = k(2. 2], (10)
<Cl’7 Cy>Hs(y) = kQ(xv y) ) (11)
(f, ng>7-( =(Cy, f® g*>Hs(H) = f(x)g(x), (12)



and for any orthogonal projector U,

(U, Cl’>HS(7—{k) - HU‘%H’QHk : (13)

Note incidentally that (11) implies that HS(#) is actually a natural representation of the
RKHS with kernel k*(x,y). Namely to an operator A € HS(H) we can associate the
function

fale) = (A, Cops iy = (Apes o)y = (Ape)(2);

with this notation, we have fo, = k?*(x,-), and one can check that (9) is satisfied in
HS(H) with the kernel k?(z,y) when identifying an operator to its associated function.
Also, paralleling the earlier remark about measurability of functions in Hy , assumptions
(A1)-(A2) ensure that f4 is measurable for any A.

Now, let us denote Cy : Hy — Hy, vesp. Cy : HS(Hy) — HS(Hk), the noncentered
covariance operator associated to the random element @x in Hy, resp. Cyx in HS(Hy);
and Ky, Ky : Ly(P) — Ly(P) the integral operators with kernel k(x,y), resp. k*(x,y)
(Note that all these operators are well-defined due to assumption (A) ). We then have the
following property:

Lemma 2.4. Under assumption (A) the operators Cy,Cq, K1, Ky defined above satisfy the
following :

(i) Cy is the expectation in HS(Hy) of Cx = ox @ ¢k .
(ii) Cy is the expectation in HS(HS(Hy)) of Cx @ C% .
(iii) MCy1) = M(K}), and tr Cy = tr K7 = E[k(X, X)] .
(iv) M(Cy) = A(IKy), and tr Cy = tr Ky = E[k*(X, X)] .

This Lemma is a direct consequence of Theorems 2.2 and 2.3. (noting that the mea-
surability conditions have been established in the preceding discussions).

Notation for the recentered case. We will be interested in the sequel in recentered
versions of the above quantities (which appear for standard covariance operators and PCA
techniques), which we now define accordingly. Let us define for all € X

p=E[px],
Pr=p:—pneEH,

Cr =9, @@, € HS(H);
we then have ||u||* = Ek(X, X") and

trCo = [|Callyge,y = (@) = pll* = k(z,2) + ER(X, X') = 2ER(X, ),

7



where X’ denotes an independent copy of X.

Similarly, let us denote C the covariance operator associated to By, and K, the
integral operator with kernel k(x,y) = (¢, — i, 0y — 1) = k(x,y) — Ek(X,2) — Ek(X,y) +
EE(X, X'); then the following holds:

Lemma 2.5. Under assumption (A) the operators C'\, K| defined above satisfy the fol-
lowing :

(i) C is the expectation in HS(Hy) of Cx = Py @ @y ; moreover one has

61201—/!@/«0* (14)

(ii) NC1) = NEK1), and tr Oy = tr K, = E[E(X, X)] — E[k(X, X")] .

Again, this lemma is a direct consequence of Theorems 2.2 and 2.3 and of straightfor-
ward computations.

Notations for the empirical case. In the following we will study empirical counter-
parts of the above quantities. The generality of the above results implies that we can
replace the distribution P by the empirical measure P, associated to an i.i.d. sample
Xi,..., X, without any changes and we merely need to introduce adequate notation.

In the noncentered case, the corresponding operators are denoted by K, and Ci,;
we define K, and Cy, similarly. In particular, Lemma 2.4 implies that A(Ky,) =
MC1)  A(Kap) = MCan), tt Ky = tr Cryy = %2?21 E(X:, Xi), and tr Ky, = tr Cy,, =
2oy KX XG).

Note that Cf, is the empirical covariance operator, i.e. (f,C1.9) = > | f(X:)g(X;).
An important point is that K7, can be identified (as in Koltchinskii and Giné, 2000) with
the normalized kernel matrix of size n x n, K1, = (k(X;, X;)/n)ij=1.. ». This comes
from the fact that Ly(P,) is a finite-dimensional space so that any function f € Ly(FP,)
can be identified to the n-uple (f(X;))i=1,.. »; this way the Hilbert structure of Ls(P,) is
isometrically mapped into R™ embedded with the standard Euclidian norm rescaled by n=1
(note that this mapping may not be onto in the case where two datapoints are identical,
but this does not cause a problem).

For the centered case, note that the quantities @, C', already depend on P through the
centering, so that we will define the corresponding quantities for P, with an index n:

_ 1 ¢
%,n:%—g;%%m

_ = —%
r,n S‘Qx,n ® S‘Qx,n ”

61,71 = %ZEX,'@ ® E;{,,n = %Za)ﬁm .
=1 =1

Q)



The associated centered kernel operator is denoted Flm and identified with the following
centered kernel matrix :

_ 1 1
[(1771 = (<¢X¢7¢X]> ) — (In - _1n1;1> [(l,n (In — _1n1;> .
Hr /) 1<ij<n n n

where 1,, = (1,--- ,_1)’ cR" Asa consequence of Lemma 2.5, we have MCi) = MKq,).
Finally, note that 'y, is a biased estimator of 'y, so we will additionally introduce

n o — 1
Cipn=Crp— —— XS 15
n_l 17 17 n(n—l) ;@Xz ®S‘QXJ ( )

él,n —
which satisfies E {dn} =C,;.

3 General Results on Eigenvalues of Gram Matrices

We are now able to proceed to our first goal, the estimation of sums of eigenvalues of kernel
operators K; or K from eigenvalues of their empirical counterparts K, and Flm. For
this, we will make use of the preliminary results to relate these sums of eigenvalues to an
empirical process on classes of functions of type x — (Ily, C,). In turn, this will allow us
to introduce classical tools of empirical process theory to obtain our results.

Let us formulate precisely this stepping stone in the case of K; through the following
corollary:

Corollary 3.1. Under Assumption (A), we have

;Ak(ﬁ’l) = maxE[(Ilv, Cx)] . (16)
k;m (K1) = min B[(TTye, Cx)] (17)

The first equality in this corollary is an immediate consequence of (7) and assertions
(i), (iii) of Lemma 2.4. The second is a consequence of the first, of definition (6) and of
the definition of the trace. Of course, corresponding results for the centered and empirical
versions hold as well in a parallel fashion.

3.1 Noncentered Case

In this section we consider the easier case of the noncentered kernel operator.



3.1.1 Global approach

The first result consists in data-dependent upper and lower bounds for the sum of the d
largest or smallest eigenvalues of the integral operator. It is essentially the same as the
result obtained by Shawe-Taylor et al. (2005), but we give a proof for completeness and to
show how it fits in our framework.

