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This paper presents an electropneumatic system and its high-precision position control based on an original 3 rd order sliding mode controller. The structure of the experimental set-up and the benchmark on which the controller is evaluated have been designed in order to check the use of a such actuator. The higher order sliding mode controller is designed in order to ensure finite time convergence, high accuracy (higher than "standart" sliding mode) and robustness. Experimentals results display the feasability and the performance of the controller.

Xavier.Brun@insa-lyon.fr maintenance cost, lightweight and good force/weight ratio) in spite of their traditional drawbacks (friction, variation of the actuators dynamics with respect to load and piston position along the cylinder stroke, nonlinearities, ...). The current work, i.e. design of an experimental set-up, a nonlinear model, and a robust nonlinear control, is motivated by an aeronautic application. In fact, it consists in evaluating the performance of pneumatic actuator controller by taking into account the context: the actuator has to be slight and has to be able to develop suffisant forces, with high accuracy/dynamic performances. As it has been previously recalled, the pneumatic actuator fulfills these latter features. Then, the design of the experimental set-up (structure, mechanical features, ...) and the associated benchmark have been made in order to be as close as possible to the initial aeronautic application. The development of high-performance closed-loop linear/nonlinear controllers [START_REF] Ming-Chang | Identification and position control of a servo pneumatic cylinder[END_REF], [START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF], [START_REF] Richard | Comparison between linear and lonlinear control of an electropneumatic servodrive[END_REF], [START_REF] Edge | The control of fluid power systems -responding to the challenge[END_REF], [START_REF] Kimura | Feedback linearization for pneumatic actuator systems with static friction[END_REF], [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF], [START_REF] Smaoui | A study on tracking position control of electropneumatic system using backstepping design[END_REF], [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic field[END_REF] has shown the feasability of high-accuracy positionning of pneumatic actuator. Due to uncertainties, robust controllers are necessary to ensure position tracking with high precision. In that way, sliding mode controllers have been used for electropneumatic actuators [START_REF] Bouri | Sliding control of an electropneumatic actuator using an integral switching surface[END_REF], [START_REF] Paul | Reduced order sliding mode control for pneumatic actuator[END_REF], [START_REF] Yang | Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration[END_REF], [START_REF] Smaoui | A combined first and second order sliding mode approach for position and pressure control of an electropneumatic system[END_REF]. Their advantages are that they are simply implemented and more robust versus parameters variations and exhibit good dynamic response. However, since the sampling frequency of the controller is limited, chattering appears. Higher order sliding mode control [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], [START_REF] Bartolini | Chattering avoidance by secondorder sliding mode control[END_REF], [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF], [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF], [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF] is a recent approach which allows to remove all the standard sliding mode restrictions, while preserving the main sliding-mode features and improving its accuracy. The both first references only concern results on second order sliding mode control, which consist in ensuring in finite time that the sliding variable and its time derivative equal 0. In [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF], a general approach (which means for all sliding mode order) has been proposed: the main drawbacks of this approach are that the convergence time is only bounded, and not exactly known in advance, and that the convergence condition is not constructive. The controller proposed in [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF], [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF] combines standard sliding mode control with linear quadratic one over a finite time interval with a fixed final state. The algorithm needs the relative degree of the system with respect to the sliding variable s and the bounds of uncertainties and has several advantages: the upper bound of the convergence time is known and can be adjusted in advance, the condition on the gain implies that its tuning is constructive, and the structure of the controller is well-adapted to practical implementations, in particular for pneumatic actuators control [START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF]. However, two drawbacks appear in this approach. It ensures only a practical sliding mode establishment (only convergence in finite time to an arbitrarily small vicinity of the origin is ensured), and the reaching time is bounded but cannot be fixed exactly and in advance. These two drawbacks are erased (sliding variable and its time derivatives are exactly at 0 in finite time, and the convergence time is a priori well-known) in [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF] by keeping all the features of the previous approach (general order of sliding mode, finite time convergence, constructive approach). Results in [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] are based on integral sliding mode concept and need an auxiliary dynamic system in order to compute the switching variable. In [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF], the approach, which has been selected for this current work, is more simple than the previous one and consists in computing adequate reference trajectories which ensures that the higher order sliding mode is established at the desired time, in spite of uncertainties.

Section II describes the experimental set-up, gives the model and the assumptions, and displays the desired position trajectory. Section III recall theorical aspects of the used control approach. Section IV displays its application to pneumatic actuator system.

