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CALCULATING THE PARABOLIC CHERN CHARACTER OF A
LOCALLY ABELIAN PARABOLIC BUNDLE

CHADI HASSAN TAHER

ABSTRACT. We calculate the parabolic Chern character of a bundle with locally
abelian parabolic structure on a smooth strict normal crossings divisor, using
the definition in terms of Deligne-Mumford stacks. We obtain explicit formulas
for chy, cho and chg, and verify that these correspond to the formulas given by
Borne for ch; and Mochizuki for chs.

1. INTRODUCTION

Let X be a smooth projective variety with a strict normal crossings divisor
D=Dy+...+ D, C X. The aim of this paper is to give an explicit formula for
the parabolic Chern character of a locally abelian parabolic bundle on (X, D) in
terms of:

—the Chern character of the underlying usual vector bundle,

—the divisor components D; in the rational Chow groups of X,

—the Chern characters of the associated-graded pieces of the parabolic filtration
along the multiple intersections of the divisor components, and

—the parabolic weights.

After giving a general formula, we compute explicitly the parabolic first, second,
third parabolic Chern characters chl® (E), chf® (E) and chi " (E).

The basic idea is to use the formula given in [[S3]. However, their formula
did not make clear the contributions of the different elements listed above. In
order to adequatly treat this question, we start with a somewhat more general
framework of unweighted parabolic sheaves. These are like parabolic sheaves except
that the real parabolic weights are not specified. Instead, we consider linearly
ordered sets Y; indexing the parabolic filtrations over the components D;. Let X
denote the linearly ordered set of links or adjacent pairs in 3J;. We also call these
“risers” as Y can be thought of as a set of steps. The parabolic weights are then
considered as functions «; : X — (—1,0] € R. This division allows us to consider
separately some Chern class calculations for the unweighted structures, and then
the calculation of the parabolic Chern character using the parabolic weights.

A further difficulty stems from the fact that there are classically two different
ways to give a parabolic structure: either as a collection of sheaves included in one
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another; or by fixing a bundle E (typically the zero-weight sheaf) plus a collection
of filtrations of F|p,. The formula of [[S] is expressed in terms of the collection
of sheaves, whereas we look for a formula involving the filtrations. Thus, our first
task is to investigate the relationship between these two points of view.

An important axiom concerning the parabolic structures considered here, is that
they should be locally abelian. This means that they should locally be direct sums
of parabolic line bundles. It is a condition on the simultaneous intersection of three
or more filtrations; up to points where only two divisor components intersect, the
condition is automatic. This condition has been considered by a number of authors
(Borne [Bo]] [BoZ], Mochizuki [MoZ)], Iyer-Simpson [[S]]], Steer-Wren [Sr-Wi] and
others) and is necessary for applying the formula of [[SJ].

An unweighted parabolic sheaf consists then of a collection of sheaves Ej, .
with o; € ¥; on X, whereas an unweighted parabolic structure given by filtrations
consists of a bundle £ on X together with filtrations . C E|p, of the restrictions
to the divisor components. In the locally abelian case, these may be related by a
long exact sequence ([):

0— Eoy0p = £ — EB(&)*(LZI EB(SZJ) (L o‘,,aj) — ... = Lo, 0, —0.
i=1

1<J

Where L?i’l';:ffaiq denote the quotient sheaves supported on intersections of the
divisors D;, N...N D;,

Using this long exact sequence we get a formula (f) for the Chern characters of
E,, .. -, in terms of the Chern character of sheaves supported on intersection of
the divisors D;, N ... N D;, of the form:

RV (B0 =V (E)+ 3 (-1 30 ch (&Ll ).

i1 <i2<...<iq

The notion of parabolic weight function is then introduced, and the main work
of this paper begins: we obtain the Chern characters for the E,, . ,, for any a; €
(—1,0]; these are then put into the formula of [[SZ], and the result is computed.
This computation requires some combinatorial manipulations with the linearly
ordered sets Y; notably the associated sets of risers ¥, in the ordering. It yields

the following formula (B.4) of Theorem [3.4:
chP " (E) = chVY(E)eP+
D;, (1— e (@i (Aij)-i-l)Dij)

. q
P e ¥ % s ) I
g=1 ‘

11<ia<.. <Zq)\ GE’ 7j=1
g

In this formula, the associated-graded sheaves corresponding to the multiple fil-
trations on intersections of divisor components Dy = D;, N ---N D;, are denoted
by Gr“’ " These are sheaves on D; but are then considered as sheaves on
lI
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X by the inclusion &, : Dy < X. The Chern character ch (&1*(Gr§\1 """ i“)\ )) is

.....

the Chern character of the coherent sheaf on X. This is not satisfactory, since we
..... iq

want a formula involving the Chern characters of the Gr/\ ..... \,, on Dj. Therefore
in §B.J we use the Grothendieck-Riemann-Roch theorem to iilterchange ch and
1.4, leading to the introduction of Todd classes of the normal bundles of the Dj.
Another difficulty is the factor of e” multiplying the term ch"*(E); we would like
to consider the parabolic Chern class as a perturbation of the Chern class of the
usual vector bundle ch"’(E). Using the same formula for the case of trivial par-
abolic weights, which must give back chV?(E) as an answer, allows us to rewrite
the difference between ch”®(E) and ch”?(E)e” in a way compatible with the rest
of the formula. After these manipulations the formula becomes (B.14)) of Theorem
5. 14:
ch™"(E) = ch"*(E) —

Sy Y Y H<1‘6 ”)@,* (chGriin ) +

q=1 11 <i2<.. <Zq>\ EE’ Jj=1

3

n 4 _ o (g, 0i+1) Dy o
e?y (=0 > > ]l [(1 ) )] Ein (ch(Gr;’l‘;;f;iq)).

g=1 i1<iz<...<ig Ay, €5 j=1 tj
J

Finally, we would like to compute explicitly the terms chl (E), chl*"(E) and
chf® (E). For these, we expand the different terms

q 1 _ e—(aij ()\ZJ )+1>D1J q 1 _ e—Dij
11 D, {5
j=1 tj j=1 j

in low-degree monomials of D;;, and then expand the whole formula dividing the
terms up according to codimension. Denoting by S := {1,...,n} the set of indices
for divisor components, we get the following formulae:

. chi™(E) = rank(FE).[X]

.ch’"(E) = chY*(E) — Z Z ail()\il).rank:(Grilil).[Dil]

11ES Niy ez’il

LT (E) = B = 303 ana)€) (4 G)

1€S Ay €Z;1



+ = Z Z Aiy rcmk(Grf\l ).[Dy,]?

