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Model and robust control of an electropneumatic actuator experimental
setup

Alexis Girin, Franck Plestan, Xavier Brun, Alain Glumineau and Mohamed Smaoui

Abstract— This paper presents an electropneumatic system
and its high-precision position control based on an original 3rd

order sliding mode controller. The structure of the experimental
set-up and the benchmark on which the controller is evaluated
have been designed in order to check the use of a such actuator.
The higher order sliding mode controller is designed in order
to ensure finite time convergence, high accuracy (higher than
“standart” sliding mode) and robustness. Experimentals results
display the feasability and the performance of the controller.

Keywords: electropneumatic system, higher order sliding
mode, accuracy, robustness.

NOMENCLATURE

y, v, a position, velocity and acceleration of
the actuator [m][m/s][m/s2]

yd, vd, ad, jd desired position, velocity, acceleration
and jerk [m][m/s][m/s2][m/s3]

pX pressure in the chamber X [Pa]
uP , uN servodistributors voltages [V ]
k polytropic constant
Kr springs rates [N/m]
VX chamber X volume [m3]
bv viscous friction coefficient [N/m/s]
Ff friction force [N ]
M total moving load mass [kg]
T Supply and chamber temperature [K]
r perfect gas constant [J/kg/K]
S piston area [m2]
qm mass flow rate provided from the servo-

-distributor [kg/s]
X P or N
γ adiabatic constant
Tr temperature inside an upstream tank [K]
δQ thermal exchange [J ]
λ thermal exchange coefficient

by conduction [J/K/m2/s]
ScX total area inside X chamber [m2]
TcX temperature of the X chamber wall [K]
qmXin/qmXout mass flow rate brought

inside/outside of a chamber [kg/s]
tF fixed time convergence [s]

I. INTRODUCTION

The use of pneumatic actuators is a solution for high ac-
curacy positionning problem viewed their advantages (law
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maintenance cost, lightweight and good force/weight ratio) in
spite of their traditional drawbacks (friction, variation of the
actuators dynamics with respect to load and piston position
along the cylinder stroke, nonlinearities, ...). The current
work, i.e. design of an experimental set-up, a nonlinear
model, and a robust nonlinear control, is motivated by an
aeronautic application. In fact, it consists in evaluating the
performance of pneumatic actuator controller by taking into
account the context: the actuator has to be slight and has to be
able to develop suffisant forces, with high accuracy/dynamic
performances. As it has been previously recalled, the pneu-
matic actuator fulfills these latter features. Then, the design
of the experimental set-up (structure, mechanical features,
...) and the associated benchmark have been made in order
to be as close as possible to the initial aeronautic application.
The development of high-performance closed-loop lin-
ear/nonlinear controllers [18], [10], [22], [8], [12], [4], [5],
[6] has shown the feasability of high-accuracy positionning
of pneumatic actuator. Due to uncertainties, robust con-
trollers are necessary to ensure position tracking with high
precision. In that way, sliding mode controllers have been
used for electropneumatic actuators [3], [19], [25], [24].
Their advantages are that they are simply implemented and
more robust versus parameters variations and exhibit good
dynamic response. However, since the sampling frequency
of the controller is limited, chattering appears.
Higher order sliding mode control [16], [1], [17], [13], [14],
[15], [20], [21] is a recent approach which allows to remove
all the standard sliding mode restrictions, while preserving
the main sliding-mode features and improving its accuracy.
The both first references only concern results on second
order sliding mode control, which consist in ensuring in
finite time that the sliding variable and its time derivative
equal 0. In [17], a general approach (which means for all
sliding mode order) has been proposed: the main drawbacks
of this approach are that the convergence time is only
bounded, and not exactly known in advance, and that the
convergence condition is not constructive. The controller
proposed in [13], [20] combines standard sliding mode
control with linear quadratic one over a finite time interval
with a fixed final state. The algorithm needs the relative
degree of the system with respect to the sliding variable s
and the bounds of uncertainties and has several advantages:
the upper bound of the convergence time is known and can
be adjusted in advance, the condition on the gain implies that
its tuning is constructive, and the structure of the controller
is well-adapted to practical implementations, in particular for
pneumatic actuators control [14]. However, two drawbacks



