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STRANGE DUALITY FOR VERLINDE SPACES OF EXCEPTIONAL
GROUPS AT LEVEL ONE

ARZU BOYSAL AND CHRISTIAN PAULY

Abstract. The moduli stackMX(E8) of principal E8-bundles over a smooth projective curve
X carries a natural divisor ∆. We study the pull-back of the divisor ∆ to the moduli stack
MX(P ), where P is a semi-simple and simply connected group such that its Lie algebra Lie(P )
is a maximal conformal subalgebra of Lie(E8). We show that the divisor ∆ induces “Strange
Duality”-type isomorphisms between the Verlinde spaces at level one of the following pairs of
groups (SL(5), SL(5)), (Spin(8), Spin(8)), (SL(3), E6) and (SL(2), E7).

1. Introduction

Let X be a smooth complex projective curve of genus g and let G be a simple and simply
connected complex Lie group. We denote byMX(G) the moduli stack parametrizing principal
G-bundles over the curve X and by LG the ample line bundle overMX(G) generating its Picard
group. The starting point of our investigation is the observation (see e.g. [So], [F1], [F2]) that

dimH0(MX(E8),LE8) = 1.

for any genus g. In other words, the moduli stackMX(E8) carries a natural divisor ∆. Unfor-
tunately a geometric interpretation of this divisor is not known.

In this paper we study the pull-back of this mysterious divisor ∆ under the morphisms
MX(P )→MX(E8) induced by the group homomorphisms φ : P → E8, where we assume that
P is simply connected and that the differential dφ : p = Lie(P )→ e8 = Lie(E8) is a conformal
embedding of Lie algebras. Note that we only assume p to be semi-simple. The maximal
conformal subalgebras of e8 with Dynkin (multi-)index one have been classified by [BB] and
[SW] and the full list is

(1) so(16), sl(9), sl(5)⊕ sl(5), sl(3)⊕ e6, sl(2)⊕ e7, g2 ⊕ f4.

In Table (2) we list the corresponding simply connected Lie groups P and the finite kernel N
of their natural maps to E8 (see e.g. [CG] Lemma 3.3).

(2)
P Spin(16) SL(9) SL(5)× SL(5) SL(3)×E6 SL(2)×E7 G2 × F4

N Z/2Z Z/3Z Z/5Z Z/3Z Z/2Z 1

Note that N is a subgroup of the center of P . We introduce the finite abelian groupMX(N)
of principal N -bundles over X, which acts onMX(P ) by twisting P -bundles with N -bundles.
Since N is the kernel of φ, the groupMX(N) acts on the fibers of the induced stack morphism

φ̃ : MX(P ) → MX(E8) and, since φ̃∗LE8 = LP , we obtain a canonical linear action of the
group MX(N) on the space of global sections H0(MX(P ),LP ). If P has two simple factors,
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2 ARZU BOYSAL AND CHRISTIAN PAULY

the line bundle LP denotes the tensor product of the ample generators on each factor (see
section 2.1).

With this notation our main result can be stated as follows.

Theorem 1. Let P be a Lie group of Table (2) and let

φP : H0(MX(E8),LE8) −→ H0(MX(P ),LP )

be the linear map on global sections induced by the homomorphism φ : P → E8. Then

(i) The linear map φP is nonzero.
(ii) In all cases except P = G2 × F4, its one-dimensional image im φP = 〈σ〉 coincides with

theMX(N)-invariant subspace in H0(MX(P ),LP ).

Unfortunately, even in the cases SL(9) and Spin(16), we are not able to give a geometric de-
scription of the zero-divisor of theMX(N)-invariant section σ in the moduli stacksMX(SL(9))
andMX(Spin(16)) — see section 7.1 for further discussion.

A word about the proof of Theorem 1. We make use of the identification of the space
of generalized G-theta functions H0(MX(G),LG) with the space of conformal blocks V†

0(X, g)
associated to the curveX with one marked point labelled with the zero weight. Here g = Lie(G).
Under this identification the linear map φP becomes the map induced by the natural inclusion
of the basic highest weight modules H0(p) →֒ H0(e8) of the affine Lie algebras p̂ and ê8. The
proof has essentially two steps. First, we use a result by P. Belkale ([B] Proposition 5.8) saying
that the linear map φP has constant rank when the curve X varies in a family of smooth curves.
Here the fact, that the embedding p ⊂ e8 is conformal, is crucial, since it ensures that φP is
projectively flat with respect to the WZW connections on both sheaves of vacua over any family
of smooth curves. Secondly, we study in section 4 the behaviour of the factorization rules of
the spaces of conformal blocks associated to g under any conformal embedding p ⊂ g. This
will follow once one has decomposed the “sewing-procedure” tensor γ̃λ ∈ Hλ(g) ⊗ Hλ†(g)[[q]]
under the decomposition of the ĝ-modulesHλ(g) andHλ†(g) into irreducible p̂-modules. Finally,
combining these two steps allows us to show by induction on the genus of X that φP is non-zero.

In the cases when P is not simple and N not trivial, an argument using the representation
theory of Heisenberg groups allows us to show the following result, which can be seen as an
instance of Strange Duality for exceptional groups at level one.

