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NRG Study of an Inversion-Symmetri
 Intera
ting Model:Universal Aspe
ts of its Quantum Condu
tan
eAxel Freyn� and Jean-Louis Pi
hardServi
e de Physique de l' �Etat Condens�e (CNRS URA 2464),IRAMIS/SPEC, CEA Sa
lay, 91191 Gif-sur-Yvette, Fran
eWe 
onsider s
attering of spinless fermions by an inversion-symmetri
 intera
ting model 
har-a
terized by three parameters (intera
tion U , internal hopping td and 
oupling t
). Mapping thisspinless model onto an Anderson model with Zeeman �eld, we use the numeri
al renormalizationgroup for studying the parti
le-hole symmetri
 
ase. We show that the zero temperature limit is
hara
terized by a line of free-fermion �xed points and a s
ale �(U; t
) of td for whi
h there is perfe
ttransmission. The quantum 
ondu
tan
e and the low energy ex
itations of the model are given byuniversal fun
tions of td=� if td < � and of td=t2
 if td > �, � = t2
 being the level width of thes
atterer. This universal regime be
omes non-perturbative when U ex
eeds �.PACS numbers: 71.10.-w,72.10.-d,73.23.-bIn quantum transport theory, the 
ondu
tan
e G ofa nanosystem inside whi
h the ele
trons do not intera
tis given by g = G=(e2=h) = jtns j2 when the tempera-ture T ! 0, jtns j2 being the probability for an ele
tronat the Fermi energy EF to be transmitted through thenanosystem. This Landauer-Buttiker formula 
an be ex-tended to an intera
ting nanosystem, if it behaves as anon-intera
ting nanosystem with renormalized parame-ters. We study su
h a renormalization using the numer-i
al renormalization group (NRG) algorithm [1, 2℄ andan inversion-symmetri
 intera
ting model (ISIM) whi
hdes
ribes the s
attering of spin-polarized ele
trons (spin-less fermions) by an intera
ting region 
hara
terized byan internal hopping term td, a 
oupling term t
 and anintera
tion strength U . This model was used [3, 4℄ forstudying the e�e
t of an external s
atterer upon the e�e
-tive transmission of an intera
ting region, assuming theHartree-Fo
k (HF) approximation. We revisit ISIM withthe NRG algorithm for investigating non-perturbativeregimes where other methods (NRG or DMRG algo-rithms) than the HF approa
h be
ome ne
essary.Quantum impurity models [1℄, as the Anderson modelwhi
h des
ribes a level with Hubbard intera
tion U 
ou-pled to a 3d bath of free ele
trons, were introdu
ed tostudy the resistan
e minimum observed in metals withmagneti
 impurities. The Kondo problem refers to thefailure of perturbative te
hniques to des
ribe this min-imum. The solution of these models by the NRG al-gorithm, a non-perturbative te
hnique [1, 2℄ introdu
edby Wilson, is at the origin of the dis
overy of univer-sal behaviors whi
h 
an emerge from many-body e�e
ts.The observation [5℄ of the Kondo e�e
t in semi
ondu
-tor quantum dots has opened a se
ond era for quantumimpurity models, now used for modeling mesos
opi
 ob-je
ts (single [6℄ or double [7℄ quantum dot systems) in-side whi
h ele
trons intera
t, in 
onta
t with baths offree ele
trons (large 
ondu
ting non intera
ting leads).Though the Kondo e�e
t is indu
ed by magneti
 mo-ments, it is also at the origin of spinless models, su
h

as the intera
ting resonant level model [8℄ (IRLM) whi
hdes
ribes a resonant level (Vddyd) 
oupled to two baths ofspinless ele
trons via tunneling jun
tions and an intera
-tion U between the level and the baths. IRLM, whi
h isoften used for studying nonequilibrium transport [8, 9℄, isrelated to the Kondo model, the 
harge states nd = 0; 1playing the role of spin states. Both ISIM and IRLMare inversion symmetri
 and 
an exhibit orbital Kondoe�e
ts. However, the Zeeman �eld a
ting on the impu-rity is played by the hopping term td for ISIM, and bythe site energy Vd for IRLM. Therefore, ISIM does nottransmit the ele
trons without �eld, while IRLM does.The two-parti
le states have been given for ISIM [10℄.For the parti
le-hole symmetri
 
