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Abstract

We consider a stochastic overlapping generations model for a continuum of

individuals with finite lives in presence of a financial market. In this paper,

agent’s heterogeneity is given by the dates of birth of the households, on the

contrary to standard models, in which each agent has his own aversion coefficient

on his utility function. By means of the martingale arguments, we compute the

agent’s optimal consumption and portfolio. A characterization of interest rate

trajectories is given by mixed-type functional differential equations and the

stability of these trajectories is studied.

1 Introduction

We consider an OverLapping Generations (OLG) framework for a continuum of in-
dividuals in the presence of a financial market. In non-OLG models, as in [13] for
example, agent’s heterogeneity appears through the different relative risk aversion
coefficients, the individuals commonly live on a finite time interval and the economy
contains a finite number of agents. On the contrary, in OLG models, agent’s hetero-
geneity appears through the demographic structure, the individuals are characterized
by their birth date and a continuum of agents is considered. Furthermore, the econ-
omy lives on an infinite time horizon and the number of agents is unknown.

The main goal of this paper is the study of interest-rates and prices behaviors on the
different markets. Our approach is a stochastic extension of the general equilibrium for
deterministic OLG models developped in particular by Polemarchakis and Demichelis
[19] and by d’Albis and Augeraud-Véron [6]. In these cases, the intertemporal equi-
librium is the solution of a mixed type functional differential equation (MFDE). We
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show that the stochastic extension preserves this MFDE. Some results on mixed type
and retarded functional differential equations are presented in Section 2.

In Section 3, we compute the optimal consumption/investment strategy of an house-
hold. This type of problem has been widely studied by authors in the last few decades.
In two papers, Merton [17, 18] introduced a model with constant coefficients and solved
the associated Hamilton-Jacobi-Bellman equation. Bismut [3] obtained formulas for
optimal consumption using his stochastic duality theory (Bismut [2]). We also refer
to Lehoczky, Sethi and Shreve [15], Karatzas, Lehoczky and Shreve [10] and Cox and
Huang [5] for similar results.

In Section 4, we present our market equations and give conditions for existence of
steady states. These conditions recover in particular the ones of d’Albis and Augeraud-
Véron for the deterministic case. The multiple steady states we obtain are possible
under conditions relying on endowment distribution similar to those proposed by Kim
[14]. In standard stochastic equilibrium model, as in [11] ,[12] and [9], the endowment
of agents is an exogeneous process and individuals wish to hedge the variability in their
endowment processes by trading with one another. This justifies the introduction of
a financial market. Applying this setting to our stochastic overlapping generations
model leads to very complex equations. Consequently, deterministic wages are con-
sidered instead of stochastic endowment. For this reason, this model can’t be seen as
an equilibrium model.

Section 5 is dedicated to the local dynamics of the interest rates around the steady-
states we have obtained. This stability analysis gives us the behaviors of the trajec-
tories and uses the theory of MFDE, in particular the recent results of Mallet-Paret
and Verduyn-Lunel [16].

2 Preliminaries

In this section, we present the theory of MFDE we use in Section 5. Results for
advanced and retarded equations come from Mallet-Paret and Verduyn Lunel [16].
Let us consider the following linear functional differential equation of mixed type :

ẋ(t) =

∫ 1

−1

x(t + θ)dη(θ) (2.1)

where dη(θ) is a finite Lebesgue-Stieltjes measure on [-1,1].
Replacing x(t) = eλt, λ ∈ C in (2.1), we can define the characteristic function as :

∆(λ) = λ −

∫ 1

−1

eλθdη(θ). (2.2)
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In their paper, Mallet-Paret and Verduyn Lunel obtain a factorization of the charac-
teristic function (2.2) :

Ψ(λ)∆(λ) = ∆−(λ)∆+(λ) (2.3)

where ∆− and ∆+ are the characteristic functions of certain retarded and advanced
equations, namely

∆−(λ) = λ −

∫ 0

−1

eλθdη−(θ) and ∆+(λ) = λ −

∫ 1

0

eλθdη+(θ)

and where Ψ is a polynomial of degree 1 which is needed as a correction factor to
balance the growth rates on both sides of equation (2.3).
By means of this result, we can obtain a solution of (2.1) by solving the retarded
functional differential equation (RFDE) :

ẋ(t) =

∫ 0

−1

x(t + θ)dη−(θ). (2.4)

The theory of RFDE gives the following result :

Proposition 2.1 If ∆−(λ) has no zeros in the right half plane {λ|Re(λ) ≥ 0}, all
solutions of the RFDE (2.4) converge to zero exponentially as t → +∞.