Theorem 2. Let (A,B) be one of the three pairs (SL(5), SL(5)), (SL(3), E6), (SL(2), E7). Then
the unique MX(N)-invariant section

σ ∈ H0(MX(A× B),LA×B) = H0(MX(A),LA)⊗H0(MX(B),LB)

introduced in Theorem 1 for P = A× B induces an isomorphism

σ : H0(MX(A),LA)∗ −→ H0(MX(B),LB).

A similar isomorphism is obtained for the pair (Spin(8), Spin(8)) — see section 7.2.1. We
would like to emphasize that Theorem 2 is independent of Theorem 1. The striking point is
that all “Strange Duality” isomorphisms of Theorem 2 are obtained by restricting the E8-theta
divisor ∆ to special subgroups P .
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2. Notation and preliminaries

2.1. Moduli stacks and line bundles.

2.1.1. Dynkin index. Let p and g be two simple Lie algebras and let ϕ : p→ g be a Lie algebra
homomorphism. There exists [D] a unique integer d = dϕ, called the Dynkin index of the
homomorphism ϕ, satisfying

(ϕ(x), ϕ(y))g = dϕ(x, y)p, for all x, y ∈ p,

where ( , )∗ denotes the invariant bilinear form on p and g normalized such that (θ, θ) = 2 for
the maximal roots θ of p and g. If p is semi-simple with two components p1 ⊕ p2, then the
Dynkin multi-index of ϕ = ϕ1 ⊕ ϕ2 : p1 ⊕ p2 → g is given by dϕ = (dϕ1 , dϕ2), where dϕi

is
defined using ϕi : pi → g.

2.1.2. Line bundles over the moduli stack MX(P ). If P is a simple and simply connected
complex Lie group we refer to [LS] and [So] for the description of the ample generator LP of
the Picard group of the moduli stack MX(P ). If P = P1 × P2 with Pi simple and simply
connected, we put LP = LP1 ⊠LP2 and we note Ld

P = Ld1
P1

⊠Ld2
P2

for a multi-index d = (d1, d2).
The following lemma follows easily from [LS] and [KNR].

Lemma 2.1. Let φ : P → G be a homomorphism between simply-connected complex Lie groups
with G simple and P semi-simple. Let φ̃ :MX(P )→MX(G) be the induced stack morphism.
Then we have the equality

φ̃∗LG = L
dϕ

P ,

where dϕ is the Dynkin-(multi) index of the differential ϕ = dφ : p→ g.

2.2. Spaces of conformal blocks.

2.2.1. The case g simple. Let g be a simple Lie algebra and h ⊂ g a Cartan subalgebra. We
denote by ( , ) the normalized Cartan-Killing form and we will use the same notation for the
restricted form on h and for the induced form on h∗. We consider (see [K] Chapter 7) the
non-twisted affine Lie algebra associated to g

ĝ = g⊗ C((z))⊕Cc⊕ Cd

with Lie bracket

[x⊗ f, y ⊗ g] = [x, y]⊗ fg + (x, y)Resz=0(gdf) · c, [g, c] = 0, [d, c] = 0, [d, x(n)] = nx(n),

for x, y ∈ g, f, g ∈ C((z)) and n ∈ Z. Here we put x(n) = x ⊗ zn. We identify g with the
subalgebra g⊗ 1 of ĝ. The subalgebra

ĥ = h⊕Cc⊕ Cd
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is the Cartan subalgebra of the affine Lie algebra ĝ. We extend λ ∈ h∗ to a linear form on ĥ by
putting 〈λ,Cc⊕ Cd〉 = 0, where 〈 , 〉 is the standard pairing. We define the elements Λ0 and

δ in the dual ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ by 〈δ, d〉 = 〈Λ0, c〉 = 1 and 〈δ, h⊕ Cc〉 = 〈Λ0, h ⊕ Cd〉 = 0.

We extend the form ( , ) to ĥ∗ by putting

(h∗,CΛ0 ⊕ Cδ) = 0, (δ, δ) = (Λ0,Λ0) = 0, (δ,Λ0) = 1.

The Weyl group of g is denoted by W (g), or simply W if no confusion arises. Call wg
0 ∈W (g)

its longest element. Later we will need the following fact

Proposition 2.2. Let p ⊂ g be an embedding of semi-simple Lie algebras and choose Cartan
subalgebras such that hp ⊂ hg. Then there exists an element w̃ ∈ W (g) which preserves the
subspace hp ⊂ hg and such that the restriction w̃|hp

coincides with the longest element wp
0.

Proof. This can be deduced from a more general fact — see e.g. Theorem 2.1.4 [BS]. Moreover
if p and g have the same rank (all our cases except g2 ⊕ f4), i.e. hp = hg, we have a canonical
inclusion W (p) ⊂ W (g). �

Next, we need to recall some representation theory of the affine Lie algebra ĝ from [K] Chapter
12. Given a positive integer k, called level, we consider the finite set

Pk(g) := {λ ∈ P+(g) | (λ, θ) ≤ k} ⊂ h∗,

where P+(g) is the set of dominant integral weights of g. We denote by P (g) the weight lattice
of g. There is an involution of the set Pk(g) given by λ 7→ λ†, where −λ† is the lowest weight
of the irreducible right g-module V ∗

λ , the dual of Vλ. In other words, λ† = −wg
0(λ).

We introduce the set

P̂k(g) := {λ̂ = λ+ kΛ0 + ζδ | λ ∈ P+(g), ζ ∈ C} ⊂ ĥ∗

Note that there is a projection map

P̂k(g)→ P (g), λ̂ = λ+ kΛ0 + ζδ 7→ λ.