II. ELECTROPNEUMATIC SYSTEM

A. System structure

The design of the experimental set-up has been made in order to evaluate the performances of a pneumatic actuator under a benchmark defined from industrial datas in aeronautics. This benchmark imposes pneumatic actuator with fast dynamics, small size and force constraints. The experimental set-up described by Figure ( 1) is based on the application of this benchmark.

The system includes a double-acting pneumatic actuator and two 3-way proportional valves Servotronic (Asco-Joucomatic) 1 . The pressures are between 1 bar and 7 bar.

The actuator has 63 mm diameter bore, 16 mm diameter rod and 50 mm stroke. The two valves are interfaced through unity gain amplifiers to a PC via an analog/digital I/O board. A carriage connected to the actuator with nominal mass equal to 0.8 kg is mounted on a linear slide table with minimum friction force. This carriage is coupled to 4 springs (which restrain the displacement of the carriage and restore the initial position in the middle of the total stroke -see Figure 1) for a total of 60 N/mm rate. As the maximal displacement of carriage around initial position is equal to 16 mm, the maximal spring force is 960 N . Additional dry friction is controlled by two skates, with a maximum value equal to 40 N . The nominal dry friction has been experimentally identified and is equal to 100 N . Position sensor (potentiometer) is connected to the actuator rod to measure the displacement and an other potentiometer is connected to the table to measure the carriage displacement between the rod. A pressure sensor is connected to each cylinder chambers. The sensors are also interfaced to the I/O board. The control law is implanted on board and sampling frequency is 1 kHz. The two valves allow the charging and discharging processes for the two chambers to be controlled independently. Each valves controls charging from the supply and to the atmosphere. This 3-ways valves increase the flexibility of the system.

B. Nonlinear model

The electropneumatic plant model is obtained from three physical laws: the mass flow rate through a restriction, the pressure behaviour in a chamber with variable volume and the fundamental mechanical equation.

Pressure dynamics.

Each chamber of the pneumatic actuator is considered as a variable volume, in which the air mass evolves with time.

State the following assumptions: A1. Air is a perfect gas ands its kinetic is inconsequential.

A2. The pressure and the temperature are homogeneous in each chamber.

A3. The mass flow is pseudo-stationary.

A4. The temperature variations in each chamber are inconsequential with respect to the supply temperature T .

The first dynamic principle applied to the air mass evolution in each chamber read as (with X = P or N ) [START_REF] Shearer | Study of pneumatic processes in the continuous control of motion with compressed air[END_REF] dp

X dt = -γ p X V X dV X dt + γrT r V X q mXin - γrT V X q mXout + (γ -1) V X δQ X dt (1 
) with γ the adiabatic constant, T r the temperature inside the upstream tank, q mXin the mass flow rate brought inside the X chamber, and q mXout the mass flow rate brought outside the X chamber. Q X , the thermal exchange with the X chamber wall, is described by Assumption A5. A5. The process is polytropic and characterized by coefficient k (with 1 < k < γ) [START_REF] Shearer | Study of pneumatic processes in the continuous control of motion with compressed air[END_REF]. Then, pressures dynamics read as (with

X = P or N ) dp X dt = -k p X V X dV X dt + krT V X (q mXin -q mXout ) (2)
A6. The leakages between the two chambers and between servodistribuor and jack are negligible.

By defining q m (u X , p X ) := q mXinq mXout , one gets

dp P dt = -k p P V P (y) dV P (y) dt + krT V P (y) q m (u P , p P ) dp N dt = -k p N V N (y) dV N (y) dt + krT V N (y) q m (u N , p N )
(3) A7. Dynamic part of servodistributor is neglected, and mass flow rate has been identified by the following function

q m (u X , p X ) = ϕ (p X ) + ψ (p X , sign (u X )) u X
with ϕ and ψ defined as 5 th -order polynomials with respect to p X [START_REF] Belgharbi | Analytical model of the flow stage of a pneumatic servo-distributor for simulation and nonlinear control[END_REF].

A8.

Only the position of the actuator is controlled, which means that the problem is a single input-single output (SISO). It implies that u P = -u N = u.

Mechanical model. A9. All dry frictions forces are neglected.

The second Newton law gives

dv dt = 1 M [S (p P -p N ) -b v v -K r y] dy dt = v (4)
Then, with V P (y) = V 0 + S • y and V N (y) = V 0 -S • y (V 0 being equal to the half of the cylinder volume), from Equations ( 3)-( 4) and Assumptions A7-A8, one gets a nonlinear system

ṗP = krT V P (y) [ϕ (p P ) + ψ (p P , sign (u)) u - S rT p P v] ṗN = krT V N (y) [ϕ (p N ) -ψ (p N , sign (-u)) u + S rT p N v] v = 1 M [Sp P -Sp N -b v v -K r y] ẏ = v (5)

C. Desired trajectory

The desired position trajectory, displayed in Figure 2 

III. HIGH ORDER SLIDING MODE CONTROLLER

The use of assumptions for the model design implies that, if a high accuracy in position control is the objective, a robust control law with respect to uncertainties (frictions, mass flow rate, temperature variations, ...) and perturbations (mass variation, ...) is required. Then, from [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF], a high order sliding mode controller is derived. Its main features are robustness, finite time convergence and high performances in term of accuracy. In the sequel, theorical aspects on this control for approach and the application to the pneumatic system are displayed.

