Jacques Duparc

Alessandro Facchini
email: alessandro.facchini@unil.ch

Filip Murlak
email: fmurlak@inf.ed.ac.uk

Linear Game Automata: Decidable Hierarchy Problems for Stripped-Down Alternating Tree Automata

For deterministic tree automata, classical hierarchies, like Mostowski-Rabin (or index) hierarchy, Borel hierarchy, or Wadge hierarchy, are known to be decidable. However, when it comes to non-deterministic tree automata, none of these hierarchies is even close to be understood. Here we make an attempt in paving the way towards a clear understanding of tree automata. We concentrate on the class of linear game automata (LGA), and prove within this new context, that all corresponding hierarchies mentioned above-Mostowski-Rabin, Borel, and Wadge-are decidable. The class LGA is obtained by taking linear tree automata with alternation restricted to the choice of path in the input tree. Despite their simplicity, LGA recognize sets of arbitrary high Borel rank. The actual richness of LGA is revealed by the height of their Wadge hierarchy: (ω ω) ω .

Introduction

The Mostowski-Rabin hierarchy, the Borel hierarchy, and the Wadge hierarchy are the most common measures of complexity of recognizable ω-languages.

The first one, also known as the index hierarchy, orders languages according to the nesting of positive and negative conditions checked by the recognizing automaton. It has two main versions: weak, relying on finitary conditions (e.g., "a does occur"); and strong, referring to infinitary conditions (e.g., "b occurs infinitely often"). It is believed to reflect the inherent computational complexity of the language, and therefore has attracted a lot of attention encouraged by the expectations of the verification community [START_REF] Bradfield | The Modal µ-Calculus Alternation Hierarchy is Strict[END_REF][START_REF] Bradfield | Simplifying the Modal µ-Calculus Alternation Hierarchy[END_REF][START_REF] Kupferman | Relating Word and Tree Automata[END_REF][START_REF] Niwiński | On Fixed Point Clones[END_REF][START_REF] Niwiński | Relating Hierarchies of Word and Tree Automata[END_REF][START_REF] Niwiński | A Gap Property of Deterministic Tree Languages[END_REF][START_REF] Niwiński | Deciding Nondeterministic Hierarchy of Deterministic Tree Automata[END_REF].

The classical Borel hierarchy is based on the nesting of countable unions and negations in the set theoretic definition of the language, starting from the simplest (open) sets. It drew attention of automata theorists as early as 1960s [START_REF] Landweber | Decision Problems for ω-Automata[END_REF], and has continued to inspire research efforts ever since, mainly because of its intimate relations with the index hierarchy [START_REF] Hummel | On the Borel Inseparability of Game Tree Languages[END_REF][START_REF] Niwiński | A Gap Property of Deterministic Tree Languages[END_REF][START_REF] Skurczyński | The Borel Hierarchy is Infinite in the Class of Regular Sets of Trees[END_REF].

The Wadge hierarchy is an almost ultimate refinement of the Borel hierarchy, defined by the preorder induced on languages by simple (continuous) reductions. It enables precise comparison of different models of computation. What is more powerful: deterministic or weak automata on trees? It is known that there are deterministic languages that are not weakly recognizable and vice versa. How to compare, if not by inclusion? An even more exotic case: deterministic tree languages versus deterministic context free word languages. How to compare trees with words? The Wadge hierarchy makes it possible. The sole heights (huge ordinals) of the Wadge hierarchy restricted to the classes under comparison provide, literally, infinitely more information then other logical techniques [START_REF] Duparc | A Hierarchy of Deterministic Context-Free ω-Languages[END_REF][START_REF] Finkel | Borel Ranks and Wadge Degrees of ω-Context Free Languages[END_REF][START_REF] Murlak | The Wadge Hierarchy of Deterministic Tree Languages. Logical Methods in Comput[END_REF][START_REF] Selivanov | Wadge Degrees of ω-Languages of Deterministic Turing Machines[END_REF].

Measuring hardness of recognizable languages of infinite trees is a long standing open problem. Unlike for infinite words, where the understanding is almost complete since Wagner's 1977 paper [START_REF] Wagner | Eine topolgische Charackterisierung einiger Klassen regulärer Folgenmengen[END_REF], for trees the only satisfyingly examined case is that of deterministic automata [START_REF] Murlak | On Deciding Topological Classes of Deterministic Tree Languages[END_REF][START_REF] Murlak | The Wadge Hierarchy of Deterministic Tree Languages. Logical Methods in Comput[END_REF][START_REF] Murlak | Weak Index vs Borel Rank[END_REF][START_REF] Niwiński | A Gap Property of Deterministic Tree Languages[END_REF][START_REF] Niwiński | Deciding Nondeterministic Hierarchy of Deterministic Tree Automata[END_REF]. But the deterministic and non-deterministic case differ immensely for trees. The only results obtained for non-deterministic or alternating automata are strictness theorems for various classes [START_REF] Bradfield | The Modal µ-Calculus Alternation Hierarchy is Strict[END_REF][START_REF] Bradfield | Simplifying the Modal µ-Calculus Alternation Hierarchy[END_REF][START_REF] Mostowski | Hierarchies of Weak Automata and Weak Monadic Formulas[END_REF][START_REF] Niwiński | On Fixed Point Clones[END_REF], and lower bounds for the heights of the hierarchies [START_REF] Duparc | On the Topological Complexity of Weakly Recognizable Tree Languages[END_REF][START_REF] Skurczyński | The Borel Hierarchy is Infinite in the Class of Regular Sets of Trees[END_REF]. To the best of our knowledge, the only nontrivial decidability result is that on emptiness [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF]. As the empty set and the whole space are the only two sets on the lowest level of the Wadge hierarchy (or the Mostowski-Rabin hierarchy), using emptiness test and the complementation procedure [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF] we can decide if a given language is on the first level of the hierarchy or not. Obviously this does not say much about the complexity of the language in question.

This paper intents to change this situation, even if only very slightly for a start. We propose a class of automata having all three hierarchies decidable and capturing a reasonable amount of non-determinism. The class we advocate, linear game automata (LGA), is obtained by taking linear automata (a.k.a. very weak automata), that emerged in the verification community, and restricting the alternation to the choice of a path in the input tree. Linear automata capture CTL [START_REF] Kupferman | An Automata-Theoretic Approach to Branching-Time Model Checking[END_REF], which is expressive enough for many applications. Though linear game automata are weaker, they retain most alternation related to the branching structure. Evidence for their expressivity is topological: they recognize sets of arbitrarily high finite Borel rank, and their Wadge hierarchy has the height (ω ω) ω , much larger than (ω ω) 3 + 3 for deterministic automata.

As we have already pointed out, these automata are far from capturing the full expressivity of non-deterministic automata, but still, computing the Wadge degree for a given LGA is much more involved than for an ω-word automaton and even a deterministic tree automaton. The structural simplicity of LGA might seem to reduce the computation to the decomposition of nested chains, but in fact the alternation (even very weak) makes it much harder. We believe that the notion of game automata is well suited to take us further. Indeed, the next step is to consider weak and then strong game automata. This last class is already quite expressive, as it contains inhabitants of every level of the (strong) index hierarchy and subsumes deterministic languages. Extending decidability to this class would be an important result, though possibly the last one accessible with the tools we are using.

