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STRANGE DUALITY FOR VERLINDE SPACES OF EXCEPTIONAL GROUPS AT LEVEL ONE

The moduli stack M X (E 8 ) of principal E 8 -bundles over a smooth projective curve X carries a natural divisor ∆. We study the pull-back of the divisor ∆ to the moduli stack M X (P ), where P is a semi-simple and simply connected group such that its Lie algebra Lie(P ) is a maximal conformal subalgebra of Lie(E 8 ). We show that the divisor ∆ induces "Strange Duality"-type isomorphisms between the Verlinde spaces at level one of the following pairs of groups (SL(5), SL(5)), (Spin(8), Spin(8)), (SL(3), E 6 ) and (SL(2), E 7 ).

Introduction

Let X be a smooth complex projective curve of genus g and let G be a simple and simply connected complex Lie group. We denote by M X (G) the moduli stack parametrizing principal G-bundles over the curve X and by L G the ample line bundle over M X (G) generating its Picard group. The starting point of our investigation is the observation (see e.g. [So], [F1], [F2]) that dim H 0 (M X (E 8 ), L E 8 ) = 1.

for any genus g. In other words, the moduli stack M X (E 8 ) carries a natural divisor ∆. Unfortunately a geometric interpretation of this divisor is not known.

In this paper we study the pull-back of this mysterious divisor ∆ under the morphisms M X (P ) → M X (E 8 ) induced by the group homomorphisms φ : P → E 8 , where we assume that P is connected, simply connected and semi-simple, and that the differential dφ : p = Lie(P ) → e 8 = Lie(E 8 ) is a conformal embedding of Lie algebras (see Definition 3.1). We recall ( [BB] p. 566) that any subalgebra of maximal rank 8 of e 8 (see [BD] Chapter 7 for a list) is actually a conformal subalgebra of e 8 with Dynkin (multi-)index one. Maximal conformal subalgebras of e 8 with Dynkin (multi-)indicies one have been classified by [BB] and [SW], and the full list is as follows:

(1) maximal rank : so(16), sl(9), sl(5) ⊕ sl(5), sl(3) ⊕ e 6 , sl(2) ⊕ e 7 non-maximal rank : g 2 ⊕ f 4 .

In Table (2) we list the corresponding simply connected Lie groups P and the finite kernel N of their natural maps to E 8 (see e.g. [CG] Lemma 3.3).

(2) P Spin( 16) SL( 9) SL(5) × SL(5) SL(3

) × E 6 SL(2) × E 7 G 2 × F 4 N Z/2Z Z/3Z Z/5Z Z/3Z Z/2Z 1 
Note that N is a subgroup of the center of P . We introduce the finite abelian group M X (N) of principal N-bundles over X, which acts on M X (P ) by twisting P -bundles with N-bundles. Since N is the kernel of φ, the group M X (N) acts on the fibers of the induced stack morphism 2000 Mathematics Subject Classification. Primary 14D20, 14H60, 17B67.

1 φ : M X (P ) → M X (E 8 ). We emphasize that the M X (N)-linearization of the line bundle L P over M X (P ) is not unique, but we obtain a canonical M X (N)-linearization (hence a canonical linear action of M X (N) on H 0 (M X (P ), L P )), namely, the one induced from the isomorphism φ * L E 8 = L P .

If P has two simple factors, the line bundle L P denotes the tensor product of the ample generators on each factor (see section 2.1). With this notation our main result can be stated as follows.

Theorem 1. Let P be a Lie group of Table (2) andlet φ P : H 0 (M X (E 8 ), L E 8 ) -→ H 0 (M X (P ), L P ) be the linear map on global sections induced by the homomorphism φ : P → E 8 . Then (i) The linear map φ P is nonzero.

(ii) In all cases except P = G 2 × F 4 , its one-dimensional image coincides with the M X (N)invariant subspace of H 0 (M X (P ), L P ), where M X (N) acts on H 0 (M X (P ), L P ) with the canonical action.

Unfortunately, even in the cases SL(9) and Spin( 16), we are not able to give a geometric description of the zero-divisor of the M X (N)-invariant section in the moduli stacks M X (SL( 9)) and M X (Spin( 16)) -see section 7.1 for further discussion.

A word about the proof of Theorem 1. We make use of the identification of the space of generalized G-theta functions H 0 (M X (G), L G ) with the space of conformal blocks V † 0 (X, g) associated to the curve X with one marked point labelled with the zero weight. Here g = Lie(G). Under this identification the linear map φ P becomes the map induced by the natural inclusion of the basic highest weight modules H 0 (p) ֒→ H 0 (e 8 ) of the affine Lie algebras p and ê8 . The proof has essentially two steps. First, we use a result by P. Belkale ([B] Proposition 5.8) saying that the linear map φ P has constant rank when the curve X varies in a family of smooth curves.

Here, the fact that the embedding p ⊂ e 8 is conformal, is crucial, since it ensures that φ P is projectively flat with respect to the WZW connections on both sheaves of vacua over any family of smooth curves. Secondly, we study in section 4 the behaviour of the factorization rules of the spaces of conformal blocks associated to g under any conformal embedding p ⊂ g. This will follow once one has decomposed the "sewing-procedure" tensor γλ ∈ H λ (g) ⊗ H λ † (g) [[q]] under the decomposition of the ĝ-modules H λ (g) and H λ † (g) into irreducible p-modules. Finally, combining these two steps allows us to show by induction on the genus of X that φ P is non-zero.

In the cases when P is not simple and N not trivial, an argument using the representation theory of Heisenberg groups allows us to show the following result, which can be seen as an instance of Strange Duality for exceptional groups at level one.

Theorem 2. Let (A, B) be one of the three pairs (SL(5), SL(5)), (SL(3), E 6 ), (SL(2), E 7 ). Consider any M X (N)-linearization of the line bundle

L A×B over M X (A × B). Let σ ∈ H 0 (M X (A × B), L A×B ) = H 0 (M X (A), L A ) ⊗ H 0 (M X (B), L B )
be a non-zero element of the one-dimensional M X (N)-invariant subspace. Then σ induces an isomorphism σ :

H 0 (M X (A), L A ) * -→ H 0 (M X (B), L B ).
A similar isomorphism is obtained for the pair (Spin(8), Spin(8)) -see section 7.2.1. We would like to mention that the proofs of Theorem 1 and Theorem 2 are independent, and that both results are related by the fact that the "Strange Duality" isomorphism of Theorem 2 corresponding to the canonical M X (N)-linearization is obtained precisely by pulling-back the E 8 -theta divisor ∆ to the moduli stack M X (A × B).