appear in this approach. It ensures only a practical sliding
mode establishment (only convergence in finite time to an
arbitrarily small vicinity of the origin is ensured), and the
reaching time is bounded but cannot be fixed exactly and in
advance. These two drawbacks are erased (sliding variable
and its time derivatives are exactly at 0 in finite time, and
the convergence time is a priori well-known) in [15], [21]
by keeping all the features of the previous approach (general
order of sliding mode, finite time convergence, constructive
approach). Results in [15] are based on integral sliding mode
concept and need an auxiliary dynamic system in order to
compute the switching variable. In [21], the approach, which
has been selected for this current work, is more simple
than the previous one and consists in computing adequate
reference trajectories which ensures that the higher order
sliding mode is established at the desired time, in spite of
uncertainties.
Section II describes the experimental set-up, gives the model
and the assumptions, and displays the desired position trajec-
tory. Section III recall theorical aspects of the used control
approach. Section IV displays its application to pneumatic
actuator system.

II. ELECTROPNEUMATIC SYSTEM

A. System structure

The design of the experimental set-up has been made in order
to evaluate the performances of a pneumatic actuator under a
benchmark defined from industrial datas in aeronautics. This
benchmark imposes pneumatic actuator with fast dynamics,
small size and force constraints. The experimental set-up
described by Figure (1) is based on the application of this
benchmark.
The system includes a double-acting pneumatic actuator
and two 3-way proportional valves Servotronic (Asco-
Joucomatic)1. The pressures are between 1 bar and 7 bar.
The actuator has 63 mm diameter bore, 16 mm diameter rod
and 50 mm stroke. The two valves are interfaced through
unity gain amplifiers to a PC via an analog/digital I/O
board. A carriage connected to the actuator with nominal
mass equal to 0.8 kg is mounted on a linear slide table
with minimum friction force. This carriage is coupled to
4 springs (which restrain the displacement of the carriage
and restore the initial position in the middle of the total
stroke - see Figure 1) for a total of 60 N/mm rate. As
the maximal displacement of carriage around initial position
is equal to 16 mm, the maximal spring force is 960 N .
Additional dry friction is controlled by two skates, with a
maximum value equal to 40 N . The nominal dry friction
has been experimentally identified and is equal to 100 N .
Position sensor (potentiometer) is connected to the actuator
rod to measure the displacement and an other potentiometer
is connected to the table to measure the carriage displacement
between the rod. A pressure sensor is connected to each
cylinder chambers. The sensors are also interfaced to the I/O

1Each valve is labeled, respectively with P (for positive displacement)
and N (for negative displacement) Figure (1)

board. The control law is implanted on board and sampling
frequency is 1 kHz. The two valves allow the charging and
discharging processes for the two chambers to be controlled
independently. Each valves controls charging from the supply
and to the atmosphere. This 3-ways valves increase the
flexibility of the system.

B. Nonlinear model

The electropneumatic plant model is obtained from three
physical laws: the mass flow rate through a restriction, the
pressure behaviour in a chamber with variable volume and
the fundamental mechanical equation.

Pressure dynamics.
Each chamber of the pneumatic actuator is considered as a
variable volume, in which the air mass evolves with time.
State the following assumptions:

A1. Air is a perfect gas ands its kinetic is inconsequential.

A2. The pressure and the temperature are homogeneous in
each chamber.

A3. The mass flow is pseudo-stationary.

A4. The temperature variations in each chamber are incon-
sequential with respect to the supply temperature T .

The first dynamic principle applied to the air mass evolution
in each chamber read as (with X = P or N ) [23]

dpX
dt

= −γ pX
VX

dVX
dt

+
γrTr
VX

qmXin − γrT

VX
qmXout

+
(γ − 1)
VX

δQX
dt

(1)
with γ the adiabatic constant, Tr the temperature inside the
upstream tank, qmXin the mass flow rate brought inside
the X chamber, and qmXout the mass flow rate brought
outside the X chamber. QX , the thermal exchange with the
X chamber wall, is described by Assumption A5.