Theorem 3.2 (Shawe-Taylor et al.). Under Assumption (A), with probability at least

1 —3e¢,
¢ d d p ¢
— M/ 307 < ;:1 Ni(Kin) — ;:1 Ai(Kq) <24 - tr Ko + 3M 4/ %7 (18)

Also, with probability at least 1 — 3e~¢,

/ [d
—M <N = Y Ni(Ky,) <2 —tr Ky +3M zi' (19)

1 >d+1 1 >d+1

Proof. We start with the first statement. From equation (16) and its counterpart for
K, we have

d d
D A1) = YAy = max P, (Ily, Cx) — max P (Ily, Cx) .

Vey Vey
=1 =1 4 4

This gives, denoting by Vj; the subspace attaining the second maximum,

d
MNi(K1n) =Y Xi(Ky) < sup (P, = P)(Ily, Cx) .

i=1 Vevy

(P, — P)(Ily,, Cx)

IIM&

The lower bound above leads to the lower bound of the theorem by an application of
Hoeftding’s inequality for the empirical mean of an i.i.d. sample of the bounded random
variable (Ily,, C'x) , namely

0 < (Iv,, Cx) = (W ox @ @) = [y, (0x)|I” < Jlox|* < M, (20)

where we have used the fact that Iy, is a projector.

For the upper bound, we use standard techniques of concentration and symmetriza-
tion. Since (Ily,,Cx) € [0, M], we can apply the bounded difference concentration in-
equality (also known as McDiarmid’s or Azuma’s inequality) to the variable supy ¢y (P, —
P) (Ily, Cx). Thus with probability 1 — e~¢,

£

sup (P, — P)(Ily,Cx) < E | sup (P, — P) (Ily, CX>] + M 5

Vevy Vevy

10



By a standard symmetrization argument,

2
Vev, n VEVd

1
E [sup (P, — P) <HV,CX>} < 2EE. [— sup Zgj Iy, Cx,)

where (£;)i=1,.. » is an i.i.d. family of Rademacher variables. We can apply the bounded
difference inequality a second time to this quantity, so that with probability 1 — e~¢

<&

M
+ on

EE. [l sup Zasj <HV,CX]>

n
veve ‘o

S Es [l sup 25] <HV7CX]>

n
veve ‘o

The expectation on the right-hand-side is then bounded by an application of Lemma 3.3
below, leading to the conclusion.

The second inequality of the Theorem follows from similar arguments. Equation (17)
leads to

D A1) =Y N(K1,) = min P (Ilys, Cx) — min P, (Hya, Cx) .

- - Ve, Vevy
1>d i>d

and thus, denoting by V, the subspace attaining the first minimum,

(P—Pn)<H‘~/dL,CX> <3 ON(ED) = Y M(K1) < sup (P — Py (s, Cx)

i>d i>d VEVa

The rest of the proof parallels exactly the proof of the first part. O
We have used the following Lemma in the completion of the proof:

/d
~ —tr [(Qm .
n
/d
~ —tr [(2
n

Proof. First note that for the two statements, the first equality is straightforward from
the definition and the symmetry of Rademacher variables. We then have

§3@<H%C&)==<H%§:SNWJ®¢X>
HS (M)

J=1 J=1

Lemma 3.3.

1

E. [— sup Zsj Iy, CX>

n VEVd

1

=E. [— sup Zsj HV,CX>

n VEVd

and

EE. [l sup Z@j <HvJ_,CX]>

n
veve ‘o

= EE. [l sup Zsj Iy, Cy, >

n VEVd

= dZesj (Xi, Xj),

HS(H) 63=1

, @ ¢X,

11



where the inequality is Cauchy-Schwarz’s. Finally, by Jensen’s inequality,

< \/E\/ZL R2(XG, i)

This concludes the proof of the first statement. The second is obtained by a second
application of Jensen’s inequality. O

1
E. | — sup Zsj Iy ., CX

nVEVd

Remark. Notice that the upper and lower bounds in Theorem 3.2 are of a different
nature. One way to explain this is to consider directly the expectation of the involved
quantities: one has

d d
0<E [Z )\Z»(Klm)] =) MK <E {525 (P, — P)(Ily, CX>] < 2,/%@ Ky,
; =1 d

=1

where the lower bound is a consequence of (16) and Jensen’s inequality, and the upper
bound follows from arguments similar to the above proof.

We see that the empirical eigenvalues are biased estimators of the population ones
(although the above inequality only provides an upper bound on the bias); therefore the
difference between upper and lower bound in (18) is to be interpreted as bias rather than
estimation error. If we additionally apply McDiarmid’s inequality twice to the above
bound, on the one hand to the quantity 2?21 Ai(K1,), and on the other hand to tr K3, ,
then we are lead precisely to (18). This approach was followed by Shawe-Taylor et al.
(2002, 2005). We have used the same arguments in the proof of Theorem 3.2, but in a
different order, as this allows for further refinement (see next section).

3.1.2 Relative bounds

We now use recent work based on Talagrand’s inequality (see e.g. Massart, 2000; Bartlett
et al., 2003a) to obtain improved concentration for the large eigenvalues of the Gram
matrix. We obtain a better rate of convergence, but at the price of comparing the sums of
eigenvalues up to a constant factor.

Theorem 3.4. Under Assumption (A), for all K > 1 and £ > 0, with probability at least
1 — e7¢, the following holds:

d

d
S K41 )
D M(Ki) = = DMK

L ME(1+5K)

n

< 6K inf —+2 Z A (K)

h>0 (21)

12



Also, for all K > 1 and £ > 0, with probability at least 1 — 3e™¢, we have

d

. K+1 .
Me( K ) — I E Ak(K71)
k=1

o
Il SN
—

. 2hM d . 2620M K¢
< 282K inf § =+ V2 - > N(Kyn) o+ —— ()
= F>htl
Moreover, with probability at least 1 — e™¢, for all K > 1,

d

d
. K -1 . M 1 K
S K = B S () 2 —75 <§ + 5) . (23)
k=1

k=1

The proof of the Theorem is found in Appendix A.2, using a fundamental deviation
inequality recalled in Appendix B and additional auxiliary results in Appendix C.

Comments. A superficial look at this result could lead to conclude that it is of the same
form as Theorem 2 of Shawe-Taylor et al. (2005) where an infimum operator also appears
in the bound. However, the bounds are really of a different nature. In the latter reference
the infimum operation comes from the observation that since obviously the partial sum 5y
of the first d eigenvalues is increasing in d, we can lower bound S; by Sy with d' < d; hence
the empirical lower bound for Sy is a fortiori a lower bound for S;. We could naturally
also take advantage of this observation and introduce in the lower bound an additional
maximum operation over d’ < d but opted against it for readability.