11ES Ny, €,

)Y D an()an(Ay)rank, (Gri® ).D,).
11<i2 X, 62’ pelrr(D;;ND;y)

!/
i 6212

For chi®"(E), see Section 5.

The formula for ch?* (E) is well-known (Seshadri et al) and, in terms of the
definition of Chern classes using Deligne-Mumford stacks, it was shown by Borne
in [Bol]. The formula for chy® (E) was given by Mochizuki in [MoZ], and also
stated as a definition by Panov [Pd]. In both cases these coincide with our result
(see the discussion on page 7). As far as we know, no similar formula for chi " (E)
has appeared in the literature.

Mochizuki defines the Chern classes using the curvature of an adapted metric
and obtains his formula as a result of a difficult curvature calculation. It should be
noted that our formula concerns the classes defined via Deligne-Mumford stacks in
the rational Chow groups of X whereas Mochizuki’s definition involving curvature
can only define a class in cohomology. The identity of the two formulas shows that
the curvature definition and the stack definition give the same result up to degree
2. Of course they must give the same result in general: to prove this for the higher
Chern classes this is an interesting question for further study.

A lot of thanks to my professor Carlos Simpson for his help with this work.

2. UNWEIGHTED PARABOLIC STRUCTURES

2.1. Index sets. Let X be a smooth projective variety over an algebraically closed
field of characteristic zero and let D be a strict normal crossings divisor on X.
Write D = Dy + ...+ D,, where D; are the irreducible smooth components, meeting
transversally. We sometimes denote by & := {1,...,n} the set of indices for
components of the divisor D.

Definition 2.1. Fori=1,...,n, let ¥; be finite linear ordered sets with notations
n < ...<o <o <o" <..< 7 wheren; is the smallest element of ¥; and T; the
gratest element of ;.

Let 33 be the connection between the o’s i.e

¥ ={(0,0"), s.t 0 <o and there exist no o" with o < o" < o'}.

Consider the tread functions m, : ¥ — ¥, and m_ : ¥, — 3, if A = (0,0') € &}
then o = m_(\),0’ = m,(X\). In the other direction, consider the riser functions
C,: % —{n} =X and C_ : ¥; — {n;} — X, such that C,(0) = (0,0") where
o' > o the next element and C_(o) = (0”,0) where " < o the next smaller
element.



One can think of the elements of 3; as the steps or “treads” of a staircase, with
n; and 7; the lower and upper landings; then Y is the set of risers between stairs.
The tread function sends a riser to the upper and lower treads, while the riser
functions send a tread to the upper and lower risers. The upper riser of 7; and the
lower riser of 7; are undefined.

2.2. Two approaches.

Definition 2.2. An unweighted parabolic sheaf E. on (X, D) is a collection of
sheaves E, indezed by multi-indices o = (o1, ...,0,) with o; € X;, together with
inclustons of sheaves

EU —> EU/

whenever o; < o, (a condition which we write as o < ¢’ in what follows), subject
to the following hypothesis:

(1) EOl,---, Tim1s Miy TitlysOn EOl,---, Oi—1, Tiy Titlsemes On(_Di)-
Construction 2.3.

We have inclusions of sheaves

EO'17...7O' - E

—
n T1,...,Ti_l,Ui,Ti+1,...,Tn ETl,...,Tn'

Consider the exact sequence

00— FE

T15:-3Ti—1,04,Tit15--+3Tn ETI,---yTn ETI7---7Tn/ETl7---70'7;7"'77—77, 07

TLys04s5--Tn ETl,---,Tn

E

TLyeeosTiseenyTn

and put FUZZ = C

(2)

= F |p, then we get the exact sequence

E

Ty T

E’T'l7---77'n/E7'17---777i7---77'n

0— EUl,---,Un — Eq—h...,ﬂ'n ” @Eﬂj,---,Tn/ETl7-'-70'1'7...77'77, = @E /E
i i T1yeeesT45ee0sTm T1yeeesNiyeesTn

which can be written as

%
O E0'1,...,O'n E7-17"'7T7’L @E |Dz /FO',
7

Here, to E. we associate the usual vector bundle ¥ := E . .

Definition 2.4. Let E be a locally free sheaf on X suppose we have a filtration
denoted by F' = {F, C E |p,,;0 € %;} of E |p, where F, =0 and F; = E
with the remaining terms being saturated subsheaves

D;

0=F, CF.C..CF, =E]|p,

for each i =1,....,n. We call this a parabolic structure given by filtrations.
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The construction allows us to pass from an unweighted parabolic sheaf, to
a parabolic structure given by filtrations. Suppose we are given an unweighted
parabolic sheaf E, when all the component sheaves E,, ., are vector bundles.
Set = FE, . and

E |Di: ETlv---aTn/Ele---vTi—l777i7---=7'n'

The image of E;, 1 0.0 i E |p, is a subsheaf Fg, and we assume that it
is a saturated subbundle. This gives a parabolic structure given by filtrations.
We can also go in the opposite direction.

Construction 2.5.

Suppose (FE,{F'}) is a parabolic structure given by filtrations. Consider the
kernel sheaves

i
0 ET17---,0i7---,Tn ETlv---,’Tn E |Di /Foia
define a collection of sheaves

E0'17~~~7Un = ﬂ(Ele---voiw"yTn) C Ele---an
%

with has the property that
E

O15--+,0i—1515,04415---,0n ~ 015-+,0i—1,Ti3,04415--+,0n

(=Ds).

Thus we get an unweighted parabolic sheaf.

2.3. Locally abelian condition. An unweighted parabolic line bundle is an un-
weighted parabolic sheaf F' such that all the F, are line bundles. An important
class of examples is obtained as follows: if ¢’ is a multiindex consisting of o} € X!
then we can define an unweighted parabolic line bundle denoted

(3) F :=Ox(d)
by setting

Fm,...,on = OX(Z %’Di)
=1

where each v; is equal to —1 or 0; with 7; = —1 when 0; < o, and 7; = 0 when

o; > o.. Note here that the relations <, > are defined between treads o; and risers
/
O-Z‘-

On the other hand, if F is a locally -free sheaf on X then it may be considered as

an unweighted parabolic sheaf (we say with trivial parabolic structure) by setting

E. to be E(Z ~iD;) for ; = 0 if 0; = 7; and ~; = —1 otherwise.

i=1



Definition 2.6. Suppose E is a vector bundle on X and o' is a multiindex con-
sisting of o, € X%, we can define the unweighted parabolic bundle as follows:

E(0') == E® Ox(d).

