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Statistical Properties of Kernel PrincipalComponent AnalysisGilles Blanchard1 & Olivier Bousquet & Laurent Zwald21 Fraunhofer First (IDA), K�ekul�estr. 7, D-12489 Berlin, Germany.2 D�epartement de Math�ematiques, Universit�e Paris-Sud, Bat.425, F-91405, France.AbstractThe main goal of this paper is to prove non-asymptotic inequalities on the recon-struction error for Kernel Principal Component Analysis. Our contribution to thistopic is two-fold: (1) we give bounds that explicitly take into account the empiricalcentering step in this algorithm, and (2) we show that a \localized" approach allowsto show \fast rates" of convergence towards the minimum reconstruction error, moreprecisely we prove that the convergence rate is related to the decay of eigenvaluesand is typically faster than n�1=2.A secondary goal, for which we present similar contributions, is to obtain conver-gence bounds for the partial sums of the biggest or smallest eigenvalues of the Grammatrix towards eigenvalues of the corresponding kernel operator. These quantitiesare naturally linked to the KPCA procedure; furthermore these results can haveapplications to the study of various other kernel algorithms.The results are presented in a functional analytic framework, which is suited todeal rigorously with reproducing kernel Hilbert spaces of in�nite dimension.1 IntroductionDue to their versatility, kernel methods are currently very popular as data-analysis tools.In such algorithms, the key object is the so-called kernel matrix (the Gram matrix builton the data sample) and it turns out that its spectrum can be related to the performanceof the algorithm. This has been shown in particular in the case of Support Vector Ma-chines (Williamson, Shawe-Taylor, Sch�olkopf, and Smola, 1999). Studying the behaviorof eigenvalues of kernel matrices, their stability and how they relate to the eigenvalues ofthe corresponding kernel integral operator is thus crucial for understanding the statisticalproperties of kernel-based algorithms.In the present work we focus on Principal Component Analysis (PCA), and its non-linear variant, kernel-PCA, which are widely used algorithms in data analysis. Their goalis to extract a basis adapted to the data, by looking for directions where the variance ismaximized. Their applications are very diverse, ranging from dimensionality reduction todenoising. Applying PCA to a space of functions rather than a space of vectors was �rstproposed by Besse (1979) (see also the survey of Ramsay and Dalzell, 1991). Kernel-PCA(Sch�olkopf, Smola, and M�uller, 1999) is an instance of such a method which has boostedthe interest in PCA as it allows to overcome the limitations of linear PCA in a very elegantmanner. 1



Despite being a relatively old and commonly used technique, little has been done onanalyzing the statistical performance of PCA. Most of the previous work has focused onthe asymptotic behavior of empirical covariance matrices of Gaussian vectors (Anderson,1963). For the kernelized version, there is a tight connection between the covariance andthe kernel matrix of the data. This is actually at the heart of the kernel-PCA algorithmitself, and also indicates that the properties of the kernel matrix, in particular its spectrum,play a crucial role in the properties of the kernel-PCA algorithm.Recently Shawe-Taylor, Williams, Cristianini, and Kandola (2002, 2005) have under-taken an investigation of the properties of the eigenvalues of kernel matrices and relatedit to the statistical performance of kernel-PCA. Our goal in the present work is mainly toextend their results in several directions:� In practice, for PCA or KPCA, an (empirical) recentering of the data is generallyperformed. This is because PCA is viewed as a technique to analyze the variance ofthe data; it is often desirable to treat the mean independently as a preliminary step(although, arguably it is also feasible to perform PCA on uncentered data). Thiscentering was not considered in the cited previous work while we take this step intoaccount explicitly and show that it leads to comparable convergence properties.� to control the estimation error, Shawe-Taylor et al. (2002, 2005) use what we wouldcall a global approach which typically leads to convergence rates of order n�1=2. Nu-merous recent theoretical works on M-estimation have shown that improved ratescan be obtained by using a so-called local approach, which very coarsely speakingconsists in taking the estimation variance precisely into account. We refer the readerto the works of Massart (2000), Bartlett, Bousquet, and Mendelson (2003a), Bartlett,Jordan, and McAuli�e (2003b) (between others). Here we show that this principleleads to improved convergence bounds.Note that we consider these two types of extension separately, not simultaneously. Whilewe believe it possible to combine these two extensions, in the framework of this paper wechoose to treat them independently to avoid additional technicalities and leave this issueas an open problem.To state and prove our results we have chosen to use a functional analysis formalism.Its main justi�cation is that some of the most interesting positive de�nite kernels (e.g.the Gaussian RBF kernel) generate an in�nite dimensional reproducing kernel Hilbertspace (the "feature space" into which the data is mapped). This in�nite dimensionalitypotentially raises a technical di�culty. In part of the literature on kernel methods a matrixformalism of �nite-dimensional linear algebra is used for the feature space and it is generallyassumed more or less explicitly that the results \carry over" to in�nite dimension because(separable) Hilbert spaces have good regularity properties. In the present work we wantedto state rigorous results directly in an in�nite-dimensional space using the correpondingformalism of Hilbert-Schmidt operators and of random variables in Hilbert spaces. Wehope the necessary notational background which we introduce �rst will not tax the readerexcessively and hope to convince her that it leads to a more rigorous and elegant analysis.2



Finally, let us emphasize some open problems that will be discussed in more detail inthe concluding part. We want to underline that in our results we consider the numberof components d kept in the PCA procedure (or the number of eigenvalues) as a �xedconstant. Our focus here is in the dependence of the bounds in the sample size n. As forthe dependence in d for �xed n, unfortunately it is clear that our results do not capturethe correct behavior: our bound on the reconstruction error eventually increases as afunction of d while it basic considerations show that the true reconstruction error is alwaysdecreasing in d. In other words, for �xed n there exists a certain dimension d(n) such thatthe bound obtained for d0 > d(n) is actually less informative than the bound obtainedfor d(n). The same issue surfaces in the work of Shawe-Taylor et al. (2005) and as faras we know, this problem has not been solved. An indirectly linked issue is how de�ne asensible criterion for what would be an optimal dimension choice in KPCA. Obviously the(true) reconstruction error alone is not enough since it is always a decreasing function ofthe dimension. We believe these two issues to be the most interesting open problems ofthis paper.The paper is organized as follows. Section 2 introduces the necessary backgroundon functional analysis, the basic assumptions and some preliminary fundamental results.Section 3 concentrates on bounding the di�erence between sums of eigenvalues of thekernel matrix and of the associated kernel operator. Finally, Section 4 gives our mainresults, bounds on the reconstruction error of kernel-PCA. We conclude with an extendeddiscussion on the open issues sketched above.2 PreliminariesThe core of our results is concerned with estimating eigenvalues of certain operators in areproducing Hilbert kernel space Hk. The most convenient way to deal with these objectsis to use formalism from functional analysis, and in particular to introduce the space ofHilbert-Schmidt operators on Hk endowed with a suitable Hilbert structure. The presentsection is devoted to introducing the necessary notation and base properties that will beused repeatedly.2.1 The Hilbert space of Hilbert-Schmidt operatorsLet H be a separable Hilbert space. A linear operator L from H to H is called Hilbert-Schmidt if Pi�1 kLeik2H = Pi;j�1 hLei; eji2 < 1 ; where (ei)i�1 is an orthonormal basisof H. This sum is independent of the chosen orthonormal basis and is the squared ofthe Hilbert-Schmidt norm of L when it is �nite. The set of all Hilbert-Schmidt operatorson H is denoted by HS(H). Endowed with the following inner product hL;NiHS(H) =Pi�1 hLei; Neii =Pi;j�1 hLei; eji hNei; eji ; it is a separable Hilbert space.A Hilbert-Schmidt operator is compact, it has a countable spectrum and an eigenspaceassociated to a non-zero eigenvalue is of �nite dimension. A compact, self-adjoint operatoron a Hilbert space can be diagonalized i.e. there exists an orthonormal basis of H made3