To illustrate the novelty introduced by our result, first notice that if we disregard the
multiplicative constants, the complexity term obtained here is always better (or equal) in
order than the one of (18) (take h = 0). As an example of how this bound differs from (18),
assume that A\;(Kz) = O(j~%) with a > 1, then (18) gives a bound of order /d/n, while
Theorem 3.4 gives a bound of order d"/("*®)p=2/(1+2) _ hence a better rate. In the case of
an exponential decay (A;(K3) = O(e™/) with v > 0), the rate even drops to log(nd)/n. If
K has a finite number k of non-zeros eigenvalues, the bound is of order % Of course this
improvement comes at the cost of an additional factor in front of the empirical sum, hence
this bound is better understood as a relative performance bound.

Finally, Theorem 3.4 only covers the case of the sum of the bigger eigenvalues. Unfor-
tunately, unlike in the global case, we were not able to use an identical reasoning for the
smallest eigenvalues. It is actually possible to derive a result of a similar form, but with
worse constants, as a consequence of our results for the generalization of kernel PCA. For
this reason we postpone the statement of this result to section 4.

3.2 Recentered Case

In the following result, we extend Theorem 3.2 to a more general case where the data is
first recentered. Let us begin with a control of a suprema of random variables:
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Theorem 3.5. Under Assumption (A), with probability at least 1 — 3e¢,

_ _ d £ 4 6
My, n>— My, Ch) < 2/ Str Ky + M \/j = :
nggd< v i) = (v, Cr) <24/ —tr Ky + (5 n+\/ﬁ+n—1>

similarly, with probability at least 1 — 3e~¢,

sup <HVL701>—<HVL C1n><2 —tr[&zn_l_M( \/>+—+ ) |
VeV, n—1

The proof of the theorem is relegated to Appendix A.2. It follows the same principles

as for Theorem 3.2, but some additional steps are needed to deal with a U-process arising
because of the recentering. From this theorem we deduce the following upper bounds:

Theorem 3.6. Under Assumption (A), for all £ > 1, with probability greater than 1 —

3e7¢,
[d
—ZM\/> Z)\ (K,) <2 —tr[xzn—|—18M\/>

and with probability greater than 1 — 3e~¢,

[d
_QM\/> Z MN(KL) — — Z MN(K,) <2 —tr]xzn—|—18M\/>.

1 >d+1 1 >d+1

Proof. (Majoration) Theorem 2.1 entails

d d

= Z M(Th) - Z M@ < s (v, o) = {110, T)

Z)\Z»U

i>d+1 z>d-|—1

and

)< sup (Iya, C1) = (Tye, Cra)

Vevy

Theorem 3.5 and Lemma 2.4 allow to conclude.
The minoration part follows from Hoeffding’s inequality for U-statistics; details can be
found in the Appendix. O

4 Application to Kernel-PCA

4.1 Uncentered Case

We first consider in this section the simpler case of “uncentered Kernel-PCA” where the
goal is to reconstruct the signal using principal directions of the noncentered covariance
operator.

14



Remember we assume that the number d of KPCA directions kept for projecting the
observations has been fixed a priori. We wish to find the linear space of dimension d
that conserves the maximal norm, i.e. which minimizes the error (measured with the

RKHS norm) of approximating the data by their projections. The space ‘751 minimizing
the empirical error is given by

~ 1 &
Vi = ArgMin — —1II 2
f g Min ; lex;, — Hv(ex,)]]

V is the vector space spanned by the first d eigenfunctions of 'y ,,. Analogously, we denote
by V; the space spanned by the first d eigenfunctions of ';. We will adopt the following
notation for the true and empirical reconstruction error:

1 n
R,(V) = gz lex; = v (ex)I* = P (Tlys, Cx) -
7=1

R(V) =E[|lex — Mvex|?] = P(Iy1,Cx) .
One has R, (Vi) = Yoy Mi(K1,) and R(Vy) = 30, Mi(KY).

4.1.1 Bound on the Reconstruction Error: global approach

We give a data dependent bound for the reconstruction error which is a simple consequence

of 3.2.
Theorem 4.1. Under Assumption (A), with probability at least 1 — 2¢¢,

A~ n d
R(Vy) < Z Ni(Ky,) + QWJF IM s /%‘

i=d+1
Also, with probability at least 1 — ¢,

~ [d
R(Vy) — R(Vy) <2 gtr Ky +2M %
Proof. We have

R(Va) = Bu(Vi) = (P = P) (g Cx ) < sup (P = P,) (Iys, )

Vevy

we have already treated this quantity in the proof of Theorem 3.2, hence the first part is
proved.
For the second part, the definition of V; implies that

R(V2) — B(Vi) < (R(V2) = Bu(V)) — (R(Va) = B(Vi)

The first term has been dealt with above. We obtain a lower bound for the second term

using Hoeffding’s inequality (again, exactly as in the proof of the lower bound in Theorem
3.2). This concludes the proof. O
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4.1.2 Fast rates via localized approach

We now show that that the excess error of the best empirical d-dimensional subspace with
respect to the error of the best d-dimensional subspace can decay at a much faster rate
than can be expected from Theorem 4.1. This however comes at the price of an additional
factor related to the size of the gap between two successive distinct eigenvalues.

Here is the main result of the section:

Theorem 4.2. Let (\;) denote the ordered eigenvalues with multiplicity of Cy, resp. (p;)
the ordered distinct eigenvalues. Let d be such that Ay = pz. Define

. fd=1 or Mg >\
’Yd:{Md K if 01 Ad > Ady1, (24)

min </,Lc’l“_1 A e /,Lg“) otherwise;

and By = 2/Ek* (X, X') /4.

Then under Assumption (A), for all d, for all € > 0, with probability at least 1 — ¢~¢
the following holds:

N Bah
R(Vy) — R(Vy) < Tinf L+4 Z A (

h>0
- ]>h—|—1

| E22M +68))

n

(25)

Comments. Similarly to the remarks on Theorem 3.4, the complexity term obtained in
Theorem 4.2 has a faster (or equal) decay rate, as a function of the sample size n, than
the one of Theorem 4.1; this rate depends on the decay behavior of the eigenvalues.