--→ q when q ∈ δ(q, σ, d). The acceptance is defined in terms of a (weak) parity game.

A weak parity game is a two-player game given by

V, V 0 , V 1 , E, rank , where V = V 0 • ∪V 1 is the set of vertices, E ⊆ V × V is the edge relation, and rank : V → ω is the priority function with bounded image. A vertex v is a successor of a vertex v if (v, v) ∈ E. A play from a vertex v 0 is a path v 0 v 1 v 2 .
. . visited by a token moving along the edges of the graph. If the token is in v ∈ V i , player i chooses the next location of the token among the successors of v. We say that player 0 wins a (finite or infinite) play if and only if the greatest priority ever occurring in the play is even.

Consider a weak alternating automaton A and an tree t ∈ T Σ . The automaton A accepts t iff Player 0 has a winning strategy in the weak parity game G A,t defined as:

-V 0 = {0, 1} * × Q ∃ , V 1 = {0, 1} * × Q ∀ , -the relation E = {((v, p), (vd, q)) : v ∈ dom(t), (p, t(v), d, q) ∈ δ}, -rank((v, q)) = rank(q), for every vertex (v, q).
A path in A is a sequence of states and transitions q 0 σ0,d0

---→ q 1 σ1,d1 ---→ q 2 • • • • • • q n σn,dn ----→ q n+1 .
If there is such a path with q = q 0 and q = q n+1 , we say that q is reachable from q. A path is a loop if q n+1 = q 0 . If there is a loop from a state q, we say that this state is looping. If q is looping and rank(q) is even (resp. odd) we say that the loop in q is positive (resp. negative). Finally, we say that a state p is replicated by q if there is a path q σ0,d0 ---→ q 1 • • • q n σn,dn ----→ p and a transition q σ0, d0 ---→ q.

Borel classes and Wadge reductions

Consider the space T Σ equipped with the standard Cantor topology (see eg. [START_REF] Niwiński | A Gap Property of Deterministic Tree Languages[END_REF]). Recall that the class of Borel sets of a topological space X is the closure of the class of open sets of X by countable unions and complementation. Given X, the initial finite levels of the Borel hierarchy are defined as follows with Σ 0 0 (X) = {∅} and

Π 0 0 (X) = {X}. -Σ 0 1 (X) is the class of open subsets of X, -Π 0 n (X) contains complements of sets from Σ 0 n (X), -Σ 0 n+1 (X) contains countable unions of sets from Π 0 n (X).
The classes defined above are closed under inverse images of continuous functions. Given a classe C, a set U is called C-hard if each set in C is an inverse image of U under some continuous function. If additionally U ∈ C, U is said to be C-complete. It is well known that every weakly recognizable tree language is a member of a Borel class of finite rank ([START_REF] Duparc | On the Topological Complexity of Weakly Recognizable Tree Languages[END_REF][START_REF] Mostowski | Hierarchies of Weak Automata and Weak Monadic Formulas[END_REF]). The rank of a language is the rank of the minimal Borel class the language belongs to. It can be seen as a coarse measure of complexity of languages.

A much finer measure of the topological complexity is the Wadge degree. If T, U ⊆ T Σ , we say that T is continuously (or Wadge) reducible to U , if there exists a continuous function

f such that T = f -1 (U). We write T ≤ w U iff T is continuously reducible to U . Thus, given a certain Borel class C, T is C-hard if U ≤ w T for every U ∈ C.
This particular ordering is called the Wadge ordering. If T ≤ w U and U ≤ w T , then we write T ≡ w U . If T ≤ w U but not U ≤ w T , then we write T < w U . The Wadge hierarchy is the partial order induced by < w on the equivalence classes given by ≡ w .

Let T and U be two arbitrary sets of full binary trees. The Wadge game W(T, U) is a two-player game (player I and player II). During a play, each player builds a tree, say t I and t II . In each round both players add children to some terminal nodes of their corresponding tree. Player I plays first and Player II is allowed to skip his turn but not forever. Player II wins the game iff t I ∈ T ⇔ t II ∈ U . Bill Wadge designed this game precisely in order to obtain a characterisation of continuous reducibility.

Lemma 1 ([24]

). Let T, U ⊆ T Σ . Then T ≤ w U iff Player II has a winning strategy in the game W(T, U).

A language L is called self dual if it is equivalent to its complement, otherwise it is called non self dual. From Borel determinacy, if T, U ⊆ T Σ are Borel, then W(T, U) is determined. As a consequence, a variant of Martin-Monk's result shows that < w is well-founded. The Wadge degree for sets of finite Borel rank is inductively defined by:

-d w (∅) = d w (∅) = 1, -d w (L) = sup{d w (K) + 1 : K non self dual, K < w L} for L > w ∅.

Linear game automata

A linear game automaton (LGA) is a weak alternating automaton A = Σ, Q, q I , δ, rank satisfying two special restrictions:

-(game alternation) the transition relation is a total function δ : Q × Σ → Q × Q; -(linearity) for every loop q σ0,d0 ---→ q 1 σ1,d1 ---→ q 2 • • • q n σn,dn ----→ q it holds that q i = q, for all 1 ≤ i ≤ n.
In the remaining of the paper, we often write q σ -→ q 0 , q 1 if δ(q, σ) = (q 0 , q 1). Let A q denote the automaton obtained from A by changing the initial state to q. Without loss of generality, we make the following assumptions:

there is no trivial state, i.e., if q ∈ Q is such that A q ≡ (resp. A q ≡ ⊥), then q = (resp. q = ⊥), there is no trivial transition, i.e., if p ∈ Q ∀ , and p σ -→ q, ⊥, then q = ⊥ (dually for p ∈ Q ∃).

By convention, is a looping state of even rank, and ⊥ is a looping state of odd rank.

LGA are closed under complementation. The usual complementation procedure, that increases the ranks by one and swaps existential and universal states turns LGA into LGA. However, LGA are not closed under union nor intersection. Given σ ∈ Σ, the language L σ = {t ∈ T Σ : t(0) = t(1) = σ} is LGA-recognizable, but L σ ∪ L σ is not.

A normal form

We now provide a useful normal form of LGA. First let us define three operations on tree languages (and tree automata). Let L, M be tree languages over Σ containing at least two letters, a and b. Define alternative (∨), disjunctive product (), and conjunctive product () as

L ∨ M = {t : t(ε) = a , t.0 ∈ L or t(ε) = a , t.0 ∈ M } , L M = {t : t.0 ∈ L or t.1 ∈ M } , L M = {t : t.0 ∈ L and t.0 ∈ M } .

The family of languages recognized by

LGAs is closed under these three operations. In particular, the operations have natural counterparts on automata. We write A ∨ B to denote the automaton recognizing L(A) ∨ L(B), and similarly for and . Multifold alternatives are performed from left to right, e.g.,

A 1 ∨ A 2 ∨ A 3 ∨ A 4 = (((A 1 ∨ A 2) ∨ A 3) ∨ A 4).
It is easy to see that these three operations define associative and commutative operations on Wadge equivalence classes.