A5. The process is polytropic and characterized by coeffi-
cient k (with 1 < k < γ) [23].

Then, pressures dynamics read as (with X = P or N )

dpX
dt

= −k pX
VX

dVX
dt

+
krT

VX
(qmXin − qmXout) (2)

A6. The leakages between the two chambers and between
servodistribuor and jack are negligible.

By defining qm(uX , pX) := qmXin − qmXout , one gets

dpP
dt

= −k pP
VP (y)

dVP (y)
dt

+
krT

VP (y)
qm(uP , pP )

dpN
dt

= −k pN
VN (y)

dVN (y)
dt

+
krT

VN (y)
qm(uN , pN)

(3)

A7. Dynamic part of servodistributor is neglected, and mass
flow rate has been identified by the following function

qm(uX , pX) = ϕ (pX) + ψ (pX , sign (uX))uX



with ϕ and ψ defined as 5th-order polynomials with
respect to pX [2].

A8. Only the position of the actuator is controlled, which
means that the problem is a single input-single output
(SISO). It implies that uP = −uN = u.

Mechanical model.
A9. All dry frictions forces are neglected.

The second Newton law gives

dv
dt

=
1
M

[S (pP − pN ) − bvv −Kry]

dy
dt

= v

(4)

Then, with VP (y) = V0 + S · y and VN (y) = V0 − S · y (V0

being equal to the half of the cylinder volume), from Equa-
tions (3)-(4) and Assumptions A7-A8, one gets a nonlinear
system

ṗP =
krT

VP (y)
[ϕ (pP ) + ψ (pP , sign (u))u− S

rT
pP v]

ṗN =
krT

VN (y)
[ϕ (pN ) − ψ (pN , sign (−u))u+

S

rT
pNv]

v̇ =
1
M

[SpP − SpN − bvv −Kry]

ẏ = v
(5)

C. Desired trajectory

The desired position trajectory, displayed in Figure 2 and
named yd(t), has been designed such that associated velocity
and acceleration are continuous functions. The maximum
velocity (resp. acceleration) is 0.8 m ·s−1 (resp. 33 m ·s−2).
This displacement corresponds to 64% of the total stroke
around the central position. The initial conditions are such
that [yd(0) vd(0) v̇d(0)]T = [0.016 0 0]T .

III. HIGH ORDER SLIDING MODE CONTROLLER

The use of assumptions for the model design implies that,
if a high accuracy in position control is the objective, a
robust control law with respect to uncertainties (frictions,
mass flow rate, temperature variations, ...) and perturbations
(mass variation, ...) is required. Then, from [21], a high
order sliding mode controller is derived. Its main features are
robustness, finite time convergence and high performances
in term of accuracy. In the sequel, theorical aspects on this
control for approach and the application to the pneumatic
system are displayed.

A. Problem formulation

Consider an uncertain nonlinear system

ẋ = f(x, t) + g(x, t)u
y = s(x, t) (6)

where x ∈ IRn is the state variable, u ∈ IR is the input con-
trol and s(x, t) ∈ IR is a measured smooth output function
(sliding variable) defined to satisfy the control objectives.

f(x, t) and g(x, t) are uncertain smooth functions. Assume
that

H1. The relative degree r of (6) with respect to s is assumed
to be constant and known, and the associated zero dynamics
are stable.

The control objective is to fulfill the constraint s(x, t) = 0 in
finite time and to keep it exactly by discontinuous feedback
control.