of eigenfunctions of this operator. If L is a compact, positive self-adjoint operator, wewill denote �(L) = (�1(L) � �2(L) � : : : ) the sequence of its positive eigenvalues sortedin non-increasing order, repeated according to their multiplicities; this sequence is well-de�ned and contains all nonzero eigenvalues since these are all non-negative and the onlypossible limit point of the spectrum is zero. Note that �(L) may be a �nite sequence. Anoperator L is called trace-class ifPi�1 hei; Leii is a convergent series. In fact, this series isindependent of the chosen orthonormal basis and is called the trace of L, denoted by trL :By Lidskii's theorem trL =Pi�1 �i(L) for a self-adjoint operator L.We will keep switching from H to HS(H) and treat their elements as vectors or asoperators depending on the context. At times, for more clarity we will index norms anddot products by the space they are to be performed in, although this should always beclear from the objects involved. The following summarizes some notation and identitiesthat will be used in the sequel.Rank one operators. For f; g 2 Hnf0g we denote by f 
 g� the rank one operatorde�ned as f 
 g�(h) = hg; hi f . The following properties are straightforward from theabove de�nitions: kf 
 g�kHS(H) = kfkH kgkH ; (1)tr f 
 g� = hf; giH ; (2)hf 
 g�; AiHS(H) = hAg; fiH for any A 2 HS(H) : (3)Orthogonal projectors. We recall that an orthogonal projector in H is an operator Usuch that U2 = U = U� (hence positive). In particular one haskU(h)k2H = hh;UhiH � khk2H ;hf 
 g�; UiHS(H) = hUf;UgiH :U has rank d <1 (i.e. it is a projection on a �nite dimensional subspace), if and only ifit is Hilbert-Schmidt with kUkHS(H) = pd ; (4)trU = d : (5)In that case it can be decomposed as U =Pdi=1 �i 
 ��i ; where (�i)di=1 is an orthonormalbasis of the image of U .If V denotes a closed subspace of H, we denote by �V the unique orthogonal projectorsuch that range�V = V and ker�V = V ?. When V is of �nite dimension, �V? isnot Hilbert-Schmidt, but we will denote (with some abuse of notation), for a trace-classoperator A, h�V?; Ai := trA� h�V ; Ai : (6)4



Eigenvalues formulas. We denote by Vd the set of subspaces of dimension d of H.The following theorem sums up important formulas concerning the individual or summedeigenvalues of self-adjoint compact operators; the �rst one is due to Fan (see Torki, 1997, fora proof) while the second is the so-called Courant-Fischer-Weyl formula (see e.g. Dunfordand Schwartz, 1963).Theorem 2.1. Let C a compact self-adjoint operator on H, then for all d � 0,dXi=1 �i(C) = maxV2Vd h�V ; CiHS(H) ; (7)and �d+1(C) = minV2Vdmaxf?V hf;Cfikfk2 ; (8)where in both cases, the optimum is attained when V is the span of the �rst d eigenvectorsof C.2.2 Second order integral operatorsWe recall basic facts about random elements in Hilbert spaces. A random element Z in aseparable Hilbert space has an expectation e 2 H when E kZk < 1 and e is the uniquevector satisfying he; fiH = E hZ; fiH ; 8f 2 H. We now introduce the (noncentered)covariance operator through this theorem and de�nition:Theorem 2.2. If E kZk2 <1, there exists a unique operator C : H !H such thathf;CgiH = E [hf; ZiH hg; ZiH] ; 8f; g 2 H :This operator is self-adjoint, positive, trace-class with trC = E kZk2 ; and satis�esC = E [Z 
 Z�] :We call C the noncentered covariance operator of Z :The core property of covariance operators that we will use is its intimate relationshipwith another integral operator summarized in the next theorem. This property was �rstused in a similar but more restrictive context (�nite dimensional) by Shawe-Taylor et al.(2002, 2005).Theorem 2.3. Let (X ; P ) be a probability space, H be a separable Hilbert space and � bea map from X to H such that for all h 2 H, hh;�(:)i is measurable and E k�(X)k2 <1.Let C� be the covariance operator associated to �(X) and K� : L2(P ) ! L2(P ) be theintegral operator de�ned as(K�f)(t) = E [f(X) h�(X);�(t)i] = Z f(x) h�(x);�(t)i dP (x) :Then K is a Hilbert-Schmidt, positive self-adjoint operator, and�(K�) = �(C�) :In particular, K� is a trace-class operator and tr(K�) = E k�(X)k2 =Pi�1 �i(K�) :5



If we denote h�(x);�(y)i = k(x; y) , then K� is called the integral operator with kernelk.2.3 Main framework and assumptionsLet X denote the input space (an arbitrary measurable space) and P denote a distributionon X according to which the data is sampled i.i.d. We will denote by Pn the empiricalmeasure associated to a sample X1; : : : ;Xn from P , i.e. Pn = 1nP �Xi. With some abuseof notation, for a function f : X ! R, we may use the notation Pf := E [f(X)] andPnf := 1nPni=1 f(Xi).Let k be a positive de�nite function on X and Hk the associated reproducing kernelHilbert space (RKHS for short in the sequel). We recall that Hk is a Hilbert space of realfunctions on X , containing functions k(x; �) for all x 2 Hk and such that the followingreproducing property is satis�ed:8f 2 Hk 8x 2 X hf; k(x; :)i = f(x) ; (9)and in particular 8x ; y 2 Hk hk(x; �); k(y; �)i = k(x; y) :Finally, let Vd denote the set of all vector subspaces of dimension d of Hk.We will always work with the following assumptions which we will refer collectively toas \assumption (A)" in the sequel:(A1) Hk is separable.(A2) For all x 2 X , k(x; :) is P -measurable.(A3) There exists M > 0 such that k(X;X) �M P -almost surely.Note that assumptions (A1)-(A2) ensure the measurability of all functions in Hk sincethey are obtained by linear combinations and pointwise limits of functions k(x; �).Notation for the noncentered case. For x 2 X , we denote'x = k(x; :) 2 H ;Cx = 'x 
 '�x 2 HS(H) :The following properties are then straightforward from the preceding sections:trCx = kCxkHS(Hk) = k(x; x) ; (10)hCx; CyiHS(H) = k2(x; y) ; (11)hf;CxgiH = hCx; f 
 g�iHS(H) = f(x)g(x) ; (12)6



and for any orthogonal projector U ,hU;CxiHS(Hk) = kU'xk2Hk : (13)Note incidentally that (11) implies that HS(H) is actually a natural representation of theRKHS with kernel k2(x; y) . Namely to an operator A 2 HS(H) we can associate thefunction fA(x) = hA;CxiHS(H) = hA'x; 'xiH = (A'x)(x) ;with this notation, we have fCx = k2(x; �) , and one can check that (9) is satis�ed inHS(H) with the kernel k2(x; y) when identifying an operator to its associated function.Also, paralleling the earlier remark about measurability of functions in Hk , assumptions(A1)-(A2) ensure that fA is measurable for any A.Now, let us denote C1 : Hk ! Hk , resp. C2 : HS(Hk) ! HS(Hk) , the noncenteredcovariance operator associated to the random element 'X in Hk , resp. CX in HS(Hk) ;and K1 ;K2 : L2(P ) ! L2(P ) the integral operators with kernel k(x; y) , resp. k2(x; y)(Note that all these operators are well-de�ned due to assumption (A) ). We then have thefollowing property:Lemma 2.4. Under assumption (A) the operators C1; C2;K1;K2 de�ned above satisfy thefollowing :(i) C1 is the expectation in HS(Hk) of CX = 'X 
 '�X .(ii) C2 is the expectation in HS(HS(Hk)) of CX 
C�X .(iii) �(C1) = �(K1) , and trC1 = trK1 = E [k(X;X)] :(iv) �(C2) = �(K2) , and trC1 = trK2 = E [k2(X;X)] :This Lemma is a direct consequence of Theorems 2.2 and 2.3. (noting that the mea-surability conditions have been established in the preceding discussions).Notation for the recentered case. We will be interested in the sequel in recenteredversions of the above quantities (which appear for standard covariance operators and PCAtechniques), which we now de�ne accordingly. Let us de�ne for all x 2 X� = E ['X] ;'x = 'x � � 2 H ;Cx = 'x 
 '�x 2 HS(H) ;we then have k�k2 = Ek(X;X 0) andtrCx = 