ase [2℄, the Andersonmodel maps onto the Kondo Hamiltonian if U > ��, �being the impurity-level width. In that 
ase, there is anon-perturbative regime where the temperature depen-den
e of physi
al observables su
h as the impurity sus-
eptibility is given by universal fun
tions of T=TK, TKbeing the Kondo temperature. If U < ��, the impuritysus
eptibility 
an be obtained by perturbation theory.Mapping ISIM onto an Anderson model with a Zeeman�eld td, and assuming that the role of td should quali-tatively resemble that of a �nite temperature, we expe
tthe following s
enario for the ISIM 
ondu
tan
e g of theparti
le-hole symmetri
 
ase: If U > �� / t2
 , we expe
ta non-perturbative regime where g should be given bya universal fun
tion of td=� independently of the valuesof U and t
, with a s
ale �(t
; U) of td playing the roleof a Kondo temperature TK . If U < ��, the HF theoryshould 
orre
tly give g. This s
enario will be more or less
on�rmed by extensive NRG 
al
ulations.ISIM Hamiltonian: H = Hns +Hl +H
 . The Hamil-tonian of the intera
ting region (the nanosystem) reads:Hns = �td �
y0
1 + 
y1
0�+ VG (n0 + n1) + Un0n1 : (1)
yx and 
x are spinless fermion operators at site x andnx = 
yx
x. The leads are des
ribed by an Hamiltonian
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FIG. 1: Line of free fermion �xed points ( ~U = 0, thi
k solidline) 
hara
terizing ISIM when T ! 0 as td in
reases fromtd = 0 (SC �xed point) towards td ! 1 (PO �xed point).The FO, LM and SC �xed points and the RG traje
tories [1℄followed by ISIM as T de
reases for td = 0 are indi
ated inthe plane etd = 0, for �� > U (dashed) and �� < U (solid).Hl = �thX01x=�1(
yx
x+1 + H:
:), where X0 meansthat x = �1; 0; 1 are omitted from the summation. The
oupling Hamiltonian H
 = �t
(
y�1
0 + 
y1
2 +H:
:).Mapping onto an Anderson model with Zeeman �eld:Be
ause of inversion symmetry, one 
an map ISIM ontoa semi-in�nite 1d latti
e where the fermions have apseudo-spin and the double site nanosystem be
omes asingle site with Hubbard repulsion U at the end pointof the semi-in�nite latti
e. aye=o;x = (
y�x+1 � 
yx)=p2
reating a spinless fermion in an even/odd (e=o) 
om-bination of the orbitals at the sites x and �x + 1of the in�nite latti
e, (or a fermion with pseudo-spin� = e=o in a semi-in�nite latti
e), one gets Hns =(VG � td)ne + (VG + td)no +Uneno, where n� = ay�;1a�;1and where the pseudo-spin \e" (\o") is parallel (anti-parallel) to the \Zeeman �eld" td. In terms of theoperators dyk;� = p2=�P1x=2 sin(k(x � 1))ay�;x 
reat-ing a spinless fermion of pseudo-spin � and momen-tum k in the semi-in�nite latti
e, Hl =Pk;� �knk;� andH
 =Pk;� V (k)(ay�;1dk;�+H:
:), where the k-dependenthybridization V (k) = �t
p2=� sin k yields an impuritylevel width � = t2
 , nk;� = dyk;�dk;� and �k = �2th 
os k.ISIM is almost the Anderson model, ex
ept that the im-purity has a Zeeman �eld td and is 
oupled to a semi-in�nite 1d bath of free ele
trons. When td ! 0, ISIMexhibits an orbital Kondo e�e
t if the equivalent Ander-son model 
an be redu
ed to a Kondo model.NRG pro
edure: ISIM 
an be studied using Wilson'spro
edure [1, 2℄ developed for the Anderson model afterminor 
hanges. First, we assume V (k) � V (kF = �=2)and, taking � = 2, we divide the 
ondu
tion band (log-arithmi
 dis
retization) of the ele
tron bath into sub-bands 
hara
terized by an index n and an energy widthdn = ��n(1���1). Within ea
h sub-band, we introdu
ea 
omplete set of orthonormal fun
tions  np(�), and ex-pand the lead operators in this basis. Dropping the terms