A. Problem formulation

Consider an uncertain nonlinear system

ẋ = f (x, t) + g(x, t)u y = s(x, t) (6) 
where x ∈ IR n is the state variable, u ∈ IR is the input control and s(x, t) ∈ IR is a measured smooth output function (sliding variable) defined to satisfy the control objectives.

f (x, t) and g(x, t) are uncertain smooth functions. Assume that H1. The relative degree r of ( 6) with respect to s is assumed to be constant and known, and the associated zero dynamics are stable.

The control objective is to fulfill the constraint s(x, t) = 0 in finite time and to keep it exactly by discontinuous feedback control. Definition 1: [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF] Consider the nonlinear system (6), and let the system be closed by some possibly-dynamical discontinuous feedback. Then, provided that2 s, ṡ, • • • , s (r-1) are continuous functions, and the set

S r = {x | s(x, t) = ṡ(x, t) = • • • = s (r-1) (x, t) = 0},
called "r th order sliding set", is non-empty and is locally an integral set in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], the motion on S r is called "r th order sliding mode" with respect to the sliding variable s. The r th order sliding mode control approach allows the finite time stabilization to zero of the sliding variable s and its r-1 first time derivatives by defining a suitable discontinuous control function. Extend system (6) by introduction of a fictitious variable x n+1 = t, ẋn+1 = 1. Denote f e = (f, 1) T , g e = (g, 0) T where the last component corresponds to x n+1 . The output s satisfies the equation

s (r) = χ(•) + Γ(•)u (7) 
with3 Γ = L ge L r-1 fe s and χ = L r fe s that H2. The solutions are understood in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], and system trajectories are supposed to be infinitely extendible in time for any bounded Lebesgue measurable input.

H3. Functions χ(•) and Γ(•) are bounded uncertain functions, and, without loss of generality, let also the sign of the control gain χ be constant and strictly positive. Thus, there exist

K m ∈ IR + * , K M ∈ IR + * , C 0 ∈ IR + such that 0 < K m < Γ < K M |χ| ≤ C 0 . ( 8 
)
for x ∈ X ⊂ IR n , X being a bounded open subset of IR n within which the boundedness of the system dynamics is ensured.

Note 1) . Then, the r th order sliding mode control of ( 6) with respect to the sliding variable s is equivalent to the finite time stabilization of

Z 1 = [Z 0 1 Z 1 1 • • • Z r-2 1 ] T := [s ṡ • • • s (r-2) ] T , Z 2 = s (r-
Ż1 = A 11 Z 1 + A 12 Z 2 Ż2 = χ + Γu (9)
which satisfies the global boundedness conditions [START_REF] Edge | The control of fluid power systems -responding to the challenge[END_REF], where A 11 and A 12 are defined by 

A 11 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 
A 12 = 0 • • • 0 0 1 T (r-1)×1 . ( 10 
)

B. Synthesis of high order sliding mode controller

The synthesis of a high order sliding mode controller for ( 6) is made through the following idea: switching variable is defined such that the system evolves, early from t = 0, on a switching manifold. Furthermore the sliding variable and its time derivatives reach the origin in finite time in spite of uncertainties thanks to discontinuous control input. The design of the controller consists in two steps:

• Design of the switching variable for system (9),

• Design of a discontinuous control input u maintaining the system trajectories on a switching manifold which ensures the establishment of a r th order sliding mode, in spite of uncertainties.

Switching variable.