Definition 1: [17] Consider the nonlinear system (6),
and let the system be closed by some possibly-dynamical
discontinuous feedback. Then, provided that 2 s, ṡ, · · · , s(r−1)

are continuous functions, and the set

Sr = {x | s(x, t) = ṡ(x, t) = · · · = s(r−1)(x, t) = 0},

called “rth order sliding set”, is non-empty and is locally an
integral set in the Filippov sense [9], the motion on Sr is
called “rth order sliding mode” with respect to the sliding
variable s.
The rth order sliding mode control approach allows the finite
time stabilization to zero of the sliding variable s and its r−1
first time derivatives by defining a suitable discontinuous
control function. Extend system (6) by introduction of a
fictitious variable xn+1 = t, ẋn+1 = 1. Denote fe =
(f, 1)T , ge = (g, 0)T where the last component corresponds
to xn+1. The output s satisfies the equation

s(r) = χ(·) + Γ(·)u (7)

with3 Γ = LgeL
r−1
fe

s and χ = Lrfe
s that

H2. The solutions are understood in the Filippov sense
[9], and system trajectories are supposed to be infinitely
extendible in time for any bounded Lebesgue measurable
input.

H3. Functions χ(·) and Γ(·) are bounded uncertain functions,
and, without loss of generality, let also the sign of the control
gain χ be constant and strictly positive. Thus, there exist
Km ∈ IR+∗, KM ∈ IR+∗, C0 ∈ IR+ such that

0 < Km < Γ < KM |χ| ≤ C0. (8)

for x ∈ X ⊂ IRn, X being a bounded open subset of IRn

within which the boundedness of the system dynamics is
ensured.

Note Z1 = [Z0
1 Z

1
1 · · · Zr−2

1 ]T := [s ṡ · · · s(r−2)]T , Z2 =
s(r−1). Then, the rth order sliding mode control of (6) with
respect to the sliding variable s is equivalent to the finite
time stabilization of

Ż1 = A11Z1 +A12Z2

Ż2 = χ+ Γu
(9)

2All over this paper, s(·)(k) (k ∈ IN ) denotes the kth time derivative of
the function s(·). This notation is also applied for every function.

3Given a(x) a real-valued function and b(x) a vector field, both defined
on X ⊂ IRn, the derivative of a(·) along b(·) is written as Lba and is
defined as Lba = ∂a

∂x
b(x) [11].



which satisfies the global boundedness conditions (8), where
A11 and A12 are defined by

A11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0 . . .
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

0
. . .

. . . . . . 1

0
. . .

. . .
. . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r−1)×(r−1)

A12 =
[

0 · · · 0 0 1
]T
(r−1)×1

.

(10)

B. Synthesis of high order sliding mode controller

The synthesis of a high order sliding mode controller for
(6) is made through the following idea: switching variable is
defined such that the system evolves, early from t = 0, on
a switching manifold. Furthermore the sliding variable and
its time derivatives reach the origin in finite time in spite
of uncertainties thanks to discontinuous control input. The
design of the controller consists in two steps:

• Design of the switching variable for system (9),
• Design of a discontinuous control input u maintaining

the system trajectories on a switching manifold which
ensures the establishment of a rth order sliding mode,
in spite of uncertainties.

Switching variable. Let S denote the switching variable
defined as

S = s(r−1) −F (r−1)(t) + λr−2

[
s(r−2) − F (r−2)(t)

]
+ · · · + λ0 [s(x, t) −F(t)] ,

(11)
with λr−2, · · · , λ0 defined such that P (z) = z(r−1) +
λr−2z

(r−2)+· · ·+λ0 is a Hurwitz polynomial in the complex
variable z. The function F(t) is a C r-one defined such that
S(t = 0) = 0 and s(k)(x(tF ), tF )−F (k)(tF ) = 0 (0 ≤ k ≤
r − 1). Then, from initial and final conditions the problem
consists in finding the function F(t) such that

s(x(0), 0) = F(0), s(x(tF ), tF ) = F(tF ) = 0,
ṡ(x(0), 0) = Ḟ(0), ṡ(x(tF ), tF ) = Ḟ(tF ) = 0,

...
s(r−1)(x(0), 0) = F (r−1)(0),
s(r−1)(x(tF ), tF ) = F (r−1)(tF ) = 0

(12)
A solution for F(t) reads as (1 ≤ j ≤ r) [21]

F(t) = KeFtTs(r−j)(0) (13)

with F a 2r×2r-dimensional stable matrix (strictly negative
eigenvalues) and T a 2r × 1-dimensional vector.
H4. The integer j is such that s(r−j)(0) �= 0 and bounded.