Lemma 2.7. Any unweighted parabolic line bundle has the form L(c) for some o’
and L a line bundle on X.

Definition 2.8. An unweighted parabolic sheaf E., or unweighted parabolic struc-
ture given by filtrations (E, F7), is called locally abelian parabolic bundle if in
a Zariski neighbourhood of any point x € X there is an isomorphism between F'
and a direct sum of unweighted parabolic line bundles.

Lemma 2.9. Suppose E,, . ., define a locally abelian parabolic bundle on X with
respect to (Dy,...,D,,). Let E = E. . , which is a sheaf on X. Then E, comes
from the construction [2.] as above using unique filtrations F;l of E |p, and we
have the follwing properties:

1) the E,, . o, are locally free;

2) for each q and collection of indices (iy, ..., 1,) at each point in the q-fold inter-
section p € D; N...ND;, the filtrations Fu . F'of E, admit a common splitting,
hence the associated-graded

Grﬂ”...Gqu(Ep)

1s independent of the order in which it is taken;
3) the functions

i Fiq
Ptk Gry . .Gr; " (E))
are locally constant functions of P on the multiple intersections D; N ... N D;, .
Borne [Bo]]| shows:

Theorem 2.10. Suppose given a parabolic structure which is a collection of sheaves
Es,, .. o, obtained from filtrations on bundle E as above. If the sheaves satisfy
condition 1), or if the filtrations satisfy 2) and 3) of the previous lemma, then the
parabolic structure is a locally abelian parabolic bundle on (X, D).

Now we have two directions:

1- If we have a subsheaf structure
E<_D> = Enly"'ynn g EO'l,...,O'n g Ele"'yTn = E
we can define the filtration structures

7



as in Construction by using the exact sequence (B). Then, to calculate the
Chern character of E,, ., in terms of filtration structure, we must be find an
extension for the left exact sequence (f]) to a long exact sequence.

2- Vice versa.

Suppose we have a locally abelian parabolic structure {F*} given by filtrations, on
a vector bundle £ with filtrations

0=F, CF.C..CF =E

D; -
Then for n; < 0; < 7; define the quotient sheaves supported on D;
i . E |Di

o; " F;
K2

and the parabolic structure E, is given by

(4) Bor,on = Ker(E — (D L),

i=1

More generally define a family of multi-index quotient sheaves by

E|p
1 7
= on D
g; ; 7
F
; E |p,np,
3 _ t J I
005 T 7 on DZ']. = Dz N D]
FUZ' Dz’j + Fo'j Di].
E |pin.np
Lo,...00: 1elZn  on DN Dy N ...N D,,.

T FL 4.+ Fr

In these notations we have n; < o; <73, fori=1,...,n.

If we consider quotient sheaves as corresponding to linear subspaces of the dual
projective bundle associated to F, then the multiple quotients above are multiple
intersections of the L . The formula (f) extends to a Koszul-style resolution of

the component sheaves of the parabolic structure.
8



Lemma 2.11. Suppose that the filtrations give a locally abelian parabolic structure,
in particular they satisfy the conditions of Lemma [2.9. Then for any n; < o; < 7;
the following sequence is well defined and exact over X :

(5) )
0— E01,...,0n — FE— @(fz)*(Lfn) - @<§i7j)*<Lgf,aj) .. LO’I*’ann — 0.
i=1

1<j

Where E is a sheaf over X, @(Lfn) are a sheaves over Dj, (Lf,faj) are sheaves
i i<j

over D; ; = D; N Dj, etc.; & denotes the closed immersion D; — X, and

(&)s : coh(D;) — coh(X) denotes the associated Gysin map. The general term is

a sum over I = (iy,....i,), where L' are sheaves over Dy = D;; N ...N D;, pushed

forward by the Gysin map (&1)« : coh(Dy) — coh(X).

Proof. The proof in [[SZ is modified to cover the unweighted case. The maps in
the exact sequence are obtained from the quotient structures of the terms with
alternating signs like in the Cech complex. We just have to prove exactness. This
a local question. By the locally abelian condition, we may assume that F with its
filtrations is a direct sum of rank one pieces. The formation of the sequence, and
its exactness, are compatible with direct sums. Therefore we may assume that F
has rank one, and in fact £ = Ox.

In the case Ox(0') as in (), the vector bundle FE is the trivial bundle and the
filtration steps are either 0 or all of Op,. In particular, there is 7; < o} < 7; such
that F! = Op, for j > o} and F; =0 for j < o]. Then

Lt = O

Tiq s Tig i17"'7Diq

if 0;;, < agj for all j = 1,...,q and the quotient is zero otherwise. The sequence
is defined for each multiindex oy, ...,0,. Up to reordering the coordinates which
doesn’t affect the proof, we may assume that there is p € [0,n] such that o; < o/
for i < p but o; > o} for i > p. In this case, the quotient is nonzero only when
i, ..., 1 < p. Furthermore,

EUl,-..,O'n = O(_Dl — ... Dp>

In local coordinates, the divisors Dy, ..., D, are coordinate divisors. Everything is
constant in the other coordinate directions which we may ignore. The complex in
question becomes

O(—Dl — .. Dp) — O — EBlSiSPODi — @ISiSjSpoDiﬂDj — ... ODlﬂ__ﬂDp.

Etale locally, this is exactly the same as the exterior tensor product of p copies of
the resolution of Oy1(—D) on the affine line A' with divisor D corresponding to
the origin,
OAl(—D) - OAl — OD — 0.
9



In particular, the exterior tensor product complex is exact except at the beginning
where it resolves O(—D; — ... — D,,) as required. O

Using the resolution of the above lemma we can compute the Chern character
of E,, ., in terms of the Chern character of sheaves supported on intersection of
the divisors D; N, ..., D;,. This gives us

(6)  hY™(Epy,.) = chV(E +Z > (Gl )

11<12<...<iq

Definition 2.12. Let I = (iy,...,3,) for 1 < i3 < ... < i, < n and analyse the
quotient Lf,li’l“,'_f?oiq along the multiple intersection D;, .

has q filtrations Fgﬂ |D;, b, indexzed by o, € 3y, leadmg to a multzple assoczated—
ADi by,
graded defined as follows. put