We will view Pk(g) as a subset of P̂k(g) under the mapping λ 7→ λ̂ = λ+ kΛ0. We extend the

involution λ 7→ λ† to P̂k(g) by mapping

λ̂ = λ+ kΛ0 + ζδ 7→ λ̂† = −wg
0(λ) + kΛ0 + ζδ.

Given λ ∈ Pk(g) we denote by Hλ(g), or simply Hλ if no confusion arises, the integrable

ĝ-module with highest weight λ and of level k, i.e. c acts on Hλ as k · Id. Note that d ∈ ĥ acts

trivially on the highest weight vector vλ ∈ Hλ. More generally, for any λ̂ = λ+kΛ0+ζδ ∈ P̂k(g)
with λ ∈ Pk(g) we denote by Hλ̂(g) the integrable ĝ-module with highest weight vector vλ such

that d ∈ ĥ acts as d.vλ = ζvλ. Note that Hλ and Hλ̂ become isomorphic as modules over the
subalgebra [ĝ, ĝ] = g⊗C((z))⊕Cc. The ĝ-module H0(g) with zero weight and level 1 is called
the basic ĝ-module.

Let s be a positive integer. For ~λ = (λ1, λ2, . . . , λs) ∈ Pk(g)s we define

H~λ := Hλ1 ⊗Hλ2 ⊗ . . .⊗Hλs
.
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Given s points ~p = (p1, . . . , ps) with pi ∈ X we consider the open subset U = X \{p1, . . . , ps}

and we denote the space of covacua associated to the data (X, ~p,~λ) by

V~λ(X, g) := H~λ/g(U) · H~λ.

We refer e.g. to [U] for the precise definition of the action of the Lie algebra g(U) on H~λ and for
basic properties of the vector space V~λ(X, g). The space of vacua or space of conformal blocks
is by definition the dual of V~λ(X, g) and is denoted by

V†
~λ
(X, g) →֒ H†

~λ
.

We denote by 〈 | 〉 the natural pairing between H~λ and its dual H†
~λ
.

The construction of the space of conformal blocks can be carried out for a family X → S of
pointed nodal curves and provides a sheaf over the base scheme S, called the sheaf of vacua
and denoted by V†

~λ
(X , g). A fundamental property is that the sheaf of vacua is locally free and

that it commutes with any base change (see e.g. [U] Theorem 4.4.2).

2.2.2. The case g semi-simple. We now adapt the previous contructions to semi-simple Lie
algebras g. For our purposes it is enough to deal with the case when g is the direct sum of two
simple Lie algebras g = g1 ⊕ g2. By [K] section 12.9 we define the affine Lie algebra associated
to g by

ĝ = g⊗C((z))⊕Cc1 ⊕ Cc2 ⊕ Cd,

with Cartan subalgebra ĥ = h ⊕ Cc1 ⊕ Cc2 ⊕ Cd. Similar to the case of simple algebras, one

defines a Lie bracket and a non-degenerate bilinear form on ĥ and on its dual ĥ∗ = h∗⊕CΛ
(1)
0 ⊕

CΛ
(2)
0 ⊕ Cδ.

Given a multi-index k = (k1, k2), with ki positive integers, we introduce the sets

Pk(g) = Pk1(g1)× Pk2(g2),

P̂k(g) = {λ̂ = λ + k1Λ
(1)
0 + k2Λ

(2)
0 + ζδ | λ ∈ P+(g), ζ ∈ C} ⊂ ĥ∗,

and we associate to a weight λ = (λ(1), λ(2)) ∈ Pk(g) the integrable ĝ-module

Hλ(g) = Hλ(1)(g1)⊗Hλ(2)(g2).

Similarly, we introduce for any λ̂ ∈ P̂k(g) the ĝ-module Hλ̂(g).
With these definitions it is easy to deduce the following decomposition of the spaces of

conformal blocks

V†
~λ
(g) = V†

~λ(1)
(g1)⊗ V

†
~λ(2)

(g2) with ~λ = (~λ(1), ~λ(2)) ∈ Pk(g)s.
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2.3. Generalized theta functions and the Verlinde formula. For the convenience of
the reader we recall (see [LS], [F3], [KNR]) that there is an isomorphism between the space
H0(MX(G),Lk

G) of generalized G-theta functions of level k and the space of conformal blocks

V†
0(X, g) associated to the curve X with one marked point labelled with the zero weight at level
k, i.e,

(3) H0(MX(G),Lk
G)

∼
−→ V†

0(X, g).

The dimension of this space is given by the Verlinde formula (see [F3], [T]) and its values for
the groups G at level one can be computed straightforwardly and are given in the following
table

(4)
G SL(n) Spin(2n) E6 E7 E8 G2 and F4

dimH0(MX(G),LG) ng 4g 3g 2g 1
(

5+
√

5
2

)g−1

+
(

5−
√

5
2

)g−1

3. Conformal pairs: properties of their representations

3.1. The Virasoro algebra and its representation on Hλ̂(g). The Virasoro algebra

Vir :=
⊕

n∈Z

Cdn ⊕Cc̃,

is defined by the relations [di, dj] = (i− j)di+j + 1
12

(i3 − i)δi,−j c̃ and [di, c̃] = 0.

