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NRG Study of an Inversion-Symmetri Interating Model:Universal Aspets of its Quantum CondutaneAxel Freyn� and Jean-Louis PihardServie de Physique de l' �Etat Condens�e (CNRS URA 2464),IRAMIS/SPEC, CEA Salay, 91191 Gif-sur-Yvette, FraneWe onsider sattering of spinless fermions by an inversion-symmetri interating model har-aterized by three parameters (interation U , internal hopping td and oupling t). Mapping thisspinless model onto an Anderson model with Zeeman �eld, we use the numerial renormalizationgroup for studying the partile-hole symmetri ase. We show that the zero temperature limit isharaterized by a line of free-fermion �xed points and a sale �(U; t) of td for whih there is perfettransmission. The quantum ondutane and the low energy exitations of the model are given byuniversal funtions of td=� if td < � and of td=t2 if td > �, � = t2 being the level width of thesatterer. This universal regime beomes non-perturbative when U exeeds �.PACS numbers: 71.10.-w,72.10.-d,73.23.-bIn quantum transport theory, the ondutane G ofa nanosystem inside whih the eletrons do not interatis given by g = G=(e2=h) = jtns j2 when the tempera-ture T ! 0, jtns j2 being the probability for an eletronat the Fermi energy EF to be transmitted through thenanosystem. This Landauer-Buttiker formula an be ex-tended to an interating nanosystem, if it behaves as anon-interating nanosystem with renormalized parame-ters. We study suh a renormalization using the numer-ial renormalization group (NRG) algorithm [1, 2℄ andan inversion-symmetri interating model (ISIM) whihdesribes the sattering of spin-polarized eletrons (spin-less fermions) by an interating region haraterized byan internal hopping term td, a oupling term t and aninteration strength U . This model was used [3, 4℄ forstudying the e�et of an external satterer upon the e�e-tive transmission of an interating region, assuming theHartree-Fok (HF) approximation. We revisit ISIM withthe NRG algorithm for investigating non-perturbativeregimes where other methods (NRG or DMRG algo-rithms) than the HF approah beome neessary.Quantum impurity models [1℄, as the Anderson modelwhih desribes a level with Hubbard interation U ou-pled to a 3d bath of free eletrons, were introdued tostudy the resistane minimum observed in metals withmagneti impurities. The Kondo problem refers to thefailure of perturbative tehniques to desribe this min-imum. The solution of these models by the NRG al-gorithm, a non-perturbative tehnique [1, 2℄ introduedby Wilson, is at the origin of the disovery of univer-sal behaviors whih an emerge from many-body e�ets.The observation [5℄ of the Kondo e�et in semiondu-tor quantum dots has opened a seond era for quantumimpurity models, now used for modeling mesosopi ob-jets (single [6℄ or double [7℄ quantum dot systems) in-side whih eletrons interat, in ontat with baths offree eletrons (large onduting non interating leads).Though the Kondo e�et is indued by magneti mo-ments, it is also at the origin of spinless models, suh

as the interating resonant level model [8℄ (IRLM) whihdesribes a resonant level (Vddyd) oupled to two baths ofspinless eletrons via tunneling juntions and an intera-tion U between the level and the baths. IRLM, whih isoften used for studying nonequilibrium transport [8, 9℄, isrelated to the Kondo model, the harge states nd = 0; 1playing the role of spin states. Both ISIM and IRLMare inversion symmetri and an exhibit orbital Kondoe�ets. However, the Zeeman �eld ating on the impu-rity is played by the hopping term td for ISIM, and bythe site energy Vd for IRLM. Therefore, ISIM does nottransmit the eletrons without �eld, while IRLM does.The two-partile states have been given for ISIM [10℄.For the partile-hole symmetri ase [2℄, the Andersonmodel maps onto the Kondo Hamiltonian if U > ��, �being the impurity-level width. In that ase, there is anon-perturbative regime where the temperature depen-dene of physial observables suh as the impurity sus-eptibility is given by universal