Flitle . F“ n...N Fil,] C E|Di1
Tiq

TiqsesTig

Where aij S E Fil’.“’iq - 0 Cm,d FZI’ g = E

vy’ Miqs-5Tig Ti1sTig

E, if oy < oy and oy, < oy . Then for a multiindex of risers A, € Zij,

g0 1q

(AR
Dy, WE have FU”, o, C

i17---7iq
il,...,iq m+()\i1)7"'7m+()\iq)

Aigsnsdig q U1500y0q
j=1 m+()\i1)7"'7m+(>\ik)_17"'7m+()\iq)

where the indices in the denominator are almost all m4 (A;;) but one m (N;, ) — 1.
If the parabolic structure is locally abelian then the filtrations admit a common
spliting and we have

i1,..y0q FY o~ F?2 qu
Gr). Ny = Gy, Gry, .Gry (E|Di1

LSRN

Lemma 2.13. Let U be a bundle over Y, and FY,Fy, ..., FY are the filtrations such
that 3 common local bases. Then in group of Grothendieck we have

Grg,Grp, commute, and U = Grp,Grg,...Grg, (U).

Proof. This may be proven by an inductive argument. O

Theorem 2.14. Suppose given a locally abelian parabolic bundle. Locally over Dy
in the Zariski topology 3 a finite set B(N;, ..., \i,) such that we have a base over

{6A117~~~7>\¢q; b} i ezéj

bEﬁ(M‘l ~~~~~ Xig)
10



and for the filtrations Fjll“(f, admit a base of the form
i19:+0iqg

{6>\i7 A b})\ j<oi; iff m ;)0
1 +
and
{6>\i17---7>\iq; b}Aij<2;j
17 ) q

A

form a base of Gr) y

17 )

Proof. By the locally abelian condition, locally we may assume that the parabolic
bundle is a direct sum of parabolic line bundles. For these, the bases have either
zero or one elements and we can verify which are nonempty in terms of conditions
on the o;. O

Corollary 2.15. In the Grothendieck group of sheaves on D; N ...N D;, , we have
an equivalence

z A (51
017 . (é E : GT)\ o ((l)
110 % g AR 7

<v:J'Zl

A <0'Zq

and

& (L, ) ~ o Z G (b)
iq</\iq

Now apply the part (b) of the above corollary in equation (ff) we get a formula
for the Chern character of E,, . in terms of the associated graded as follows :

(7) A (B = () + 3 0(=1)7 30 30 e (&l ).
q=1 11 <i2<...<iq i <Xig

Jiq<)‘iq
3. WEIGHTED PARABOLIC STRUCTURES

The next step is to introduce the notion of weight function, providing a real
number «(i)();) for each )\; € XI. The weights naturally go with the “risers” of
the linearly ordered sets, which is why we introduced the sets X above.

We prolong »; by adding its Z-translates. Define

O, =25 =L X5, ~
t (k,7;) ~ (k+1,n), and
O =7 x 3.
Prolong the functions
C.,C 2% —7ZxY,
by setting C(k,7) = (k+ 1,C4(n)), and C_(k,n) = (k — 1,C_(7)).
11



For any unweighted parabolic sheaf we prolong the notation of E,,
sheaves E,, ., defined for all p; = (k;,0;) € Z.%; as follows: define

o, TO

-----

.....

This is well defined modulo the equivalence relation defining ®;, because of the
condition ([J). This gives the property

Egitin,ontln = By (llD1 + ..+ 1,Dy,)
where [; € Z.
Definition 3.1. A weight function is a collection of functions
a(i): 3 — (-1,0) C R
which are increasing, i.e. a(i)(N) < a(i)(X) when X < .

To transform from unweighted parabolic structure — weighted parabolic struc-
ture we must extend the funchtion a(i) to all of Z.3; by :

a(i) : 3 — (-1,0] — a(i): &, — R
st a(i)(k,0) =k+ a(i)(o).

Now define intervals by :
Int (a(i), 03) = (a(i)C-(0i), (i) Cy(04)]

and

Int (a(i), i) = (a(i)C- (@), (1) Cy.(i)]

weighted parabolic sheaf and a weight function. Consider the sheaves Eg,
every 3; € R", given 3, ..., 3, Vi 3! ¢; € @, such that §; € Int(a(i),p;), then we
define

This defines a parabolic sheaf in the usual sense [Ma-Yd] [Mo2] [Bo?] [[S7.

Theorem 3.2. Suppose E is a weighted parabolic bundle on X with respect to
Dy, ..., D,,. Then we have the following formula for the Chern character of E :

B fﬁllzo fﬁlnzo e_zﬁiDiCth<Eﬁl ..... gn)
- 1 1 . :
S Jamo €

Proof. See [[S3] (15), p. 35. O
12
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In this formula note the exponentials of real combinations of divisors are in-
terpreted as formal polynomials. The power series for the exponential terminates
because the product structure of C H>%(X) is nilpotent.

If the weights are real, then we need the integrals as in the formula, and the result
is in CH(X) ®zR. If the weights are rational, then the integrals may be replaced
by sums as in [[S3, Theorem 5.8]. In this case the answer lies in CH (X ) ®z Q. In
what follows, if we were to replace the integrals by corresponding sums the answer
would come out the same (a factor in the numerator depending on the denominator
of the rational weights which are used, will cancel out with the same factor in the
numerator). In order to simplify notation we keep to the integral formula.

Let ¢; = (0; + 1) then

ChPCLT(E) — Z fﬁlelnt(a(l)#pl)m(ovl] fﬁnefnt(a(n),cpn)ﬂ(o,l}

1 1
—33;D;
PLpon €D X .. XDy, Jo - Jo €77

Remark 1. Int(a(i),¢;) N (0,1] = 0 if ¢; € im ({1} x ;) — @, i.e just if
w; =0;+ 1 foro; € 3.

Definition 3.3. Let p; = 0; + 1, for o; € ¥;. Define domains by
Dom(a(i), 0;) := Int(a(i),o; + 1) N (0, 1],

then
Par fDom(a(l),Ul) fDom(a(n),on) e_zﬁiDiCth(Eipl,...,gpn)
ch”™ " (E) = Z i - |
01...0n,EX1 X ... X2y, fO fO e il;
We have
E@lw#ﬂn = Eal,...,o'n<D1 + ...+ Dn)
then
Cth<E4P17--#Pn> = Ch’Vb<Eo'l,...,gn)eD1+m+Dn
therefore

chP"(E) = ! X
1 L —%8,D;
Jo - fy 0D

at(o1)+1 at(o2)+1 oy (on)+1
> B ([ / - e~ (EAD)+EDi g
B B

01O EDL X XS 1=a_(01)+1 o=a_(02)+1 Bn=0a_(on)+1

for i =1, ...,n, where
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lf O; = T;

_ Ja(@)(Ci(ey)) or,
ay(o;) = {O !