Cx

HS(Hk) = k'(x)� �k2 = k(x; x) + Ek(X;X 0)� 2Ek(X;x) ;7



where X 0 denotes an independent copy of X.Similarly, let us denote C1 the covariance operator associated to 'X , and K1 theintegral operator with kernel k(x; y) = h'x � �;'y � �i = k(x; y)� Ek(X;x)� Ek(X; y)+Ek(X;X 0) ; then the following holds:Lemma 2.5. Under assumption (A) the operators C1;K1 de�ned above satisfy the fol-lowing :(i) C1 is the expectation in HS(Hk) of CX = 'X 
 '�X ; moreover one hasC1 = C1 � � 
 �� (14)(ii) �(C1) = �(K1) , and trC1 = trK1 = E [k(X;X)] � E [k(X;X 0)] :Again, this lemma is a direct consequence of Theorems 2.2 and 2.3 and of straightfor-ward computations.Notations for the empirical case. In the following we will study empirical counter-parts of the above quantities. The generality of the above results implies that we canreplace the distribution P by the empirical measure Pn associated to an i.i.d. sampleX1; : : : ;Xn without any changes and we merely need to introduce adequate notation.In the noncentered case, the corresponding operators are denoted by K1;n and C1;n ;we de�ne K2;n and C2;n similarly. In particular, Lemma 2.4 implies that �(K1;n) =�(C1;n) ; �(K2;n) = �(C2;n) , trK1;n = trC1;n = 1nPni=1 k(Xi;Xi) ; and trK2;n = trC2;n =1nPni=1 k2(Xi;Xi).Note that C1;n is the empirical covariance operator, i.e. hf;C1;ngi = 1nPni=1 f(Xi)g(Xi).An important point is that K1;n can be identi�ed (as in Koltchinskii and Gin�e, 2000) withthe normalized kernel matrix of size n � n, K1;n � (k(Xi;Xj)=n)i;j=1;::: ;n. This comesfrom the fact that L2(Pn) is a �nite-dimensional space so that any function f 2 L2(Pn)can be identi�ed to the n-uple (f(Xi))i=1;::: ;n ; this way the Hilbert structure of L2(Pn) isisometrically mapped into Rn embedded with the standard Euclidian norm rescaled by n�1(note that this mapping may not be onto in the case where two datapoints are identical,but this does not cause a problem).For the centered case, note that the quantities 'x; Cx already depend on P through thecentering, so that we will de�ne the corresponding quantities for Pn with an index n:'x;n = 'x � 1n nXi=1 'Xi ;Cx;n = 'x;n 
 '�x;n ;C1;n = 1n nXi=1 'Xi;n 
 '�Xi;n = 1n nXi=1 CXi;n :8



The associated centered kernel operator is denoted K1;n and identi�ed with the followingcentered kernel matrix :K1;n � �D'Xi ; 'XjEHk�1�i;j�n = �In � 1n1n10n�K1;n�In � 1n1n10n� :where 1n = (1; � � � ; 1)0 2 Rn. As a consequence of Lemma 2.5, we have �(C1;n) = �(K1;n) :Finally, note that C1;n is a biased estimator of C1, so we will additionally introduceeC1;n = nn� 1C1;n = C1;n � 1n(n� 1)Xi 6=j 'Xi 
 '�Xj ; (15)which satis�es E h eC1;ni = C1 :3 General Results on Eigenvalues of Gram MatricesWe are now able to proceed to our �rst goal, the estimation of sums of eigenvalues of kerneloperators K1 or K1 from eigenvalues of their empirical counterparts K1;n and K1;n. Forthis, we will make use of the preliminary results to relate these sums of eigenvalues to anempirical process on classes of functions of type x 7! h�V ; Cxi. In turn, this will allow usto introduce classical tools of empirical process theory to obtain our results.Let us formulate precisely this stepping stone in the case of K1 through the followingcorollary:Corollary 3.1. Under Assumption (A), we havedXk=1 �k(K1) = maxV 2Vd E [h�V ; CXi] ; (16)Xk�d+1 �k(K1) = minV2Vd E [h�V?; CXi] : (17)The �rst equality in this corollary is an immediate consequence of (7) and assertions(i), (iii) of Lemma 2.4. The second is a consequence of the �rst, of de�nition (6) and ofthe de�nition of the trace. Of course, corresponding results for the centered and empiricalversions hold as well in a parallel fashion.3.1 Noncentered CaseIn this section we consider the easier case of the noncentered kernel operator.9



3.1.1 Global approachThe �rst result consists in data-dependent upper and lower bounds for the sum of the dlargest or smallest eigenvalues of the integral operator. It is essentially the same as theresult obtained by Shawe-Taylor et al. (2005), but we give a proof for completeness and toshow how it �ts in our framework.Theorem 3.2 (Shawe-Taylor et al.). Under Assumption (A), with probability at least1� 3e��, �Mr �2n � dXi=1 �i(K1;n)� dXi=1 �i(K1) � 2rdn trK2;n + 3Mr �2n : (18)Also, with probability at least 1� 3e��;�Mr �2n � Xi�d+1 �i(K1)� Xi�d+1 �i(K1;n) � 2rdn trK2;n + 3Mr �2n : (19)Proof. We start with the �rst statement. From equation (16) and its counterpart forK1;n we have dXi=1 �i(K1;n)� dXi=1 �i(K1) = maxV 2VdPn h�V ; CXi �maxV2Vd P h�V ; CXi :This gives, denoting by Vd the subspace attaining the second maximum,(Pn � P ) h�Vd; CXi � dXi=1 �i(K1;n)� dXi=1 �i(K1) � supV2Vd(Pn � P ) h�V ; CXi :The lower bound above leads to the lower bound of the theorem by an application ofHoe�ding's inequality for the empirical mean of an i.i.d. sample of the bounded randomvariable h�Vd; CXi ; namely0 � h�Vd; CXi = h�Vd; 'X 
 '�Xi = k�Vd('X)k2 � k'Xk2 �M ; (20)where we have used the fact that �Vd is a projector.For the upper bound, we use standard techniques of concentration and symmetriza-tion. Since h�Vd; CXi 2 [0;M ], we can apply the bounded di�erence concentration in-equality (also known as McDiarmid's or Azuma's inequality) to the variable supV2Vd(Pn �P ) h�V ; CXi. Thus with probability 1� e��,supV2Vd(Pn � P ) h�V ; CXi � E � supV2Vd(Pn � P ) h�V ; CXi�+Mr �2n:10



By a standard symmetrization argument,E � supV 2Vd(Pn � P ) h�V ; CXi� � 2E E" "1n supV2Vd nXj=1 "j 
�V ; CXj�# ;where ("i)i=1;::: ;n is an i.i.d. family of Rademacher variables. We can apply the boundeddi�erence inequality a second time to this quantity, so that with probability 1� e�� :EE" "1n supV2Vd nXj=1 "j 
�V ; CXj�# � E " " 1n supV2Vd nXj=1 "j 
�V ; CXj�#+Mr �2n:The expectation on the right-hand-side is then bounded by an application of Lemma 3.3below, leading to the conclusion.The second inequality of the Theorem follows from similar arguments. Equation (17)leads to Xi>d �i(K1)�Xi>d �i(K1;n) = minV 2VdP h�V?; CXi � minV2Vd Pn h�V?; CXi :and thus, denoting by eVd the subspace attaining the �rst minimum,(P � Pn)D�eV?d ; CXE �Xi>d �i(K1)�Xi>d �i(K1;n) � supV2Vd(P � Pn) h�V?; CXi :The rest of the proof parallels exactly the proof of the �rst part. �We have used the following Lemma in the completion of the proof:Lemma 3.3.E" "1n supV 2Vd nXj=1 "j 
�V?; CXj�# = E" "1n supV 2Vd nXj=1 "j 
�V ; CXj�# �rdn trK2;n :and E E " " 1n supV2Vd nXj=1 "j 
�V?; CXj�# = EE " "1n supV2Vd nXj=1 "j 
�V ; CXj�# �rdn trK2Proof. First note that for the two statements, the �rst equality is straightforward fromthe de�nition and the symmetry of Rademacher variables. We then havenXj=1 "j 
�V ; CXj� = *�V ; nXj=1 "j'Xj 
 '�Xj+HS(Hk)� pd




 nXj=1 "j'Xj 
 '�Xj




HS(H) =vuutd dXi;j=1 "i"jk2(Xi;Xj) ;11



where the inequality is Cauchy-Schwarz's. Finally, by Jensen's inequality,E " " 1n supV 2 Vd nXj=1 "j 
�V?; CXj�# �rdnrPni=1 k2(Xi;Xi)n :This concludes the proof of the �rst statement. The second is obtained by a secondapplication of Jensen's inequality. �Remark. Notice that the upper and lower bounds in Theorem 3.2 are of a di�erentnature. One way to explain this is to consider directly the expectation of the involvedquantities: one has0 � E " dXi=1 �i(K1;n)#� dXi=1 �i(K1) � E � supV2Vd(Pn � P ) h�V ; CXi� � 2rdn trK2 ;where the lower bound is a consequence of (16) and Jensen's inequality, and the upperbound follows from arguments similar to the above proof.We see that the empirical eigenvalues are biased estimators of the population ones(although the above inequality only provides an upper bound on the bias); therefore thedi�erence between upper and lower bound in (18) is to be interpreted as bias rather thanestimation error. If we additionally apply McDiarmid's inequality twice to the abovebound, on the one hand to the quantityPdi=1 �i(K1;n) , and on the other hand to trK2;n ,then we are lead precisely to (18). This approach was followed by Shawe-Taylor et al.(2002, 2005). We have used the same arguments in the proof of Theorem 3.2, but in adi�erent order, as this allows for further re�nement (see next section).3.1.2 Relative boundsWe now use recent work based on Talagrand's inequality (see e.g. Massart, 2000; Bartlettet al., 2003a) to obtain improved concentration for the large eigenvalues of the Grammatrix. We obtain a better rate of convergence, but at the price of comparing the sums ofeigenvalues up to a constant factor.Theorem 3.4. Under Assumption (A), for all K > 1 and � > 0, with probability at least1� e��, the following holds:dXk=1 �k(K1;n)� K + 1K dXk=1 �k(K1)� 6K infh�08<:Mhn + 2sdn Xj�h+1 �j(K2)9=;+ M�(11 + 5K)n : (21)12