The last few years have seen important progress on "Strange Duality" or "rank-level" duality for Verlinde spaces. For a survey we refer, for example, to the papers [MO], [Po] or [Pa].

We would like to thank Laurent Manivel and Nicolas Ressayre for helpful comments, as well as the referees for helping us improve readability of the paper.

Notation and preliminaries

2.1. Moduli stacks and line bundles.

2.1.1. Dynkin index. Let p and g be two simple Lie algebras and let ϕ : p → g be a Lie algebra homomorphism. There exists [D] a unique integer d ϕ , called the Dynkin index of the homomorphism ϕ, satisfying (ϕ(x), ϕ(y)) g = d ϕ (x, y) p , for all x, y ∈ p, where ( , ) * denotes the Cartan-Killing form on p and g, normalized such that (θ, θ) = 2 for their respective highest roots θ. If p is semi-simple with two components p 1 ⊕ p 2 , then the Dynkin multi-index of ϕ = ϕ 1 ⊕ ϕ 2 : p 1 ⊕ p 2 → g is given by d ϕ = (d ϕ 1 , d ϕ 2 ), where each d ϕ i is defined using ϕ i : p i → g.

2.1.2. Line bundles over the moduli stack M X (P ). If P is a simple and simply connected complex Lie group we refer to [LS] and [So] for the description of the ample generator L P of the Picard group of the moduli stack M X (P ). If P = P 1 × P 2 with P i simple and simply connected, we put L P = L P 1 ⊠ L P 2 and we note

L d P = L d 1 P 1 ⊠ L d 2 P 2 for a multi-index d = (d 1 , d 2 ).
The following lemma follows easily from [LS] and [KNR].

Lemma 2.1. Let φ : P → G be a homomorphism between simply-connected complex Lie groups with G simple and P semi-simple. Let φ : M X (P ) → M X (G) be the induced stack morphism. Then we have the equality φ * L G = L dϕ P , where d ϕ is the Dynkin (multi-) index of the differential ϕ = dφ : p → g.

Spaces of conformal blocks.

2.2.1. The case g simple. Let g be a simple Lie algebra and h ⊂ g a Cartan subalgebra. We denote as before by ( , ) the normalized Cartan-Killing form and we will use the same notation for the restricted form on h and for the induced form on h * . We consider (see [K] Chapter 7) the non-twisted affine Lie algebra associated to g over C((z))

ĝ = g ⊗ C((z)) ⊕ Cc ⊕ Cd with Lie bracket [x ⊗ f, y ⊗ g] = [x, y] ⊗ f g + (x, y)Res z=0 (gdf ) • c, [g, c] = 0, [d, c] = 0, [d, x(n)] = nx(n),
for x, y ∈ g, f, g ∈ C((z)) and n ∈ Z. Here we put x(n) = x ⊗ z n . We identify g with the subalgebra g ⊗ 1 of ĝ. The subalgebra ĥ = h ⊕ Cc ⊕ Cd is the Cartan subalgebra of the affine Lie algebra ĝ. We extend λ ∈ h * to a linear form on ĥ by putting λ, Cc ⊕ Cd = 0, where , is the standard pairing. We define the elements Λ 0 and δ in the dual ĥ * = h * ⊕ CΛ 0 ⊕ Cδ by δ, d = Λ 0 , c = 1 and δ, h ⊕ Cc = Λ 0 , h ⊕ Cd = 0. We extend the form ( , ) to ĥ * by putting

(h * , CΛ 0 ⊕ Cδ) = 0, (δ, δ) = (Λ 0 , Λ 0 ) = 0, (δ, Λ 0 ) = 1.
The Weyl group of g is denoted by W (g). Call w g 0 ∈ W (g) its longest element. Later we will need the following fact Proposition 2.2. Let p ⊂ g be an embedding of semi-simple Lie algebras and choose Cartan subalgebras such that h p ⊂ h g . Then there exists an element w ∈ W (g) which preserves the subspace h p ⊂ h g and such that the restriction w|hp coincides with the longest element w p 0 . Proof. This can be deduced from a more general fact -see e.g. Theorem 2.1.4 [BS]. Moreover if p and g have the same rank (all our cases except g 2 ⊕ f 4 ), i.e. h p = h g , we have a canonical inclusion W (p) ⊂ W (g).

Next, we recall some representation theory of the affine Lie algebra ĝ from [K] Chapter 12.

We denote by P (g) the weight lattice of g and by P + (g) the subset of P (g) consisting of dominant integral weights. Given a positive integer k, called level, we consider the finite set

P k (g) := {λ ∈ P + (g) | (λ, θ) ≤ k} ⊂ h * .
Given λ ∈ P k (g) we denote by H λ (g), or simply H λ if no confusion arises, the integrable ĝ-module with highest weight λ + kΛ 0 ; in particular, (1) the center c ∈ ĥ acts on H λ as k • Id.

(2) the derivation d ∈ ĥ acts trivially on the highest weight vector v λ of H λ .

We introduce the set

P k (g) := { λ = λ + kΛ 0 + ζδ | λ ∈ P (g), ζ ∈ C} ⊂ ĥ * .
Given λ = λ + kΛ 0 + ζδ in P k (g) we define λ † = -w g 0 (λ) + kΛ 0 + ζδ. This gives an involution λ → λ † on the set P k (g).

Note that there is a projection map

P k (g) → P (g), λ = λ + kΛ 0 + ζδ → λ.
We will view P k (g) as a subset of P k (g) under the mapping λ → λ = λ + kΛ 0 and we observe that the involution λ → λ † restricts to an involution λ → λ † = -w g 0 (λ) on the finite set P k (g). Note that -λ † is the lowest weight of the irreducible right g-module V * λ , the dual of V λ .

More generally, for any λ = λ + kΛ 0 + ζδ ∈ P k (g) such that λ ∈ P k (g) we denote by H λ(g) the integrable ĝ-module with highest weight λ = λ + kΛ 0 + ζδ; in particular, (1) the center c ∈ ĥ acts on H λ as k • Id.

(2) the derivation d ∈ ĥ acts on the highest weight vector

v λ of H λ as d • v λ = ζv λ .
For λ = λ + kΛ 0 + ζδ ∈ P k (g) with λ ∈ P k (g), we note that the ĝ-modules H λ and H λ become isomorphic as modules over the subalgebra [ĝ, ĝ] = g ⊗ C((z)) ⊕ Cc. The ĝ-module H 0 (g) with zero weight and level 1 (i.e., λ = Λ 0 ) is called the basic ĝ-module.