1
chFor(B) = < ) X
Jo o Jy €550

ay(o1)+1 ay(o2)+1 oy (on)+1
> )| yi -
Bi=a_(o1)+1 JPa=a_(o2)+1 Brn=a_(on)+1

01...0nEX1 X...X2p

Take v; = 3; — 1 for e = 1,...,n then

1
ChPaT(E) B <f1 fl ezﬁiDi> x
0 Jo

a+(o1) oy (02)
Z Cth(Em ..... Un) / 6_71D1d71'/ 6—72D2d72 /
v ) y

1=a_ (01 a=a—(02)

01...0nEXNTX..X2Dn

and we have

n

g0

q=1 11<12<...<iq T4 <Aiy
Jiq<)‘iq

1
Par _
ch <E) o (fol fOl eEﬁiDi) x

14

......

e~ S(Bi—1)D; dﬁ) _

e_VnDnd,yn>
)



n

> @ Y d(aaon,) | X

01...0n,EX1X...X2n q=1 11 <i2<...<ig i) <Aj;

O'iq<>\iq

ay(o1) ay(o2) ay(on)
/ e_“Dldyl/ e 2Dz, / e Pndy,
y=a—(o1) ye=a—(02) Yn=0—(on)

:< chV¥(E) )X
Jo o Jy 72501

CM+(0’1) a+(02) CM+(0’n
(27 ) (5 o) (2 [ o)
ez Y m=a—(o1) oaexy Y 12=a—(02) On€Xy ¥ InT-

1 - i
+ — mn) : Z(—l)q Z Z ch (gl*(Gr;;P”/\ )) X
Jo - Jo €70 g=1 i1 <i2 <. <ig Aip i

ay(o1) ay(o2) b
/ 6*71D1d,yl . / e 2 Qd,yQ
01621 M=a—(o1) 02622 Ye=a—(o2)
o1<X\ if 1€l oo<Xg if 2€l
E / 6 q/"Dnd/Yn
on€Xn n=Q—

on<An if nel

which can be written as
ch™(E)= A+ B

where

aq(o1) at(o2) +(on)
L) E L w%)-@/ o)
01€X, n=a—(o1) 5, Y V2= (02) On€S, ¥ In=%— (on)

15



b e—aD
One can note that / ePPdp=-—— =P — L —p¢
where td is the Todd class.

ot (o3) 0

We have Z / e Pidry; = / e iPidy, for i = 1,2,...,n and put § =~
oen; ) ri=a—(oi) -1

as integration variable

then

WY E 0 0 0
A= - ¢ 1( ) ) (/ e'“Dldfyl) . (/ 672D2d72> </ e'Y”D"dfyn)
fo "'fo e~ 2D ~1 ~1 -1

. fi)l eile d71 fi)l 6772D2d72 fi)l eiﬂmDn dfyn Cth(E>
fol e~ D1 d’Yl ) fol e—12D2 d’}/z fol e~ InDn d’}/n .

where
0 —iDi . —D. ) .
A J_, e Pidy; _e Di 7 _ ePi(1 — e D) _ D
) fol e_,yiDid,yi 1— 6—Di 1— G_Di
for i=1,2,...n
therefore

A =chVP(E).ePr. el .ePr = chVP(E)eP
where D =D+ D3+ ...+ D,

and
n
B = Y E:ch(g“ """ ,))x
f f e_zﬁz i) |- B = — v zq
q:l 11 <i2<...<ig Aig
iq
ay(o1) ay(o2)
§ / e*‘ﬂDld,yl . / 6 ‘/zDzd,yQ
og1€X] ’lea—(gl) o 622 2=
o1<A if 1€l o'2<>\2 if 2€l

> / ey,

on€Xn (Jn
on<An if nel

16



The sums of integrals can be expressed as single integrals; if i ¢ I, set formally
a;(A;) := 0 in the following expression:

o [(f L e P (J7, e ). ()2 e%Dndw] )
(fo e ﬁﬂDldel)(f e 72D2d’72) (fol eiﬁmDnd’Vn>

Syt Y Y (e x

-----
q=1 11 <i2<.. <zq>\ EE

(f2 e Prdm) (2] e Podn)... ([, e Prdy,) "
(J°, e Prdy)( [, e Padys)...([°) e~ Prdry,)

fal()‘l) -nD1g fOQ()‘?) —72D2dfy) ( O‘”(A”) —VnDndfyn)
(% e*'ﬂDldm J(J2, enPdys).([1) e Pndy,)

n q f J()‘ ) —pDJdp
SO YD SRS DRI CATE W) | [ 1 ]
qg=1 11 <12 <...<lg \; EE j=1 f 1 ] dp
=eP) (—1) Z Z ch (51,*(6174&’17;_;%)) H DT
q=1 i1<ia<...<iq Aijezgj j=1
n q D;. 7(a¢v()\¢,)+1)Di.
Db e iy e (l—e ™\ i)
=e”. ) (-1) Z Z ch (5[,*(GT>\1-1,...:1>\1-(1)> H [ I
qg=1 i1 <ig<.. <zq>\ EE 7j=1

therefore we have proven the following

Theorem 3.4.

(9)
n q ij —(ei; (Aij)+1) Dy
20 D(CS VD DI SNC (SN (e vn )H[e s : )].

q=1 i1 <iz<...<ig Aj; ez Jj=1

17



3.1. Riemann-Roch theorem. The next step is to use Riemann-Roch theory
to interchange ch and &;,.. Let K°D; denote the Grothendieck group of vector
bundles(locally free sheaves) on D;. Each vector bundle E determines an element,
denoted [E], in K°D;. K°Dy is the free abelian group on the set of isomorphism
classes of vector bundles, modulo the relations

[E] = [ET+[E"]

whenever E' is a subbundle of a vector bundle F with quotient bundle E” = E/E'.
The tensor product makes K°D; a ring: [E|.[F] = [E ® F).
Definition 3.5. For any morphism & © X — Dy there is an induced homomor-
phism

& K°Dy — K°X,
taking [E] to [T E], where 7 E is the pull-back bundle.