We do state a fully empirical version of the bound (using only empirical eigenvalues)
to avoid additional burden. Let us sketch briefly how this could be obtained: in the proof
of the Theorem, we can use the empirically localized Rademacher complexity at the price
of worse constants (see the proof of Theorem 3.4 to see an example of how this plays
out). This has the effect of replacing the true eigenvalues by the empirical ones in the sum
appearing in (25). However the constant By still depends on the true eigenvalues. For
this, we can use a simple convergence result of the empirical eigenvalues to the true ones
(as proved for example by Koltchinskii and Giné, 2000), so that for n big enough By is
bounded by 2B, (its empirical counterpart).

The techniques used to obtain the previous fast rates for reconstruction error of KPCA
allows us to get improved bounds for the sum of the smaller eigenvalues.

Corollary 4.3. Under Assumption (A),with probability at least 1 — e=¢, for all K > 1,

> A(l) — (K1) > _ME (- + 5) : (26)

n 3 2
E>d
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Moreover, if A\g > Agq1, for all K > 1 and € > 0, with probability at least 1 — 2e~¢, the
following holds:

2{: Ak‘hl

k>d+1 k>d+1

liln

B ]’,7
< 6K inf { =2 14 Z e LS <5Bd 1
n

h>0
- ]>h+1
where By = 2/Ek*(X, X")/(Ag — Aay1)-

4.2 Recentered Case

(5(2,7]\{1)4-22]\4) . (27)

The goal of this section is to show that the rate of convergence obtained in Theorem 4.1 in
the uncentered case is of the same order if we consider the empirical re-centering. In this
case the Kernel-PCA algorithm solves the following optimization problem:

Vd Angm_ZH‘PX v (&x,)II,

Ved

where V; is the vector space spanned by the first d eigenfunctions of C'; ,. We also denote
by V; the space spanned by the first d eigenfunctions of 'y :

Vi=ArgMinE|px — p— Hy(ey — p)]?
VeV,

We will adopt the following notation for the reconstruction error:

Ra(

HV <PX )H2 = <HVJ-761,71> .

R(V) =E|px —p = Tv(px — p)|I> = P(Ily+,Cx)
One has Fn(ﬁd) D Ni(K1,) and R(Vy) = Y isd M\i(K1). Following the same line
of reasonning as in Theorem 4.1 and using Theorem 3.5 to control the supremum yields
the following result.

Theorem 4.4. Under Assumption (A), for any £ > 1, with probability greater than 1 —

e,
/d
)+ 2 —tr[xgn + 18M\/>

Note that the leading complex1ty term is the same as in Theorem 4.1: hence recentering
in kernel PCA essentially does not introduce additional complexity to the procedure.

RV, <
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5 Conclusion and Discussion

Comparison with Previous Work. Dauxois and Pousse (1976) studied asymptotic
convergence of PCA and proved almost sure convergence in operator norm of the empirical
covariance operator to the population one. These results were further extended to PCA
in a Hilbert space by Besse (1991). However, no finite sample bounds were presented.
Moreover, the centering of the data was not considered.

Compared to the work of Koltchinskii and Giné (2000) and Koltchinskii (1998), we
are interested in non-asymptotic (i.e. finite sample sizes) results. Also, as we are only
interested in the case where k(x,y) is a positive definite function, we have the nice property
of Theorem 2.3 which allows to consider the empirical operator and its limit as acting on
the same space (since we can use covariance operators on the RKHS). This is crucial in
our analysis and makes precise non-asymptotic computations possible unlike in the general
case studied by Koltchinskii and Giné (2000); Koltchinskii (1998).

Comparing with Shawe-Taylor et al. (2002, 2005), we overcome the difficulties coming
from infinite dimensional feature spaces as well as those of dealing with kernel operators
(of infinite rank). Moreover their approach for eigenvalues is based on the concentration
around the mean of the empirical eigenvalues and on the relationship between the expec-
tation of the empirical eigenvalues and the operator eigenvalues. Here we used a direct
approach and extend their results to the recentered case and proved refined bounds for the
uncentered case. In particular we show that there is a tight relation between how the (true
or empirical) eigenvalues decay and the rate of convergence of the reconstruction error of
the d-dimensional projection found by the kernel PCA procedure to the ideal one.

Open issues: the nagging problem of the choice of dimension in PCA. All along
this paper, the integer d (the number of eigenvalues summed, or the dimension of the space
selected by PCA) was always considered fixed a priori.

It is tempting to interpret the bounds appearing in Theorems 4.1 and 4.2 as a classical
statistical tradeoff between approximation error (empirical reconstruction error, decreasing
with the dimension d) and estimation error (complexity term, increasing with d). This point
of view would suggest to select d as the dimension minimizing the bound. However, this
view is an illusion since it is clear that the true reconstruction error R(\Zl) of the subspace
selected empirically is a decreasing function of d (since ‘751 C ‘7514_1). This emphasizes two
important points: first, that the (true) reconstruction error is by itself not a good criterion
to select the dimension (of course, with this criterion the best choice would be not to
project the data at all but to keep the whole space). Hence, an alternative and sensible
criterion has to be found to define in a well-founded way what the optimal dimension would
be.

A second consequence of this observation is that the bounds we found do not exhibit the
correct behavior in terms of the dimension d (for a fixed sample size n), since they become
increasing in d, for big enough d, while the true error is always decreasing. Because of the
decreasing property of the true error, any quantity bounding the reconstruction error for
dimension d is also a valid bound for any d’ > d. Hence, if we denote d(n) the dimension

18



realizing the mininum of the bound of Theorem 4.1 (for example) for a fixed sample size n,
then the bound obtained for d(n) is also valid for any larger dimension and actually more
informative than the bounds obtained directly for this larger dimension. This property was
also noticed by Shawe-Taylor et al. (2005). To sum up, our bound on the estimation error is
too pessimistic for larger dimensions and does not provide a correct qualitative explanation
for what is really taking place. Obtaining a better understanding of the behavior of the
estimation error for fixed n and varying d is a very interesting open problem, which could
also eventually lead to a relevant dimension selection criterion (maybe by comparison of
the relative importance of approximation error and estimation error for larger dimensions).

We conclude by mentioning additional open problems: it would be of interest to obtain
relative convergence rates for the estimation of single eigenvalues, and to obtain nonasymp-
totic bounds for eigenspace estimation.
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A Additional proofs

A.1 Proofs for section 2

Proof of Theorem 2.2. For the existence of operator C' and its basic properties, see
e.g. Baxendale (1976). We proceed to prove the last part of the Theorem. First, we have
E||Z @ Z*|| = E||Z||* < oo, so that E[Z @ Z*] is well-defined. Now, for any f,g € H the
following holds by the definition of C"

(LEZoZlg)=R[(Zo 2", f o)) =E[(Z.[){Z,g9)]=(fCg) ;

this concludes the proof.