Given s points p = (p 1 , . . . , p s ) on X we consider the open subset U = X \ {p 1 , . . . , p s }, and choose a local coordinate ξ i at each point p i . Following [U] Definition 3.1.1 we introduce the Lie algebra

ĝs := s j=1 g ⊗ C C((ξ i )) ⊕ Cc.
There is a natural embedding of the ring H 0 (U, O U ) of regular functions on U into ⊕ s j=1 C((ξ i )) via Laurent expansions at the points p i . By [U] 

Lemma 3.1.2, g(U) := g ⊗ H 0 (U, O U ) is a Lie subalgebra of ĝs .
For λ = (λ 1 , λ 2 , . . . , λ s ) ∈ P k (g) s we introduce the left ĝs -module

H λ := H λ 1 ⊗ H λ 2 ⊗ . . . ⊗ H λs .
The space of covacua associated to the data (X, p, λ, ξ) is defined as

V λ (X, g) := H λ /g(U) • H λ ,
where g(U) acts on H λ via the inclusion in ĝs . We refer to [U] for further details.

The space of vacua or the space of conformal blocks is defined as the dual of V λ (X, g) and is denoted by V † λ (X, g). We note that there is an inclusion

V † λ (X, g) ֒→ H † λ .
We denote by | the natural pairing between H λ and its dual H † λ .

The construction of the space of conformal blocks can be carried out for a family X → S of pointed nodal curves and provides a sheaf over the base scheme S, called the sheaf of vacua and denoted by V † λ (X , g). A fundamental property is that the sheaf of vacua is locally free and that it commutes with any base change in S (see e.g. [U] Theorem 4.4.2). 2.2.2. The case g semi-simple. We now adapt the previous contructions to semi-simple Lie algebras g. For our purposes it is enough to deal with the case when g is the direct sum of two simple Lie algebras g = g 1 ⊕ g 2 . By [K] section 12.9 we define the affine Lie algebra associated to g by ĝ

= g ⊗ C((z)) ⊕ Cc 1 ⊕ Cc 2 ⊕ Cd,
with Cartan subalgebra ĥ = h ⊕ Cc 1 ⊕ Cc 2 ⊕ Cd. Similar to the case of simple algebras, one defines a Lie bracket and a non-degenerate bilinear form on ĥ and on its dual ĥ * = h * ⊕ CΛ

(1)

0 ⊕ CΛ (2) 0 ⊕ Cδ.
Given a multi-index k = (k 1 , k 2 ), with k i positive integers, we introduce the sets

P k (g) = P k 1 (g 1 ) × P k 2 (g 2 ), P k (g) = { λ = λ + k 1 Λ (1) 0 + k 2 Λ (2) 0 + ζδ | λ ∈ P (g), ζ ∈ C} ⊂ ĥ * ,
and we associate to a weight λ = (λ (1) , λ (2) ) ∈ P k (g) the integrable ĝ-module

H λ (g) = H λ (1) (g 1 ) ⊗ H λ (2) (g 2 ).
Similarly, we introduce for any λ ∈ P k (g) the ĝ-module H λ(g).

With these definitions it is easy to deduce the following decomposition of the spaces of conformal blocks

V † λ (g) = V † λ (1) (g 1 ) ⊗ V † λ (2) (g 2 ) with λ = ( λ (1) , λ (2) ) ∈ P k (g) s .
2.3. Generalized theta functions and the Verlinde formula. For the convenience of the reader we recall (see [LS], [F3], [KNR]) that there is an isomorphism between the space H 0 (M X (G), L k G ) of generalized G-theta functions of level k and the space of conformal blocks V † 0 (X, g) associated to the curve X with one marked point labelled with the zero weight at level k, i.e,

(3)

H 0 (M X (G), L k G ) ∼ -→ V † 0 (X, g
). The dimension of this space is given by the Verlinde formula (see [F3], [T]). Its value for the groups G of type ADE and at level one is |Z| g , where |Z| denotes the order of the center Z of G (see [F1]). The list is as follows:

(4) G SL(n) Spin(2n) E 6 E 7 E 8 dim H 0 (M X (G), L G ) n g 4 g 3 g 2 g 1 3.
Conformal pairs: properties of their representations 3.1. The Virasoro algebra and its representation on H λ(g). The Virasoro algebra

Vir := n∈Z Cd n ⊕ Cc, is defined by the relations [d i , d j ] = (i -j)d i+j + 1 12 (i 3 -i)δ i,-j c and [d i , c] = 0.
If g is simple, we define for any level k and any λ ∈ P k (g), the conformal anomaly c(g, k) and the trace anomaly ∆ λ(g) as

c(g, k) = k dim g ȟ(g) + k , and ∆ λ(g) = ( λ, λ + 2ρ) 2( ȟ(g) + k) .
Here ȟ(g) is the dual Coxeter number of g and ρ = ρ + ȟ(g)Λ 0 , where ρ denotes the half-sum of the positive roots of g. We choose dual bases {u i } and {u i } of the simple algebra g and introduce for any n ∈ Z the Sugawara operator (see [KW] section 3.2)

(5)

L g n = 1 2(k + ȟ(g)) j∈Z i : u i (-j)u i (j + n) :,
where the notation : : stands for the normal ordering. Then L g n acts linearly on H λ(g) and, by putting d n = L g n and c = c(g, k)Id, we obtain a representation of Vir on H λ(g).

If g is semi-simple with g = g 1 ⊕ g 2 , we define for k = (k 1 , k 2 ), see [KW] formula (1.4.7),

c(g, k) = c(g 1 , k 1 ) + c(g 2 , k 2 ), and ∆ λ(g) = ∆ λ(1) (g 1 ) + ∆ λ(2) (g 2 ),
and we put

L g n = L g 1 n + L g 2 n .
As in the simple case, we obtain a representation of Vir on H λ(g).

For later use we recall the following relation ( [KW] formula (1.4.5))

(6) ∆ λ+nδ (g) = ∆ λ(g) + n.
The endomorphism L g 0 of the ĝ-module H λ(g) can be diagonalized

H λ = ∞ m=0 H λ(m) with H λ(m) := {u ∈ H λ | L g 0 (u) = (∆ λ(g) + m)u}.
We recall that the endomorphism L g 0 of H λ(g) defined by (5) can also be written as ([KW] (3.2.6) or [K] Corollary 12.8 (b)) (7)

L g 0 = ∆ λ(g)Id -d. Note that H λ(0) equals the irreducible g-module V λ with highest weight λ.