Lemma 2. Each

LGA is Wadge equivalent to an LGA over the alphabet {a, b}.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C has only one state, the claim follows trivially. Suppose C has several states. We may assume w.l.o.g. that its initial state of C, q 0 , is existential. Suppose that the transitions of C starting in q 0 are q 0 ai -→ p i , p i , q 0 bj -→ q 0 , r i and q 0 c k -→ q 0 , q 0 with Σ = {a 1 , . . . , a ; b 1 , . . . , b m ; c 1 , . . . , c n }. Then C is Wadge equivalent to

q0 c k , * , , b j ,0 r r a i ,0 ~~~~~~~~ai,1)) R R R R R R R R R R R R R R R b j ,1 / / Cr 1 ∨ • • • ∨ Cr m ⊥ (Cp 1 C p 1) ∨ • • • ∨ (Cp C p)
By induction hypothesis, there exist automata A i , A i , B j over {a, b}, such that

A i ≡ w C pi , A i ≡ w C p i , and B j ≡ w C rj . Let A = (A 1 A 1) ∨ • • • ∨ (A A) and B = B 1 ∨ • • • ∨ B m .
Further, we see that if A ∨ B ≡ w , then C is Wadge equivalent to the automaton on the left below and otherwise to the one on the right:

q0 b,0 , , a,0 || | | | | | | a,1 B B B B B B B B b,1 / / ⊥ q0 b,0 , , a,0 || | | | | | | a,1 # # G G G G G G G G G b,1 / / B ∨ A ⊥ A
From now on we work with automata over {a, b}, unless explicitly stated otherwise. A looping state q of an LGA A is restrained if it is an existential positive state or a universal negative state, unrestrained if it is an existential negative state or a universal positive state.

Examining the proof of Lemma 2, we see that in fact, each nontrivial looping state falls into exactly one of the categories shown below (+ means even rank,means odd rank).

Restrained Unrestrained

+ a,0 , , b,0 } } { { { { { { { { b,1 ! ! C C C C C C C C a,1 / / A B0 B1 - a,0 , , b,0 } } { { { { { { { { b,1 ! ! C C C C C C C C a,1 / / A B0 B1 [-] a,0 -- b,0 || | | | | | | b,1 B B B B B B B B a,1 / / A B0 B1 [+] a,0 -- b,0 || | | | | | | b,1 B B B B B B B B a,1 / / A B0 B1
A node q of each of the above kinds may be seen as an action over triples of LGAs; we denote by q(A, B 0 , B 1) the automaton being the result of the action q on A, B 0 ,

B 1 , e.g., [+](A, B 0 , B 1) or -(A, B 0 , B 1). Often we use a shorthand [µ](A, B) = [µ](A, B,), µ (A, B) = µ (A, B, ⊥) for µ = + or µ = -.
3 Deciding the Borel hierarchy

Patterns menagerie

The basis for the procedure computing the Borel rank of a given LGA-recognizable language is a characterization in terms of difficult patterns. We define (0, n)-pattern, and (1, n + 1)-pattern by induction on n:

a (0, 1)-pattern is a negative loop reachable from a positive loop, a (1, 2)-pattern is a positive loop reachable from a negative loop, a (0, n + 1)-pattern is a (1, n + 1)-pattern replicated by a universal positive node, a (1, n + 2)-pattern is a (0, n)-pattern replicated by an existential negative node.

We also define canonical automata, K Σ n and K Π n , corresponding to the patterns:

K Π 1 = [+](, ⊥, ⊥), K Π n+1 = [+](K Σ n , ⊥, ⊥), K Σ 1 = -(⊥, ,), K Σ n+1 = -(K Π n , ,).
The tree languages recognized by the above canonical automata coincide with the sets used by Skurczyński to prove the existence of weakly recognizable languages of each finite Borel rank.

Proposition 1 ([23]

). For every n > 0,

L(K Σ n) is Σ 0 n -complete and L(K Π n) is Π 0 n -complete.
Skurczyński's result follows by straightforward induction from the following easy lemma. For v ∈ {0, 1} * and

U ⊆ T Σ , let vU = {t ∈ T Σ : t.v ∈ U }. Lemma 3. For each n > 0 1. if U i is Σ 0 n -hard for i < ω, i∈ω 0 i 1U i is Π 0 n+1 -hard; 2. if V i is Π 0 n -hard for i < ω, i∈ω 0 i 1V i is Σ 0 n+1 -hard.

Effective characterization

Since any Borel class is closed under finite unions and finite intersections, we have:

Proposition 2. Let K be a complete set for some class from 1≤i<ω {Σ 0 i , Π 0 i }. For every k, if U i ≤ w K for 0 ≤ i ≤ k, then (1)
k i=0 0 i 1U i ≤ w K, (2)
k i=0 0 i 1U i ≤ w K, and if V i < w K for 0 ≤ i ≤ k, then (3)
k i=0 0 i 1V i < w K, (4)
k i=0 0 i 1V i < w K. Analogously, since Σ 0
n is closed under countable unions, and Π 0 n is closed under countable intersections, we obtain the following result. Proposition 3.

1. Let K be a Σ 0 n -complete set. If for every i ∈ ω it holds that U i ≤ w K, then i∈ω 0 i 1U i ≤ w K. 2. Let K be a Π 0 n -complete set. If for every i ∈ ω it holds that U i ≤ w K, then i∈ω 0 i 1U i ≤ w K.
We now apply these properties to characterize the topological power of looping nodes in an LGA. Lemma 4. Let A, B 0 , B 1 , C be LGA such that C = q(A, B 0 , B 1), and q is a restrained looping node. For n ≥ 2

1. if L(A), L(B i) < w L(K Σ n), then L(C) < w L(K Σ n); 2. if L(A), L(B i) < w L(K Π n), then L(C) < w L(K Π n).
Proof. It is enough to prove the first claim, the second follows by duality. Suppose that q = + . Let us describe a winning strategy for Player II in W(L(C), L(K Σ n)). If Player I plays a on the leftmost branch, Player II plays accepting in the subtrees rooted in nodes 0 i 1. If Player I finally plays a b in the kth round, Player II switches to playing rejecting in every subtree rooted in 0 i 1 for i < k, and in the subtree rooted in 0 k applies the winning strategy given by Proposition 2 (1). Hence, L(C) ≤ w L(K Σ n). To obtain strictness of the inequality, we describe a winning strategy for Player I in

W(L(K Σ n), L(C)).
As long as Player II skips or plays a on the leftmost branch, Player I plays rejecting in the subtrees rooted in 0 i 1. If in the kth round Player II finally plays b on the leftmost branch, Player I continues playing rejecting in every subtree rooted in 0 i 1 for i ≤ n, and in the subtree rooted in 0 n+1 applies the winning strategy given by Proposition 2 [START_REF] Bradfield | The Modal µ-Calculus Alternation Hierarchy is Strict[END_REF].

For q = [-] the proof is analogous, only uses Proposition 2 (2) and (4).

Lemma 5. Let A, B 0 , B 1 , C be LGA such that C = q(A, B 0 , B 1), and q is an unrestrained looping node. Let n ≥ 2. If q = -, then

1. if L(A) ≤ w L(K Σ n-1), and L(B i) < w L(K Σ n), then L(C) < w L(K Σ n); 2. if L(A) ≥ w L(K Π n-1), then L(C) ≥ w L(K Σ n); and if q = [+], then 3. if L(A) ≤ w L(K Π n-1), and L(B i) < L(K Π n), then L(C) < w L(K Π n); 4. if L(A) ≥ w L(K Σ n-1), then L(C) ≥ w L(K Π n). Proof.
Use an argument similar to the proof of Lemma 4 to infer (1) and (3) from Proposition 3, and (2) and (4) from Lemma 3.