Let S denote the switching variable defined as

S = s (r-1) -F (r-1) (t) + λ r-2 s (r-2) -F (r-2) (t) + • • • + λ 0 [s(x, t) -F(t)] , ( 11 
) with λ r-2 , • • • , λ 0 defined such that P (z) = z (r-1) + λ r-2 z (r-2) +• • •+λ 0 is a Hurwitz polynomial in the complex variable z. The function F (t) is a C r -one defined such that S(t = 0) = 0 and s (k) (x(t F ), t F ) -F (k) (t F ) = 0 (0 ≤ k ≤ r -1)
. Then, from initial and final conditions the problem consists in finding the function

F (t) such that s(x(0), 0) = F (0), s(x(t F ), t F ) = F (t F ) = 0, ṡ(x(0), 0) = Ḟ (0), ṡ(x(t F ), t F ) = Ḟ (t F ) = 0, . . . s (r-1) (x(0), 0) = F (r-1) (0), s (r-1) (x(t F ), t F ) = F (r-1) (t F ) = 0 (12) A solution for F (t) reads as (1 ≤ j ≤ r) [21] F (t) = Ke F t T s (r-j) (0) (13) 
with F a 2r × 2r-dimensional stable matrix (strictly negative eigenvalues) and T a 2r × 1-dimensional vector. H4. The integer j is such that s (r-j) (0) = 0 and bounded.

K is a 1 × 2r-dimensional gain matrix tuned such system (12) is fulfilled. Then, one gets

K = s (r-1) (0) 0 s (r-2) (0) 0 • • • s(0) 0 • ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ F r-1 T s (r-j) (0) F r-1 e F tF T F r-2 T s (r-j) (0) F r-2 e F tF T . . . T s (r-j) (0) e F tF T ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ T -1 K (14) with H5.
Matrices F and T are such that K is invertible. Furthermore, matrix F is stable (eigenvalues with negative real part) and the convergence t F > 0 is bounded. F is a 2r × 2r-dimensional matrix and T is a 2r × 1dimensional vector.

Then, S the switching variable reads as

S = s (r-1) -KF r-1 e F t T s (r-j) (0) +λ r-2 s (r-2) -KF r-2 e F t T s (r-j) (0) + • • • + λ 0 s(x, t) -Ke F t T s (r-j) (0) , (15) 
H6. There exists a finite positive constant Θ ∈ IR + such that

KF r e F t T s (r-j )(0) -λ r-2 s (r-1) - KF r-1 e F t T s (r-j) (0) -• • • -λ 0 ṡ(x, t) -KF e F t T s (r-j) (0) < Θ (16) 
Equation S = 0 describes the desired dynamics which satisfy the finite time stabilization of vector [s (r-1) s (r-2) • • • s] T to zero. Then, the switching manifold on which system ( 9) is forced to slide on via a discontinuous control v, is defined as

S = {x | S = 0} (17) 
Given equation [START_REF] Kimura | Feedback linearization for pneumatic actuator systems with static friction[END_REF], one gets S(t = 0) = 0: at the initial time, the system still evolves on the switching manifold.

There is no reaching phase in opposition to previous approaches as [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF].

Controller design.

The attention is now focused on the design of the discontinuous control law u which forces the system trajectories of ( 9) to slide on S, to reach in finite time the origin and to maintain the system at the origin. Theorem 1: [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF] Consider the nonlinear system (6) with a relative degree r with respect to σ(x, t). Suppose that it is minimum phase and that hypotheses H 1 , H 2 , H 3 and H 4 are fulfilled. Let r be the sliding mode order and 0 < t F < ∞ the desired convergence time. Define S ∈ IR by [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] with K unique solution of [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF] given by [START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF] and that assumption H5 is fulfilled. The control input u defined by u = -α sign(S) [START_REF] Ming-Chang | Identification and position control of a servo pneumatic cylinder[END_REF] with

α ≥ C 0 + Θ + η K m , ( 19 
)
C 0 , K m defined by [START_REF] Edge | The control of fluid power systems -responding to the challenge[END_REF], Θ defined by ( 16), η > 0, leads to the establishment of a r th order sliding mode with respect to σ. The convergence time is t F .

Sketch of proof.

Condition [START_REF] Paul | Reduced order sliding mode control for pneumatic actuator[END_REF] allows to satisfy the ηattractivity condition ṠS ≤ -η|S|. For more details see [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF].

IV. APPLICATION ON EXPERIMENTAL SETUP

A. Controller design

The objective consists in designing a robust (with respect to uncertainties/disturbances) position controller. Define s the sliding variable as s = yy d (t): from ( 5), its relative degree with respect to u equals 3, which implies that a 3 rd order sliding mode controller is designed. One has

s (3) = χ(•) + Γ(•)u (20) 
with T = T + ∆T , φ = ϕ + ∆ϕ, ψ = ψ + ∆ψ, M = M + ∆M 4 , where ∆T , ∆ϕ ∆ψ, ∆M represent the uncertainties. For nominal case this uncertainties are null. Furthermore