Definition of conformal pair.

Definition 3.1 (e. g. [K] Chapter 13). Let p be a semisimple subalgebra of a simple Lie algebra g, and let ℓ denote the Dynkin (multi-)index of the inclusion homomorphism p ⊂ g. We say that p is a conformal subalgebra of g at level k if c(p, kℓ) = c(g, k).

The equality c(p, kℓ) = c(g, k) in the above definition in fact holds only if k = 1. Classification of conformal pairs are given in [BB] and [SW]. We recall (see [KW]) that, since p is semisimple, p ⊂ g is a conformal subalgebra is equivalent to the statement that any irreducible ĝ-module H λ (g) of level 1 decomposes into a finite sum of irreducible p-modules of level ℓ.

A fundamental property of a conformal embedding p ⊂ g is the following.

Proposition 3.2 ([KW] Proposition 3.2 (c)). If p ⊂ g is a conformal embedding, then L g n = L p n ∈ End(H λ(g))
for all n ∈ Z.

In the above statement, we warn that (though implicit in the notation), the operator L g n is acting at level k = 1 and L p n at level ℓ. In all the cases we will consider the multi-integer ℓ is equal to 1 (see Table ( 11)).

3.3. The pairing on H λ × H λ † . First we recall the following lemma Lemma 3.3 ([U] Lemma 2.2.12). There exists a bilinear pairing

(•|•) λ : H λ × H λ † -→ C, unique up to a multiplicative constant such that (8) (X(n)u|v) λ + (u|X(-n)v) λ = 0, for any X ∈ g, n ∈ Z, u ∈ H λ and v ∈ H λ † .
Moreover the restriction of this pairing to

H λ (m) × H λ † (m ′ ) is zero if m = m ′ , and non-degenerate if m = m ′ .
Consider the restriction of the pairing (

•|•) λ to H λ (0) × H λ † (0) = V λ × V λ † . By definition V λ † = V * λ , so that V λ ⊗ V λ † = End(V λ ). The pairing on V λ × V * λ is
given by a multiple of the natural evaluation map. More generally, the pairing (•|•) λ induces for any integer m an isomorphism φ λ m :

H λ † (m) ∼ → H λ (m)
* and therefore a distinguished element, which we denote by γ λ (m) ∈ H λ (m) ⊗ H λ † (m) and which maps to the identity element in End(H λ (m)) under the isomorphism

(9) id ⊗ φ λ m : H λ (m) ⊗ H λ † (m) ∼ -→ End(H λ (m)), γ λ (m) → Id H λ (m) .
Note that the family {γ λ (m)} m∈Z + is uniquely defined up to a multiplicative constant. More precisely, if we multiply (

•|•) λ with α ∈ C * the family {γ λ (m)} m∈Z + is transformed into the family { 1 α γ λ (m)} m∈Z + .
Consider a conformal embedding p ⊂ g and an integrable ĝ-module H λ (g) of level one. Then we have a decomposition as p-module

H λ (g) = μ∈B(λ) M(μ, λ) ⊗ H μ(p),
where B(λ) is a finite subset of P ℓ (p) (see [K] equation (13.14.6)) and the M(μ, λ) are finitedimensional vector spaces ( [KW] section 1.6). The integer dim M(μ, λ) is the multiplicity of the representation H μ(p) in H λ (g). Note that the weights μ ∈ B(λ) do not necessarily lie in P ℓ (p). We can write μ = µ

+ i ℓ i Λ (i) 0 -n µ δ.
Using Proposition 3.2 we deduce an equality between the trace anomalies

(10) ∆ λ (g) = ∆ μ(p)
for any μ ∈ B(λ).

Moreover by (6) we also have ∆ μ(p) = ∆ µ (p) -n µ . Since -n µ is the d-eigenvalue of the highest weight vector v µ ∈ H μ(p) ⊂ H λ (g) and since all d-eigenvalues of H λ (g) are negative integers, we conclude that n µ ∈ Z + .

Remark 3.4. We immediately deduce from the above that n µ = 0 if and only if the pmodule V µ = H µ (p)(0) appears in the decomposition into irreducible p-modules of the g-module

V λ = H λ (g)(0).
Thus we conclude that given µ ∈ P ℓ (p) there exists at most one μ ∈ B(λ) -since n µ is given by the difference of the trace anomalies. So we will write mult λ (µ, p) := dim M(μ, λ) for the multiplicity of occurence of H µ (p) in H λ (g) as [ p, p]-modules.

Proposition 3.5. We have the equality

B(λ † ) = B(λ) † := {μ ∈ P ℓ (p) | μ † ∈ B(λ)}. Moreover mult λ (µ, p) = mult λ † (µ † , p).
Proof. For ν ∈ P k (g) and λ ∈ P k (g) we will denote by V λ ν ⊂ H λ (g) the weight space of the ĝ-module H λ (g) associated to the weight ν. It follows from relation ( 7) that V λ ν ⊂ H λ (g)(m) if and only if ν is of the form ν = ν + kΛ 0 -mδ. By Lemma 3.3 we know that H λ (g)(m) and H λ † (g)(m) are dual spaces, and it follows from relation (8) that the weight spaces

V λ ν+kΛ 0 -mδ ⊂ H λ (g)(m) and V λ † -ν+kΛ 0 -mδ ⊂ H λ † (g)(m) are dual to each other. Hence their dimensions coincide mult H λ (ν + kΛ 0 -mδ) = mult H λ † (-ν + kΛ 0 -mδ).
Consider μ ∈ B(λ). Then by (10) we have ∆ λ (g) = ∆ μ(p) and since the bilinear form (•, •) is invariant under the finite Weyl group and w 0 (ρ) = -ρ we also have ∆ λ † (g) = ∆ μ † (p). By [K] Proposition 12.11, there exists a weight ν of H λ (g) such that ν| ĥp = μ. By Proposition 2.2 there exists an element w ∈ W (g) which restricts to w p 0 ∈ W (p) and by [K] Proposition 10.1, mult

H λ † (-ν + kΛ 0 -mδ) = mult H λ † (-w(ν) + kΛ 0 -mδ).
Butw(ν)+kΛ 0 -mδ | ĥp = μ † , therefore, using [K] Proposition 12.11 once more, we obtain that μ † ∈ B(λ † ). The same reasoning combined with [K] formula (12.11.1) shows that mult λ (µ, p) = mult λ † (µ † , p).