Also, for all K > 1 and � > 0, with probability at least 1 � 3e��, we havedXk=1 �k(K1;n)� K + 1K dXk=1 �k(K1)� 282K infh�08<:2hMn +p2sdn Xj�h+1 �j(K2;n)9=;+ 2620MK�n : (22)Moreover, with probability at least 1 � e��, for all K > 1,dXk=1 �k(K1;n)� K � 1K dXk=1 �k(K1) � �M�n �13 + K2 � : (23)The proof of the Theorem is found in Appendix A.2, using a fundamental deviationinequality recalled in Appendix B and additional auxiliary results in Appendix C.Comments. A super�cial look at this result could lead to conclude that it is of the sameform as Theorem 2 of Shawe-Taylor et al. (2005) where an in�mum operator also appearsin the bound. However, the bounds are really of a di�erent nature. In the latter referencethe in�mum operation comes from the observation that since obviously the partial sum Sdof the �rst d eigenvalues is increasing in d, we can lower bound Sd by Sd0 with d0 < d; hencethe empirical lower bound for Sd0 is a fortiori a lower bound for Sd. We could naturallyalso take advantage of this observation and introduce in the lower bound an additionalmaximum operation over d0 < d but opted against it for readability.To illustrate the novelty introduced by our result, �rst notice that if we disregard themultiplicative constants, the complexity term obtained here is always better (or equal) inorder than the one of (18) (take h = 0). As an example of how this bound di�ers from (18),assume that �j(K2) = O(j��) with � > 1, then (18) gives a bound of order pd=n, whileTheorem 3.4 gives a bound of order d1=(1+�)n��=(1+�) { hence a better rate. In the case ofan exponential decay (�j(K2) = O(e�
j) with 
 > 0), the rate even drops to log(nd)=n. IfK2 has a �nite number k of non-zeros eigenvalues, the bound is of order kn . Of course thisimprovement comes at the cost of an additional factor in front of the empirical sum, hencethis bound is better understood as a relative performance bound.Finally, Theorem 3.4 only covers the case of the sum of the bigger eigenvalues. Unfor-tunately, unlike in the global case, we were not able to use an identical reasoning for thesmallest eigenvalues. It is actually possible to derive a result of a similar form, but withworse constants, as a consequence of our results for the generalization of kernel PCA. Forthis reason we postpone the statement of this result to section 4.3.2 Recentered CaseIn the following result, we extend Theorem 3.2 to a more general case where the data is�rst recentered. Let us begin with a control of a suprema of random variables:13



Theorem 3.5. Under Assumption (A), with probability at least 1 � 3e��,supV2Vd D�V ; eC1;nE� 
�V ; C1� � 2rdn trK2;n +M  5r �n + 4pn + 6n� 1! ;similarly, with probability at least 1� 3e��,supV 2Vd 
�V?; C1�� D�V?; eC1;nE � 2rdn trK2;n +M  5r �n + 4pn + 6n� 1! ;The proof of the theorem is relegated to Appendix A.2. It follows the same principlesas for Theorem 3.2, but some additional steps are needed to deal with a U-process arisingbecause of the recentering. From this theorem we deduce the following upper bounds:Theorem 3.6. Under Assumption (A), for all � > 1, with probability greater than 1 �3e��, �2Mr �n � nn � 1 dXi=1 �i(K1;n)� dXi=1 �i(K1) � 2rdn trK2;n + 18Mr �n ;and with probability greater than 1� 3e��,�2Mr �n � Xi�d+1 �i(K1)� nn� 1 Xi�d+1 �i(K1;n) � 2r dn trK2;n + 18Mr �n :Proof. (Majoration) Theorem 2.1 entailsnn � 1 dXi=1 �i(C1;n)� dXi=1 �i(C1) � supV 2VdD�V ; eC1;nE� 
�V ; C1� ;and Xi�d+1 �i(C1)� nn� 1 Xi�d+1 �i(C1;n) � supV2Vd 
�V?; C1�� D�V?; eC1;nE :Theorem 3.5 and Lemma 2.4 allow to conclude.The minoration part follows from Hoe�ding's inequality for U-statistics; details can befound in the Appendix. �4 Application to Kernel-PCA4.1 Uncentered CaseWe �rst consider in this section the simpler case of \uncentered Kernel-PCA" where thegoal is to reconstruct the signal using principal directions of the noncentered covarianceoperator. 14



Remember we assume that the number d of KPCA directions kept for projecting theobservations has been �xed a priori. We wish to �nd the linear space of dimension dthat conserves the maximal norm, i.e. which minimizes the error (measured with theRKHS norm) of approximating the data by their projections. The space bVd minimizingthe empirical error is given bybVd = ArgMinV2Vd 1n nXj=1 k'Xj ��V ('Xj)k2 ;bVd is the vector space spanned by the �rst d eigenfunctions of C1;n. Analogously, we denoteby Vd the space spanned by the �rst d eigenfunctions of C1. We will adopt the followingnotation for the true and empirical reconstruction error:Rn(V ) = 1n nXj=1 k'Xj ��V ('Xj )k2 = Pn h�V?; CXi :R(V ) = E �k'X ��V'Xk2� = P h�V? ; CXi :One has Rn(bVd) =Pi>d �i(K1;n) and R(Vd) =Pi>d �i(K1).4.1.1 Bound on the Reconstruction Error: global approachWe give a data dependent bound for the reconstruction error which is a simple consequenceof 3.2.Theorem 4.1. Under Assumption (A), with probability at least 1 � 2e��,R(bVd) � nXi=d+1 �i(K1;n) + 2r dn trK2;n + 3Mr �2n :Also, with probability at least 1� e��,R(bVd)�R(Vd) � 2rdn trK2 + 2Mr �2n :Proof. We haveR(bVd)�Rn(bVd) = (P � Pn)D�bV?d ; CXE � supV 2Vd(P � Pn) h�V?; CXi ;we have already treated this quantity in the proof of Theorem 3.2, hence the �rst part isproved.For the second part, the de�nition of bVd implies thatR(bVd)�R(Vd) � �R(bVd)�Rn(bVd)�� (R(Vd) �Rn(Vd)) :The �rst term has been dealt with above. We obtain a lower bound for the second termusing Hoe�ding's inequality (again, exactly as in the proof of the lower bound in Theorem3.2). This concludes the proof. �15



4.1.2 Fast rates via localized approachWe now show that that the excess error of the best empirical d-dimensional subspace withrespect to the error of the best d-dimensional subspace can decay at a much faster ratethan can be expected from Theorem 4.1. This however comes at the price of an additionalfactor related to the size of the gap between two successive distinct eigenvalues.Here is the main result of the section:Theorem 4.2. Let (�i) denote the ordered eigenvalues with multiplicity of C1, resp. (�i)the ordered distinct eigenvalues. Let ed be such that �d = �ed. De�ne
d = (�ed � �ed+1 if ed = 1 or �d > �d+1;min��ed�1 � �ed; �ed � �ed+1� otherwise ; (24)and Bd = 2pEk4(X;X 0)=
d.Then under Assumption (A), for all d, for all � > 0, with probability at least 1 � e��the following holds:R(bVd) �R(Vd) � 7 infh�08<:Bdhn + 4sdn Xj�h+1 �j(K2)9=;+ �(22M + 6Bd)n : (25)Comments. Similarly to the remarks on Theorem 3.4, the complexity term obtained inTheorem 4.2 has a faster (or equal) decay rate, as a function of the sample size n, thanthe one of Theorem 4.1; this rate depends on the decay behavior of the eigenvalues.We do state a fully empirical version of the bound (using only empirical eigenvalues)to avoid additional burden. Let us sketch brie
y how this could be obtained: in the proofof the Theorem, we can use the empirically localized Rademacher complexity at the priceof worse constants (see the proof of Theorem 3.4 to see an example of how this playsout). This has the e�ect of replacing the true eigenvalues by the empirical ones in the sumappearing in (25). However the constant Bd still depends on the true eigenvalues. Forthis, we can use a simple convergence result of the empirical eigenvalues to the true ones(as proved for example by Koltchinskii and Gin�e, 2000), so that for n big enough Bd isbounded by 2 bBd (its empirical counterpart).The techniques used to obtain the previous fast rates for reconstruction error of KPCAallows us to get improved bounds for the sum of the smaller eigenvalues.Corollary 4.3. Under Assumption (A),with probability at least 1 � e��, for all K > 1,Xk�d �k(K1)� KK + 1Xk�d �k(K1;n) � �M�n �13 + K2 � : (26)16