The Grothendieck group of coherent sheaves on D;, denoted by K, Dy, is defined
to be the free abelian group on the isomorphism class [F] of coherent sheaves on
Dy, modulo the relaions

F] = [F1+[F]

for each exact sequence

0—-F - F—=F"—=0

of coherent sheaves on D;. Tensor product makes K,D; a K°D;-module:

K°D;® K,Dy — K,Dy,
[E].[F] = [E ®0,, F.

Definition 3.6. For any proper morphism &y : D — X, there is a homomorphism

f[,* : KOD[ — KOX

which, takes [F] to » (—1)'[R'&; F].where R'¢; F is Grothendieck higher direct
image sheaf, the shécf]g associated to the presheaf

U— H'(&'(U),F)
on X.

It is a basic fact the R'¢ 1«F are coherent when F is coherent and &; is proper.
The fact that this push-forward &;, is well-defined on K, Dy results from the long

excat cohomology sequence for the R'¢ Ixe
18



Proposition 3.7. The push-forward and pull-back are related by the usual projec-
tion formula:

Erx(€7a.0) = a.(§1.0)

for & D — X proper, a € K°X, b e K,Dy.
Theorem 3.8. On any Dy there is a canonical duality homomorphism
KOD[ — KOD[

which takes a vector bundle to its sheaf of sections. When Dy is non-singular, this
duality map is an isomorphism.

Definition 3.9. Consider Dy which are smooth over a given ground field C. For
such Dy we identify K°Dy and K,Dy, and write simply K(Dy). There is a homo-
morphism, called the Chern character

ch: K(D[) — A(D])Q

determined by the following properties:
i) ch is a homomorphism of rings;
i) if & X — Dy, cho & =& och;
iii) if 1 is a line bundle on Dy, ch[D;] = exp(ci(1)) = Z(l/i!)cl(l)i

i>0

Theorem 3.10. Let &y : Dy — X be a smooth projective morphism of non-singular
quasi-projective varieties. Then for any Gri € K(D;) we have

1. (ch(Grili’l';:fqu).td(TD1)> = td(Tx).ch (&’*<GT§1{;:T?A- >>
in A(X)® Q. where Td(X) =td(Tx) € A(X)q is the relative tangent sheaf of &;.
See [Fu, pp 286-287].

Theorem 3.11. If Dy is a non-singular variety set

Td(D[) = td(TDI) - A(D])Q
then

if & Dy — X, 1s a closed imbedding of codimension q, and Dy is the intersection

of q Cartier divisors D;,, ..., D;, on X, then
g 1—eDis
Td(D;) = & Td(X).]Hl (T)] .

19



See [Ed, p. 293].

So
&1 (ch(Gri s, ) d(Tp,)) = 1.

......

i1y 1 /1 _ o—Dij
eh(Griin Ve [ Ta(X). ] (T)

4q _ —Di
- Td(X).H{l De‘ J] &*(ch(GTg’l’;jff&iq)>
=1 &
Corollary 3.12.
. _ ,—Di
ch(@(Griﬁ";:i&q))IH[l = ] &1 (en(Grim )
=1 Y
q Di. (. Di.
=H[<€ e U)]-&,* (ch(Grim )
j=1 K

Theorem 3.13. Apply the above corollary in the equation (B.4) of Theorem
we get

chP* (E) = chV*(E)eP +
(10)

- 1 1 — e (o, (i)+1) Dy o
S DD SN | [( D )] L (ch(Grgli’l';:jfgiq)> :

g=1 i1 <ig<...<ig Ay €Y j=1 v
J

Now return to the equation ([§) but apply it to the bottom value of o; = ;. Recall

-----

we get

VU(E(-D)) = kU (B)+ 3 (=17 D0 D e (GG ).
q=1 11<12<...<iq )\ij eZ;j
—

(1) h"™(B) = b (B(-D) = 3 (-1)" > 3 eh (&G, ).

-----
q=1 11<12<...<iq )\ijEE;J_

20



Put equation ([I]) in (B.I3) and use Corollary B.12, to get
ch?*"(E) = ch"* (E(-D)) e —

Y E I Sy H<1‘6 ”)@,* (ch(@ris, ) +

q=1 i1 <ta<.. <zq>\ EE’ j=1

3

D o g 1 — e (i (i))+1)Di; i
O ICHND RPN | B, Sne (ch(Gr,)
q=1 11 <12<...<iq )‘ij EZ;J_ j=1 4
We have ch"? (E(—D))e” = chV*(E), therefore:

Theorem 3.14.
ch™"(E) = ch"*(E) —

2P IS H( ) 51*<ch(G ,,Zslq)> .
q=1 i1 <ip<...<ig Ay, ez/ j=1
(12)

ESYSIID IS H[(l‘e D())>] & (ehtens, ).

g=1 11<i2<.. <zq)\ exl j=1 K
5

4. COMPUTATION OF PARABOLIC CHERN CHARACTERS OF A LOCALLY
ABELIAN PARABOLIC BUNDLE EF IN CODIMENSION ONE AND TWO
ch{"(E), chy" (E)

Proposition 4.1. For an n-dimensional, non singular variety Y , set
APY = A, Y,

where p denotes the codimension, and n — p the dimension. With this indexing by
codimension, the product r @ y — x.y, reads

APY @ ATY —s APFY,

i.e, the degrees add. Let 1 € A°Y denote the class corresponding to [Y] in A,Y,
and set AY = @A”Y.
21



Return to the equation (B.14)

ch"*"(E) = chV*(E)
n q 1 — e—Dij ) '
D i1yeesig
ey Y S () 6 (i) +
q=1 /[/1<22<---</[/q)\'_62l. j=1 3J
e”. ) (=1) Z Z H L1 (Ch(Gr)\li;.;:?.:Z)\iq)>
q=1 11 <i2<...<iq ,\i].ez j=1 Zj
take
(ai. (A, )+1)2 (i, (N )+1)3
1—e¢ (O‘ZJ(AZJ)H)DZJ B 1- (1 (O‘ij (Aij) + ]')Dij + — 2J DzQJ : 6] D?j +
Dij B Dij
= (a;;(N\;,) +1) — (0, () + 1) L+ (a5, 0) + 1) _
1 45 2 15 6 i
Let Grj be a vector bundles over D; for I = (i1, ...,i,) and A = (X, ..., \;,) with

rank r, we have

€10 (ch(GTY)) = &ru (chg (Gr3) + chy" (Gr3)
+chd (Grl) + chd (Grl) + ..) /X
= &1 (chg"(GY)) /X + & (ch1(GrY)) /X
+ra (chY(GrY)) /X + &rs (eh(GT)) /X + ..
SO
ch(Grl) = (rank(Grl))/D; = Z rank,(Gry).[D,)/D;
pelrr(Dy)

in AO(D]) AdszI D[ @AO = @Q[Dp]

where D; = U D,, and Irr(Dy) denotes the set of irreducible components of

pelrr(Dy)
l)i1 N l)i2 n..N Diq then

3 Z rank,(Grl).[D,)/D; | = Z rank,(Gri).[D,]/X | € AY(X)

pelrr(Dy) pelrr(Dy)