χ(•) = kr T S M φ(pP ) VP (y) -φ(pN ) VN (y) -kS 2 v M pP VP (y) -pN VN (y) -bv M2 (S (p P -p N ) -b v v -K r y) -Kr v M -y (3) d Γ(•) = kr T S M ψ(pP ,sign(u)) VP (y) + ψ(pN ,sign(-u)) VN (y) (21) 
The control law is defined as 5 u = Γ -1 nom • [-χ nom + w] with Γ nom (resp. χ nom ) the nominal value of Γ (resp. χ), i.e. derived from [START_REF] Plestan | Robust control of uncertain nonlinear systems: a new higher order sliding mode based solution[END_REF] with no uncertainties. It is important to note that Γ nom is always strictly positive. So u has the same sign as (-χ nom + w). From [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF], χ nom and w are independent of u. Then, one gets

s (3) = χ(•) + Γ(•)w (22) 
with χ = χ -ΓΓ -1 Nom χ Nom and Γ = ΓΓ -1 Nom . Let z = [s ṡ s] T . As introduced in Section III, the design follows two steps. The first consists in computing off-line matrix K in order to determine the function F (t). This latter and their time derivatives are computed on-line in order to ensure the convergence of s, ṡ, and s to 0 at a fixed time t F . The second step is the synthesis of discontinuous control which ensures the convergence in spite of uncertainties.

Switching variable.

The switching variable s reads as (15)

S = s -KF 2 e F t T s(0) + 2ξω n [ ṡ -KF e F t T s(0) + ω 2 n s -Ke F t T s(0) (23) 
with ξ = 1, ω n = 250 rad•s -1 . Initial conditions are s(0) = 0 ms -2 , ṡ(0) = 0 ms -1 and s(0) = 0.023 m. From ( 14), 4 It is supposed that d∆M dt = 0. 5 An interest of equivalent control is to reduce the value of discontinuous part gain [START_REF] Castro-Linares | High order sliding mode observer-based control[END_REF] which implies a reduction of chattering effect. one gets

K = [s(0) 0 ṡ(0) 0 s(0) 0] • ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ F 2 T s(0) F 2 e F tF T F T s(0) F e F tF T T s(0) e F tF T ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ T -1 (24)
with F and T defined as (and fulfilling Assumption H5)

T = [1 1 1 1 1 1] T F = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 0 0 0 0 0 0 -1.1 0 0 0 0 0 0 -1.2 0 0 0 0 0 0 -1.3 0 0 0 0 0 0 -1.4 0 0 0 0 0 0 -1.5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (25 
) Discontinuous input w. One gets w = -α • sign (s) with α = 12 • 10 4 (in order to satisfy [START_REF] Paul | Reduced order sliding mode control for pneumatic actuator[END_REF] by taking into account the uncertainties due to the difference of real and control models, and the variations of mass (+125%)).

B. Experimental results

Control law has been implanted in DSPACE 1005 card with 1 ms sample time. Two kinds of test have been made. The first test, named "Nominal case", consists in moving a 0.8kg mass (i.e. the control law has been designed with this hypothesis) by tracking desired trajectories (Figure 2). The second test consists in increasing the moving mass to 1.8kg, without changing the structure or gains values of the controller. For a sake of shortness, only mass modification is considered in this paper. Of course, the robustness could be evaluated with respect to other parameters (for example, additional friction by friction skates). Nominal case. The actuator position (Figure 3) converges to the desired trajectory in 0.2s (which is the stated convergence time t F ). The maximum error position in steady state is 0.02mm in spite of springs and the mass load. There is no pressure saturation (Figure 4-Top). The control input is displayed in Figure 4-Bottom. Robustness evaluation. The controller still ensures convergence in 0.2s without overshoot (Figure 5). The maximum position error in steady state equals 0.02mm which confirms the efficiency of this controller. 

  and named y d (t), has been designed such that associated velocity and acceleration are continuous functions. The maximum velocity (resp. acceleration) is 0.8 m • s -1 (resp. 33 m • s -2 ). This displacement corresponds to 64% of the total stroke around the central position. The initial conditions are such that [y d (0) v d (0) vd (0)] T = [0.016 0 0] T .
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Each valve is labeled, respectively with P (for positive displacement) and N (for negative displacement) Figure[START_REF] Bartolini | Chattering avoidance by secondorder sliding mode control[END_REF] 

All over this paper, s(•)(k) (k ∈ IN ) denotes the k th time derivative of the function s(•). This notation is also applied for every function.

Given a(x) a real-valued function and b(x) a vector field, both defined on X ⊂ IR n , the derivative of a(•) along b(•) is written as L b a and is defined as L b a = ∂a ∂x b(x)[START_REF] Isidori | Nonlinear control cystems: an introduction -Third edition[END_REF].
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