Proof of Theorem 2.3. It is a well-known fact that an integral kernel operator such
as K is Hilbert-Schmidt if and only if the kernel k(x,y) (here equal to (®(x),®(y)))
is an element of Ly(X x X). This is the case here since k(x,y) < ||[®(2)| ||®(y)| and
E||®(x)||* < oo by assumption. We now characterize this operator more precisely.

Since E||®(X)|| < oo, ®(X) has an expectation which we denote by E[®(X)] € H.
Consider the linear operator 1" : H — Ly(P) defined as (Th)(z) = (h,®(z)),. By the
Cauchy-Schwarz inequality, E<h,<I)(X)>2 < ||R||*E||®(X)||*. This shows that T is well-
defined and continuous; therefore it has a continuous adjoint T*. Let f € Ly(P), then
(E | F(X)R(X)|)? < |FIIPE||®(X)||* . Therefore the variable f(X)®(X) € H has a well-
defined expectation. But for all ¢ € H, (T*f,g9),, = (f, Tg>L2(P) = E[{g, f(X)P(X))]
which shows that T*(f) = E[®(X)f(X)].

We now show that C' = T*T and K¢ = T'T*. By the definition of the expectation,
forall b, b € H, (h, T*T(h')) = (h,E[®(X)(P(X),r")]) = E[(h, ®(X)) (b, ®(X))] . Thus,
by the uniqueness of the covariance operator, we get C' = T*T. Similarly (T7T*f)(z) =
(I f,®(z)) = E[{(f/(X)P(X),®(x))] = [ f(y)(®(y), P(x))dP(y) so that Kg = T'T*. This
also implies that Kg is self-adjoint and positive.

We finally show that the nonzero eigenvalues of T and T*T' coincide by a standard
argument. Let E,(A) = {x, Az = ux} be the eigenspace of the operator A associated
with p. Moreover, let A > 0 be a positive eigenvalue of K = TT™* and f an associated
eigenvector. Then (T*T)T*f = T*(TT*)f = AXT*f. This shows that T*(E\(TT*)) C
E\(T*T) and conversely T'(FE\(T*T)) C E\(TT*). Applying T* to both terms of the last
inclusion implies E\(T*T) C T*(E\(TT*)) since A # 0, and therefore T*T'(E\(T*T)) =
E\(T*T). Conversely, E\(TT*) C T(E\(T*T)) forA # 0. Thus, Ex(T*T) = T*(E\(TT™))
and EX\(TT*) =T(E\(T*T)) and finally dim(E\(T*T)) = dim(E,(TT*)). This shows that
the multiplicity is the same. This concludes the proof. O

A.2 Proofs for section 3

Proof of Theorem 3.4. As in the proof of Theorem 3.2, we have to consider the em-
pirical process (Ily, Cx) for V € V;. Let us define

fd:{xH<HV7Cx> 9 VEVd}
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In order to prove inequality (21), we will apply Theorem B.1 (coming from Bartlett
et al. (2003a), and recalled in Appendix B along with some additional notation which
we will use here) to the class of functions M~*F,;. From equation (20), it holds that
Ve M~ 'F;, f(z) €[0,1], and therefore Pf* < Pf , hence the hypotheses of the theorem
are satisfied.

What we need is now to obtain upper bounds for localized Rademacher complexities
where the localization is in terms of P or P,. For this we will need some results about
local Rademacher complexities on ellipsoids that are regrouped and shown in Appendix C.
Let us first denote the “localized” set

S, = {g € star(M~'Fy), Pg* <r} = M~ {g € star(F,), Pg* < M?r} . (28)

Corollary C.2 entails

1
< . -1 - .
E sup R,g < —\/ﬁ }erlg vVrh + M d g A(K2) | i= ta(r).

gESY k> ht1

We now need to upper-bound the fixed point 7 of ¢4(r). For this we use Lemma C.4 with
c=1,a= M leading to

h d
ri<inf { —42M7! 52Aj(1x'2) : (29)

>0 | n ,
- j>h+1

Inequality (37) of Theorem B.1 implies that with probability at least 1 —e~¢, every f € Fy
satisfies

K+1 ME(I1T 4+ 5K

T pr 6K M+ ML +5K) (30)

{4 n

P f <

Putting in the bound (29), taking the supremum over f € F; on the left-hand, then
right-hand side, and using (16), we obtain (21).

In order to prove inequality (22), we apply the second part of theorem B.1, which gives
us a confidence bound on r} using the Rademacher complexity localized in terms of the
empirical measure. For this we define §,, like S, in (28) but where P, takes the role of P.
Corollary C.2 entails

1 ~
E. sup R,g < — ing Vrh + M_l\/d Z Me(Kan) | o= a(r). (31)

9€S, Vi iz k>ht1
Then Theorem B.1 tells us that with probability 1 —2e¢~¢, r% is upper bounded by the fixed
point of 20¢4(2r) + 31&£/n. To upper bound this quantity in turn, we first apply Lemma
C.4 with ¢ = 2, = M~! as above to obtain a bound on the fixed point of 14(2r); then
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we apply Lemma B.2 with K = g. Gathering these inequalities and after straightforward
calculations, we finally get that with probability at least 1 — 3e7¢, Vf € Fy,

K+1 ) 2rM d . 2620 M K¢
< ( _ (K >
Pof < == Pf + 282k }EE +V2 - > N(Kan) p + :

( n , n
j>h+1

leading to (22).
Finally, inequality (23) is a simple consequence of Bernstein’s inequality. O

Proof of Theorem 3.5. The proof of this Theorem follows the same structure as for
Theorem 3.2, but some additional ingredients are needed to control U-processes arising
from the recentering.