with p 6= 0 and using a Gram-S
hmidt pro
edure, theoriginal 1d leads give rise to another semi-in�nite 
hainwith nearest neighbor hopping terms, ea
h site being la-belled by the same index n as the energy sub-band fromwhi
h it 
omes, and representing a 
ondu
tion ele
tronex
itation at a length s
ale �n=2k�1F 
entered on the im-purity. In this transformed 1d model, the su

essive sitesare 
oupled by hopping terms tn;n+1 / ��n=2 whi
h van-ish as n!1. The impurity and the N�1 �rst sites forma NRG 
hain of length N and of Hamiltonian HN . Thislength 
an be interpreted [2℄ as a logarithmi
 temper-ature s
ale. The NRG 
hain 
oupled to the impurity isiteratively diagonalized and res
aled, the spe
trum beingtrun
ated to the Ns �rst states at ea
h iteration. The be-havior of ISIM as T de
reases 
an be obtained from thespe
trum of HN as N in
reases, the bandwidth of HNbeing suitably res
aled at ea
h step. A �xed point ofthe RG 
ow 
orresponds to an interval of su

essive even(or odd) values of N where the res
aled many-body ex-
itations EI(N) do not vary. If it is a free-fermion �xedpoint, EI = P� ��, the �� being one-body ex
itations,and the intera
ting system behaves as a non-intera
tingsystem ( ~U = 0) with renormalized parameters etd and et
near the �xed point. Moreover, if one has free fermionswhen T ! 0, g 
an be extra
ted from the NRG spe
trum.Symmetri
 
ase: Using this NRG pro
edure, ISIM 
anbe studied as a fun
tion of T for arbitrary values of itsbare parameters. Hereafter, we take th = 1, EF = 0and VG = �U=2. This 
hoi
e makes ISIM invariantunder parti
le-hole symmetry, with a uniform density(hnxi = 1=2) and 3 e�e
tive parameters ( ~U; et
; etd).Suppression of the LM �xed point as td in
reases:When td = 0, ISIM is an Anderson model whi
h hasthe RG 
ow sket
hed in Fig. 1 for the parti
le-hole sym-metri
 
ase. At low values of N (high values of T ), ISIMis lo
ated in the vi
inity of the unstable free orbital (FO)�xed point. As N in
reases (T de
reases), ISIM 
owstowards the stable strong 
oupling (SC) �xed point. If�t2
 < U , the 
ow 
an visit an intermediate unstable �xedpoint: the lo
al moment (LM) �xed point before rea
h-ing the SC �xed point. In that 
ase, ISIM is identi
al toa Kondo model 
hara
terized by a temperature TK andby universal fun
tions of the ratio T=TK . If �t2
 > U ,the 
ow goes dire
tly from the FO �xed point towardsthe SC �xed point, and there is no orbital Kondo e�e
tfor td ! 0. In Fig. 2(a), the �rst many-body ex
itationsEI of ISIM are given for in
reasing even values of N fortd = 0. Sin
e �t2
 < U , one gets 3 plateaus 
orrespond-ing to the 3 expe
ted �xed points. Inside the plateaus,the spe
tra are free-fermions spe
tra whi
h are des
ribedin Ref. [2℄. However, between the plateaus, there are nofree-fermion spe
tra and EI 6= P� ��. As td in
reases(Fig. 2(a)), the LM plateau de
reases and vanishes whentd � U .Evolution of the SC �xed point as td in
reases: Inthe limit N ! 1 (T ! 0), let us study the EI as a
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FIG. 2: (Color online) Fig. 2(a): Many body ex
itations EI as a fun
tion of N (even values) for U = 0:005 and t
 = 0:01.For td = 0 (Fig. 2(a1)), one 
an see the 3 su