funtions of T=TK, TKbeing the Kondo temperature. If U < ��, the impuritysuseptibility an be obtained by perturbation theory.Mapping ISIM onto an Anderson model with a Zeeman�eld td, and assuming that the role of td should quali-tatively resemble that of a �nite temperature, we expetthe following senario for the ISIM ondutane g of thepartile-hole symmetri ase: If U > �� / t2 , we expeta non-perturbative regime where g should be given bya universal funtion of td=� independently of the valuesof U and t, with a sale �(t; U) of td playing the roleof a Kondo temperature TK . If U < ��, the HF theoryshould orretly give g. This senario will be more or lesson�rmed by extensive NRG alulations.ISIM Hamiltonian: H = Hns +Hl +H . The Hamil-tonian of the interating region (the nanosystem) reads:Hns = �td �y01 + y10�+ VG (n0 + n1) + Un0n1 : (1)yx and x are spinless fermion operators at site x andnx = yxx. The leads are desribed by an Hamiltonian
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FIG. 1: Line of free fermion �xed points ( ~U = 0, thik solidline) haraterizing ISIM when T ! 0 as td inreases fromtd = 0 (SC �xed point) towards td ! 1 (PO �xed point).The FO, LM and SC �xed points and the RG trajetories [1℄followed by ISIM as T dereases for td = 0 are indiated inthe plane etd = 0, for �� > U (dashed) and �� < U (solid).Hl = �thX01x=�1(yxx+1 + H::), where X0 meansthat x = �1; 0; 1 are omitted from the summation. Theoupling Hamiltonian H = �t(y�10 + y12 +H::).Mapping onto an Anderson model with Zeeman �eld:Beause of inversion symmetry, one an map ISIM ontoa semi-in�nite 1d lattie where the fermions have apseudo-spin and the double site nanosystem beomes asingle site with Hubbard repulsion U at the end pointof the semi-in�nite lattie. aye=o;x = (y�x+1 � yx)=p2reating a spinless fermion in an even/odd (e=o) om-bination of the orbitals at the sites x and �x + 1of the in�nite lattie, (or a fermion with pseudo-spin� = e=o in a semi-in�nite lattie), one gets Hns =(VG � td)ne + (VG + td)no +Uneno, where n� = ay�;1a�;1and where the pseudo-spin \e" (\o") is parallel (anti-parallel) to the \Zeeman �eld" td. In terms of theoperators dyk;� = p2=�P1x=2 sin(k(x � 1))ay�;x reat-ing a spinless fermion of pseudo-spin � and momen-tum k in the semi-in�nite lattie, Hl =Pk;� �knk;� andH =Pk;� V (k)(ay�;1dk;�+H::), where the k-dependenthybridization V (k) = �tp2=� sin k yields an impuritylevel width � = t2 , nk;� = dyk;�dk;� and �k = �2th os k.ISIM is almost the Anderson model, exept that the im-purity has a Zeeman �eld td and is oupled to a semi-in�nite 1d bath of free eletrons. When td ! 0, ISIMexhibits an orbital Kondo e�et if the equivalent Ander-son model an be redued to a Kondo model.NRG proedure: ISIM an be studied using Wilson'sproedure [1, 2℄ developed for the Anderson model afterminor hanges. First, we assume V (k) � V (kF = �=2)and, taking � = 2, we divide the ondution band (log-arithmi disretization) of the eletron bath into sub-bands haraterized by an index n and an energy widthdn = ��n(1���1). Within eah sub-band, we introduea omplete set of orthonormal funtions  np(�), and ex-pand the lead operators in this basis. Dropping the terms

with p 6= 0 and using a Gram-Shmidt proedure, theoriginal 1d leads give rise to another semi-in�nite hainwith nearest neighbor hopping terms, eah site being la-belled by the same index n as the energy sub-band fromwhih it omes, and representing a ondution eletronexitation at a length sale �n=2k�1F entered on the im-purity. In this transformed 1d model, the suessive sitesare oupled by hopping terms tn;n+1 / ��n=2 whih van-ish as n!1. The impurity and the N�1 �rst sites forma NRG hain of length N and of Hamiltonian HN . Thislength an be interpreted [2℄ as a logarithmi temper-ature sale. The NRG hain oupled to the impurity isiteratively diagonalized and resaled, the spetrum beingtrunated to the Ns �rst states at eah iteration. The be-havior of ISIM as T dereases an be obtained from thespetrum of HN as N inreases, the bandwidth of HNbeing suitably resaled at eah step. A �xed point ofthe RG ow orresponds to an interval of suessive even(or odd) values of N where the resaled many-body ex-itations EI(N) do not vary. If it is a free-fermion �xedpoint, EI = P� ��, the �� being one-body exitations,and the interating system behaves as a non-interatingsystem ( ~U = 0) with renormalized parameters etd and etnear the �xed point. Moreover, if one has free fermionswhen T ! 