We prove the first statement of Theorem 3.5: the second one follows from the same
arguments. First recall the following decomposition from equations (14) and (15):

ai * -~ 1 - *
Cir=Ci—p@p” and Cl,nzcl,n—m2¢xi®¢xja (32)
i#]
from which we obtain

sup <HV, 61771 — €1> < sup (Illy,Cy,, — Cy)

Vevy Vey,
1
+ sup ( Iy, p @ u* — —— x, @Y. ). 33
Vevd< pep n(n_l);¢ 99X]> (33)

It was shown in the proof of Theorem 3.2 that the following holds with probability greater
than 1 — 2e7¢:

d
sup (Ily,Cy,, — C1) < 2\/;x/tr Ky, +3M %,

Vevy
so we now concentrate on the second term of (33). If we denote

Glay,...,a,) = <HV,/,L @ p— ﬁzi# ox, ® c,o}i>, then we have for any 7:

‘G(wla-.. 7$n) - G($17... ,$i0_1,$;0,$i0+1,... ,J}n)‘
1 ) * *
< nn—1) ;(%0 —Pu ) Q@5 + 00, @ (07, — %%)H
%0
2 AM
= ) 2 P ol = 57
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Therefore we can apply the bounded difference inequality to G, so that with probability
greater than 1 — e~¢,

* 1 *
sup <Hv,u®u —mz¢Xi®¢Xj>

§
AM :
+ 5

* 1 *
SE[SUP <HV7/~L®/~L —WZWQ ®<PXJ>

To deal with the above expectation, we consider Hoeffding’s decomposition (see de la Pena
and Giné, 1999, p. 137) for U-processes. To this end, we define the following quantities:

n

Si= sup = > (Myvop@p’) = (Tv(ex, ), 1)

1
Ry = sup — <<H,i®*>—ﬂ .
1= Sp oy %; v,ex, @ ¢k, ) — (Iv(ex,), 1)
— (v (px,) ) + (Tvs @ 07) ).
It can easily be seen that
1
E | sup HV,M®M—7Z¢Xi®¢XJ <E[Si] + E[R4] .
Vevy n(n — 1) i

Gathering the different inequalities up to now, we have with probability greater than
1 —3e ¢

sup <HV, Chn — €1> < 2\/3 i Ko + E[S] + B[Ry + TMy ] = (34)
Vey, n 2n

We now bound from above the expectation of S; and Ry using Lemmas A.1 and A.2 below.
This leads to the conclusion. O

Lemma A.1. The following inequality holds:

Ek(X, X)

E[S.] <4 NG
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Proof. A standard symmetrization argument leads to

n

B[S, < BE. sup — 3 ¢, (Tv(gx,), i)

4 e
< —EE. ||lIy Zefjtpxj
n =
4 e
S gEEE Z@j@){ﬂ
7=1

4
< \/—EE\/U’ Kyl

where we successively applied the Cauchy-Schwarz inequality, the contractivity of an or-
thogonal projector, and Jensen’s inequality. Applying Jensen’s inequality again, and the

fact that ||u||* = Ek(X, X") < (Ek%()(,)())2 yields the conclusion. O

el

el

Lemma A.2. The following inequality holds:
6

n —

E[R] <

CER(X,X).

Remark The proof uses techniques developed by de la Pena and Giné (1999). Actu-
ally, we could directly apply Theorems 3.5.3 and 3.5.1 of this reference, getting a factor
2560 instead of 6. We give here a self-contained proof tailored for our particular case for
completeness and for the improved constant.

Proof. Since Ily is a symmetric operator, using Jensen’s inequality ,

E[R, < %UE [sup va(Xi,Xf,Xj,X]{)]

where
fV(szlev)(]?X]/) =
<Hv, Px; O@x, —ex1 O, —ox O Pxr +ox; @ ¢};> :

Since fv(X;, X!, Xj, X1) = — fr (X[, Xi, X;, X}) and fv(X;, X[, X;, X7) = — fv (X, X[, X}, X)),

following the proof of the standard symmetrization, we get:

1
E[Rd] S 7_1)[@ lsup Z@iafjfv(Xi,X;,Xj,X]{)]
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Therefore,

2
E[R4] < m (E

sup » eie; <HV7 Px, @ 90}]>

+E | sup —Zafi@j <Hv,99xi®99}/> = L(A‘FB) )
Vevs 7 ) n(n —1)

for the first term above we have

~-C,

A<E [sup Z&e]‘ <HV,99Xi @ ¢}J>

Ve, i

while for the second we use

B <E| sup —Zeisj <HV,<,9X1. ®<,o}],> + E

VeV, i

=D+ F.

sup » <Hv, Px; © ¢};>]

Vevy :

We bound terms ', D, E/ by the following similar chains of inequalities where we succes-
sively use the Cauchy-Schwarz inequality, the contractivity of an orthogonal projector and
a standard computation on sums of weighted Rademacher:

Y e, ‘ > eillv(ex,)
i j

Z&@Xi ‘
‘ Z EiPxX!
J

2

C <ExE. sup
Vevy

S EXEE

Z EiPX;

=nEk(X, X);

D S EX7X/E5 sup
Vevy

Z EiPX;

> eillv(pxr)
j

< Ex x/E.

2

2
S EX,X’ Es EE

Z EiPX;

§ :51‘99)(]'
J

\
S EX,X’\ (Z k(XzaX2)> (Zk(lesz/)> S nEk(XvX);

7
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E<Ey nggdz |y (x| llex. || < Ex Z x| llex,
<Ex Y VE(XLXDE(X:, X))
= nEk(ZX, X).
Gathering the previous inequalities, we obtain the conclusion. O

Proof of Theorem 3.6. (Minoration) We prove the lower bound for the largest eigen-
values. A similar proof gives the second statement.
Theorem 2.1 leads to

d d

S AN (Cra) = S M@ 2 (Cra i) — (T 10y

Using the decomposition (32), we get:

1
2 (Crp = Cp1ly, ) — <Hvdv nn—1) Y ex ®@px, @ u> :
i#]

The first term is bounded by Hoeffding’s inequality exactly as in the proof of Theorem 18.
With probability greater than 1 — e™,

(Cip— C Iy ) = (P—P,)(Ily,,Cx) > =M %
For the second term, we apply Hoeffding’s inequality for U-statistics (see e.g. Hoeffding,
1963; de la Pena and Giné, 1999); with probability greater than 1 — ¢=¢,

1 § §
— (I, ———= : — > —-M > —My/=.
Vd,n(n_l)ztpx,@tpx] pOp )z 2[2] = n

1£] 2

We finally obtain

gdj&(aﬂg _ if"@ > —M\/g (1 N %) |

Finally using Lemma 2.5 with true and empirical distributions yields the conclusion.
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A.3 Proofs for section 4

A key property necessary for the proof of Theorem 4.2 is established in the following
Lemma:

Lemma A.3. Let (X\;) denote the ordered eigenvalues with multiplicity of Cy, resp. (p;)
the ordered distinct eigenvalues, and vq be defined as in equation (24). For any V € Vy,
there exists Hy € V; such that

R(Hy) = min R(H),

Hevy

and

E RHVL . HH¢,CX>2] < 297" VE[R(X, X JE KHVL . HH¢,CX>} .