The main theorem of this part follows from Lemma 4 and Lemma 5 by induction on the structure of the automaton. And as a corollary, we obtain the first decidability result. Theorem 1. For every n and every LGA A

1. L(A) is Σ 0 n -hard iff A contains a (1, n + 1)-pattern; 2. L(A) is Π 0 n -hard iff A contains a (0, n)-pattern. Corollary 1.
The problem of calculating the exact position in the Borel hierarchy of a language recognized by a linear game tree automaton is decidable (in polynomial time if the productive states are given). [START_REF] Bradfield | Simplifying the Modal µ-Calculus Alternation Hierarchy[END_REF] The weak index hierarchy

Introducing the hierarchy

The (Mostowski-Rabin) index of an automaton A is given by (i, j) ∈ ω × ω, where i is the minimal and j is the maximal value of the priority function rank. Scaling down the priorities if necessary, we can assume that i ∈ {0, 1} and that for every n ∈ {i, i + 1, . . . , j}, there is a state q such that rank(q) = n. Thus, the indices are elements of ({0, 1} × ω) \ (1, 0). Given an index (0, j) (resp. (1, j)), its dual index is (1, j + 1) (resp. (0, j -1)).

Consider the partial order on indices of automata given by

(i, j) (i , j) iff j -i < j -i .
Note that this implies that dual indices are incomparable. The hierarchy induced by the partial order is called the hierarchy of Mostowski-Rabin indices (or simply the index hierarchy) of the considered class of automata. For a given class, the hierarchy is said to be strict if there is an automaton at each level that cannot be simulated by any automaton from the same class of lower level. By a result of Bradfield [START_REF] Bradfield | The Modal µ-Calculus Alternation Hierarchy is Strict[END_REF][START_REF] Bradfield | Simplifying the Modal µ-Calculus Alternation Hierarchy[END_REF], we know that the index hierarchy of alternating tree automata, and therefore the fixpoint hierarchy of the modal µ-calculus, is strict. Arnold's proof of the same result [START_REF] Arnold | The µ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees[END_REF] can be adapted to show that the index hierarchy of weak alternating tree automata is also strict. In the latter case we speak of the weak index hierarchy.

The conjecture

In [START_REF] Murlak | Weak Index vs Borel Rank[END_REF] it was conjectured that for weakly recognizable tree languages the weak index hierarchy and the Borel hierarchy coincide, i.e., that a weakly recognizable tree language is in Σ 0 n (resp. Π 0 n) iff it can be recognized by a weak alternating automaton of index (1, n + 1) (resp. (0, n)). It has long been known that one implication holds. Proposition 4 ([START_REF] Mostowski | Hierarchies of Weak Automata and Weak Monadic Formulas[END_REF]). For every weak alternating automaton with index (0, n) (resp.

(1, n + 1)), it holds that L(A) ∈ Π 0 n (resp. L(A) ∈ Σ 0 n).
It was also proved recently that the conjecture holds when restricted to languages which are in addition deterministically recognizable [START_REF] Murlak | Weak Index vs Borel Rank[END_REF]. We refine this result by showing that the conjecture also holds for languages recognizable by LGA.

Weak index of

LGA-recognizable sets Theorem 2. For languages recognizable by LGA, the Borel hierarchy and the weak index hierarchy coincide.

Proof. For simplicity we assume that all automata are in the normal form. Extending the proof to the general case is easy. By duality it is enough to consider Π 0 n classes. By Proposition 4 it is suffices to show that for each LGA C with L(C) ∈ Π 0 n there exists an equivalent weak alternating automaton of index (0, n). We proceed by induction on the structure of the automaton.

The case n = 0 is trivial. Suppose that n = 1. By Theorem 1, C does not contain an accepting loop reachable from a rejecting loop. It is enough to set the rank of all states reachable from odd looping states to 1 and the rank of the remaining states to 0 to obtain an equivalent automaton of index (0, 1).

Suppose that n ≥ 2. If the initial state of C is not looping, the claim follows easily from the induction hypothesis. Suppose that q 0 is a looping node, and C is of the form

(i) a,0 + + a,1 / / b,0 }} } } } } } } b,1 A A A A A A A A A B0 B1
We can treat C as a weak alternating automaton and transform it into an equivalent one of index (0, n). Clearly, it must hold that L(A), L(B) ∈ Π 0 n and by induction hypothesis we may assume that A, B 0 , B 1 have index (0, n). If i = 0, the claim follows trivially. For (i) = [START_REF] Arnold | The µ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees[END_REF], the equivalent weak automaton of index (0, n) is shown in Fig. 1(a). To prove the equivalence, observe that the left-hand component checks that finally b occurs on the leftmost branch, and the right-hand component checks the condition A until the first b occurs, and after that checks the conditions B 0 and B 1 .

Finally, suppose that (i) = 1 . By Theorem 1, C contains (1, n + 1)-pattern, which implies that A contains no (0, n -1)-pattern. By induction hypothesis we may assume that A has index (1, n). Recall that B 0 and B 1 have index (0, n). The corresponding Combining Theorem 1 and Theorem 2 we obtain the second decidability result. Corollary 2. The problem of calculating the exact position in the weak index hierarchy of a language recognized by a LGA is decidable (in polynomial time if the productive states are given).

[0] ε @ @ @ @ @ @ @ ε ~~~~~~[1] a,0 + + a,1 / / b, * [0] a,0 a,1 / / b,0 b,1 A A A A A A A A A B0 B1 (a) [0] ε @ @ @ @ @ @ @ ε ~~~~~~~ 1 a,0 + + a,1 / / b, * A 0 a,0 a,1 / / b,0 b,1 B B B B B B B B A B0 B1 (b)
5 The Wadge hierarchy

The difference hierarchy

For a Borel class Σ 0 n , the finite Hausdorff-Kuratowski, or difference, hierarchy is defined as Diff

1 (Σ n) = Σ n and Diff k (Σ n) = {U \ V : U ∈ Σ n , V ∈ Diff k-1 (Σ n)}. Let Diff k (Σ n) denote the dual class. Recall that this is not the same as Diff k (Π n). Indeed, Diff 2k+1 (Π n) = Diff 2k+1 (Σ n) and Diff 2k (Π n) = Diff 2k (Σ n). We have Diff 2k (Σ n) = {U 1 ∩ V 1 ∪ • • • ∪ U k ∩ V k } , Diff 2k+1 (Σ n) = {U 1 ∩ V 1 ∪ • • • ∪ U k ∩ V k ∪ U } , Diff 2k (Σ n) = {U 1 ∩ V 1 ∪ • • • ∪ U k-1 ∩ V k-1 ∪ U ∪ V } , Diff 2k+1 (Σ n) = {U 1 ∩ V 1 ∪ • • • ∪ U k ∩ V k ∪ V } ,
where the sets U, V, U i , V i range over Σ n . From this characterization one easily obtains the following table of the operation . For n > 0 let S n (k) be a Diff k (Σ n)-complete set, and let P n (k) be a Diff k (Σ n)-complete set. Lemma 6. For each n > 0, i > 0, j ≥ 0