For more informations on RFDE, we refer the reader to Bellman and Cooke [1], Hale
[7] and Hale and Verduyn Lunel [8].

3 The model

We consider a standard complete financial market with two assets. One of them is a
non risky asset with price per unit B(t) governed by the equation :

dB(t) = r(t)B(t)dt, B(0) = 1,

where r(t) is the interest rate. The second asset is a risky one with price process
(S(t), t ≥ 0) defined by the following stochastic differential equation :

dS(t) = µ(t)S(t)dt + σ(t)S(t)dW (t), S(0) = x,

where W is a standard, one-dimensional Brownian motion on R, defined on a probabil-
ity space (Ω,F , P ) equipped with the filtration (Ft) generated by the Brownian motion
W and augmented. In the all paper, we assume that r(·), µ(·) and σ(·) are deter-
ministic functions. The economy is a pure exchange one with a single non-perishable
good and we assume that the quantity produced in the economy is normalized to 1.
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Individual setting

We consider an agent born at time s ∈ R
+ and living for a time interval of a unit

length. During his lifetime, he receives a wage w(s, t) defined by

w(s, t) =

{

w if t ∈ [s + α, s + β]
0 otherwise

with 0 ≤ α < β ≤ 1 and w a constant. At each time t ∈ [s, s + 1], he chooses the
proportion of wealth π(s, t) he invests in the risky asset and his consumption c(s, t).

Definition 3.1 The consumption process of an individual born at time s is an {Ft}-
progressively mesurable, nonnegative process c(s, .), satisfying,

∫ s+1

s

c(s, t)dt < ∞, ∀s ∈ R
+,

and
∫ t

t−1

c(s, t)ds < ∞, ∀t ∈ R
+,

almost surely.

Denoting by X(s, t) his wealth at time t, his budget constraint reads :

dX(s, t) = [(r(t) + π(s, t)(µ(t) − r(t))X(s, t) − c(s, t) + w(s, t)]dt

+σ(t)π(s, t)X(s, t)dW (t), (3.1)

X(s, s) = 0.

Utility functions

Denote U(s) the intertemporal utility of an individual born at time s ≥ 0 and given
by :

U(s) = E

[
∫ s+1

s

e−ρ(t−s)u(c(s, t))dt

]

(3.2)

where u(·) is a utility function and ρ ≥ 0 is the discount rate.

Definition 3.2 A utility function is a concave, nondecreasing, upper semicontinuous
function u : R

∗
+ → R satisfying :

• the half-line dom(u) , {x ∈ R
∗
+ ; u(x) > −∞} is a nonempty subset of [0,∞);

• u′ is continuous, positive, and strictly decreasing on the interior of dom(u), and

u′(∞) , lim
x→∞

u′(x) = 0.
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• the Inada condition,
u′(0) , lim

x→0
u′(x) = ∞.

The strictly decreasing, continuous function u′ : (0,∞)
onto
→ (0, u′(0)) has a strictly

decreasing, continuous inverse I : (0, u′(0))
onto
→ (0,∞). We set I(y) = 0 for U ′(0) ≤

y ≤ ∞.

Definition 3.3 Let u be a utility function. The convex dual of u defined on R
∗
+ is

the function
ũ(y) , sup

x≥0
{u(x) − xy}.

The convex dual ũ is in fact the Legendre-Fenchel transform of u except for the minus
sign. It satisfies the following property which is used for the computation of the
optimal consumption.