22



which is of codimension ¢,

Ch?l (GTA) = Cl (GTA) € AI(D[) AdimD171<Dl> then
(&1s (01 (Gry)) /X) € A"™(X) which is of codimension ¢ + 1,

chP(Grl) = [(C?I)Q(Gri) — QCSI(GT/I\)} € A*(D;) = Agimp,—2(D;) then

| —

1
1% (5[(0?’)2((}'7’/1\) — 205’ (G'r’/]\)]) /X € A*" which is of codimension ¢ + 2,

cthI(G'r’f\) = [(cf)[)?’(Gri) — 30?’ (G'rf\)cff (G'rf\)] + 363DI(GT§)} € A3(D1) then

=

i1 (§ LPP(Grh) = 3 Gy (@) + 3 (Grd)] ) fx € v

which is of codimension q 4+ 3. Therefore

n

ch"(E) = ch""(B) +e”. > (-1 > >~

— . . ,
q=1 11<12<...<iq )\Z’jGEij

H[% BRI GG A W ALY Di—..-].

D;.
2 ; 6

Jj=1

(Y ranky(Gri).[Dyl/X+€r.(c (GU))/X+€1*( [(er")(Gry)=2ey (Gr)])/ X

pelrr(Dr)

+§1,*(é[(0f’)3(G7’§)—3( (Gri)ey" (Gr3) + 3¢5 (Gr)]))

= ZH( Ds )

q=1 11<i2<...<ig \; EE’ j=1

3

Z Tp<GT§)-[Dp]/X+

pelrr(Dy)

Era(cy” (GTA))/X+§I*( ()2 (Gr3) — 2¢y(Gr)]) /X +

(13) &7*( () (Gr3) = 3(ey" (Gri) ey (Gr3) + 3ey (Gri)])]

23



we have

chV(E) = rank(E).[X] + ch)®(E) 4+ chy"(E) + chy*(E) + ...
where rank(F).[X] € A°, chY?(E) € A, chy*(E) € A?, chy"(E) € A®,

andeD:1+D+7+?+--- where 1 € A°, D € A, 76142, ?eA‘?

for k =0,1,....n, chi™(E) = cht(E)+ ch{* (E) + chy* (E) + chi*"(E) + ...

then

chl¥ (E) + chf™ (E) + cht " (E) = rank(E).[X]/A° 4 ch}*(E)/A*

+ chy?(E)/A* — Z Z (i, (A\y) + 1).rank(G'rilil).[Dil]/A1
11ES Niy 6221

_ Z Z (i (i) +1).(61 )« (c?” (G@\lﬁ)) /A2

11ES )‘il GZ;I

— > > (@) + 1)rank(Gry. ).[Dy,].[D]/A®

11€S Aig GZ;I

+ Z Z Z (aiy (Aiy) + 1) (s, (Aiy) + 1).mnk:p(Gr§1i’f’2Ai2).[Dp]/A2
i1 <i2 izl pelrr(Di;ND;,)

+% Z Z (i (Ngy) + 1)2.Tanl€(Gr§\1il ).[D;,]? /A

i1E€S iy 6221

+Z Z Tank:(Grilil)-[Dil]/Al

ilES)\ileZ;1
D, i1
30 @ (@ En)) 42
iles)\i1€Z;1
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+Z Z mnk(Grilil)-[Dil]-[D]/AQ

11ES iy ez’il

=3T3 DT rank,(GrE, ).D,)/A

11<iz2 iy pelrr(Di;ND;,)
Aq
2

—%Z N rank(Gry ).[D; )2/ A2

11ES )‘il ezgl

Lemma 4.2. In the Grothendieck group, for all iy,iy € S, for all \;; € X, for
all p € Irr(D;y N Dy,), we have:

mnk(G'r’ilil): Z mnkp(Grili’ff)\iQ).

)‘i26222
Now we have D = Z D; and [D, |.[D;,] = Z [D,] then
7 pelrr(D;;ND;,)
[DLIDu] =Y [DuP+ Y [IDulDu] =) IDuP+ Y Y (D
11ES 11712 11ES 117512 pGITT(Dil I"‘IDZ'Q)

Then

chl (E) + chf™™ (E) 4 ch¥"(E) = rank(E).[X]/A° 4 chY*(E) /A

+chy"(E)/A* =Y Y ai (A rank(Gr, ).[Dy,]/A"

€S N, 6221

- Z Z @iy (Xy) - (i) (C?il (Grilil)> JA?

1ES iy EZ;’l

—Z Z ail()\il).rank:(Grglil).[Dil]Q/AZ

n€s )‘ilezlil
11,02 2
- § § § § § Qg ()‘il)-rankp<GTAil,Ai2)-[Dp] /A
11ES 11712 iy 6221 )\i26222 pelrr(Dy;ND;,)
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XN DT ) rank, (Gri2, ).[D,) /A

11 <ig /\il peITT’(DilﬂDiQ)
>‘i2

+ Z Z Z aiQ()\iQ).rankp(Grili? AQ).[Dp] JA?

11<ig Ny pelrr(Di;ND;,)
Xig

FYY Y Ok Gritt, ) D)4
11<iz2 iy pelrr(Di;ND;y)
2

+ 5 Z S 0 (\)rank(Gry ). [D;, /A2

1163 iy 6211

+Z Z ozl-l()\Z-l).'r’ank(Grilil).[Di1]2/A2

€S Ny €375

4.1. The characteristic numbers for parabolic bundle in codimension one
and two. -For any parabolic bundle  in codimension one, and two, the parabolic
first, second Chern characters ch!® (E), and ch® (E), are obtained as follows:

. chi™(E) = rank(E).[X]

Cch{(E) = ch{"(E) = Y > an(X)rank(Gry, ).[D]

i1 [ )\il 62;1

. chY"(E) == chy*(E Z Z iy (Aiy) (&) < H(Gr ,1)>

€S Ny EE

+ = Z Z iy rank(G'r’;l ).[Dy,]?