essive plateaus (FO, LM and SC �xed points) of the Anderson model [2℄. As tdin
reases (Fig. 2(a2) and Fig. 2(a3)), the LM plateau shrinks and disappears when td � U . Fig. 2(b): One body ex
itations��(td) (extra
ted from the EI(N !1; td)) for U = 0:1 and t
 = 0:1 (left s
ale). The solid (dashed) line 
orresponds to NRG
hains of even (odd) length N . Condu
tan
e g(td) extra
ted from ��(td) using Eq. (2) (thi
k red 
urve, right s
ale). For td = � ,the �� are independent of the parity of N and g = 1. Fig. 2(
): For U = 0, ��(td=t2
) and g(td=t2
) extra
ted from the NRGspe
tra (�). g = 
osh�2(X) (red line) with X = ln(td=t2
) is 
orre
tly reprodu
ed. Figs. 2(d),(e): g(td) for t
 = 0:1 and manyvalues of U , 
al
ulated by NRG algorithm (d) and by HF theory (e). In Fig. 2(d), the larger is U , the smaller is td = � whereg = 1. The 
urves 
orrespond respe
tively to U = 0:25; 0:2; 0:15 (3 left peaks) and U = 0:1; 0:09; : : : ; 0:01; 0 (11 right peaks).In Fig. 2(e), the HF values are a

urate for U = 0:02; 0:01; 0 (3 right peaks), but be
ome ina

urate when U � 0:04 � �. ForU > �, the HF 
urves (dashed lines) are very di�erent of the 
orresponding NRG 
urves (Fig. 2(d)).fun
tion of td. For td = 0, one has the SC limit [2℄where the impurity is strongly 
oupled to the se
ond site(the 
ondu
tion-ele
tron state at the impurity site) ofthe NRG 
hain. The impurity and this site form a sys-tem whi
h 
an be redu
ed to its ground state (a sin-glet), the N � 2 other sites 
arrying free fermions ex
i-tations �� whi
h are independent of that system. In thepresen
e of a Zeeman �eld td 6= 0, the free-fermion ruleEI(td) = P� ��(td) remains valid (see Fig. 2(b)) andthe T ! 0 limit of ISIM is given by a 
ontinuum lineof free-fermion �xed points where ~U = 0, as sket
hed inFig. 1. When the pseudo-spin degenera
y is broken, the�rst (se
ond) one-body ex
itation �1 (�2) 
arry respe
-tively an even (odd) pseudo-spin if N is even. This is theinverse if N is odd, �1 (�2) 
arrying respe
tively an odd(even) pseudo-spin. For td ! 1, the impurity o

upa-tion numbers ne = 1 and no = 0, and the N � 1 othersites of the NRG 
hain are independent of the impurity.We 
all this �xed point \Polarized Orbital" (PO), sin
e it
oin
ides with the FO �xed point of the Anderson model,ex
ept that the spin of the free orbital is fully polarizedin our 
ase. Sin
e for N ! 1 and td ! 0 (SC �xedpoint), the free part of the NRG 
hain has N � 2 sites,while it has N � 1 sites for td ! 1 (PO �xed point),there is a permutation of the ��(td) as td in
reases: as

shown in Figs. 2(b) and (
), the ��(td ! 0) for N evenbe
ome the ��(td !1) for N odd and vi
e-versa.Chara
teristi
 energy s
ale � : We de�ne the 
hara
-teristi
 energy s
ale �(t
; U) of ISIM as the value of tdfor whi
h the ��(td) are independent of the parity of Nwhen N ! 1. Be
ause of parti
le-hole symmetry, thenanosystem (the impurity of the NRG 
hain) is alwayso