Property 3.4 The function ũ satisfies

ũ(y) = u(I(y)) − yI(y), if y > 0. (3.3)

Proof. The proof of this property can be found in [13], Chapter 3, Lemma 4.3. �

The optimization problem

The individual program is to maximize (3.2) subject to (3.1). In the sequel, we will

consider the particular case of u(c(s, t)) =
c(s, t)1− 1

γ

1 − 1
γ

where 0 < γ < 1 stands for the

elasticity of intertemporal substitution. Using the martingale approach, it is well-
known that we can transform our constraint into the following one :

E

[
∫ s+1

s

H(u)

H(s)
c(s, u)du

]

= E

[
∫ s+1

s

H(u)

H(s)
w(s, u)du

]

where H(t) = exp

{

−

∫ t

0

r(τ) +
1

2
θ(τ)2dτ −

∫ t

0

θ(τ)dW (τ)

}

and the Sharpe ratio is

θ(t) = (µ(t) − r(t))/σ(t), see Karatzas and Shreve [13], Chapter 3, for more details.

Proposition 3.5 The optimal consumption and portfolio process pair (c∗, π∗) is given
by

c∗(s, t) = eρ(t−s)

(

H(t)

H(s)

)−γ
∫ s+1

s

B(s)
B(u)

w(s, u)du

∫ s+1

s

(

B(s)
B(u)

)1−γ

e−
γ

2
(1−γ)

R u

s
θ(τ)2dτ+γρ(u−s)du

,

π∗(s, t) =
Ψ(s, t)H(s)

σ(t)a(s, t)H(t)
+

θ(t)

σ(t)
,
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where Ψ(s, t) is the integrand in the stochastic integral representation M(s, t) =
∫ t

s
Ψ(s, u)dW (u) of the martingale

M(s, t) , E

[
∫ s+1

s

H(u)

H(s)
(c(s, u) − w(s, u))du|Ft

]

.

Proof. The proof can be found in [13], Chapter 3, Section 3.6 and 3.7. �

4 Prices and interest rates behaviors

In this section, we give a characterization of the behaviors of prices and interest rate
considering equalities on the different markets. These equalities can be seen as simpli-
fications of equilibrium equations in the sense that we represent the demand/supply
equalities in expectation.

Market equations

First of all, we introduce the equalities on the different markets.

Definition 4.1 A vector (r∗(t), θ∗(t)) is a solution of the market equations if :

1. The pair (c∗, π∗) is optimal for each individual.

2. The markets clear :

E

[
∫ t

t−1

c∗(s, t)ds

]

= 1, (4.1)

E

[
∫ t

t−1

π∗(s, t)a(s, t)ds

]

= 0, (4.2)

∫ t

t−1

w(s, t)ds = 1. (4.3)

This definition can be seen as a restriction for our model. However, this permits us
to obtain explicit solutions for prices, otherwise this is not the case. These equations
give the result bellow.

Theorem 4.2 The vector (r∗(t), θ∗(t)) is a solution of market equations if and only
if, for all t ∈ R

+ :

∫ t

t−1

e−γρ(t−s)

(

B(s)

B(t)

)−γ e
γ

2
(1+γ)

R t

s
θ∗(τ)2dτ

∫ s+1

s

B(s)
B(u)

w(s, u)du

∫ s+1

s

(

B(s)
B(u)

)1−γ

e−
γ

2
(1−γ)

R u

s
θ∗(τ)2dτ−γρ(u−s)du

ds = 1 (4.4)
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and

θ(t)

σ(t)

[

∫ t

t−1

∫ s+1

t

B(t)

B(u)
w(s, u)duds − (1 − γ)

∫ t

t−1

(

B(s)

B(t)

)−γ

e
γ

2
(1+γ)

R t

s
θ∗(τ)2dτ

×

∫ s+1

s

B(s)

B(u)
w(s, u)du

∫ s+1

t

(

B(t)
B(u)

)1−γ

e−
γ

2
(1−γ)

R u

t
θ∗(τ)2dτ−γρ(u−s)du

∫ s+1

s

(

B(s)
B(u)

)1−γ

e−
γ

2
(1−γ)

R u

s
θ∗(τ)2dτ−γρ(u−s)du

ds

]

= 0

(4.5)

where B(t) = exp

{
∫ t

0

r∗(s)ds

}

.

Moreover, equation (4.3) gives w =
1

β − α
.