3.4.

Conformal pairs and the sewing procedure. Let q be a formal variable. Given λ ∈ P k (g) we define the element (cf. section 3.3)

γλ := ∞ m=0 γ λ (m)q m ∈ H λ (g) ⊗ H λ † (g)[[q]].
Note that γλ is well-defined up to a multiplicative constant, and that the choice of a bilinear pairing (•|•) λ on H λ × H λ † introduced in Lemma 3.3 uniquely determines γλ .

Let p ⊂ g be a conformal subalgebra. It follows from Proposition 3.5 that the decompositions of H λ (g) and H λ † (g) into irreducible p-modules are of the form

(11) H λ (g) = μ∈B(λ) H μ(p), H λ † (g) = μ∈B(λ) H μ † (p).
Here we suppose for simplicity that mult λ (µ, p) = 1 for all μ ∈ B(λ), which will be the case of all our examples (see Table (13) below). We start with decomposing the bilinear form (•|•) λ introduced in Lemma 3.3 with respect to the direct sums (11).

Lemma 3.6. Given (μ, ν) ∈ B(λ) ×B(λ † ) the restriction of the bilinear form

(•|•) λ to the direct summand H μ(p) × H ν (p) is • zero, if ν = μ † . • a non-zero multiple of the bilinear form (•|•) µ on H µ (p) × H µ † (p), if ν = μ † .
Proof. We consider the decomposition into d-eigenspaces

H λ (g)(m) = μ∈B(λ) H μ(p)(m).
Note that H μ(p)(m) = H µ (p)(m -n µ ) for all m ∈ Z + and that H µ (p)(l) = {0} for l < 0. First we observe that the restriction of (•|•) λ to H μ(p) × H ν (p) is determined by values on the finite-dimensional subspace

V µ × V ν = H µ (p)(0) × H ν (p)(0) = H μ(p)(n µ ) × H ν (p)(n ν ).
This follows from the fact that (•|•) λ satisfies relation ( 8) for X ∈ p, u ∈ H μ(p) and v ∈ H ν (p), which enables one to reconstruct the bilinear form on H μ(p) × H ν (p) from its values on V µ × V ν -see e.g. [U] Lemma 2.2.12.

The restriction of (•|•) λ to V µ × V ν induces a linear map ϕ : V µ → (V ν ) * and relation ( 8) written for X ∈ p, n = 0, u ∈ V µ and v ∈ V ν implies that ϕ is a p-module homomorphism (here we endow the vector space (V ν ) * with the structure of a left p-module). Hence in the case ν = μ † , we deduce that ϕ = 0 and therefore that the restriction of (•|•) λ to H μ(p) × H ν (p) is zero. In the case ν = μ † , we obtain by Schur's lemma that ϕ :

V µ → (V µ † ) * = V µ is a homothety and that the restriction of (•|•) λ to H μ(p) × H μ † (p) is a multiple of (•|•) µ .
It now remains to check that this multiple is non-zero. In order to show that, we consider for m large the isomorphism φ λ m induced by (

•|•) λ H λ † (m) = μ∈B(λ) H μ † (m) -→ H λ (m) * = μ∈B(λ) H μ(m) * .
By the preceding arguments, φ λ m is block-diagonal and decomposes as φ 

λ (g) ⊗ H λ † (g)[[q]] γλ = μ∈B(λ) q nµ γµ ,
where the positive integer n µ equals ∆ µ (p) -∆ λ (g).

Proof. As in the proof of Lemma 3.6, we consider the decomposition into d-eigenspaces

H λ (g)(m) = μ∈B(λ) H μ(p)(m)
and note that H μ(p)(m) = H µ (p)(m -n µ ) for all m ∈ Z + . The identity transformation of H λ (g)(m) obviously decomposes as ( 12)

Id H λ (g)(m) = μ∈B(λ) Id Hµ(p)(m-nµ)
for any m ∈ Z + . Since by Lemma 3.6 the pairing (•|•) λ on H λ ×H λ † restricts to the pairing (•|•) µ on H µ ×H µ † for any μ ∈ B(λ), we obtain after applying the inverse of the isomorphism id⊗φ λ m = μ∈B(λ) id⊗φ µ m (see ( 9)) to the equality ( 12),

γ λ (m) = μ∈B(λ) γ µ (m -n µ )
for any m ∈ Z + .

Here we put γ µ (l) = 0 if l < 0. Multiplying with q m and summing over Z + gives the relation

γλ = ∞ m=0 γ λ (m)q m = μ∈B(λ) m≥nµ γ µ (m -n µ )q m-nµ q nµ = μ∈B(λ)
q nµ γµ .

The following table is extracted from [KS] page 2235 and gives for any conformal subalgebra p of Table ( 1) the decomposition of the basic representation H 0 (e 8 ) as [ p, p]-module, in particular its Dynkin (multi-)index ℓ, its subset B(0) and the action of the involution µ → µ † . We use Bourbaki's notation for the fundamental weights of a simple Lie algebra.

(13) p ℓ B(0) ̟ → ̟ † so(16) 1 {0, ̟ 7 } ̟ † 7 = ̟ 7 sl(9) 1 {0, ̟ 3 , ̟ 6 } ̟ † 3 = ̟ 6 sl(5) ⊕ sl(5) (1,1) {(0, 0), (̟ 1 , ̟ 2 ), (̟ 2 , ̟ 4 ), (̟ 3 , ̟ 1 ), (̟ 4 , ̟ 3 )} (̟ i , ̟ j ) † = (̟ 5-i , ̟ 5-j ) sl(3) ⊕ e 6 (1,1) {(0, 0), (̟ 1 , ̟ 1 ), (̟ 2 , ̟ 6 )} (̟ 1 , ̟ 1 ) † = (̟ 2 , ̟ 6 ) sl(2) ⊕ e 7
(1,1)

{(0, 0), (̟ 1 , ̟ 7 )} (̟ 1 , ̟ 7 ) † = (̟ 1 , ̟ 7 ) g 2 ⊕ f 4 (1,1) {(0, 0), (̟ 1 , ̟ 4 )} (̟ 1 , ̟ 4 ) † = (̟ 1 , ̟ 4 )
We recall that if p = a ⊕ b, then we have the decomposition as [ p, p]-module

H 0 (e 8 ) = (λ 1 ,λ 2 )∈B(0) H λ 1 (a) ⊗ H λ 2 (b).
We also note that, for any p in Table ( 13), the trace anomalies ∆ µ (p) = n µ are equal to 1 for all non-zero µ ∈ B(0).