K is a 1 × 2r-dimensional gain matrix tuned such system

(12) is fulfilled. Then, one gets

K =
[
s(r−1)(0) 0 s(r−2)(0) 0 · · · s(0) 0

] ·
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F r−1Ts(r−j)(0)
F r−1eFtF T

F r−2Ts(r−j)(0)
F r−2eFtF T

...
Ts(r−j)(0)
eFtF T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T−1

︸ ︷︷ ︸
K

(14)
with
H5. Matrices F and T are such that K is invertible. Fur-
thermore, matrix F is stable (eigenvalues with negative real
part) and the convergence tF > 0 is bounded.
F is a 2r × 2r-dimensional matrix and T is a 2r × 1-
dimensional vector.

Then, S the switching variable reads as

S = s(r−1) −KF r−1eFtTs(r−j)(0)
+λr−2

[
s(r−2) −KF r−2eFtTs(r−j)(0)

]
+ · · · + λ0

[
s(x, t) −KeFtTs(r−j)(0)

]
,

(15)

H6. There exists a finite positive constant Θ ∈ IR+ such that∣∣KF reFtTs(r−j)(0) − λr−2

[
s(r−1)−

KF r−1eFtTs(r−j)(0)
] − · · ·

−λ0

[
ṡ(x, t) −KFeFtTs(r−j)(0)

]∣∣ < Θ
(16)

Equation S = 0 describes the desired dynamics which satisfy
the finite time stabilization of vector [s(r−1) s(r−2) · · · s]T
to zero. Then, the switching manifold on which system (9)
is forced to slide on via a discontinuous control v, is defined
as

S = {x | S = 0} (17)

Given equation (12), one gets S(t = 0) = 0: at the initial
time, the system still evolves on the switching manifold.
There is no reaching phase in opposition to previous
approaches as [13], [14].

Controller design. The attention is now focused on
the design of the discontinuous control law u which forces
the system trajectories of (9) to slide on S, to reach in finite
time the origin and to maintain the system at the origin.

Theorem 1: [21] Consider the nonlinear system (6) with
a relative degree r with respect to σ(x, t). Suppose that it is
minimum phase and that hypotheses H1, H2, H3 and H4 are
fulfilled. Let r be the sliding mode order and 0 < tF < ∞
the desired convergence time. Define S ∈ IR by (15) with
K unique solution of (13) given by (14) and that assumption
H5 is fulfilled. The control input u defined by

u = −α sign(S) (18)

with
α ≥ C0 + Θ + η

Km
, (19)



C0, Km defined by (8), Θ defined by (16), η > 0, leads to
the establishment of a rth order sliding mode with respect
to σ. The convergence time is tF .

Sketch of proof. Condition (19) allows to satisfy the η-
attractivity condition ṠS ≤ −η|S|. For more details see [21].

IV. APPLICATION ON EXPERIMENTAL SETUP

A. Controller design

The objective consists in designing a robust (with respect to
uncertainties/disturbances) position controller. Define s the
sliding variable as s = y−yd(t): from (5), its relative degree
with respect to u equals 3, which implies that a 3rd order
sliding mode controller is designed. One has

s(3) = χ(·) + Γ(·)u (20)

with T̄ = T + ∆T , ϕ̄ = ϕ+ ∆ϕ, ψ̄ = ψ + ∆ψ, M̄ = M +
∆M 4, where ∆T , ∆ϕ ∆ψ, ∆M represent the uncertainties.
For nominal case this uncertainties are null. Furthermore

χ(·) = krT̄S
M̄

(
ϕ̄(pP )
VP (y) − ϕ̄(pN )

VN (y)

)
− kS2v

M̄

(
pP

VP (y) − pN

VN (y)

)

− bv

M̄2 (S (pP − pN ) − bvv −Kry) − Krv
M̄

− y
(3)
d

Γ(·) = krT̄S
M̄

(
ψ̄(pP ,sign(u))