If g is simple, we define for any level k and any λ̂ ∈ P̂k(g), the central charge c(g, k) and the
trace anomaly ∆λ̂(g) as

c(g, k) =
k dim g

ȟ(g) + k
, and ∆λ̂(g) =

(λ̂, λ̂+ 2ρ̂)

2(ȟ(g) + k)
.

Here ȟ(g) is the dual Coxeter number of g and ρ̂ = ρ + ȟ(g)Λ0, with ρ the half-sum of the
positive roots of g. We choose dual bases {ui} and {ui} of the simple algebra g and introduce
for any n ∈ Z the Sugawara operator (see [KW] section 3.2)

(5) Lg
n =

1

2(k + ȟ(g))

∑

j∈Z

∑

i

: ui(−j)u
i(j + n) :,

where the notation : : stands for the normal ordering. Then Lg
n acts linearly on Hλ(g) and, by

putting dn = Lg
n and c̃ = c(g, k)Id, we obtain a representation of Vir on Hλ(g).

If g is semi-simple with g = g1 ⊕ g2, we define for k = (k1, k2), see [KW] formula (1.4.7))

c(g, k) = c(g1, k1) + c(g2, k2), and ∆λ̂(g) = ∆λ̂(1)(g1) + ∆λ̂(2)(g2),

and we put Lg
n = Lg1

n +Lg2
n . As in the simple case, we obtain a representation of Vir on Hλ(g).

For later use we recall the following relation ([KW] formula (1.4.5))

(6) ∆λ̂+nδ(g) = ∆λ̂(g) + n.
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The endomorphism Lg
0 of the ĝ-module Hλ̂(g) can be diagonalized

Hλ̂ =
∞⊕

m=0

Hλ̂(m) with Hλ̂(m) := {u ∈ Hλ̂ | L
g
0(u) = (∆λ̂(g) +m)u}.

We recall that the endomorphism Lg
0 of Hλ̂(g) defined by (5) can also be written as ([KW]

(3.2.6) or [K] Corollary 12.8 (b))

(7) Lg
0 = ∆λ̂(g)Id− d.

Note that Hλ̂(0) equals the irreducible g-module Vλ with highest weight λ.

3.2. Definition of conformal pair.

Definition 3.1. Let p be a semisimple subalgebra of a simple Lie algebra g, and let ℓ denote
the Dynkin (multi-)index of the inclusion homomorphism p ⊂ g. We say that p is a conformal
subalgebra of g at level k if c(p, kℓ) = c(g, k).

The equality c(p, kℓ) = c(g, k) in the above definition in fact holds only if k = 1. Classification
of conformal pairs are given in [BB] and [SW]. We recall (see [KW]) that, since p is semisimple,
p ⊂ g is a conformal subalgebra is equivalent to the statement that any irreducible ĝ-module
Hλ(g) of level 1 decomposes into a finite sum of irreducible p̂-modules of level ℓ.

A fundamental property of a conformal embedding p ⊂ g is the following.

Proposition 3.2 ([KW] Proposition 3.2 (c)). If p ⊂ g is a conformal embedding, then

Lg
n = Lp

n ∈ End(Hλ̂(g)) for all n ∈ Z.

In the above statement, we warn that (though implicit in the notation), the operator Lg
n is

acting at level k = 1 and Lp
n at level ℓ. In all the cases we will consider the integer ℓ is equal

to 1, see Table 11.

3.3. The pairing on Hλ ×Hλ†. First we recall the following lemma

Lemma 3.3 ([U] Lemma 4.4.3). There exists a bilinear pairing

(·|·) : Hλ ×Hλ† −→ C,

unique up to a multiplicative constant such that

(8) (X(n)u|v) + (u|X(−n)v) = 0,

for any X ∈ g, n ∈ Z, u ∈ Hλ and v ∈ Hλ†. Moreover the restriction of this pairing to
Hλ(m)×Hλ†(m′) is zero if m 6= m′, and non-degenerate if m = m′.

Consider the restriction of the pairing (·|·) to Hλ(0) × Hλ†(0) = Vλ × Vλ†. By definition
Vλ† = V ∗

λ , so that Vλ ⊗ Vλ† = End(Vλ). The pairing on Vλ × V ∗
λ is given by a multiple of

the natural evaluation map. More generally, the pairing (·|·) induces for any integer m an

isomorphism φm : Hλ†(m)
∼
→ Hλ(m)∗ and therefore a distinguished element, which we denote

by γλ(m) and which corresponds to the identity element in End(Hλ(m)) under the isomorphism

(9) id ⊗ φm : Hλ(m)⊗Hλ†(m)
∼
−→ End(Hλ(m)) γλ(m) 7→ IdHλ(m).

Note that the family {γλ(m)}m∈Z+ is uniquely defined up to a multiplicative constant.



8 ARZU BOYSAL AND CHRISTIAN PAULY

Consider a conformal embedding p ⊂ g and an integrable ĝ-module Hλ(g) of level one. Then
we have a decomposition as p̂-module

Hλ(g) =
⊕

µ̂∈B(λ)

M(µ̂, λ)⊗Hµ̂(p),

where B(λ) is a finite subset of P̂ℓ(p) and the M(µ̂, λ) are finite-dimensional vector spaces.
The integer dimM(µ̂, λ) is the multiplicity of the representation Hµ̂(p) in Hλ(g). Note that

the weights µ̂ ∈ B(λ) do not necessarily lie in Pℓ(p). We can write µ̂ = µ+
∑

i ℓiΛ
(i)
0 − nµδ.