Conformal pairs: factorization rules

In this section we describe how the factorization rules behave under conformal embeddings. First we recall the factorization rules. Let X 0 be a nodal (not necessarily irreducible) curve with one node x 0 . We call X the normalization of X 0 with π : X → X 0 and π -1 (x 0 ) = {a, b}.

Proposition 4.1 (Factorization rules, [U] Theorem 4.4.9). Let g be a semi-simple Lie algebra and X 0 a nodal curve with s marked points with labels λ ∈ P k (g) s . There is an isomorphism

λ∈P k (g) V † λ,λ,λ † ( X, g) ⊕ι λ -→ V † λ (X 0 , g).
Remark 4.2. For any λ ∈ P k (g) the linear map ι λ is only defined up to homothety. More precisely, ι λ depends on the choice of an element γλ (or, equivalently, of its degree zero piece γ λ (0)), which are only defined up to a multiplicative constant -see equation ( 14) below.

We will denote by O the ring of formal power series C[[q]] and by K = C((q)) its field of fraction. We consider a family of curves X over Spec O such that its special fiber X 0 is a nodal curve X 0 over C and its generic fiber X K a smooth curve over the field K. Consider the sheaf of conformal blocks V † λ (X , g) for the family X , which is an O-module of finite type. Moreover since the formation of the sheaf of conformal blocks commutes with base change, the fibre

V † λ (X , g) 0 over the closed point 0 ∈ Spec O of V † λ (X , g) coincides with V † λ (X 0 , g).
We thus obtain a restriction map

r 0 : V † λ (X , g) -→ V † λ (X 0 , g).
On the other hand, there exists for every λ ∈ P k (g) a C-linear map -the so-called sewing procedure, see [U] formula (4.4.3) and Lemma 4.4.5

s λ : V † λ,λ,λ † ( X, g) -→ V † λ (X , g), ψ λ → ψ λ := s λ (ψ λ ).
The linear maps ι λ and s λ are defined as follows: for

ψ λ ∈ V † λ,λ,λ † ( X, g) (14) ι λ (ψ λ )|u := ψ λ |u ⊗ γ λ (0) ∈ C and ψ λ |ũ := ψ λ |ũ ⊗ γλ ∈ O for any vectors u ∈ H λ and ũ ∈ H λ [[q]]. We recall (see [U] Lemma 4.4.6) that V † λ (X , g) identifies with the subset of linear forms in H † λ [[q]
] satisfying the formal gauge condition. It is clear from these definitions that the map s λ is an extension of ι λ , i.e., ι λ = r 0 • s λ .

We consider now a conformal embedding p ⊂ g. We assume that all level one representations H λ (g) decompose with multiplicities one, i.e. mult λ (µ, p) = 1 for all μ ∈ B(λ). For λ = (λ 1 , . . . , λ s ) define

B( λ) = B(λ 1 ) × • • • × B(λ s ). Consider μ ∈ B( λ) and the corresponding inclusion H μ(p) ֒→ H λ (g).
The gauge condition is preserved under restriction of linear forms to H μ(p) -see [NT] formula (2.9), so that we obtain an O-linear map

(15) α : V † λ (X , g) -→ V † µ (X , p). The restriction of α to 0 ∈ Spec O gives a C-linear map α 0 : V † λ (X 0 , g) -→ V † µ (X 0 , p).
The next result will describe how α 0 decomposes in the direct sums given by the factorization rules (Proposition 4.1) on both sides. More precisely, we consider the composite map α :

λ∈P 1 (g) V † λ,λ,λ † ( X, g) ⊕ι λ -→ V † λ (X 0 , g) α 0 -→ V † µ (X 0 , p) (⊕ιµ) -1 -→ µ∈P ℓ (p) V † µ,µ,µ † ( X, p)
and define for any pair (λ, µ) ∈ P 1 (g) × P ℓ (p) the linear map α λ,µ 0 : V † λ,λ,λ † ( X, g) → V † µ,µ,µ † ( X, p) to be the (λ, µ)-component of α. In particular, we have for any λ ∈ P 1 (g),

µ∈P ℓ (p) ι µ • α λ,µ 0 = α 0 • ι λ .
Remark 4.3. Since ι λ and ι µ are only defined up to homothety, the linear maps α λ,µ 0 are only defined up to homothety. Proposition 4.4. Given a pair (λ, µ) ∈ P 1 (g) × P ℓ (p), the linear map α λ,µ 0

• is identically zero, if μ / ∈ B(λ) or ∆ µ (p) = ∆ λ (g).
• is, up to non-zero homothety, induced by the natural inclusion

H μ(p)⊗H μ(p)⊗H μ † (p) ֒→ H λ (g) ⊗ H λ (g) ⊗ H λ † (g), if μ ∈ B(λ) and ∆ µ (p) = ∆ λ (g).
Proof. We fix a weight λ ∈ P 1 (g). In order to lift the C * -indeterminacy in the definition of α λ,µ 0 , we fix a bilinear pairing (•|•) λ on H λ × H λ † , which by Remarks 3.7 and 4.2 determines the elements γλ and γµ , hence the linear maps ι λ and ι µ for any μ ∈ B(λ); we choose any ι µ for μ / ∈ B(λ).

In order to compute the decomposition of α 0 (ι λ (ψ λ )) for an element ψ λ ∈ V † λ,λ,λ † ( X, g) in the direct sum µ∈P ℓ (p) V † µ,µ,µ † ( X, p), we will first decompose the extension α( ψ λ ) and then restrict to the special fiber. In fact, we have α 0 (ι λ (ψ λ )) = r 0 (α( ψ λ )). On the other hand, using Proposition 3.8 and the definition ( 14) of ψ λ , we easily obtain the following equalities in O, which hold for any ũ ∈ H μ(p) [[q]] ֒→ H λ (g) [[q]] ( 16)

α( ψ λ )|ũ = ψ λ |ũ = ψ λ |ũ ⊗ γλ = μ∈B(λ)
q nµ ψ λ |ũ ⊗ γµ .

Now we restrict this expression to the special fiber, i.e., we put q = 0: we write ũ = m≥0 u(m)q m and γµ = m≥0 γ µ (m)q m , so that the evaluation at q = 0 of the first term of ( 16) gives (17) α( ψ λ )|ũ (0) = r 0 (α( ψ λ ))|u(0) = α 0 (ι λ (ψ λ ))|u(0) .