VP (y) + ψ̄(pN ,sign(−u))
VN (y)

)
(21)

The control law is defined as5 u = Γ−1
nom · [−χnom + w]

with Γnom (resp. χnom) the nominal value of Γ (resp. χ),
i.e. derived from (21) with no uncertainties. It is important
to note that Γnom is always strictly positive. So u has the
same sign as (−χnom + w). From (20), χnom and w are
independent of u. Then, one gets

s(3) = χ̄(·) + Γ̄(·)w (22)

with χ̄ = χ − ΓΓ−1
NomχNom and Γ̄ = ΓΓ−1

Nom. Let
z = [s ṡ s̈]T . As introduced in Section III, the design
follows two steps. The first consists in computing off-line
matrix K in order to determine the function F(t). This latter
and their time derivatives are computed on-line in order to
ensure the convergence of s, ṡ, and s̈ to 0 at a fixed time tF .
The second step is the synthesis of discontinuous control
which ensures the convergence in spite of uncertainties.

Switching variable.
The switching variable s reads as (15)

S = s̈−KF 2eFtTs(0) + 2ξωn [ṡ
−KFeFtTs(0)

]
+ ω2

n

[
s−KeFtTs(0)

] (23)

with ξ = 1, ωn = 250 rad·s−1. Initial conditions are s̈(0) =
0 ms−2, ṡ(0) = 0 ms−1 and s(0) = 0.023 m. From (14),

4It is supposed that d∆M
dt

= 0.
5An interest of equivalent control is to reduce the value of discontinuous

part gain [7] which implies a reduction of chattering effect.

one gets

K = [s̈(0) 0 ṡ(0) 0 s(0) 0] ·
⎡
⎢⎢⎢⎢⎢⎢⎣

F 2Ts(0)
F 2eFtF T
FTs(0)
FeFtF T
Ts(0)
eFtF T

⎤
⎥⎥⎥⎥⎥⎥⎦

T−1

(24)

with F and T defined as (and fulfilling Assumption H5)

T = [1 1 1 1 1 1]T

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1.1 0 0 0 0
0 0 −1.2 0 0 0
0 0 0 −1.3 0 0
0 0 0 0 −1.4 0
0 0 0 0 0 −1.5

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)
Discontinuous input w. One gets w = −α · sign (s) with
α = 12 · 104 (in order to satisfy (19) by taking into account
the uncertainties due to the difference of real and control
models, and the variations of mass (+125%)).

B. Experimental results

Control law has been implanted in DSPACE 1005 card with 1
ms sample time. Two kinds of test have been made. The first
test, named “Nominal case”, consists in moving a 0.8kg mass
(i.e. the control law has been designed with this hypothesis)
by tracking desired trajectories (Figure 2). The second test
consists in increasing the moving mass to 1.8kg, without
changing the structure or gains values of the controller. For
a sake of shortness, only mass modification is considered in
this paper. Of course, the robustness could be evaluated with
respect to other parameters (for example, additional friction
by friction skates).
Nominal case. The actuator position (Figure 3) converges to
the desired trajectory in 0.2s (which is the stated convergence
time tF ). The maximum error position in steady state is
0.02mm in spite of springs and the mass load. There is
no pressure saturation (Figure 4-Top). The control input is
displayed in Figure 4-Bottom.
Robustness evaluation. The controller still ensures conver-
gence in 0.2s without overshoot (Figure 5). The maximum
position error in steady state equals 0.02mm which confirms
the efficiency of this controller.
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Fig. 1. Top: Photo of the experimental set-up mechanical part - Bottom:
Scheme of the exprimental set-up
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Fig. 2. Desired position trajectory yd(t) (m) versus time (sec.)
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Fig. 3. Top. Desired and current positions (mm) versus time (sec).
Bottom. Positions errors (mm) versus time (sec).
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Fig. 4. Top. Pressures (pP and pN ) (bar) versus time (sec). Bottom. Up

(V ) versus time (sec).
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Fig. 5. Top. Desired and current positions (mm) versus time (sec).
Bottom. Positions errors (mm) versus time (sec).