€S N, EZ

+ Z Z Z ah()‘h)'aiQ()‘iQ)'rankp(Grilif,Q)\iQ)'[Dp]'

11<i2 Ny pelrr(D;;ND;,)

>‘i2

In order to compare with Mochizuki’s formula, note that
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Z Z Z aiy (Aiy)- 0y (Ay ) rank, (G ).[Dp] =
11 <12 /\il peITT’(DilﬂDiQ)
Nig

1 i
5 Z Z Z ail()\Z-l).aiQ()\iQ).mnkp(Gr;i’l ,QAZ-Q)'[DP]
i17#i02 iil pelrr(Di;ND;,)
2

therefore our formula may be written:

CehS () = chi"(B) = 30 D0 ()8 (e (Gr3)

i1E€S Niy 6221

1 i
t3 Z Z oz?l(Ail).rank(Gr)\il).[DhP
11ES )‘i16221
1 i1 ia
+ 5 Z Z Z ozil()\il).aiQ()\iQ).rankp(Gr/\i’w\iQ).[Dp].

i1742 Ny pelrr(Di;ND;,)
i

This coincides exactly with the formula given by Mochizuki in [MoZ, §3.1.5, p.
30]. It is also the same as the definition given by Panov [Pg]. Note that in Panov’s
general definition the sum for the last term is written as 3°, ; without the factor of
1/2 but later he uses it as a sum over i < j, so our formula and Mochizuki’s also
coincide with Panov’s formula in the way he uses it.

Mochizuki’s formula was for the Chern character in cohomology, which he de-
fined as the integral of the Chern form of the curvature of an adapted metric. Our
calculation verifies that this gives the same answer as the method using Deligne-
Mumford stacks of [Bi] [Boll| [[S1] for rational weights. Our formula is valid for

the Chern character in the rational or real Chow ring.

Here we explain some of the notation:

. ch{*(E), chy*(E) denotes the first, second, Chern character of vector bundles E.

. Irr(Dy) denotes the set of the irreducible components of D; := D; ND;, N...ND;,.
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. & denotes the closed immersion D; — X, and &/, Ak(D[) — AkJ’q(X)
denotes the associated Gysin map.

. Let p be an element of Irr(D; N D;). Then rank,(Gr}) denotes the rank of Gy
as an Op,-module.

. [D;;] € A{X) ®Q, and [D,] € A*(X) ® Q denote the cycle classes given by D;,
and D, respectively.

5. PARABOLIC CHERN CHARACTER OF A LOCALLY ABELIAN PARABOLIC
BUNDLE F IN CODIMENSION 3, ChY™ (E)

By the same method of computation as above, we get the following formula, which
has not been considered elsewhere in the literature.

ar 1 i1
chl* (E) = chy*(E) — 5 E E (i, (A\iy) + 1).7“an/f(G’7’Ail).[Dil].[D]2
11ES iy 6221

*%Z Y (i) + 1% () <Cf)i1(Gr§1il)>.[Dil]

i1E€S iy 6221

_éz S (e ) + DPrank(Gril ).[D,J?

i1ES )\7;1 Gzlil

=30 Y (@) + DG (67 (G )) (D)

nES Ny €375

1230 Y (o) + 1 rank(@r}, ) 1D, )7 D)

RIECRYRS DN

—% S () D) (G — 267 (Gr)

11ES )\7;1 GZ;I
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1 11,1
S0 Y () + D) + 1rank,(Gr )DL LD,
i1<i2 iy pelrr(D;ND;,)
2

1 i1 2
50 2 (@) Dy () + Dranky(Gr5, ). [Da] D))
i1<i2 iy pe€lrr(D;ND;,)
2

+ Z Z Z (ail()‘h) + 1)'(ai2(>‘i2) + l)rankp(Gr?,f,Q)\Q)[D][Dp]
11 <i2 izl pelrr(Dy;ND;,)

30 D@ () + D) + -G (71772 (G )

11<i2 Mgy
Xig

Z Z Z (ah()‘il)+1)'(ai2()‘iz)+1)'(ai3(Ais)+1)'Tankp(Gr§\1if,2)7\iz ,)\i3)'[Dp]

11<i2<i3 iy pelrr(D;;ND;,ND;;5)

Xig
4= Z Z rank( Grﬁ\l ——Z Z (&ir ) ( GT? )) D]
2163 Xiy €505 NES N €
4= Z Z rank( Gr Dy, +Z Z (& )x ( GT? )) D]
21 SEDH EZ nES Ay, GZ
—= Z Z rank( G"r’f\1 : Z Z (&1 ) < (GT;} ) — QCfil <GT;\11))
2163 X €Y 2163 Xiy €377,
— Z Z Z rank (G'r’f\l ZQA Z Z Eirsin) < n (Gr “1122/\12)>
i1 <ig iz’l pelrr(Di;ND;,) i1 <iz :\\11
in 2

11,12,13
+ YD > ranky(Gry %50 5, ) [Dy)
11<i2<43 iy pelrr(Dy;ND;,ND;y)
Nig

+% Z Z Z Tank:p(Grili’f)\iQ ).[Di,].[Dy)

11<iz Xy pelrr(Di; ND;,)

)‘7.'2
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1 71,7
T30 DL rank(Gr D)D)
11<i2 Xy pelrr(Di;ND;,)
2

5.1. The characteristic number for parabolic bundle in codimension three.
-For any parabolic bundle E in codimension 3, the parabolic third Chern character
chi® (E), is obtained as follows:

W (B) = e (B) = 537 3 an () rank(Gri ) 1D3 ) [DF

nes Aig 6221

P33 S [0 0w+ 20 ()] (6 (21 (@) (D)

2163 iy 6211

— Z S lad () + 302 (\y) + 3, (A, rank(Gry: ).[Dy]?

21 €S Ny EZ”

=3 D an(a) (&) (C?il(Grilil)).[D]

WES Ny €X),

- Z > lak (M) + 205, ()] rank(Gryt ). (D3, [ D]

2168 iy GZ”

_%Z Z iy (Niy)- (&)« ((0?11)2((;7«;1))

a€S N €3
D i
£ )& (2 En)
11€S Xiy €37,

1
SN Y ek 0w)an (M) 4205 ()i () i+ () +
i1<iz iy p€lrr(D;ND;,)
Nig

20, ()] rank, (Gri ™, ).[D,,].[D,)
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