On the other hand the evaluation at q = 0 of the last term of ( 16) annihilates all terms corresponding to μ ∈ B(λ) with n µ = 0 and, since [ũ ⊗ γµ ](0) = u(0) ⊗ γ µ (0), the last term becomes ( 18)

μ∈B(λ) nµ=0 ψ λ |u(0) ⊗ γ µ (0) = μ∈B(λ) nµ=0 res µ (ψ λ )|u(0) ⊗ γ µ (0) = μ∈B(λ) nµ=0 ι µ (res µ (ψ λ ))|u(0) ,
where res µ (ψ λ ) denotes the restriction of the linear form ψ λ to the subspace H μ(p) ⊗ H μ(p) ⊗ H μ † (p). Since the equality between ( 17) and ( 18) holds for any vector u(0) ∈ H μ(p), we obtain the following equality in V † µ (X 0 , p)

α 0 (ι λ (ψ λ )) = μ∈B(λ) nµ=0 ι µ (res µ (ψ λ )).
Projecting onto the subspace im(ι µ ) ⊂ V † µ (X 0 , p) leads to α λ,µ 0 = 0 if μ / ∈ B(λ) or n µ = 0, and α λ,µ 0 (ψ λ ) = res µ (ψ λ ) if μ ∈ B(λ) and n µ = 0.

Proof of Theorem 1

5.1. Proof of part (i). First of all, we will restate Theorem 1 in terms of spaces of conformal blocks. By [B] Proposition 5.2 the linear map φ P identifies under the "Verlinde" isomorphism (3) with the linear map φ X,p : V † 0 (X, e 8 ) -→ V † 0 (X, p), induced by the inclusion of the basic p-module H 0 (p) into the basic ê8 -module H 0 (e 8 ). We recall that we choose a point p ∈ X and we denote U = X \ {p}. It is therefore equivalent to show that φ X,p is non-zero for any smooth curve X.

We then observe that the rank of the linear map φ X,p is constant when the smooth curve X varies by [B] Proposition 5.8 and Lemma A.1. It is therefore sufficient to show that there exists a smooth curve X for which the map φ X,p is non-zero. We will prove that by induction on the genus g of X.

The case g = 0 is easily seen as follows. Over the projective line we have g(U) • H 0 (g) = ⊕ m>0 H 0 (g)(m) for any semi-simple Lie algebra g. Hence the one-dimensional space of covacua V 0 (P 1 , g) is generated by the image under the projection

H 0 (g) -→ V 0 (P 1 , g) = H 0 (g)/g(U) • H 0 (g) of the highest weight vector v 0 (g) ∈ H 0 (g)(0) = V 0 = C.
Since the trivial e 8 -module V 0 = C restricts to the trivial p-module, the highest weight vector v 0 (p) ∈ H 0 (p)(0) = V 0 coincides with the highest weight vector v 0 (g) under the inclusion H 0 (p) ֒→ H 0 (g), which implies that φ P 1 ,p is non-zero.

Next, we consider as in section 4 a family X of genus g curves parametrized by Spec O such that X 0 = X 0 is a nodal curve and X K a smooth curve defined over K = C((q)). We also consider (15) the O-linear map α associated to the conformal embedding p ⊂ e 8 and the trivial weights λ = 0 and µ = 0 α : V † 0 (X , e 8 ) -→ V † 0 (X , p). By Proposition 4.4 and by the induction hypothesis, the restriction α 0 of the map α to the special fiber is non-zero: in fact, the genus of the normalization X equals g -1 and α 0 decomposes, up to non-zero homothety in each direct summand, as follows

α 0 = (α 0,µ 0 ) : V † 0 ( X, e 8 ) ∼ ← V † 0,0,0 ( X, e 8 ) -→ µ∈P ℓ (p) V † 0,µ,µ † ( X, p),
where the first isomorphism is the so-called propagation of vacua isomorphism (see e.g. [U] Theorem 3.3.1). We note that P 1 (e 8 ) = {0}. By Remark 3.4 and Proposition 4.4 we have α 0,µ 0 = 0 if µ = 0 and, again due to the isomorphism V † 0,0,0 ( X, p) ∼ → V † 0 ( X, p), the map α 0,0 0 is identified with the map φ X,p : V † 0 ( X, e 8 ) -→ V † 0 ( X, p), which is non-zero by the induction hypothesis. Hence α 0 is also non-zero.

By semi-continuity we conclude that the restriction α K = φ X K ,p : V † 0 (X K , e 8 ) -→ V † 0 (X K , p) of α to the generic fiber is non-zero. Hence, again by [B] Proposition 5.8 and Lemma A.1, the Klinear map φ X K ,p is non-zero for any genus g curve X K defined over the field K = C((q)). Given a genus g curve X defined over C, the result then follows from the equality φ X,p ⊗ C K = φ X⊗ C K,p . 5.2. Irreducible representations of Heisenberg groups. Before pursuing the proof of Theorem 1, we need to recall some known facts on Heisenberg groups and their irreducible representations. We consider a semi-simple simply connected group P with center Z of the following table

(19) P Spin(4n) SL(n) E 6 E 7 SL(n) × SL(n) SL(3) × E 6 SL(2) × E 7 Z Z/2Z × Z/2Z Z/nZ Z/3Z Z/2Z Z/nZ × Z/nZ Z/3Z × Z/3Z Z/2Z × Z/2Z
The finite abelian group M X (Z) of principal Z-bundles acts on M X (P ) by twisting Pbundles with Z-bundles. The Mumford group is a central extension of the group M X (Z) by C * and acts via s → ψ(t * ζ (s)) on the space of global sections H 0 (M X (P ), L P ). Note that the center C * of G(L P ) acts by scalar multiplication.

We will need the following results.

Lemma 5.1 ([F1] Lemma 16). The Mumford group G(L P ) is isomorphic as an extension to a finite Heisenberg group G(δ). The type δ depends only on the center Z and on the genus g of X.

We refer, for example, to [M] page 294 for the definition of the Heisenberg group G(δ). Under the above identification, for all groups P of Table ( 19) the space of global sections H 0 (M X (P ), L P ) is an irreducible representation of G(L P ). This is an immediate consequence of the fact that there exists a unique irreducible representation of G(δ) of dimension |Z| g on which C * acts as scalar multiplication (see e.g. [M] Proposition 3), and the numerical identity dim H 0 (M X (P ), L P ) = |Z| g provided by the Verlinde formula (see Table (4

)).