Using Proposition 3.2 we deduce an equality between the trace anomalies

(10) ∆λ(g) = ∆µ̂(p) for any µ̂ ∈ B(λ).

Moreover by (6) we also have ∆µ̂(p) = ∆µ(p) − nµ. Since −nµ is the d-eigenvalue of the
highest weight vector vµ ∈ Hµ̂(p) ⊂ Hλ(g) and since all d-eigenvalues of Hλ(g) are negative,
we conclude that nµ ∈ Z+.

Remark 3.4. We immediately deduce from the above that nµ = 0 if and only if the p-
module Vµ = Hµ(p)(0) appears in the decomposition into irreducible p-modules of the g-module
Vλ = Hλ(g)(0).

Thus we conclude that given µ ∈ Pℓ(p) there exists at most one µ̂ ∈ B(λ) — since nµ is given
by the difference of the trace anomalies. So we will write

multλ(µ, p) := dimM(µ̂, λ)

for the multiplicity of occurence of Hµ(p) in Hλ(g).

Proposition 3.5. We have the equality

B(λ†) = B(λ)† := {µ̂ ∈ P̂ℓ(p) | µ̂† ∈ B(λ)}.

Moreover multλ(µ, p) = multλ†(µ†, p).

Proof. For ν̂ ∈ Pk(ĝ) and λ ∈ Pk(g) we will denote by V λ
ν̂ ⊂ Hλ(g) the weight space of the

ĝ-module Hλ(g) associated to the weight ν̂. It follows from relation (7) that V λ
ν̂ ⊂ Hλ(g)(m)

if and only if ν̂ is of the form ν̂ = ν + kΛ0 −mδ. By Lemma 3.3 we know that Hλ(g)(m) and
Hλ†(g)(m) are dual spaces, and it follows from relation (8) that the weight spaces

V λ
ν+kΛ0−mδ ⊂ Hλ(g)(m) and V λ†

−ν+kΛ0−mδ ⊂ Hλ†(g)(m)

are dual to each other. Hence their dimensions coincide

multHλ
(ν + kΛ0 −mδ) = multH

λ†
(−ν + kΛ0 −mδ).

Consider µ̂ ∈ B(λ). Then by (10) we have ∆λ(g) = ∆µ̂(p) and since the bilinear form (·, ·) is
invariant under the finite Weyl group and w0(ρ) = −ρ we also have ∆λ†(g) = ∆µ̂†(p). By [K]
Proposition 12.11 there exists a weight ν̂ of Hλ(g) such that ν̂|ĥp

= µ̂. By Proposition 2.2 there

exists an element w̃ ∈W (g) which restricts to wp
0 ∈W (p) and by [K] Proposition 12.5 (c)

multH
λ†

(−ν + kΛ0 −mδ) = multH
λ†

(−w̃(ν) + kΛ0 −mδ).

But−w̃(ν)+kΛ0−mδ|ĥp
= µ̂†, so again by [K] Proposition 12.11 we obtain that µ† ∈ B(λ†). The

same reasoning combined with [K] formula (12.11.1) shows that multλ(µ, p) = multλ†(µ†, p). �
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3.4. Conformal pairs and the sewing procedure. Let q be a formal variable. Given
λ ∈ Pk(g) we define the element (cf. section 3.3)

γ̃λ :=

∞∑

m=0

γλ(m)qm ∈ Hλ(g)⊗Hλ†(g)[[q]].

Note that γ̃λ is well-defined up to a multiplicative constant.

Let p ⊂ g be a conformal subalgebra. We suppose for simplicity that multλ(µ, p) = 1 for all
µ̂ ∈ B(λ) — this will be the case of all our examples (see table(11) below).

Proposition 3.6. We have a decomposition in Hλ(g)⊗Hλ†(g)[[q]]

γ̃λ =
∑

µ̂∈B(λ)

qnµ γ̃µ,

where the positive integer nµ equals ∆µ(p)−∆λ(g).

Proof. We consider the decomposition into d-eigenspaces

Hλ(g)(m) =
⊕

µ̂∈B(λ)

Hµ̂(p)(m).

Note that Hµ̂(p)(m) = Hµ(p)(m− nµ) for all m ∈ Z+ and that Hµ(p)(l) = {0} for l < 0. The
identity transformation of Hλ(g)(m) obviously decomposes as

IdHλ(g)(m) =
∑

µ̂∈B(λ)

IdHµ(p)(m−nµ) for any m ∈ Z+.

It is easy to check that the pairing (·|·) on Hλ ×Hλ† restricts to the corresponding pairing on
Hµ ×Hµ† for any µ̂ ∈ B(λ), so that

γλ(m) =
∑

µ̂∈B(λ)

γµ(m− nµ) for any m ∈ Z+.

Here we put γµ(l) = 0 if l < 0. Multiplying with qm and summing over Z+ gives the relation

γ̃λ =

∞∑

m=0

γλ(m)qm =
∑

µ̂∈B(λ)

∑

m≥nµ

γµ(m− nµ)qm−nµqnµ

=
∑

µ̂∈B(λ)

qnµ γ̃µ.