upied by one ele
tron. Binding one ele
tron of theleads with this ele
tron redu
es the energy when td < � ,while it in
reases the energy when td > � . For td = � , itis indi�erent to bind or not an ele
tron of the lead withthe one of the nanosystem, making ISIM perfe
tly trans-parent. This gives the proof that, for every values of Uand t
, there is always a value � of td for whi
h g = 1.The argument is reminis
ent to that giving the 
onditionfor having a perfe
tly transparent quantum dot in theCoulomb blo
kade regime: td in our 
ase, the gate volt-age in the other 
ase, have to be adjusted to values forwhi
h it 
osts the same energy to put an extra ele
tronoutside or inside the dot.Extra
tion of the 
ondu
tan
e g from the NRG spe
tra:If Æe (Æo) are the even (odd) s
attering phase shifts at EF ,g(td) = sin2(Æe � Æo) = sin2�� ��(td)��(td !1)� ; (2)
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FIG. 3: (Color online) Condu
tan
e g as a fun
tion of td=� for3 values of t
 and many values 0 � U � 35. Inset: �(U; t
)=Uas a fun
tion of U=t2
 (+) and �t � = t2
 exp�(U=(�t2
)) (solidred line).where �� = �2��1 is the energy gap between the two �rstex
itations of a NRG 
hain of even length N ! 1 (seeFig. 2(b)). When U = 0, this relation is a 
onsequen
e ofFriedel sum rule, whi
h 
an be written for ea
h pseudo-spin 
hannel separately. In that 
ase, g = 
osh�2(X)where X = ln(td=t2
) and � = t2
 . The ��(td) given by theNRG algorithm for U = 0 are shown in Fig. 2(
) with the
orresponding values of g obtained from Eq. (2), showingthat this pro
edure gives 
orre
tly g when U = 0. It hasbeen shown [7, 11, 12℄ that Eq. (2) 
an also be used whenU 6= 0, if there are free fermions when T ! 0.Non-perturbative regime (U > �=A): In HF theory, tdtakes [3℄ a value v = td + Uh
y0
1(v; t
)i and g = 1 ifv = t2
 . This gives for the s
ale � a HF value �HF =t2
 � AU where A = h
y0
1(v = t2
 ; t
)i depends weaklyon t
, A = 1=� (1=4) for t
 = 1 (0). When U ! t2
=A,�HF ! 0, showing that HF theory 
annot be used abovean intera
tion threshold whi
h is almost the threshold�� giving the onset of the non-perturbative regime forthe Anderson model. This breakdown of HF theory forU � �=A 
an be seen if one 
ompares Fig. 2(d) (NRGresults) and Fig. 2(e) (HF results).Universality: The 
ondu
tan
e g extra
ted from theNRG spe
tra for t
 = 0:01; 0:1 and 1 and 0 � U � 35is given as a fun
tion of td=� in Fig. 3. One 
an see 3su

essive regimes. When td < � , there is a single 
urvewhi
h is independent of U and t
 and whi
h 
orrespondsto g = 
osh�2(X) with X = ln(td=�), and not ln(td=t2
)as for U = 0. When td > � , another universal 
urveindependent of t
 and U des
ribes the data as a fun
tionof td=� as far as td does not ex
eed �. Indeed, the samedata plotted as a fun
tion of td show that g be
omesindependent of U when td > �. In this third regime(parallel lines whi
h 
an be seen in Fig. 3 for large valuesof td=�) g = 
osh�2(X) with X = ln(td=t2
) as if U = 0.Roles of T and td: We have assumed analogies betweenthe e�e
t of T in the Anderson model, the e�e
t of a Zee-

man �eld at T = 0 in the Anderson model, and eventuallythe e�e
t of td at T = 0 in ISIM. This was based on theidea that the singlet state of the SC limit 
ould be brokeneither if the temperature T or the Zeeman energy td ex-
eeds TK . Let us summarize the interest and the limit ofthese analogies. In
reasing T in the Anderson model (orin ISIM with td = 0), one gets 3 regimes, ea
h of thembeing 
hara
terized by a single �xed point (Fig. 2(a)).There are no free fermions for temperatures T � TK(SC{LM 
rossover) and T � � (LM{FO 
rossover). In
ontrast, in
reasing td in ISIM at T = 0, one has al-ways free fermions (Fig. 2(b)), and not only around 3�xed points. However, there are 3 regimes in ISIM astd in
reases, as in the Anderson model as T in
reases,delimited by 2 energy s
ales � and �. The behavior of� � t2
 exp�(U=(�t2
)) (inset of Fig. 3) resembles thatof TK � t
p�U=2 exp�(U=(�t2
)) (in ISIM units), whilethe se
ond s
ale is given by � in the 2 models. Eventu-ally, we point out the similarity between the universalitydis
ussed in this letter for g and that whi
h 
hara
ter-izes [13℄ also at T = 0 the behavior of the singlet-tripletgap for a magneti
 impurity 
on�ned in a box of meanlevel spa
ing �, as a fun
tion TK=�.We thank Denis Ullmo for very useful dis
ussions andthe \Triangle de la Physique" for �nan
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