We remark that for all pairs (P, N) of Table (2), M X (N) is a maximal isotropic subgroup of M X (Z). Here isotropic means with respect to the standard symplectic form on M X (Z) induced by the commutators in the Mumford group (see e.g. [M] page 293). The isotropic subgroup M X (N) is maximal since |N| = |Z| 1/2 , hence |M X (N)| = |M X (Z)| 1/2 . Therefore, there exists a lift M X (N) ֒→ G(L P ); in other words, there exists an M X (N)-linearization of the line bundle L P . Since H 0 (M X (P ), L P ) is the unique irreducible representation of G(L P ) of level one, i.e., C * ⊂ G(L P ) acts as scalar multiplication, we deduce from Mumford's theory of theta groups (see [M] Proposition 3) the following: Lemma 5.2. For any M X (N)-linearization of L P , the subspace of M X (N)-invariant sections of H 0 (M X (P ), L P ) is one-dimensional.

Proof of part (ii).

It is clear that the image of φ is contained in the M X (N)-invariant subspace. Hence it suffices to show that the M X (N)-invariant subspace of H 0 (M X (P ), L P ) is one-dimensional, which is precisely the result of Lemma 5.2. 7.2.1. (Spin(8), Spin(8)). We observe that p = so(8) ⊕ so( 8) is a non-maximal conformal subalgebra of e 8 with Dynkin multi-index (1, 1). In fact, the inclusion p ⊂ e 8 factorizes through so( 16). We therefore obtain a group homomorphism φ : P = Spin(8) × Spin(8) → Spin( 16) → E 8 with kernel N = Z/2Z × Z/2Z. We note that N sits diagonally in Z(Spin(8)) × Z(Spin(8)). Theorem 1 and Theorem 2 also hold in this case. 7.2.2. (G 2 , F 4 ). Using the Verlinde formula one computes that the spaces H 0 (M X (G 2 ), L G 2 ) and H 0 (M X (F 4 ), L F 4 ) have the same dimension, which is 5+ . Theorem 1 says that the E 8 -theta divisor ∆ induces a non-zero linear map σ : H 0 (M X (G 2 ), L G 2 ) * -→ H 0 (M X (F 4 ), L F 4 ). Since G 2 and F 4 have no center, the argument used in the proof of Theorem 2 breaks down for this case.

  λ m = μ∈B(λ) φ µ m . Hence all restrictions φ µ m : H μ † (m) → H μ(m) * for μ ∈ B(λ) are isomorphisms and we are done. Remark 3.7. If we fix a pairing (•|•) λ on H λ × H λ † , we also obtain by restriction a pairing (•|•) µ on H µ × H µ † for any μ ∈ B(λ). Thus we obtain uniquely defined elements γλ and γµ for μ ∈ B(λ). Proposition 3.8. With the choices made in Remark 3.7 we have a decomposition in H

  Note that |M X (Z)| = |Z| 2g . We denote by t ζ the automorphism of M X (P ) induced by the twist with ζ ∈ M X (Z). We introduce the Mumford group associated to the line bundle L P G(L P ) := {(ζ, ψ) |ζ ∈ M X (Z) and ψ : t * ζ L P ∼ → L P }.

7. 2 .

 2 Other conformal subalgebras of e 8 .
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Proof of Theorem 2

First of all, we recall that by Lemma 5.2 the subspace of M X (N)-invariant sections is onedimensional. The main observation is that, in all three cases, the finite group N ⊂ P = A × B projects isomorphically to the centers Z(A) and Z(B) of the groups A and B respectively. Hence we obtain canonical isomorphisms Z(B)

). Now we observe that the isomorphism ι lifts to an isomorphism ι :

Here Λ denotes the composite map

where the first arrow is the canonical projection and the last arrow is the chosen lift of M X (N) to the Mumford group. In order to show that ι is a group homomorphism, we need the fact that the two Mumford groups G(L A ) and G(L B ) are commuting subgroups of G(L A×B ). Note that the restriction of ι to the center

Under the identification of the Mumford groups ι : G(L B ) ∼ → G(L A ) the vector space H 0 (M X (A), L A ) * can be viewed as an irreducible representation of G(L B ) of level one. Moreover the M X (N)-invariance of the section σ ∈ H 0 (M X (P ), L P ) translates into the equivariance of the linear map σ :

Since both spaces are irreducible representations of G(L B ) by section 5.2, the non-zero map σ is an isomorphism by Schur's lemma.

7. Further remarks 7.1. Invariant sections.

7.1.1. G = SL(9). In this case the restriction of the E 8 -theta divisor is the unique (up to a scalar) Jac(X)[3]-invariant section in H 0 (M X (SL(9)), L SL(9) ). Here the group Jac(X)[3] of 3-torsion line bundles over X acts by tensor product on the moduli stack of rank-9 vector bundles with trivial determinant. Note that we take here the linear action of Jac(X)[3] on H 0 (M X (SL(9)), L SL( 9) ) induced by the isomorphism φ * L E 8 = L SL(9) . This leads to the natural question (see also [F2] section 6): does there exist a geometrical description of the zero-divisor of this invariant section? 7.1.2. G = Spin( 16). The M X (N)-invariant section σ ∈ H 0 (M X (Spin( 16)), L Spin( 16) ) can be described as follows. The center Z of Spin( 16) equals Z/2Z × Z/2Z = {±1, ±γ}, where {±1} is the kernel K of the homomorphism Spin(16) → SO( 16) and ±γ covers the element -Id ∈ SO(16). Note that N = {1, γ}. By [PR] Proposition 8.2, the space H 0 (M X (Spin( 16)), L Spin( 16) ) admits a basis {s κ } indexed by the 4 g theta-characteristics κ of the curve X and such that the set-theoretical support of the zero-divisor of s κ equals

Here E(C 16 ) denotes the orthogonal rank-16 vector bundle associated to E. The group M X (N) identifies with the group Jac(X)[2] of 2-torsion line bundles over X. We can use the canonical lift Jac(X)[2] ֒→ G(L Spin( 16) ) and a fixed theta-characteristic κ 0 to normalize the basis {s κ } by putting s ακ := α • s κ 0 , since any theta-characteristic κ can be written as ακ 0 for a unique α ∈ Jac(X) [2]. It is then clear that σ = κ s κ = α∈Jac(X)[2] α•s κ 0 and that σ does not depend on the choice of κ 0 . As in the previous case, a geometrical description of its zero-divisor is still missing.