0, g an be extrated from the NRG spetrum.Symmetri ase: Using this NRG proedure, ISIM anbe studied as a funtion of T for arbitrary values of itsbare parameters. Hereafter, we take th = 1, EF = 0and VG = �U=2. This hoie makes ISIM invariantunder partile-hole symmetry, with a uniform density(hnxi = 1=2) and 3 e�etive parameters ( ~U; et; etd).Suppression of the LM �xed point as td inreases:When td = 0, ISIM is an Anderson model whih hasthe RG ow skethed in Fig. 1 for the partile-hole sym-metri ase. At low values of N (high values of T ), ISIMis loated in the viinity of the unstable free orbital (FO)�xed point. As N inreases (T dereases), ISIM owstowards the stable strong oupling (SC) �xed point. If�t2 < U , the ow an visit an intermediate unstable �xedpoint: the loal moment (LM) �xed point before reah-ing the SC �xed point. In that ase, ISIM is idential toa Kondo model haraterized by a temperature TK andby universal funtions of the ratio T=TK . If �t2 > U ,the ow goes diretly from the FO �xed point towardsthe SC �xed point, and there is no orbital Kondo e�etfor td ! 0. In Fig. 2(a), the �rst many-body exitationsEI of ISIM are given for inreasing even values of N fortd = 0. Sine �t2 < U , one gets 3 plateaus orrespond-ing to the 3 expeted �xed points. Inside the plateaus,the spetra are free-fermions spetra whih are desribedin Ref. [2℄. However, between the plateaus, there are nofree-fermion spetra and EI 6= P� ��. As td inreases(Fig. 2(a)), the LM plateau dereases and vanishes whentd � U .Evolution of the SC �xed point as td inreases: Inthe limit N ! 1 (T ! 0), let us study the EI as a
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FIG. 2: (Color online) Fig. 2(a): Many body exitations EI as a funtion of N (even values) for U = 0:005 and t = 0:01.For td = 0 (Fig. 2(a1)), one an see the 3 suessive plateaus (FO, LM and SC �xed points) of the Anderson model [2℄. As tdinreases (Fig. 2(a2) and Fig. 2(a3)), the LM plateau shrinks and disappears when td � U . Fig. 2(b): One body exitations��(td) (extrated from the EI(N !1; td)) for U = 0:1 and t = 0:1 (left sale). The solid (dashed) line orresponds to NRGhains of even (odd) length N . Condutane g(td) extrated from ��(td) using Eq. (2) (thik red urve, right sale). For td = � ,the �� are independent of the parity of N and g = 1. Fig. 2(): For U = 0, ��(td=t2) and g(td=t2) extrated from the NRGspetra (�). g = osh�2(X) (red line) with X = ln(td=t2) is orretly reprodued. Figs. 2(d),(e): g(td) for t = 0:1 and manyvalues of U , alulated by NRG algorithm (d) and by HF theory (e). In Fig. 2(d), the larger is U , the smaller is td = � whereg = 1. The urves orrespond respetively to U = 0:25; 0:2; 0:15 (3 left peaks) and U = 0:1; 0:09; : : : ; 0:01; 0 (11 right peaks).In Fig. 2(e), the HF values are aurate for U = 0:02; 0:01; 0 (3 right peaks), but beome inaurate when U � 0:04 � �. ForU > �, the HF urves (dashed lines) are very di�erent of the orresponding NRG urves (Fig. 2(d)).funtion of td. For td = 0, one has the SC limit [2℄where the impurity is strongly oupled to the seond site(the ondution-eletron state at the impurity site) ofthe NRG hain. The impurity and this site form a sys-tem whih an be redued to its ground state (a sin-glet), the N � 2 other sites arrying free fermions exi-tations �� whih are independent of that system. In thepresene of a Zeeman �eld td 6= 0, the free-fermion ruleEI(td) = P� ��(td) remains valid (see Fig. 2(b)) andthe T ! 0 limit of ISIM is given by a ontinuum lineof free-fermion �xed points where ~U = 0, as skethed inFig. 