• S n (2i) S n (2j) ≡ S n (2i+2j) , S n (2i) P n (2j) ≡ P n (2i+2j) P n (2i) S n (2j) ≡ S n (2i+2j) , P n (2i) P n (2j) ≡ P n (2i+2j -2) • S n (2i+1) S n (2j) ≡ S n (2i+2j +1) , S n (2i+1) P n (2j) ≡ P n (2i+2j) P n (2i+1) S n (2j) ≡ P n (2i+2j +1) , P n (2i+1) P n (2j) ≡ P n (2i+2j) • S n (2i+1) S n (2j +1) ≡ S n (2i+2j +1) , S n (2i+1) P n (2j +1) ≡ P n (2i+2j +2) P n (2i+1) S n (2j +1) ≡ P n (2i+2j +2) , P n (2i+1) P n (2j +1) ≡ P n (2i+2j +1) .
The equivalences above, together with closure by , immediately provide complete LGA-recognizable languages for Diff k (Σ n) for each k, n. Building upon this we produce the whole Wadge hierarchy of LGA-recognizable languages.

Bestiarum vocabulum

For an ordinal α let exp(α) = ω α 1 . Hence,

exp k+1 (α) = exp(exp k (α)) = ω ω • • • ω α 1 1 1 k+1 times ω1
.

Before describing the hierarchy, recall the Wadge degrees of Diff k (Σ n)-complete sets.

Proposition 5 ([5]). For each k > 0, d w (S n (k)) = d w (P n (k)) = exp n (k).
Theorem 3. The family of LGA-recognizable languages contains L with d w (L) = β for every β = 0 i=n β i , where each β i is of the form Together with these automata we show how to make a step with those ordinals, i.e., how to define the automaton for [α + γ], once we already have the automaton [α] and γ is one of the above. Let

β i = exp i (ω)η + 1 p=j exp i (p)k p with η < ω ω , k 2q ∈ {0, 1},
[1] = ⊥ , [α + 1] = + (⊥, [α] ±) . Note that [2] = K Σ 1 , and [2] = K Π 1 . For m > 1 let [ω] = + ([3], ⊥) , [α + ω] = + ([3], [α] ±) , [ω m] = + ([ω m-1 + 1], ⊥) , [α + ω m] = + ([ω m-1 + 1], [α] ±) . For i > 1 let [exp(1)] = -([2] , ⊥) , [α + exp(1)] = -([2] , [α] ±) , [exp i (1)] = -([exp i-1 (1)] , ⊥) , [α + exp i (1)] = -([exp i-1 (1)] , [α] ±) . Note that [exp i (1)] = K Σ i+1 , [exp i (1)] ≡ K Π i+1 . For p > 0 let [exp i (ω)] = + ([exp i (2)], ⊥) , [α + exp i (ω)] = + ([exp i (2)], [α] ±) , [exp i (ω)ω p] = + ([exp i (ω)ω p-1 + 1], ⊥) , [α + exp i (ω)ω p] = + ([exp i (ω)ω p-1 + 1], [α] ±) .
Using the basic building blocks and basic steps defined above we can inductively define automata [1 i=n γ i], such that each δ i is of the form exp i (ω)η + exp i (1)p with η < ω ω and p < ω.

To define automata for all β described in the statement of the theorem, we need one more kind of bricks and two more kinds of steps. For η < ω ω , 1 ≤ i < ω, we have:

[exp i (2)] = [exp i (1)] [exp i (1)] [α + exp i (ω)η + 1 p=m exp i (p + 2)k p] = [α + exp i (ω)η + 1 p=m exp i (p)k p] [exp i (2)] [α+exp i (ω)η+ 1 p=m exp i (p+2)k p +exp i (2)] = [α+exp i (ω)η+ p=m exp i (p)k p +1] [exp i (2)] .
Using Lemma 6 and standard Wadge game arguments one can prove that for every ordinal α from the statement of the theorem, [α] has Wadge degree α.

As a corollary we obtain a lower bound on the height of the hierarchy.

Corollary 3. The LGA hierarchy has height at least (ω ω) ω = ω ω 2 .

In the remaining of the paper we prove that the height of the LGA hierarchy is exactly (ω ω) ω and that we can compute the Wadge degree of a language LGA-recognizable.

Two simple operations on sets of trees

Let us define two more operations on sets of trees. Let L, M ⊆ T Σ , a, b ∈ Σ. We define the set L → M as the set of trees t ∈ T Σ , satisfying any of the following conditions:

t.1 ∈ L and a = t(0 n) for all n, -00 n is the first node on the branch 00 * such that a = t(00 n) and t.00 n 1 ∈ M .

A player in charge of L → M is like a player in charge of L endowed with an extra move, which can be used only once, that erases everything played before. Then he can restart the play being in charge of M .

The second operation is a generalization of ∨. Let L n ⊆ T Σ for n < ω. Define sup - n<ω L n as the set of trees t ∈ T Σ satisfying the following conditions for some k:

-0 k is the first node on 0 * labeled with b,

-t.0 k 1 ∈ L k .
Intuitively, a player in charge of sup - n<ω L n is given the choice between the L n 's. The decision is determined by the number of a's played on the leftmost branch of the tree before the first b. If the player keeps playing a's forever on the leftmost branch, the tree will be rejected.

Define also sup + n L n as sup - n L n ∪ {t : ∀ n t(0 n) = a}. The difference from the previous operation is that now, when the player plays a's forever on the leftmost branch, the obtained tree is accepted. Note that the operations are dual:

+ sup n L n = - sup n L n

Computing Wadge degrees

Let The technical difficulty of the decidability result lies in the following effective closure property (its proof can be found in the appendix).

Theorem 4. For each U, V ∈ Ω it holds that U V , U ∨ V , and sup + k U k V belong to Ω and can be effectively computed. The same holds for U → V , if U = [exp i (1)] µ for some i < ω and µ ∈ {+, -}. Theorem 5. For each LGA we can calculate effectively the signed degree of the recognized language.

Proof. We proceed by induction on the number of states. Let C be an LGA. If C has only one state, it is either totally accepting or totally rejecting. In the first case the signed degree is [START_REF] Arnold | The µ-Calculus Alternation-Depth Hierarchy is Strict on Binary Trees[END_REF] + , in the second case it is [1] -. Suppose that C has more states. By duality we may assume that the initial state q 0 is existential: if it is universal, compute the signed degree for the complement of C, and return the degree negated. Suppose that q 0 is not looping. By linearity, C can be represented as in Fig. 2(a) for some automata A 0 , A 1 , B 0 , B 1 , each having less states than C. Clearly L(C) ≡ L(A 0) L(A 1) ∨ L(B 0) L(B 1). Hence, we can use the induction hypothesis to get the degrees of L(C qi), and then Theorem 4 to compute If q 0 is looping, we can assume w.l.o.g. that C is of the form shown in Fig. 2(b) Lemma 5, the language recognized by C , defined in Fig. 2(c) is also