�

The following table is extracted from [KS] page 2235 and gives for any conformal subalgebra p

of Table (1) the decomposition of the basic representation H0(e8) as [p̂, p̂]-module, in particular
its Dynkin (multi-)index ℓ, its subset B(0) and the action of the involution µ 7→ µ†. We use
Bourbaki’s notation for the fundamental weights of a simple Lie algebra.
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(11)
p ℓ B(0) ̟ 7→ ̟†

so(16) 1 {0, ̟7} ̟†
7 = ̟7

sl(9) 1 {0, ̟3, ̟6} ̟†
3 = ̟6

sl(5)⊕ sl(5) (1,1) {(0, 0), (̟1, ̟2), (̟2, ̟4), (̟3, ̟1), (̟4, ̟3)} (̟i, ̟j)
† = (̟5−i, ̟5−j)

sl(3)⊕ e6 (1,1) {(0, 0), (̟1, ̟1), (̟2, ̟6)} (̟1, ̟1)
† = (̟2, ̟6)

sl(2)⊕ e7 (1,1) {(0, 0), (̟1, ̟7)} (̟1, ̟7)
† = (̟1, ̟7)

g2 ⊕ f4 (1,1) {(0, 0), (̟2, ̟4)} (̟2, ̟4)
† = (̟2, ̟4)

We recall that if p = a⊕ b, then we have the decomposition as [p̂, p̂]-module

H0(e8) =
⊕

(λ1,λ2)∈B(0)

Hλ1(a)⊗Hλ2(b).

4. Conformal pairs: factorization rules

In this section we describe how the factorization rules behave under conformal embeddings.
First we recall the factorization rules. Let X0 be a nodal (not necessarily irreducible) curve
with one node x0. We call X̃ the normalization of X0 with π : X̃ → X0 and π−1(x0) = {a, b}.

Proposition 4.1 (Factorization rules, [U] Theorem 4.4.9). Let g be a semi-simple Lie algebra

and X0 a nodal curve with s marked points with labels ~λ ∈ Pk(g)s. There is an isomorphism
⊕

λ∈Pk(g)

V†
~λ,λ,λ†

(X̃, g)
⊕ιλ−→ V†

~λ
(X0, g).

We will denote by O the ring of formal power series C[[q]] and by K = C((q)) its field of
fraction. We consider a family of curves X over Spec O such that its special fiber X0 is a
nodal curve X0 over C and its generic fiber XK a smooth curve over the field K. Consider
the sheaf of conformal blocks V†

~λ
(X , g) for the family X , which is an O-module of finite type.

Moreover since the formation of the sheaf of conformal blocks commutes with base change, the
fibre V†

~λ
(X , g)0 over the closed point 0 ∈ Spec O of V†

~λ
(X , g) coincides with V†

~λ
(X0, g). We thus

obtain a restriction map
r0 : V†

~λ
(X , g) −→ V†

~λ
(X0, g).

On the other hand, there exists for every λ ∈ Pk(g) a C-linear map — the so-called sewing
procedure, see [U] formula (4.4.3) and Lemma 4.4.5

sλ : V†
~λ,λ,λ†

(X̃, g) −→ V†
~λ
(X , g), ψλ 7→ ψ̃λ := sλ(ψλ).

The linear maps ιλ and sλ are defined as follows: for ψλ ∈ V
†
~λ,λ,λ†

(X̃, g)

〈ιλ(ψλ)|u〉 := 〈ψλ|u⊗ γλ(0)〉 ∈ C and 〈ψ̃λ|ũ〉 := 〈ψλ|ũ⊗ γ̃λ〉 ∈ O

for any vectors u ∈ H~λ and ũ ∈ H~λ[[q]]. We recall (see [U] Lemma 4.4.6) that V†
~λ
(X , g) identifies

with the subset of linear forms in H†
~λ
[[q]] satisfying the formal gauge condition. It is clear from

these definitions that the map sλ is an extension of ιλ, i.e., ιλ = r0 ◦ sλ.

We consider now a conformal embedding p ⊂ g. We assume that all level one representations

Hλ(g) decompose with multiplicities one, i.e. multλ(µ, p) = 1 for all µ̂ ∈ B(λ). For ~λ =
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(λ1, . . . , λs) define B(~λ) = B(λ1) × · · · × B(λs). Consider ~̂µ ∈ B(~λ) and the corresponding
inclusion

H~̂µ(p) →֒ H~λ(g).

The gauge condition is preserved under restriction of linear forms to H~̂µ(p) — see [NT] formula

(2.9), so that we obtain an O-linear map

(12) α : V†
~λ
(X , g) −→ V†

~̂µ
(X , p).

The restriction of α to 0 ∈ Spec O gives a C-linear map

α0 : V†
~λ
(X0, g) −→ V†

~µ(X0, p).

The main result of this section is the following description of the map α0

Proposition 4.2. Using the isomorphisms given by the factorization rules, the linear map α0

decomposes as

α0 = (αλ,µ
0 ) :

⊕

λ∈P1(g)

V†
~λ,λ,λ†

(X̃, g) −→
⊕

µ∈Pℓ(p)

V†
~µ,µ,µ†(X̃, p),

where the linear map αλ,µ
0 : V†

~λ,λ,λ†
(X̃, g)→ V†

~µ,µ,µ†(X̃, p)

• is identically zero, if ∆µ(p) 6= ∆λ(g).
• is induced by the natural inclusion H~̂µ(p)⊗Hµ̂(p)⊗Hµ̂†(p) →֒ H~λ(g)⊗Hλ(g)⊗Hλ†(g),

if ∆µ(p) = ∆λ(g).