Moreover, if �d > �d+1, for all K > 1 and � > 0, with probability at least 1 � 2e��, thefollowing holds:Xk�d+1 �k(K1)� KK � 1 Xk�d+1 �k(K1;n)� 6K infh�08<:Bdhn + 4sdn Xj�h+1 �j(K2)9=;+ K�n �5Bd + 5M6(K � 1) + 22M� : (27)where Bd = 2pEk4(X;X 0)=(�d � �d+1).4.2 Recentered CaseThe goal of this section is to show that the rate of convergence obtained in Theorem 4.1 inthe uncentered case is of the same order if we consider the empirical re-centering. In thiscase the Kernel-PCA algorithm solves the following optimization problem:bV d = ArgMinV2Vd 1n nXj=1 k'Xj ��V ('Xj)k2 ;where bV d is the vector space spanned by the �rst d eigenfunctions of C1;n. We also denoteby Vd the space spanned by the �rst d eigenfunctions of C1 :V d = ArgMinV2Vd Ek'X � ���V ('X � �)k2We will adopt the following notation for the reconstruction error:Rn(V ) = 1n� 1 nXj=1 k'Xj ��V ('Xj)k2 = D�V?; eC1;nE :R(V ) = Ek'X � ���V ('X � �)k2 = P 
�V?; CX� :One has Rn(bV d) = nn�1Pi>d �i(K1;n) and R(V d) =Pi>d �i(K1). Following the same lineof reasonning as in Theorem 4.1 and using Theorem 3.5 to control the supremum yieldsthe following result.Theorem 4.4. Under Assumption (A), for any � > 1, with probability greater than 1 �3e�x, R(bV d) � nn� 1Xi>d �i(K1;n) + 2rdn trK2;n + 18Mr �n :Note that the leading complexity term is the same as in Theorem 4.1: hence recenteringin kernel PCA essentially does not introduce additional complexity to the procedure.17



5 Conclusion and DiscussionComparison with Previous Work. Dauxois and Pousse (1976) studied asymptoticconvergence of PCA and proved almost sure convergence in operator norm of the empiricalcovariance operator to the population one. These results were further extended to PCAin a Hilbert space by Besse (1991). However, no �nite sample bounds were presented.Moreover, the centering of the data was not considered.Compared to the work of Koltchinskii and Gin�e (2000) and Koltchinskii (1998), weare interested in non-asymptotic (i.e. �nite sample sizes) results. Also, as we are onlyinterested in the case where k(x; y) is a positive de�nite function, we have the nice propertyof Theorem 2.3 which allows to consider the empirical operator and its limit as acting onthe same space (since we can use covariance operators on the RKHS). This is crucial inour analysis and makes precise non-asymptotic computations possible unlike in the generalcase studied by Koltchinskii and Gin�e (2000); Koltchinskii (1998).Comparing with Shawe-Taylor et al. (2002, 2005), we overcome the di�culties comingfrom in�nite dimensional feature spaces as well as those of dealing with kernel operators(of in�nite rank). Moreover their approach for eigenvalues is based on the concentrationaround the mean of the empirical eigenvalues and on the relationship between the expec-tation of the empirical eigenvalues and the operator eigenvalues. Here we used a directapproach and extend their results to the recentered case and proved re�ned bounds for theuncentered case. In particular we show that there is a tight relation between how the (trueor empirical) eigenvalues decay and the rate of convergence of the reconstruction error ofthe d-dimensional projection found by the kernel PCA procedure to the ideal one.Open issues: the nagging problem of the choice of dimension in PCA. All alongthis paper, the integer d (the number of eigenvalues summed, or the dimension of the spaceselected by PCA) was always considered �xed a priori.It is tempting to interpret the bounds appearing in Theorems 4.1 and 4.2 as a classicalstatistical tradeo� between approximation error (empirical reconstruction error, decreasingwith the dimension d) and estimation error (complexity term, increasing with d). This pointof view would suggest to select d as the dimension minimizing the bound. However, thisview is an illusion since it is clear that the true reconstruction error R(bVd) of the subspaceselected empirically is a decreasing function of d (since bVd � bVd+1). This emphasizes twoimportant points: �rst, that the (true) reconstruction error is by itself not a good criterionto select the dimension (of course, with this criterion the best choice would be not toproject the data at all but to keep the whole space). Hence, an alternative and sensiblecriterion has to be found to de�ne in a well-founded way what the optimal dimension wouldbe. A second consequence of this observation is that the bounds we found do not exhibit thecorrect behavior in terms of the dimension d (for a �xed sample size n), since they becomeincreasing in d, for big enough d, while the true error is always decreasing. Because of thedecreasing property of the true error, any quantity bounding the reconstruction error fordimension d is also a valid bound for any d0 > d. Hence, if we denote d(n) the dimension18



realizing the mininum of the bound of Theorem 4.1 (for example) for a �xed sample size n,then the bound obtained for d(n) is also valid for any larger dimension and actually moreinformative than the bounds obtained directly for this larger dimension. This property wasalso noticed by Shawe-Taylor et al. (2005). To sum up, our bound on the estimation error istoo pessimistic for larger dimensions and does not provide a correct qualitative explanationfor what is really taking place. Obtaining a better understanding of the behavior of theestimation error for �xed n and varying d is a very interesting open problem, which couldalso eventually lead to a relevant dimension selection criterion (maybe by comparison ofthe relative importance of approximation error and estimation error for larger dimensions).We conclude by mentioning additional open problems: it would be of interest to obtainrelative convergence rates for the estimation of single eigenvalues, and to obtain nonasymp-totic bounds for eigenspace estimation.AcknowledgementsThe authors are extremely grateful to St�ephane Boucheron for invaluable comments andideas, as well as for motivating this work.ReferencesT. W. Anderson. Asymptotic theory for principal component analysis. Ann. Math. Stat.,34:122{148, 1963.P. Bartlett, O. Bousquet, and S. Mendelson. Localized Rademacher complexities, 2003a.Submitted, available at http://www.kyb.mpg.de/publications/pss/ps2000.ps.P. Bartlett, M. Jordan, and J. McAuli�e. Convexity, classi�cation, and risk bounds. Tech-nical report, Department of Statistics, U.C. Berkeley, 2003b. To appear in J.A.S.A.P. Baxendale. Gaussian measures on function spaces. Amer. J. Math., 98:891{952, 1976.P. Besse. Etude descriptive d'un processus; approximation, interpolation. PhD thesis,Universit�e de Toulouse, 1979.P. Besse. Approximation spline de l'analyse en composantes principales d'une variableal�eatoire hilbertienne. Ann. Fac. Sci. Toulouse (Math.), 12(5):329{349, 1991.O. Bousquet. PhD thesis, Ecole Polytechnique, 2002.J. Dauxois and A. Pousse. Les analyses factorielles en calcul des probabilit�es et en statis-tique: essai d'�etude synth�etique. PhD thesis, Universit�e de Toulouse, 1976.V. H. de la Pe~na and E. Gin�e. Decoupling: From Dependence to Independence. Springer,1999. 19
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A Additional proofsA.1 Proofs for section 2Proof of Theorem 2.2. For the existence of operator C and its basic properties, seee.g. Baxendale (1976). We proceed to prove the last part of the Theorem. First, we haveEkZ 
 Z�k = EkZk2 < 1 , so that E [Z 
 Z�] is well-de�ned. Now, for any f; g 2 H thefollowing holds by the de�nition of C:hf; E [Z 
 Z�] gi = E [hZ 
 Z�; f 
 g�i] = E [hZ; fi hZ; gi] = hf;Cgi ;this concludes the proof.Proof of Theorem 2.3. It is a well-known fact that an integral kernel operator suchas K� is Hilbert-Schmidt if and only if the kernel k(x; y) (here equal to h�(x);�(y)i )is an element of L2(X � X ). This is the case here since k(x; y) � k�(x)k k�(y)k andEk�(x)k2 <1 by assumption. We now characterize this operator more precisely.Since Ek�(X)k < 1, �(X) has an expectation which we denote by E [�(X)] 2 H.Consider the linear operator T : H ! L2(P ) de�ned as (Th)(x) = hh;�(x)iH. By theCauchy-Schwarz inequality, E hh;�(X)i2 � khk2Ek�(X)k2: This shows that T is well-de�ned and continuous; therefore it has a continuous adjoint T �. Let f 2 L2(P ), then(E kf(X)�(X)k)2 � kfk2E k�(X)k2 : Therefore the variable f(X)�(X) 2 H has a well-de�ned expectation. But for all g 2 H, hT �f; giH = hf; TgiL2(P ) = E [hg; f(X)�(X)iH]which shows that T �(f) = E [�(X)f(X)] :We now show that C = T �T and K� = TT �. By the de�nition of the expectation,for all h; h0 2 H, hh; T �T (h0)i = hh; E [�(X) h�(X); h0i]i = E [hh;�(X)i hh0;�(X)i] : Thus,by the uniqueness of the covariance operator, we get C = T �T: Similarly (TT �f)(x) =hT �f;�(x)i = E [hf(X)�(X);�(x)i] = R f(y) h�(y);�(x)i dP (y) so that K� = TT �: Thisalso implies that K� is self-adjoint and positive.We �nally show that the nonzero eigenvalues of TT � and T �T coincide by a standardargument. Let E�(A) = fx;Ax = �xg be the eigenspace of the operator A associatedwith �. Moreover, let � > 0 be a positive eigenvalue of K = TT � and f an associatedeigenvector. Then (T �T )T �f = T �(TT �)f = �T �f . This shows that T �(E�(TT �)) �E�(T �T ) and conversely T (E�(T �T )) � E�(TT �). Applying T � to both terms of the lastinclusion implies E�(T �T ) � T �(E�(TT �)) since � 6= 0, and therefore T �T (E�(T �T )) =E�(T �T ). Conversely, E�(TT �) � T (E�(T �T )) for� 6= 0. Thus, E�(T �T ) = T �(E�(TT �))and E�(TT �) = T (E�(T �T )) and �nally dim(E�(T�T)) = dim(E�(TT�)). This shows thatthe multiplicity is the same. This concludes the proof. �A.2 Proofs for section 3Proof of Theorem 3.4. As in the proof of Theorem 3.2, we have to consider the em-pirical process h�V ; CXi for V 2 Vd. Let us de�neFd = fx 7! h�V ; Cxi ; V 2 Vdg :21