d(C) = d(C q1) d(C q2) ∨ d(C q3) d(C q4). A0 1 a,0 o o a,1 / / b,0 || | | | | | | b,1 B B B B B B B B A1 B0 B1 (a) C when q0 is not looping i a,0 + + a,1 / / b,0 }} } } } } } } b,1 A A A A A A A A A B0 B1 (b) C when q0 is looping 1 a,0 + + a,1 / / b, * A ⊥ (c) The automaton C
with i = 0, 1. If i = 1, there exists n ∈ ω such that L(A) is either Σ 0 n -complete, or in ∆ 0 n+1 \ Σ 0 n . If L(A) is Σ n -complete, by
Σ 0 n -complete. Since d(A) = d(C) = [exp n (1)] - and ([exp n (1)] -) k = [exp n (1)] -for each k > 0, we have d(C) = [exp n (1)] -→ d(B 1) (B 2) [exp n (1)] -. On the other hand, if L(A) ∈ ∆ 0 n+1 \ Σ 0 n
, by Theorem 1 and Theorem 2, the language recognized by C is Σ 0 n+1 -complete, and it is easy to see that d(C) = [exp n+1 (1)] -→ d(B 1) d(B 2). We conclude by the inductive hypothesis and Theorem 4.

If i = 0, it is straightforward to check that d(C) = sup + k d(A) k d(B)
, and again the claim follows from Theorem 4 and the induction hypothesis.

Conclusion

Alternating tree automata are notorious for the lack of decision procedures for classical hierarchies like the Mostowski-Rabin hierarchy, the Borel hierarchy, or the Wadge hierarchy. The reason for this is that when we move from infinite words to infinite trees, deterministic and non-deterministic modes of computation highly diverge.

We have proposed a novel class of automata capturing an interesting aspect of alternation, and for this class we have proved that all corresponding hierarchies mentioned above are decidable. Moreover we have shown that the weak index and the Borel rank coincide over LGA-recognizable languages.

We have seen that, despite their apparent simplicity, LGA yield a class of languages surprisingly complex from the topological point of view: the height of their Wadge hierarchy is (ω ω) ω . Admittedly, this is much less than the height of the hierarchy for weak alternating automata, which is known to be at least ε 0 [START_REF] Duparc | On the Topological Complexity of Weakly Recognizable Tree Languages[END_REF], but this was to be expected, as LGA form a very restricted subclass of weak alternating automata. What is surprising however, is that the height of the Wadge hierarchy for LGA is much larger than that for deterministic automata, which was shown in [START_REF] Murlak | The Wadge Hierarchy of Deterministic Tree Languages. Logical Methods in Comput[END_REF] to be (ω ω) 3 + 3, and the same as for deterministic push-down automata on infinite words [START_REF] Duparc | A Hierarchy of Deterministic Context-Free ω-Languages[END_REF].

A Example

In figure 2, an example of a linear game automaton of index (1, 6) is given. Figure 3 represents the computation of its Wadge degree, which turn out to be exp 2 (ω) + exp 2 (3). In this last figure each state is labeled with the equivalence class of the subautomaton with this very state as its initial one. In both figures, (resp. →) stands for left (resp. right) transition.

! " " #$%&##### ' #$%&##### #$%&##### ! #$%&##### " #$%&##### #$%&##### #$%&##### ' #$%&##### #$%&##### (#$%&##### #$##### " #&##### #&##### #$##### #$####) #&##### #&##### #$%&########$%&## #$%&##### (#$%&##### #&###### #&###### #$#######$###### #$%&#####) #$%&##### #$#######$###### * #&###### #&###### #$%&#######$%&#######

B Proofs B.1 Basic properties of operations

We say that a non self dual set L is initializable if L ≥ w L → L. The following lemmas summarize simple yet useful properties of the operations on languages. They can be proved with standard Wadge game arguments.

which can be presented as

1 i=N exp n (i)m i λ
. Indeed, by an argument analogous to the one used after Lemma 9, one shows that for η = L i=M exp n (i) i with L > 0 and for λ ∈ {+, -} ,

[exp n (r)] λ → η κ ≡ w                η κ if L > r and κ ∈ {+, -} , or L = r and κ = λ , [η + exp n (r)] λ if L ≥ r and κ = ± , or L = r and κ = λ , [r i=M exp n (i) i + exp n (r)] λ if L < r .
It remains to show that m i ∈ {0, 1} for even i. Suppose first that r is even, and λ = -. Then by Lemma 6 p and q are even, r = p + q and µ = ν = -. For each of α µ δ -, α µ δ + , γ -β ν , γ + β ν we can apply Lemma 7, and get an expression exp n (s) κ → ι κ1 , where ι κ1 can be again obtained from the inductive hypothesis. The possible values for exp n (s) κ are exp n (p) -exp n (t) -= exp n (p + t) -or exp n (p) -exp n (t) + = exp n (p + t) + with t > q (since q is even and β ν ∈ Ω), or exp n (q) -exp n (u) -= exp n (q + u) - or exp n (q) -exp n (u) + = exp n (q +u) + with u > p (since p is even and α µ ∈ Ω). Hence, s > p+q = r. In consequence, by the properties of → and ∨, η κ = (Σ M i=L exp n (i) i) κ with L > r, L > 0. Hence,

α µ β ν = exp n (r) -→ M i=L exp n (i) i κ =    M i=L exp n (i) i + exp n (r) -κ = ± M i=L exp n (i) i κ κ ∈ {-, +} .
In either case the result is in Ωn . Next, suppose that r is even, and λ = +. Then,

r =     
p + q p ≡ q (mod 2), µ = ν p + q -1 p odd, q even, ν = + (or symmetrically) p + q -2 p, q even, µ = ν = + Again, we can present each of α µ δ -, α µ δ + , γ -β ν , γ + β ν as exp n (t) κ → ι κ1 with ι κ1 ∈ Ωn . In order to carry on like before it is enough to show that in no case exp n (t) κ = exp n (r) -. Indeed, if we exclude this possibility, by inductive hypothesis and by the properties of → and ∨, we can conclude that

η κ =    M i=L exp n (i) i κ M i=L exp n (i) i + exp n (r) +
for L > r, L > 0, and so

α µ β ν =    M i=L exp n (i) i κ M i=L exp n (i) i + exp n (r) + .
These two are both in Ωn , since η κ is. So it remains to see that exp n (t) κ = exp n (r) -. Observe that only an expression of the form exp n (2i) -exp n (2j) -can give exp n (r) -for even r. The only case giving a chance of such an expression is when r = p + q. But then 2i = p and, since β ν ∈ Ω, 2j > q (or symmetrically), so 2i + 2j > p + q = r, and we are safe. If r is odd, the claim follows easily by induction hypothesis, and by properties of →.

Lemma 11. Let N > 0 and [α 0] µ , [β 0] ν ∈ ΩN , with µ, ν ∈ {+, -}. Define α0 = α 0 + ε α , and β0 = β 0 + ε β with ε α , ε β ∈ {0, 1}. Let α = exp N (ω)(ω k a k + . . . + ωa 1 + a 0) + α0 and β = exp N (ω)(ω k b k + . . . + ωb 1 + b 0) + β0
. Let α be the least i for which a i > 0, and similarly for β .