Proof. We fix λ ∈ P1(g) and consider an element ψλ ∈ V
†
~λ,λ,λ†

(X̃, g). In order to compute the

decomposition of α0(ιλ(ψλ)) in the direct sum
⊕

µ∈Pℓ(p) V
†
~µ,µ,µ†(X̃, p), we will first decompose

the extension α(ψ̃λ) and then restrict. In fact, we have α0(ιλ(ψλ)) = r0(α(ψ̃λ)). On the other

hand, using Proposition 3.6 and the definition of ψ̃λ, we easily obtain that for any ũ ∈ H~̂µ[[q]] →֒

H~λ[[q]]

〈α(ψ̃λ)|ũ〉 = 〈ψ̃λ|ũ〉 = 〈ψλ|ũ⊗ γ̃λ〉

=
∑

µ̂∈B(λ)

qnµ〈ψλ|ũ⊗ γ̃µ〉

Now we restrict this expression to the special fiber, i.e., we put q = 0, which leads to

α0(ιλ(ψλ)) =
∑

µ̂∈B(λ)
nµ=0

ιµ(αλ,µ
0 (ψλ)),

where αλ,µ
0 is the linear map described in the proposition. �

5. Proof of Theorem 1

5.1. Proof of part (i). First of all, we will restate Theorem 1 in terms of spaces of conformal
blocks. By [B] Proposition 5.2 the linear map φP identifies under the “Verlinde” isomorphism
(3) with the linear map

φX,p : V†
0(X, e8) −→ V

†
0(X, p),

induced by the inclusion of the basic p̂-module H0(p) into the basic ê8-module H0(e8). We
recall that we choose a point p ∈ X and we denote U = X \ {p}. It is therefore equivalent to
show that φX,p is non-zero for any smooth curve X.
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We then observe that the rank of the linear map φX,p is constant when the smooth curve X
varies by [B] Proposition 5.8 and Lemma A.1. It is therefore sufficient to show that there exists
a smooth curve X for which the map φX,p is non-zero. We will prove that by induction on the
genus g of X.

The case g = 0 is easily seen as follows. Over the projective line we have g(U) · H0(g) =
⊕m>0H0(g)(m) for any semi-simple Lie algebra g. Hence the one-dimensional space of covacua
V0(P

1, g) is generated by the image under the projection

H0(g) −→ V0(P
1, g) = H0(g)/g(U) · H0(g)

of the highest weight vector v0(g) ∈ H0(g)(0) = V0 = C. Since the trivial e8-module V0 = C

restricts to the trivial p-module, the highest weight vector v0(p) ∈ H0(p)(0) = V0 coincides with
the highest weight vector v0(g) under the inclusion H0(p) →֒ H0(g), which implies that φP1,p is
non-zero.

Next, we consider as in section 4 a family X of genus g curves parametrized by Spec O such
that X0 = X0 is a nodal curve and XK a smooth curve defined over K = C((q)). We also
consider (12) the O-linear map α associated to the conformal embedding p ⊂ e8 and the trivial
weights λ = 0 and µ = 0

α : V†
0(X , e8) −→ V

†
0(X , p).

By Proposition 4.2 and by the induction hypothesis, the restriction α0 of the map α to the spe-
cial fiber is non-zero: in fact, the genus of the normalization X̃ equals g−1 and α0 decomposes
as follows

α0 = (α0,µ
0 ) : V†

0(X̃, e8)
∼
← V†

0,0,0(X̃, e8) −→
⊕

µ∈Pℓ(p)

V†
0,µ,µ†(X̃, p),

where the first isomorphism is the so-called propagation of vacua isomorphism (see e.g. [U]
Theorem 3.3.1). We note that P1(e8) = {0}. By Remark 3.4 and Proposition 4.2 we have

α0,µ
0 = 0 if µ 6= 0 and, again due to the propagation of vacua isomorphim V†

0,0,0(X̃, p)
∼
→ V†

0(X̃, p)

, the map α0,0
0 is identified with the map φX̃,p : V†

0(X̃, e8) −→ V
†
0(X̃, p), which is non-zero by

the induction hypothesis. Hence α0 is also non-zero.

By semi-continuity we conclude that the restriction αK = φXK ,p : V†
0(XK , e8) −→ V

†
0(XK , p) of

α to the generic fiber is non-zero. Hence, again by [B] Proposition 5.8 and Lemma A.1, the K-
linear map φXK ,p is non-zero for any genus g curve XK defined over the field K = C((q)). Given
a genus g curve X defined over C, the result then follows from the equality φX,p⊗CK = φX⊗CK,p.

5.2. Irreducible representations of Heisenberg groups. Before pursuing the proof of
Theorem 1, we need to recall some known facts on Heisenberg groups and their irreducible
representations. We consider a semi-simple simply connected group P with center Z of the
following table

(13)
P Spin(4n) SL(n) E6 E7 SL(n)× SL(n) SL(3)×E6 SL(2)× E7

Z Z/2Z× Z/2Z Z/nZ Z/3Z Z/2Z Z/nZ× Z/nZ Z/3Z× Z/3Z Z/2Z× Z/2Z

The finite abelian group MX(Z) of principal Z-bundles acts on MX(P ) by twisting P -
bundles with Z-bundles. Note that |MX(Z)| = |Z|2g. We denote by tζ the automorphism of
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MX(P ) induced by the twist with ζ ∈ MX(Z). We introduce the Mumford group associated
to the line bundle LP

G(LP ) := {(ζ, ψ) |ζ ∈MX(Z) and ψ : t∗ζLP
∼
→ LP}.