Proof. Let us denote W; the eigenspace associated to eigenvalue ji; and W; = @Zzl W,
We first assume d > 1 and denote k, { the fixed integers such that A\g_, = pz7 |, Aa—ey1 =

o= )\d =...= )\d-l—k = /,Lc’l“ and )\d-l—k-l—l = ME[—H‘
Step 1: construction of Hy .
Let (¢1,...,04-¢) be an orthonormal basis of Wi—r Let V() denote the orthogonal
projection of W&i—1 on V; in other words, the space spanned by the projections of (¢;)i<q—s
on V. The space V(1 is of dimension d—¢' < d—{; let (fi,. .., fa_¢) denote an orthonormal

basis of V(. We complete this basis arbitrarily to an orthonormal basis (fi)ica of V.
Denote now V® = span {fs_sy1,...,fs}. Note that by construction, V2 L Wy |

Let ng(vz) be the orthogonal projection of V() on W5 The space ng(vz) is of dimension

0" < l: let (dg—pg1y- .. » Payer—¢) be an orthogonal basis of ng(vz)‘ We finally complete this
basis arbitrarily to an orthonormal basis (¢;)a—et1<i<a+r of W>. Note that by construction,
in particular V® L span {dagp1.. .. , dasr}.

We now define Hy = span {¢;,1 < i < d}. Obviously Hy is a minimizer of the recon-
struction error over subspaces of dimension d. We have (using Lemma 2.4 (ii) at the first
line)

2
E |:<HvJ_ — HH¢,CX> ] = (I, — Iy, Colly, — Uy )usmy
< Collopl i, — Uy s
= 2[|C2lep(d — (v, iy, Y z0))
d
=2||Cyll,, (d— > <fi,¢j>2> :
7,75=1

and on the other hand, using Lemma 2.4 (i):

M&

E KHW - HHM = (I, — Iy, () = C{F O

=1
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We will decompose the last sum into two terms, for indices ¢ smaller or greater than d — /,
and bound these separately.
Step 2a: indices i < d—/. In this case we decompose fi = > ., , (fi, ¢;) &; +gi, with

gi € W:l:—l' We have

(9, Crgi) < pgllgall” = pg (1 - <fi,¢j>2> :

j<d—t

and

i(Ai—<fi,01fi>> ZA( Z ¢) Zm(l—Zm,W)

=1 =1 j=1 j<d—¢
d—{
> (g4 — 13 (d (=) <fi,<bj>2> :
7,75=1

Step 2b: indices ¢ > d — /. In this case remember that f; L ¢; for 1 < 53 < d—/(
and d+ 1 < j < d+ k. We can therefore decompose f; = Ed (fi, i) ¢; + g- with

. j=d—041
g. € W5. We have

d

<¢J%¢>§M@JMM2=M@4<1— > U@%f>a

j=d—t+1

and

d d d
>0 f2701f>)=/«tg<5— > ¢) Z (g6 Crgl)

i=d—{11 i j=d—f41 it

> (17— 1) (5— (fir d5) )
1,]= d 41

Finally collecting the results of steps 2a-b we obtain

d—L d
(W, — Uy, C1) > min (pg, — pgpg—pg,,) (d"§:<ﬁa¢ﬁz— > <f“‘bf>2>

ij=1 ij=d—t41
-1 2
Zlnm(MJJ-—M@%@“—M;H)<2H0ﬂu) E[<HVL——HH¢7CX>]-

Finally, it holds that HCQHOP < HCQHHS HS(Hy)) = | 2 || s (Lo (P)) by Lemma 2.4 (iv); since K5
is an integral operator with kernel k%(z,y), we have HAQHHS (Lo (P fk4 z,y)dP(x)dP(y) =

E[k*(X, X")]. This concludes the proof of the Lemma when d > 1. If d = 1, the proof can
be adapted with minor modifications, essentially removing step (2a), so that in the final
inequality only the second term of the minimum appears. O
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Proof of Theorem 4.2. We will use here again Theorem B.1. We define the following
class of functions:

Fy = {:1; > <HvL —HH¢va> Ve Vd}’

where for each V' € V,;, Hy is obtained via Lemma A.3. We will apply Theorem B.1 to
the class M~'F;. For any f € M~'F,, it holds that f € [—1,1]; furthermore, Lemma A.3
entails that Pf* < M~'B;P;. To upper bound the local Rademacher complexities of this
class we define

Sy = {g € st.ar(]w—lfd)7 sz < r} — Mt {g c star(]?d), sz < Mzr} ‘

Corollary C.3 entails

M-'B -
M~ B4E sup R,g < 7 d inf {Vrh+ M7 [d > Ml Ba) | = dalr) .
gESr - kzh-l—l

Let 7% denote the solution of equation ;Zd(r) = r. We apply Lemma C.4 with the choice
c=M"1B;,a = M"! to obtain

- B2h
P < M~ %inf 1+ 4By Z Ai(K)

h>0

We can now apply Theorem B.1, obtaining that for any A" > 1 and every £ > 0, with
probability at least 1 — e~¢:

~ K L. Bdh d . E(1IM +5B,K)
< , bah @ (I
VS € Fa, Pf < gy Puf + 6K u +4 = N (K p - (35)
j>h+1
Choosing V = V, leads to the result. O

Proof of Theorem 4.3. Inequality (26) is a simple consequence of Bernstein’s inequality.
We now prove inequality (27).
Since we suppose Ay > Ag11, Hy = Vj for all V' € V,;. Moreover,

2{: AkAhl

k>d+1 k>d+1

K
K -1

R.(Vy).

(K1) < R(Vd)

Finally, inequality (27) is obtained by gathering inequality (35) and Bernstein’s inequality
to control (P — P,) <HVdJ_7 Cl,>. O
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B Local Rademacher complexities

In this section we recall a fundamental Theorem that is the key to controlling deviations
of empirical processes using local Rademacher averages defined either from the true or
the empirical distribution. It is a simplified version of Theorems 3.3 and 4.1 of Bartlett
et al. (2003a). In the terminology of the latter reference, a sub-root function ¢ : Ry — Ry
is nonnegative, nondecreasing, and such that ¢ (r)/\/r is nonincreasing. Then it can be
shown that the fixed point equation 1 (r) = r has a unique positive solution (except for the
trivial case ¢» = 0). Moreover, this solution r* satisfies that »* < r if and only if W(r) < r.
Also we need the following notation for Rademacher complexities:

R, F =sup — Zef

JerF
where (¢;) are i.i.d. Rademacher; we finally define the star-shaped hull
star(F) ={g=Af, f€F, Ae[0,1]}.