• If α 0 > 0, β 0 > 0, then [α] µ [β] ν = [α 0] µ [β0] ν → exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) ± . • If α 0 > 0, β0 = 0, then [α] µ [β] + = exp N (ω)(ω k (a k + b k) + . . . + ω β (a β + b β)) + , [α] µ [β] -= [α 0] µ → exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) ± . • If α 0 = 0, β 0 = 0, then [α] -[β] -= exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) - for ε α = ε β = 0, [α] -[β] -= exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) + 1 - for ε α = ε β = 1, [α] -[β] -= exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) + 1 - for ε α = 0 , ε β = 1 , β ≥ α [α] -[β] -= exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) - for ε α = 0 , ε β = 1 , β < α [α] -[β] + = exp N (ω)(ω k (a k + b k) + . . . + ω β (a β + b β)) + for ε β = 0 , [α] -[β] + = exp N (ω)(ω k (a k + b k) + . . . + ω(a 1 + b 1) + (a 0 + b 0)) + 1 + for ε α = 0 , ε β = 1 , [α] + [β] + = exp N (ω)(ω k (a k + b k) + . . . + ω (a + b -ε)) + for ε α = ε β = 0 , [α] + [β] + = exp N (ω)(ω k (a k + b k) + . . . + ω β (a β + b β)) + for ε α = 0 , ε β = 1 ,
where = max(α , β) and ε equals 1 if α = β and 0 otherwise.

Proof. In the proof we assume that ε α = ε β = 0, the remaining cases being very similar. We prove all the equations simultaneously by induction on (α, β). Let θ = exp N (ω)

0 i=k ω i (a i + b i).
• Case α 0 > 0, β 0 > 0. Suppose α = α + exp N (p), β = β + exp N (q). We have

[α] µ [β] ν = [exp N (p)] µ [exp N (q)] ν → [α] µ [β] ± ∨ [α] ± [β] ν Let α 0 = γ + exp N (p), β 0 = δ + exp N (p). We get [α] µ [β] ν = [exp N (p)] µ [exp N (q)] ν → A → [θ] ± ∨ B → [θ] ± = [exp N (p)] µ [exp N (q)] ν → (A ∨ B) → [θ] ± = [α 0] µ [β 0] ν → [θ] ± . with A = [α 0] µ [δ] ± (or A = [α 0] µ if δ = 0) and B = [γ] ± [β 0] ν (or B = [β 0] ν if γ = 0).
• Case α 0 > 0, β 0 = 0. Suppose β > 0. Then by Proposition 6 we get that [exp N (ω)ω β] + = sup + i [exp N (ω)ω β -1 i] + . By the induction hypothesis for

b i = b i i = β b i -1 i = β we have [α] µ [β] + = + sup i α µ   exp N (ω)     β j=k ω j b j   + ω β -1 i     + = + sup i   exp N (ω)     β j=k ω j (a j + b j)   + ω β -1 (a β -1 + i)     + =   exp N (ω) β j=k ω j (a j + b j)   + .
Now, suppose that β = 0 (this also covers the induction basis). Then [exp N (ω)] + = sup + i [exp N (i)] + , and like before, using the case α 0 > 0,

β 0 > 0, [α] µ [β] + = + sup i α µ   exp N (ω)   β j=k ω j b j   + exp N (i)   + = + sup i   α µ 0 exp N (i) + →   exp N (ω) 0 j=k ω j (a j + b j)   ±   = exp N (ω) + →   exp N (ω)   0 j=k ω j (a j + b j)+     ± =   exp N (ω) β j=k ω j (a j + b j)   + .
Let us move to the second equation. Let

α = α + exp N (p), β = β + exp N (ω)ω β . If β > 0, we have [α] µ [β] -= [exp N (p)] µ → ([α] ± [β] -) ∨ (- sup n [α] µ [β + exp N (ω)ω β -1 n] +)∨ ∨(+ sup n [α] µ [β + exp N (ω)ω β -1 n] +) . As [α] µ [β + exp N (ω)ω β -1 n] + = exp N (ω) β i=k ω i (a i + b i) + ω β -1 (a β -1 + n) + , we obtain [α] µ [β] -=[exp N (p)] µ →   ([α] ± [β] -) ∨   exp N (ω) β i=k ω i (a i + b i)   ±   .
If α = exp N (ω)γ + δ, with [δ] ± ∈ ΩN , δ > 0, then we conclude from the induction hypothesis that

[α] µ [β] -= [exp N (p)] µ →   [δ] ± → [θ] ± ∨   exp N (ω) β i=k ω i (a i + b i)   ±   = [exp N (p)] µ → [δ] ± → [θ] ± = [exp N (p)] µ → [δ] ± → [θ] ± = [α 0] µ → [θ] ± . If α = exp N (ω)γ, by induction hypothesis [α] ± [β] -= [θ] -∨ exp N (ω) α i=k ω i (a i + b i) + , so [α] µ [β] -= [exp N (p)] µ →   [θ] -∨ exp N (ω) α i=k ω i (a i + b i) + ∨   exp N (ω) β i=k ω i (a i + b i)   ±   = [exp N (p)] µ → [θ]
± as one of the last two disjuncts must be at least [θ] + . This concludes the case of β > 0.

If β = 0 we have

[α] µ [β] -= [exp N (p)] µ → ([α] ± [β] -) ∨ (- sup n [α] µ [β + exp N (n)] +)∨ ∨(+ sup n [α] µ [β + exp N (n)] +) . Since [α] µ [β + exp N (n)] + = [α 0] µ [exp N (n)] + → exp N (ω) 0 i=k ω i (a i + b i) ±
, by Lemma 10 we have

[α] µ [β] -= [exp N (p)] µ → ([α] ± [β] -) ∨ [θ] ± If α = exp N (ω)γ + δ, then α 0 = δ + exp N (p) and by induction hypothesis for [α] ± [β] -we get [α] µ [β] -= [exp N (p)] µ → (([δ] ± → [θ] ±) ∨ [θ] ±) = [exp N (p)] µ → [δ] ± → [θ] ±) = [α 0] µ → [θ] ± .
If α = exp N (ω)γ, then α 0 = exp N (p) and by induction hypothesis

[α] ± [β] -is at most [θ] ± . Hence, [α] µ [β] -= [exp N (p)] µ → [θ] ± = [α 0] µ → [θ] ± . • Case α 0 = 0, β 0 = 0. Let α = α + exp N (ω)ω α , β = β + exp N (ω)ω β . Suppose that α > 0, β > 0. Set a (n) α = a α -1, a (n)
α -1 = n, and a i . Applying Lemma 7 and the inductive hypothesis we get the claim