Proof. The first part of this result is obtained by computing the expectations
and using the martingale property of exp{

∫ t

s
θ∗(τ)dW (τ) − 1

2

∫ t

s
θ∗(τ)2dτ}. For the

second part we use the definition of w(s, t) which is w(s, t) = w1[s+α,s+β](t) with
0 ≤ α < β ≤ 0.

�

Steady states

The goal is now to determine the conditions of existence and multiplicity of steady
states for our market equations.

Definition 4.3 A time-independent vector (r(t), θ(t)) = (r∗, θ∗) satisfying equations
(4.4) and (4.5) is called a steady state.

The first result is the following :

Lemma 4.4 For all steady state vectors (r∗, θ∗) we have,

∫ 1

0
eγr∗τ+ρτ+ γ

2
(1+γ)θ∗2τdτ

∫ 1

0
e−r∗τ+(ν−θ∗κ)τdτ

∫ 1

0
e−(1−γ)r∗τ−

γ

2
(1−γ)θ∗2τ+ρτdτ

=

∫ 1

0

eντdτ (4.6)

and at least one these equations are verified :

• θ∗ = 0,

•

∫ β

α

er∗u

∫ β

u

e−r∗τdτds +

∫ α

0

er∗u

∫ β

α

e−r∗τdτds − (1 − γ)

∫ 1

0

(

er∗u+γθ∗2u

∫ β

α

e−r∗τdτ

×

∫ 1

u
e−(1−γ)r∗τ−

γ

2
(1−γ)θ∗2τ−γρτdτ

∫ 1

0
e−(1−γ)r∗τ−

γ

2
(1−γ)θ∗2τ−γρτdτ

)

ds = 0.
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One important remark is that we obtain steady states which are the same as the
solutions which can be found in non-OLG equilibrium models.

In the sequel we focus on the case θ∗ = 0 and study solutions to equation (4.6).
To simplify the notation, we drop the star indices and define

Φ(r; α, β, γ, ρ) =

∫ 1

0
eγrs+γρsds

∫ β

α
e−rsds

(β − α)
∫ 1

0
e−(1−γ)rs+γρsds

which is obtained by replacing θ by 0 in equation (4.6). When there is no ambiguity
for the parameter values, we denote Φ(r; α, β, γρ) = Φ(r).

Property 4.5 A steady state is an r that satisfies Φ(r) = 1 if r 6= 0 and Φ′(r) = 0 if
r = 0.

Proof. For r 6= 0, the property is an immediate implication of lemma 4.4. For r = 0,
we just observe that Φ(0) = 1 and use l’Hôpital’s Rule.

�

To obtain r = 0 as a solution, we have to make some restrictions on the parameters :

Proposition 4.6 r = 0 is a steady state if and only if
{

α + β = 2
(

eγρ(γρ−1)+1
γρ(eγρ−1)

)

if ρ 6= 0

α + β = 1 if ρ = 0

Proof. The first derivative of function Φ yields :

Φ′(r) = Φ(r)

[

γ

∫ 1

0
seγrs+γρsds
∫ 1

0
eγρsds

−

∫ β

α
se−rsds

∫ β

α
e−rsds

+ (1 − γ)

∫ 1

0
se−(1−γ)rs+γρsds

∫ 1

0
e−(1−γ)rs+γρsds

]

.

Replacing r = 0 in Φ′(r), we conclude directly. �

The two following propositions present the existence and multiplicity of the steady
states for equation (4.6).

Proposition 4.7 There exists (α, β, ρ, γ) such that there is no steady-state.

Proof. We show that there is no r such that Φ(r) = 1 if α = 0 and β ∈ (0, 1 − γ)
with ρ = 0. Define Ψ(β) = Φ(r; 0, β, γ, 0). Ψ is such that

Ψ(β) =

∫ 1

0
eγrsds

∫ β

0
e−rsds

β
∫ 1

0
e−(1−γ)rsds

.

Then

Ψ′(β) =

[

r

erβ − 1
−

1

β

]

Ψ(β).
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Consequently, if r > 0 we verify that Ψ′(β) < 0 and lim
β→1−γ

Ψ(β) > 1. Conversely, if

r < 0, Ψ′(β) > 0 and lim
β→0

Ψ(β) > 1. This concludes the proof.