The Mumford group is a central extension of the groupMX(Z) by C∗ and acts via s 7→ ψ(t∗ζ(s))

on the space of global sections H0(MX(P ),LP ). Note that the center C∗ of G(LP ) acts by scalar
multiplication.

We will need the following result.

Lemma 5.1 ([F1] Lemma 16). The Mumford group G(LP ) is isomorphic as an extension to a
finite Heisenberg group G(δ). The type δ depends only on the center Z and on the genus g of
X.

We refer e.g. to [M] page 294 for the definition of the Heisenberg group G(δ).

Corollary 5.2. For all groups P of the Table (13) the space of global sections H0(MX(P ),LP )
is an irreducible representation of G(LP ).

Proof. This is an immediate consequence of the fact there exists a unique irreducible represen-
tation of G(δ) on which C∗ acts as scalar multiplication (see e.g. [M] Proposition 3), which has
dimension |Z|g, and from the numerical identity dimH0(MX(P ),LP ) = |Z|g provided by the
Verlinde formula. �

5.3. Proof of part (ii). Part (ii) follows immediately from the fact that the subgroupMX(N)
is a maximal isotropic subgroup ofMX(Z). Here isotropic means with respect to the standard
symplectic form on MX(Z) induced by the commutators in the Mumford group (see e.g. [M]

page 293). The canonical liftMX(N) →֒ G(LP ) is given by the isomorphism φ̃∗LE8 = LP and

the fact thatMX(N) acts on the fibers of φ̃. Hence by [M] Proposition 3 and by Corollary 5.2
the subspace ofMX(N)-invariant sections is one-dimensional.

6. Proof of Theorem 2

The main observation is that, in all three cases, the finite group N ⊂ P = A × B projects
isomorphically to the center of A and B. Hence N = Z(A) = Z(B). Moreover the MX(N)-
invariance of the section σ ∈ H0(MX(P ),LP ) translates into the equivariance of the linear
map σ : H0(MX(A),LA)∗ −→ H0(MX(B),LB) under the group G(LA) = G(LB). Since both
spaces are irreducible representations of G(LA) = G(LB) by Corollary 5.2, the non-zero map σ
is an isomorphism by Schur’s lemma.

7. Further remarks

7.1. Invariant sections.

7.1.1. G = SL(9). In this case the restriction of the E8-theta divisor is the unique (up to
a scalar) Jac(X)[3]-invariant section in H0(MX(SL(9)),LSL(9)). Here the group Jac(X)[3] of
3-torsion line bundles over X acts by tensor product on the moduli stack of rank-9 vector
bundles with trivial determinant. Note that we take here the linear action of Jac(X)[3] on

H0(MX(SL(9)),LSL(9)) induced by the isomorphism φ̃∗LE8 = LSL(9). This leads to the natural
question (see also [F2] section 6): does there exist a geometrical description of the zero-divisor
of this invariant section?
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7.1.2. G = Spin(16). The MX(N)-invariant section σ ∈ H0(MX(Spin(16)),LSpin(16)) can be
described as follows. The center Z of Spin(16) equals Z/2Z× Z/2Z = {±1,±γ}, where {±1}
is the kernel K of the homomorphism Spin(16) → SO(16) and ±γ covers the element −Id ∈
SO(16). Note that N = {1, γ}. By [PR] Proposition 8.2 the space H0(MX(Spin(16)),LSpin(16))
admits a basis {sκ} indexed by the 4g theta-characteristics κ of the curve X and such that the
set-theoretical support of the zero-divisor of sκ equals

Dκ = {E ∈MX(Spin(16)) | dimH0(X,E(C16)⊗ κ) > 0}.

Here E(C16) denotes the orthogonal rank-16 vector bundle associated to E. The groupMX(N)
identifies with the group Jac(X)[2] of 2-torsion line bundles over X and under the canonical
lift Jac[2] →֒ G(LSpin(16)) we have that α · sκ = sακ for some suitably normalized basis {sκ}. It
is then clear that σ =

∑
κ sκ, where κ runs over all theta-characteristics. As in the previous

case, a geometrical description of its zero-divisor is still missing.

7.2. Other conformal subalgebras of e8.

7.2.1. (Spin(8), Spin(8)). We observe that p = so(8)⊕so(8) is a non-maximal conformal subal-
gebra of e8. In fact, the inclusion p ⊂ e8 factorizes through so(16). We therefore obtain a group
homomorphism φ : P = Spin(8)× Spin(8) → Spin(16) → E8 with kernel N = Z/2Z × Z/2Z.
We note that N sits diagonally in Z(Spin(8)) × Z(Spin(8)). Theorem 1 and Theorem 2 also
hold in this case.

7.2.2. (G2, F4). As indicated in Table (4) the spaces H0(MX(G2),LG2) and H0(MX(F4),LF4)
have the same dimension. Theorem 1 says that the E8-theta divisor ∆ induces a non-zero
linear map σ : H0(MX(G2),LG2)

∗ −→ H0(MX(F4),LF4). Since G2 and F4 have no center, the
argument used in the proof of Theorem 2 breaks down in this case.
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