In order to prove inequality (21), we will apply Theorem B.1 (coming from Bartlettet al. (2003a), and recalled in Appendix B along with some additional notation whichwe will use here) to the class of functions M�1Fd. From equation (20), it holds that8f 2M�1Fd ; f(x) 2 [0; 1] , and therefore Pf2 � Pf ; hence the hypotheses of the theoremare satis�ed.What we need is now to obtain upper bounds for localized Rademacher complexitieswhere the localization is in terms of P or Pn. For this we will need some results aboutlocal Rademacher complexities on ellipsoids that are regrouped and shown in Appendix C.Let us �rst denote the \localized" setSr = �g 2 star(M�1Fd); P g2 � r	 =M�1 �g 2 star(Fd); P g2 �M2r	 : (28)Corollary C.2 entailsE supg2Sr Rng � 1pn infh�00@prh +M�1sd Xk�h+1 �k(K2)1A :=  d(r) :We now need to upper-bound the �xed point r�d of  d(r). For this we use Lemma C.4 withc = 1 ; � =M�1, leading tor�d � infh�08<:hn + 2M�1sdn Xj�h+1 �j(K2)9=; : (29)Inequality (37) of Theorem B.1 implies that with probability at least 1� e��, every f 2 Fdsatis�es Pnf � K + 1K Pf + 6KMr�d + M�(11 + 5K)n : (30)Putting in the bound (29), taking the supremum over f 2 Fd on the left-hand, thenright-hand side, and using (16), we obtain (21).In order to prove inequality (22), we apply the second part of theorem B.1, which givesus a con�dence bound on r�d using the Rademacher complexity localized in terms of theempirical measure. For this we de�ne bSr like Sr in (28) but where Pn takes the role of P .Corollary C.2 entailsE " supg2bSrRng � 1pn infh�00@prh+M�1sd Xk�h+1 �k(K2;n)1A := b d(r) : (31)Then Theorem B.1 tells us that with probability 1�2e��, r�d is upper bounded by the �xedpoint of 20 b d(2r) + 31�=n. To upper bound this quantity in turn, we �rst apply LemmaC.4 with c = 2; � = M�1 as above to obtain a bound on the �xed point of b d(2r) ; then22



we apply Lemma B.2 with K = 76. Gathering these inequalities and after straightforwardcalculations, we �nally get that with probability at least 1� 3e��, 8f 2 Fd,Pnf � K + 1K Pf + 282K infh�08<:2hMn +p2sdn Xj�h+1 �j(K2;n)9=; + 2620MK�n ;leading to (22).Finally, inequality (23) is a simple consequence of Bernstein's inequality. �Proof of Theorem 3.5. The proof of this Theorem follows the same structure as forTheorem 3.2, but some additional ingredients are needed to control U-processes arisingfrom the recentering.We prove the �rst statement of Theorem 3.5: the second one follows from the samearguments. First recall the following decomposition from equations (14) and (15):C1 = C1 � � 
 �� and eC1;n = C1;n � 1n(n� 1) nXi 6=j 'Xi 
 '�Xj ; (32)from which we obtainsupV2Vd D�V ; eC1;n � C1E � supV 2Vd h�V ; C1;n �C1i+ supV 2Vd*�V ; � 
 �� � 1n(n � 1)Xi 6=j 'Xi 
 '�Xj+ : (33)It was shown in the proof of Theorem 3.2 that the following holds with probability greaterthan 1� 2e��: supV2Vd h�V ; C1;n � C1i � 2rdnptrK2;n + 3Mr �2n ;so we now concentrate on the second term of (33). If we denoteG(x1; : : : ; xn) = D�V ; �
 �� � 1n(n�1)Pi 6=j 'Xi 
 '�XiE, then we have for any i0:��G(x1; : : : ; xn)�G(x1; : : : ; xi0�1; x0i0; xi0+1; : : : ; xn)��� 1n(n � 1) 




Xj 6=i0('xi0 � 'x0i0 )
 '�xj + 'xj 
 ('�xi0 � '�x0i0 )




� 2n(n � 1)Xj 6=i0 


'x0i0 � 'xi0




'xj

 � 4Mn :23



Therefore we can apply the bounded di�erence inequality to G, so that with probabilitygreater than 1 � e��,supV2Vd*�V ; �
 �� � 1n(n� 1)Xi 6=j 'Xi 
 '�Xj+� E " supV 2Vd*�V ; � 
 �� � 1n(n � 1)Xi 6=j 'Xi 
 '�Xj+#+ 4Mr �2n :To deal with the above expectation, we consider Hoe�ding's decomposition (see de la Pe~naand Gin�e, 1999, p. 137) for U-processes. To this end, we de�ne the following quantities:Sd = supV 2Vd 2n nXj=1 h�V ; � 
 ��i � 
�V ('Xj ); ��Rd = supV 2Vd 1n(n � 1)Xi 6=j �D�V ; 'Xi 
 '�XjE � 
�V ('Xj); ��� h�V ('Xi); �i+ h�V ; �
 ��i� :It can easily be seen thatE " supV2Vd*�V ; �
 �� 1n(n � 1)Xi 6=j 'Xi 
 'Xj+# � E [Sd] + E [Rd] :Gathering the di�erent inequalities up to now, we have with probability greater than1� 3e��: supV 2VdD�V ; eC1;n � C1E � 2rdnptrK2;n + E [Sd] + E [Rd] + 7Mr �2n : (34)We now bound from above the expectation of Sd and Rd using Lemmas A.1 and A.2 below.This leads to the conclusion. �Lemma A.1. The following inequality holds:E [Sd] � 4Ek(X;X)pn24



Proof. A standard symmetrization argument leads toE [Sd] � EE " supV 2Vd 4n nXj=1 "j 
�V ('Xj); ��� 4nE E " 




�V  nXj=1 "j'Xj!




 k�k� 4nE E " 




 nXj=1 "j'Xj




 k�k� 4pnEptrK1;n k�k ;where we successively applied the Cauchy-Schwarz inequality, the contractivity of an or-thogonal projector, and Jensen's inequality. Applying Jensen's inequality again, and thefact that k�k2 = E k(X;X 0) � (Ek 12 (X;X))2 yields the conclusion. �Lemma A.2. The following inequality holds:E [Rd] � 6n� 1Ek(X;X) :Remark The proof uses techniques developed by de la Pe~na and Gin�e (1999). Actu-ally, we could directly apply Theorems 3.5.3 and 3.5.1 of this reference, getting a factor2560 instead of 6. We give here a self-contained proof tailored for our particular case forcompleteness and for the improved constant.Proof. Since �V is a symmetric operator, using Jensen's inequality ,E [Rd] � 1n(n� 1)E " supV2VdXi 6=j fV (Xi;X 0i;Xj ;X 0j)#wherefV (Xi;X 0i;Xj ;X 0j) = D�V ; 'Xi 
 '�Xj � 'X 0i 
 '�Xj � 'Xi 
 '�X 0j + 'X 0i 
 '�X 0jE :Since fV (Xi;X 0i;Xj;X 0j) = �fV (X 0i;Xi;Xj ;X 0j) and fV (Xi;X 0i;Xj;X 0j) = �fV (Xi;X 0i;X 0j ;Xj),following the proof of the standard symmetrization, we get:E [Rd] � 1n(n� 1)E " supV2VdXi 6=j "i"jfV (Xi;X 0i;Xj ;X 0j)#25