Notice that it can equally be shown that there is no solution r such that Φ(r) = 1 if
β = 1 and α ∈ [γ, 1). �

Proposition 4.8 There exists (α, β, ρ, γ) such that there are multiple steady-state.

Proof. Suppose β = 1 − α and ρ = 0. With Proposition 4.6, r = 0 is a steady
state. We show that there are at least two other solutions such that Φ(r) = 1 if
γ ∈ (α, 2α(1 − α)). We have

lim
r→−∞

Φ′(r)

Φ(r)
= γ − α and lim

r→+∞

Φ′(r)

Φ(r)
= α − γ.

Consequently, for γ > α
lim

r→±∞
Φ(r) = +∞.

Moreover, Φ′(0) = 0, and since

Φ′′(0) =
1

6
(γ − 2α(1 − α)),

then Φ′′(0) < 0, for γ < 2α(1 − α). �

5 Stability Analysis

In this section we are interested in the local dynamics around the steady-state r∗ = 0.
Let us define x(t) such that r(t) = r∗ + εx(t). We take ρ = 0, then from Proposition
4.6, β = 1 − α .

Lemma 5.1 Function x(·) satisfies the following MFDE :

∫ t

t−1

[

(1 − 2α)

(

γ

∫ t

s

x(u)du + (1 − γ)

∫ s+1

s

∫ u

s

x(τ)dτdu

)

−

∫ s+1−α

s+α

∫ u

s

x(τ)dτdu

]

ds = 0

(5.1)

Proof. The result is obtained replacing r(t) by r∗ + εx(t) in equation (5.1) and by
doing a Taylor expansion in the neighbourhood of ε = 0. �

In the sequel, to simplify, we take α = 0. In this case, the new equation is :

∫ t

t−1

[
∫ t

s

x(u)du −

∫ s+1

s

∫ u

s

x(τ)dτdu

]

ds = 0. (5.2)

We now apply the results presented in Section 2 for our equation (5.2).
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Stability of Equation (5.1)

The characteristic function associated to equation (5.2) is :

∆(λ) =
−λ2 + eλ − 2 + e−λ

λ3
·

First, note that the roots of this function are symmetric with respect to abscissa and
ordinate axes.
Defining ΛU = {λ ∈ C; ∆(λ) = 0 and Re(λ) > 0} and ΛS = {λ ∈ C; ∆(λ) = 0 and
Re(λ) < 0}, the following lemma holds :

Lemma 5.2 If λ ∈ ΛU ,−λ ∈ ΛS.

We use the factorization result of Mallet-Paret and Verduyn Lunel and remark that
Proposition 2.1 can be applied. So we obtain this fundamental theorem :

Theorem 5.3 Let x(t) with t ∈ [−1, 0]. There exists a unique, bounded and contin-
uous trajectory x(t), t ∈ R

+, solution to

d2x(t)

dt2
= x(t + 1) − 2x(t) + x(t − 1). (5.3)

Proof. This result is obtained by differentiating three times the first equation and
using the exponential dichotomies result of Mallet-Paret and Verduyn-Lunel [16]. �

Comments

According to our stability analysis, the mixed-type functional differential equation
theory tells us that there are oscillations around the steady states for the trajectory
x(t). Our steady state was for θ∗ = 0, so we have r∗ = µ∗. Denoting µ(t) as
µ∗ + ǫy(t), the dynamics of y(t) are associated to the ones of x(t) and we obtain the
same oscillations for y(t) as for x(t). These oscillations decrease in magnitude and
eventually disappear.

6 Conclusion

We considered a stochastic overlapping generations model in which the shock in the
economy comes only from the risky asset on the financial market. In this approach,
we obtained steady states which were very similar to the equilibrium solutions for
non-OLG models. We added asymptotic results for an exchange economy without
any terminal time and for heterogeneous agents. In this paper, we focused on the
steady-state r∗ = 0 and θ∗ = 0. The dynamics of r(·) were given by a functional
differential equation of mixed type, due to the anticipation behavior in the individual
program and to the demographic modelling. The study of these dynamics provided
replacement echoes, which are usual in models with delays as in Boucekkine, Germain
and Licandro [4].
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