1. When the pseudo-spin degeneray is broken, the�rst (seond) one-body exitation �1 (�2) arry respe-tively an even (odd) pseudo-spin if N is even. This is theinverse if N is odd, �1 (�2) arrying respetively an odd(even) pseudo-spin. For td ! 1, the impurity oupa-tion numbers ne = 1 and no = 0, and the N � 1 othersites of the NRG hain are independent of the impurity.We all this �xed point \Polarized Orbital" (PO), sine itoinides with the FO �xed point of the Anderson model,exept that the spin of the free orbital is fully polarizedin our ase. Sine for N ! 1 and td ! 0 (SC �xedpoint), the free part of the NRG hain has N � 2 sites,while it has N � 1 sites for td ! 1 (PO �xed point),there is a permutation of the ��(td) as td inreases: as

shown in Figs. 2(b) and (), the ��(td ! 0) for N evenbeome the ��(td !1) for N odd and vie-versa.Charateristi energy sale � : We de�ne the hara-teristi energy sale �(t; U) of ISIM as the value of tdfor whih the ��(td) are independent of the parity of Nwhen N ! 1. Beause of partile-hole symmetry, thenanosystem (the impurity of the NRG hain) is alwaysoupied by one eletron. Binding one eletron of theleads with this eletron redues the energy when td < � ,while it inreases the energy when td > � . For td = � , itis indi�erent to bind or not an eletron of the lead withthe one of the nanosystem, making ISIM perfetly trans-parent. This gives the proof that, for every values of Uand t, there is always a value � of td for whih g = 1.The argument is reminisent to that giving the onditionfor having a perfetly transparent quantum dot in theCoulomb blokade regime: td in our ase, the gate volt-age in the other ase, have to be adjusted to values forwhih it osts the same energy to put an extra eletronoutside or inside the dot.Extration of the ondutane g from the NRG spetra:If Æe (Æo) are the even (odd) sattering phase shifts at EF ,g(td) = sin2(Æe � Æo) = sin2�� ��(td)��(td !1)� ; (2)
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FIG. 3: (Color online) Condutane g as a funtion of td=� for3 values of t and many values 0 � U � 35. Inset: �(U; t)=Uas a funtion of U=t2 (+) and �t � = t2 exp�(U=(�t2)) (solidred line).where �� = �2��1 is the energy gap between the two �rstexitations of a NRG hain of even length N ! 1 (seeFig. 2(b)). When U = 0, this relation is a onsequene ofFriedel sum rule, whih an be written for eah pseudo-spin hannel separately. In that ase, g = osh�2(X)where X = ln(td=t2) and � = t2 . The ��(td) given by theNRG algorithm for U = 0 are shown in Fig. 2() with theorresponding values of g obtained from Eq. (2), showingthat this proedure gives orretly g when U = 0. It hasbeen shown [7, 11, 12℄ that Eq. (2) an also be used whenU 6= 0, if there are free fermions when T ! 0.Non-perturbative regime (U > �=A): In HF theory, tdtakes [3℄ a value v = td + Uhy01(v; t)i and g = 1 ifv = t2 . This gives for the sale � a HF value �HF =t2 � AU where A = hy01(v = t2 ; t)i depends weaklyon t, A = 1=� (1=4) for t = 1 (0). When U ! t2=A,�HF ! 0, showing that HF theory annot be used abovean interation threshold whih is almost the threshold�� giving the onset of the non-perturbative regime forthe Anderson model. This breakdown of HF theory forU � �=A an be seen if one ompares Fig. 2(d) (NRGresults) and Fig. 2(e) (HF results).Universality: The ondutane g extrated from theNRG spetra for t = 0:01; 0:1 and 1 and 0 � U � 35is given as a funtion of td=� in Fig. 3. One an see 3suessive regimes. When td < � , there is a single urvewhih is independent of U and t and whih orrespondsto g = osh�2(X) with X = ln(td=�), and not ln(td=t2)as for U = 0. When td > � , another universal urveindependent of t and U desribes the data as a funtionof td=� as far as td does not exeed �. Indeed, the samedata plotted as a funtion of td show that g beomesindependent of U when td > �. In this third regime(parallel lines whih an be seen in Fig. 3 for large valuesof td=�) g = osh�2(X) with X = ln(td=t2) as if U = 0.Roles of T and td: We have assumed analogies betweenthe e�et of T in the Anderson model, the e�et of a Zee-
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