Therefore,E [Rd] � 2n(n� 1)  E " supV2VdXi 6=j "i"j D�V ; 'Xi 
 '�XjE#+E " supV2Vd�Xi 6=j "i"j D�V ; 'Xi 
 '�X 0jE#! = 2n(n� 1) (A+B) ;for the �rst term above we haveA � E " supV 2VdXi;j "i"j D�V ; 'Xi 
 '�XjE# = C ;while for the second we useB � E " supV2Vd�Xi;j "i"j D�V ; 'Xi 
 '�X 0jE#+ E " supV2VdXi D�V ; 'Xi 
 '�X 0iE#= D + E :We bound terms C;D;E by the following similar chains of inequalities where we succes-sively use the Cauchy-Schwarz inequality, the contractivity of an orthogonal projector anda standard computation on sums of weighted Rademacher:C � EXE " supV2Vd 
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2� EX;X 0vuut Xi k(Xi;Xi)! Xi k(X 0i;X 0i)! � nEk(X;X) ;26



E � EX supV 2VdXi 

�V ('X 0i)

 k'Xik � EXXi 

'X 0i

 k'Xik� EXXi pk(X 0i;X 0i)k(Xi;Xi)= nEk(X;X) :Gathering the previous inequalities, we obtain the conclusion. �Proof of Theorem 3.6. (Minoration) We prove the lower bound for the largest eigen-values. A similar proof gives the second statement.Theorem 2.1 leads todXi=1 �i(C1;n)� dXi=1 �i(C1) � 
C1;n;�V d�� 
C1;�V d� :Using the decomposition (32), we get:dXi=1 �i(C1;n)� dXi=1 �i(C1)� 
C1;n � C1;�V d��*�V d; 1n(n� 1)Xi 6=j 'Xi 
 'Xj � � 
 �+ :The �rst term is bounded by Hoe�ding's inequality exactly as in the proof of Theorem 18.With probability greater than 1 � e�x,
C1;n � C1;�V d� = (P � Pn) 
�V d; CX� � �Mr �2n :For the second term, we apply Hoe�ding's inequality for U-statistics (see e.g. Hoe�ding,1963; de la Pe~na and Gin�e, 1999); with probability greater than 1� e��,�*�V d; 1n(n� 1)Xi 6=j 'Xi 
 'Xj � � 
 �+ � �Ms �2dn2 e � �Mr �n :We �nally obtain dXi=1 �i(C1;n)� dXi=1 �i(C1) � �Mr �n �1 + 1p2� :Finally using Lemma 2.5 with true and empirical distributions yields the conclusion.27



A.3 Proofs for section 4A key property necessary for the proof of Theorem 4.2 is established in the followingLemma:Lemma A.3. Let (�i) denote the ordered eigenvalues with multiplicity of C1, resp. (�i)the ordered distinct eigenvalues, and 
d be de�ned as in equation (24). For any V 2 Vd,there exists HV 2 Vd such that R(HV ) = minH2VdR(H) ;and E �D�V? ��H?V ; CXE2� � 2
�1d pE [k4(X;X 0)]E hD�V? ��H?V ; CXEi :Proof. Let us denote Wi the eigenspace associated to eigenvalue �i and W j =Lji=1Wi.We �rst assume ed > 1 and denote k; ` the �xed integers such that �d�` = �ed�1, �d�`+1 =: : : = �d = : : : = �d+k = �ed and �d+k+1 = �ed+1.Step 1: construction of HV .Let (�1; : : : ; �d�`) be an orthonormal basis of W ed�1. Let V (1) denote the orthogonalprojection of W ed�1 on V ; in other words, the space spanned by the projections of (�i)i�d�`on V . The space V (1) is of dimension d�`0 � d�`; let (f1; : : : ; fd�`0) denote an orthonormalbasis of V (1). We complete this basis arbitrarily to an orthonormal basis (fi)i�d of V .Denote now V (2) = span ffd�`+1; : : : ; fdg. Note that by construction, V (2) ? W ed�1.Let W (2)ed be the orthogonal projection of V (2) on Wed. The space W (2)ed is of dimension`00 � `; let (�d�`+1; : : : ; �d+`00�`) be an orthogonal basis of W (2)ed . We �nally complete thisbasis arbitrarily to an orthonormal basis (�i)d�`+1�i�d+k of Wed. Note that by construction,in particular V (2) ? span f�d+1; : : : ; �d+kg.We now de�ne HV = span f�i; 1 � i � dg. Obviously HV is a minimizer of the recon-struction error over subspaces of dimension d. We have (using Lemma 2.4 (ii) at the �rstline) E �D�V? ��H?V ; CXE2� = h�HV ��V ; C2�HV ��V iHS(H)� kC2kopk�HV ��V k2HS(H)= 2kC2kop(d� h�V ;�HV iHS(H))= 2 kC2kop d� dXi;j=1 hfi; �ji2! ;and on the other hand, using Lemma 2.4 (i):E hD�V? ��H?V Ei = h�HV ��V ; C1i = dXi=1 (�i � hfi; C1fii) :28



We will decompose the last sum into two terms, for indices i smaller or greater than d� `,and bound these separately.Step 2a: indices i � d� `. In this case we decompose fi =Pj�d�` hfi; �ji�j+ gi, withgi 2 W?ed�1. We have hgi; C1gii � �ed kgik2 = �ed 1 � Xj�d�` hfi; �ji2! ;and d�X̀i=1 (�i � hfi; C1fii) � d�X̀i=1 �i 1� d�X̀j=1 hfi; �ji2!� d�X̀i=1 �ed 1 � Xj�d�` hfi; �ji2!� ��ed�1 � �ed� d� `� d�X̀i;j=1 hfi; �ji2! :Step 2b: indices i > d � `. In this case remember that fi ? �j for 1 � j � d � `and d + 1 � j � d + k. We can therefore decompose fi = Pdj=d�`+1 hfi; �ji �j + g0i withg0i 2 W?ed . We havehg0i; C1g0ii � �ed+1 kg0ik2 = �ed+1 1� dXj=d�`+1 hfi; �ji2! ;and dXi=d�`+1 (�i � hfi; C1fii) = �ed `� dXi;j=d�`+1 hfi; �ji2!� dXi=d�`+1 hg0i; C1g0ii� ��ed � �ed+1� `� dXi;j=d�`+1 hfi; �ji2! :Finally collecting the results of steps 2a-b we obtainh�HV ��V ; C1i � min��ed�1 � �ed; �ed � �ed+1� d� d�X̀i;j=1 hfi; �ji2 � dXi;j=d�`+1 hfi; �ji2!� min��ed�1 � �ed; �ed � �ed+1� �2 kC2kop��1 E �D�V? ��H?V ; CXE2� :Finally, it holds that kC2kop � kC2kHS(HS(Hk)) = kK2kHS(L2(P )) by Lemma 2.4 (iv); sinceK2is an integral operator with kernel k2(x; y), we have kK2k2HS(L2(P )) = R k4(x; y)dP (x)dP (y) =E [k4(X;X 0)]. This concludes the proof of the Lemma when ed > 1. If ed = 1, the proof canbe adapted with minor modi�cations, essentially removing step (2a), so that in the �nalinequality only the second term of the minimum appears. �29