Theorem B.1 (Bartlett, Bousquet and Mendelson). Let F be a class of functions
with ranges in [—1,1] and assume that there exists some constant B > 0 such that for

every f € F,Pf? < BPf. Lel ¢ be a sub-root function and r* be the fized point of . If
Y satisfies

Y(r) > BEx R, {f € star(F): Pf* < r} \

then for any K > 1 and x > 0, with probability at least 1 — e™7,

K 6K (11 +5BK)
< Doy AT O
vVfeF, Pf_[,_lpf—l-Br—l- - ; (36)
also, with probability at least 1 — e™%,
K+1 6 h 11+ 5BK
vpeF. pp< ity O dLAI0R) (37)
n

Furthermore, if {/)\n is a data-dependent sub-root function with fized point 7™ such that

{/)\n(r) > 2(10V B)E.R, {f € star(F) : P,f* < 27“} + (2(10V B) + 1)z , (38)

n

then with probability 1 — 2e™*, it holds that 7" > r*; as a consequence, with probability
1 —3e™", inequality (36) holds with r* replaced by 7; similarly for inequality (37).

We complete this section with the following Lemma which can be used to obtain upper
bounds on fixed points of functions of the form (38):
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Lemma B.2 (inspired by Bousquet (2002)). Let ¢ be a sub-root function and let ¢1(r) =
ad(r) + 0 with o > 1 and > 0. Let v* (resp. ry) denote the fixed point of ¢ (resp. ¢1).

We have:
K
r¥ < inf | Ko?r® + .
1= «>1( VE - 15>

Proof. During this proof, we keep using the definition of a sub-root function and his prop-
erty recalled previously.
Ifa>1andb>0,

aglar™+08)+ 8 = ao (a (T*-I-gﬁ)) + 4 < avag (T*+Sﬁ> + 8,

thus

b
adlar™ + b < ar/ar® 1l+a—].
Plar* +b)+ 4 < av/a +ﬁ<+ﬂ>

Let K > 1. Choosing a = Ka? and b = \/gl vields ¢q1(ar* + b3) < ar* + b3 . This

concludes the proof of Lemma B.2. O

C Localized Rademacher Averages on Ellipsoids

In this section we group together results that deal with estimating localized Rademacher
complexities of function classes given as ellipsoids of a reproducing kernel Hilbert space.
We deduce as corollaries the results necessary for the proofs of Theorems 3.4 and 4.2.

Theorem C.1. Let ‘H be a separable Hilbert space and (Z;)i<i<n € H" . Let A be a
compact self-adjoint positive linear operator of H and (®;);>1 an orthonormal basis of ‘H
of eigenvectors of A. Denote B, = {||v]| < o}, & ={(v, Av) < r} and let (¢;) be an i.i.d.
family of Rademacher random variables. Then for any integer h < Rank(A), the following
holds:

n

AT DL SEL TN DOEEoe) IR SHE-N D D AL LN Ct)

n
vEBLNEr i—1 i>h+1 j=1

Proof. For v e B, NE,, we have

n

Z@KU,Z» = Z v, (I) < ],Z€Z>‘|‘Z v, (I) <<I>],zn:52ZZ>

i>h

(g} oy g (S

>h+

IA
-

™M=

3’
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where we used the Cauchy-Schwarz inequality for both terms and the equality (v, Av) =
Y oist Ai(A) (v, CI)Z'>2 . We now integrate over (¢;); using Jensen’s inequality the square roots
are pulled outside of the expectation; finally, we have

n 2 n
E. <Z€J‘qu’z’> = (Z;,9:)*.
=1 j=1

since by independence the cross-terms vanish. This concludes the proof. O

We deduce the two following corollaries of Theorem C.1:

Corollary C.2. Define Fy ={x— (lly,C,),V € Vy}. Then the following holds:

1
Ex R, {f €star(Fs), Pf> <r} < —inf [Vih+ [d Y A(K) (40)
ﬁ h20 E>h+1

and

E.R, {f € star(Fy), Pf? < r} < o inf [ Vrh + \/d Z A (K2p) (41)

\/ﬁ h>0
- k>h+1

Proof. The proof is the same for the two inequalities. We will apply Theorem C.1 in
the Hilbert space HS(H). We have for any V € Vg, HHVHHS(H) < V/d, and hence F; C
{x = (I',C,); T € B (HS(H))}. Since the latter set is convex and contains the origin, it
therefore also contains star(/F,). Furthermore, by Lemma 2.4, P (T',C,)* = (', C5T).

We can therefore apply Theorem C.1 with o = /d, A = Cy, Z; = Cx,, v = Iy, leading

to

h n n
EERn {f € star(}"d),sz S T} S g Z )\(16'2) Z <CX],(I)Z'>2—|-\/78 Z Z <CX],(I)Z'>2 .

7=1 1>h+1 j=1

Integrating with respect to Z leads to

1
Ex.R,{f€star(F), Pf> <r} < — | Vih+ [d > (k)| |
\/ﬁ E>h+1

since [<CX,<I)Z'>2] = (®;,C2®;) = Xi(C32). We obtain (40) in the same way by taking
A = (3, instead of (5. O]
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Corollary C.3. Define Fy= {:1; > <HvJ_ — 1y, Cx> Ve Vd}, where Hy is defined via
Lemma A.3. Then the following holds:

- 1 i
Ex. R, {f € star(Fo), Pf* < v} < Sl Vil /dz; M (K) (42)
7>
~ 1
Pt < —i (K
E.R, { [ € star(Fy), Pf* <1} < it Vrh 42 /d; (Ko b (43)
J

Proof. Note that I} . — HH¢ = Iy, — ly. The proof is then almost the same as for

Corollary C.2, with the minor change a = 2v/d since Iy — HHVH%{S(HH < 4d. O
We finally give the following Lemma to estimate the fixed points of sub-root functions

and

of the above form.

Lemma C.4. If (\)iso is a positive convergent series, denoting by ¢ the function

L. /
L/)(T) = \/—E}ng Vhr+ « Z )\]‘ ,
j>h+1

it holds that 1 is a sub-root function and the unique positive solution r* of ¥(r) = r/c
where ¢ > 0 satisfies

ch 2ca
r* <inf { — + — Z Aj
>0 | n \/n S

Proof. It is easy to see that the minimum of two sub-root functions is sub-root, hence
as the minimum of a collection of sub-root function is sub-root. Existence and uniqueness
of a solution is proved by Bartlett et al. (2003a). To obtain the announced bound, we solve

r* < \/Lﬁ{\/hr* +ay/>] )\4} for each i > 0 (by using the fact that + < Ay/x + B

F>h41 N
implies * < A? 4+ 2B), and take the infimum over h. O

34