Proof of Theorem 4.2. We will use here again Theorem B.1. We de�ne the followingclass of functions: eFd = nx 7! D�V? ��H?V ; CxE ; V 2 Vdo ;where for each V 2 Vd, HV is obtained via Lemma A.3. We will apply Theorem B.1 tothe class M�1 eFd. For any f 2M�1 eFd, it holds that f 2 [�1; 1]; furthermore, Lemma A.3entails that Pf2 �M�1BdPf . To upper bound the local Rademacher complexities of thisclass we de�neeSr = ng 2 star(M�1 eFd); P g2 � ro =M�1 ng 2 star( eFd); P g2 �M2ro :Corollary C.3 entailsM�1BdE supg2eSr Rng � M�1Bdpn infh�00@prh+M�1sd Xk�h+1 �k(K2)1A := e d(r) :Let er�d denote the solution of equation e d(r) = r. We apply Lemma C.4 with the choicec =M�1Bd; � =M�1 to obtainer� �M�2 infh�08<:B2dhn + 4Bdsdn Xj�h+1 �j(K2)9=; :We can now apply Theorem B.1, obtaining that for any K > 1 and every � > 0, withprobability at least 1� e��:8f 2 eFd; P f � KK � 1Pnf + 6K infh�08<:Bdhn + 4s dn Xj�h+1 �j(K2)9=;+ �(11M + 5BdK)n (35)Choosing V = bVd leads to the result. �Proof of Theorem 4.3. Inequality (26) is a simple consequence of Bernstein's inequality.We now prove inequality (27).Since we suppose �d > �d+1, HV = Vd for all V 2 Vd. Moreover,Xk�d+1 �k(K1)� KK � 1 Xk�d+1 �k(K1;n) � R(bVd)� KK � 1Rn(bVd) :Finally, inequality (27) is obtained by gathering inequality (35) and Bernstein's inequalityto control (P � Pn)D�V?d ; CxE. �30



B Local Rademacher complexitiesIn this section we recall a fundamental Theorem that is the key to controlling deviationsof empirical processes using local Rademacher averages de�ned either from the true orthe empirical distribution. It is a simpli�ed version of Theorems 3.3 and 4.1 of Bartlettet al. (2003a). In the terminology of the latter reference, a sub-root function  : R+ ! R+is nonnegative, nondecreasing, and such that  (r)=pr is nonincreasing. Then it can beshown that the �xed point equation  (r) = r has a unique positive solution (except for thetrivial case  � 0). Moreover, this solution r� satis�es that r� � r if and only if 	(r) � r.Also we need the following notation for Rademacher complexities:RnF = supf2F 1n nXi=1 "if(Xi) ;where ("i) are i.i.d. Rademacher; we �nally de�ne the star-shaped hullstar(F) = fg = �f ; f 2 F ; � 2 [0; 1]g :Theorem B.1 (Bartlett, Bousquet and Mendelson). Let F be a class of functionswith ranges in [�1; 1] and assume that there exists some constant B > 0 such that forevery f 2 F ; P f2 � BPf . Let  be a sub-root function and r� be the �xed point of  . If satis�es  (r) � BEX;"Rn �f 2 star(F) : Pf2 � r	 ;then for any K > 1 and x > 0, with probability at least 1� e�x,8f 2 F ; P f � KK � 1Pnf + 6KB r� + x(11 + 5BK)n ; (36)also, with probability at least 1� e�x,8f 2 F ; Pnf � K + 1K Pf + 6KB r� + x(11 + 5BK)n : (37)Furthermore, if b n is a data-dependent sub-root function with �xed point br� such thatb n(r) � 2(10 _B)E "Rn �f 2 star(F) : Pnf2 � 2r	+ (2(10 _B) + 11)xn ; (38)then with probability 1 � 2e�x, it holds that br� � r� ; as a consequence, with probability1� 3e�x ; inequality (36) holds with r� replaced by br�; similarly for inequality (37).We complete this section with the following Lemma which can be used to obtain upperbounds on �xed points of functions of the form (38):31



Lemma B.2 (inspired by Bousquet (2002)). Let � be a sub-root function and let �1(r) =��(r) + � with � > 1 and � > 0. Let r� (resp. r�1) denote the �xed point of � (resp. �1).We have: r�1 � infK>1 K�2r� + pKpK � 1�! :Proof. During this proof, we keep using the de�nition of a sub-root function and his prop-erty recalled previously.If a > 1 and b > 0,��(ar� + b�) + � = ���a�r� + ba���+ � � �pa��r� + ba��+ � ;thus ��(ar� + b) + � � �par� + ��1 + � bpa� :Let K > 1. Choosing a = K�2 and b = pKpK�1 yields �1(ar� + b�) � ar� + b� : Thisconcludes the proof of Lemma B.2. �C Localized Rademacher Averages on EllipsoidsIn this section we group together results that deal with estimating localized Rademachercomplexities of function classes given as ellipsoids of a reproducing kernel Hilbert space.We deduce as corollaries the results necessary for the proofs of Theorems 3.4 and 4.2.Theorem C.1. Let H be a separable Hilbert space and (Zi)1�i�n 2 Hn . Let A be acompact self-adjoint positive linear operator of H and (�i)i�1 an orthonormal basis of Hof eigenvectors of A. Denote B� = fkvk � �g, Er = fhv;Avi � rg and let ("i) be an i.i.d.family of Rademacher random variables. Then for any integer h � Rank(A), the followingholds:E " supv2B�\Er 1n nXi=1 "ihv; Zii � prn vuut hXi=1 1�i(A) nXj=1 hZj ;�ii2 + �nvuutXi�h+1 nXj=1 hZj;�ii2 (39)Proof. For v 2 B� \ Er, we havenXi=1 "ihv; Zii = hXj=1 hv;�ji*�j ; nXi=1 "iZi++Xj>h hv;�ji*�j ; nXi=1 "iZi+� vuutr hXi=1 1�i(A) * nXj=1 "jZj ;�i+2 + �vuutXi�h+1* nXj=1 "jZj ;�i+2 ;32



where we used the Cauchy-Schwarz inequality for both terms and the equality hv;Avi =Pi�1 �i(A) hv;�ii2 :We now integrate over ("i); using Jensen's inequality the square rootsare pulled outside of the expectation; �nally, we haveE "* nXj=1 "jZj ;�i+2 = nXj=1 hZj;�ii2 :since by independence the cross-terms vanish. This concludes the proof. �We deduce the two following corollaries of Theorem C.1:Corollary C.2. De�ne Fd = fx 7! h�V ; Cxi ; V 2 Vdg: Then the following holds:EX;"Rn �f 2 star(Fd); P f2 � r	 � 1pn infh�00@prh +sd Xk�h+1 �k(K2)1A (40)and E "Rn �f 2 star(Fd); P f2 � r	 � 1pn infh�00@prh+sd Xk�h+1 �k(K2;n)1A (41)Proof. The proof is the same for the two inequalities. We will apply Theorem C.1 inthe Hilbert space HS(H). We have for any V 2 Vd, k�V kHS(H) � pd, and hence Fd �fx 7! h�; Cxi ; � 2 Bpd(HS(H))g. Since the latter set is convex and contains the origin, ittherefore also contains star(Fd). Furthermore, by Lemma 2.4, P h�; Cxi2 = h�; C2�i.We can therefore apply Theorem C.1 with � = pd, A = C2, Zi = CXi, v = �V , leadingtoE "Rn �f 2 star(Fd); P f2 � r	 � prn vuut hXi=1 1�i(C2) nXj=1 
CXj ;�i�2+pdn vuutXi�h+1 nXj=1 
CXj ;�i�2 :Integrating with respect to Z leads toEX;"Rn �f 2 star(Fd); P f2 � r	 � 1pn 0@prh+sd Xk�h+1 �k(K2)1A ;since E �hCX;�ii2� = h�i; C2�ii = �i(C2) : We obtain (40) in the same way by takingA = C2;n instead of C2. �33



Corollary C.3. De�ne eFd = nx 7! D�V? ��H?V ; CxE ; V 2 Vdo, where HV is de�ned viaLemma A.3. Then the following holds:EX;"Rn nf 2 star( eFd); P f2 � ro � 1pn infh�08<:prh+ 2sdXj>h �j(K2)9=; (42)and E "Rn nf 2 star( eFd); P f2 � ro � 1pn infh�08<:prh + 2sdXj>h �j(K2;n)9=; : (43)Proof. Note that �V? � �H?V = �HV � �V . The proof is then almost the same as forCorollary C.2, with the minor change � = 2pd since k�V ��HV k2HS(Hk) � 4d: �We �nally give the following Lemma to estimate the �xed points of sub-root functionsof the above form.Lemma C.4. If (�i)i>0 is a positive convergent series, denoting by  the function (r) := 1pn infh�08<:phr + �s Xj�h+1 �j9=; ;it holds that  is a sub-root function and the unique positive solution r� of  (r) = r=cwhere c > 0 satis�es r� � infh�08<:c2hn + 2c�pnsXj�h+1 �j9=;Proof. It is easy to see that the minimum of two sub-root functions is sub-root, hence  as the minimum of a collection of sub-root function is sub-root. Existence and uniquenessof a solution is proved by Bartlett et al. (2003a). To obtain the announced bound, we solver� � cpn nphr� + �qPj�h+1 �jo for each h � 0 (by using the fact that x � Apx + Bimplies x � A2 + 2B), and take the in�mum over h. �
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