[α] -[β] -) = = ⊥ → - sup n [α] -[β + exp N (ω)ω β -1 n] -∨ - sup n [α + exp N (ω)ω α -1 n] -[β] - = ⊥ →   - sup n exp N (ω) 0 i=k ω i a i + b (n) i - ∨ - sup n exp N (ω) 0 i=k ω i a (n) i + b i -  = ⊥ →     exp N (ω) β i=k ω i (a i + b i)   - ∨ exp N (ω) α i=k ω i (a i + b i) -  = ⊥ → exp N (ω) 0 i=k ω i (a i + b i) - = exp N (ω) 0 i=k ω i (a i + b i) - , [α] -[β] + = = → + sup n [α] -[β + exp N (ω)ω β -1 n] -∨ + sup n [α + exp N (ω)ω α -1 n] -[β] + = →   + sup n exp N (ω) 0 i=k ω i a i + b (n) i - ∨ + sup n   exp N (ω) β i=k ω i a (n) i + b i   -  = →     exp N (ω) β i=k ω i (a i + b i)   + ∨   exp N (ω) max(α , β) i=k ω i (a i + b i)   +   = →   exp N (ω) β i=k ω i (a i + b i)   + =   exp N (ω) β i=k ω i (a i + b i)   + , [α] + [β] + = = → + sup n [α] + [β + exp N (ω)ω β -1 n] -∨ + sup n [α + exp N (ω)ω α-1 n] -[β] + = →   + sup n exp N (ω) α i=k ω i a i + b (n) i - ∨ + sup n   exp N (ω) β i=k ω i a (n) i + b i   -  = →     exp N (ω) max(α, β) i=k ω i (a i + b i)   + ∨   exp N (ω) max(α , β) i=k ω i (a i + b i)   +   = →   exp N (ω) max(α , β) i=k ω i (a i + b i)   + =   exp N (ω) β i=k ω i (a i + b i)   + .
Next suppose that α = 0, β > 0. Similarly, Case K = L. Using similar computations as above, follow the subcases of Lemma 11. Lemma 12 gives a recursive procedure to compute the result of [α] µ [β] ν . Observe that in each case we reduce the problem to at most two instances: one on elements of (roughly speaking) the same Ω N , the other on sets corresponding to ordinals such that either their respective K and L are smaller, or are obtained by cutting off a nontrivial (bigger than 1) tail part of the sum defining the ordinal, and replacing it with 1. The first subproblem is solved by Lemma 11, and the second problem solved recursively. What remains to be done, is put the results of the two subcomputations together. For this we need to prove that the class Ω is closed by operations of the form [0 i=L α i] µ → [L+1 i=M α i + j] ν with j < ω, and α i ∈ Ω i . Clearly, [

[α] -[β] -= = ⊥ → - sup n [α] -[β + exp N (ω)ω β -1 n] -∨ - sup n [α + exp N (n)] -[β] - = ⊥ →   - sup n exp N (ω) 0 i=k ω i a i + b (n) i - ∨ - sup n exp N (ω) 0 i=k ω i (a i + b i) + exp N (n) -  = ⊥ →     exp N (ω) β i=k ω i (a i + b i)   - ∨ exp N (ω) 0 i=k ω i (a i + b i) -  = ⊥ → exp N (ω) 0 i=k ω i (a i + b i) - = exp N (ω) 0 i=k ω i (a i + b i) - , [α] -[β] + = = → + sup n [α] -[β + exp N (ω)ω β -1 n] -∨ + sup n [α + exp N (n)] -[β] + = →   + sup n exp N (ω) 0 i=k ω i a i + b (n) i - ∨ + sup n   exp N (ω) β i=k ω i (a i + b i)   -  = →     exp N (ω) β i=k ω i (a i + b i)   + ∨   exp N (ω) β i=k ω i (a i + b i)   +   = →   exp N (ω) β i=k ω i (a i + b i)   + =   exp N (ω) β i=k ω i (a i + b i)   + , [α] + [β] -= = → + sup n [α] + [β + exp N (ω)ω β -1 n] -∨ + sup n [α + exp N (n)] -[β] - = →   + sup n exp N (ω) α i=k ω i a i + b (n) i - ∨ + sup n exp N (ω) 0 i=k ω i (a i + b i) + exp N (n) -  = →     exp N (ω) β i=k ω i (a i + b i)   + ∨ exp N (ω) 0 i=k ω i (a i + b i) +   = → exp N (ω) 0 i=k ω i (a i + b i) + = exp N (ω) 0 i=k ω i (a i + b i) + = exp N (ω) α i=k ω i (a i + b i) + , [α] + [β] + = = → + sup n [α] + [β + exp N (ω)ω β -1 n] -∨ + sup n [α + exp N (n)] -[β] + = →   + sup n exp N (ω) α i=k ω i a i + b (n) i - ∨ + sup n   exp N (ω) β i=k ω i (a i + b i)   -  = →     exp N (ω) β i=k ω i (a i + b i)   + ∨   exp N (ω) β i=k ω i (a i + b i)   +   = →   exp N (ω) β i=k ω i (a i + b i)   + =   exp N (ω) β i=k ω i (a i + b i)   + . Finally, for α = 0, β = 0 [α] -[β] -= = ⊥ → - sup n [α] -[β + exp N (n)] -∨ - sup n [α + exp N (n)] -[β] - = ⊥ → [θ] -∨ [θ] -= ⊥ → [θ] -= [θ] -, [
0 i=L α i] µ → [L+1 i=M α i + j] ν = [0 i=L α i] µ → [L+1 i=M α i] ± , if j > 0. If ν = ±, [0 i=L α i] µ → [L+1 i=M α i] ν = [
+ i ([α] µ) i [β] ν = sup + i [α] µ [β] ν = [1] + → [α] µ [β]
+ sup i ([α] µ) i [β] ν = + sup i ([exp N (p)] µ) i [β] ν = + sup i ([exp N (i)] µ) [β] ν .
Again, analyzing all possible forms of β, we obtain an explicit formula in each case.

Fig. 1 .

 1 Fig. 1. The equivalent weak automata. equivalent weak alternating automaton is shown in Fig. 1(b). The left-hand component takes care of the situation, when b never occurs on the leftmost path. If b does occur, this component is trivially accepting, but the right-hand component provides the appropriate semantics.

 and j, k 2q+1 < ω. Proof. By induction on such ordinals, we provide an automaton A β , such that L(A β) is non self dual, and d w (L(A β)) = β. To make the notation more readable, we use bracketed ordinal [β] to denote the automaton A β . Since LGA are closed under complementation, when we construct an automaton recognizing a non self dual set of degree β, we also immediately get the automaton [β] . We write [β] ± for [β] ∨ [β] . Let us start with the basic building bricks of our construction: the automata [1], [ω m], [exp i (1)], and [exp i (ω)ω p].

 Ω denote the set of Wadge equivalence classes of languages recognized by the automata [β], [β] , [β] ± defined in the proof of Theorem 3. Slightly abusing the notation we write [β] -for the Wadge equivalence class of L([β]), [β] + for the class of L([β]), and [β] ± for the class of L([β] ±).

Fig. 2 .

 2 Fig. 2. The automata C and C

Fig. 3 .Fig. 4 .

 34 Fig. 3. A linear game automaton . . .

=

 a i for other i's. Analogously define b (n)

 α] -[β] + = = → + sup n [α] -[β + exp N (n)] -∨ + sup n [α + exp N (n)] -[β] + = →   [θ] + ∨ exp N (ω) 0 i=k ω i (a i + b i) +   = → [θ] + = [θ] + , [α] + [β] + [β + exp N (n)] -∨ + sup n [α + exp N (n)] -[β] i (a i + b i) = 0 i=k ω i (a i + b i) = 1 i=k ω i (a i + b i) + (a 0 + b 0 -1), the claim follows.Note that [0] µ is not a valid set. Nevertheless, to simplify notation we adopt a convention [α] µ [0] ν = [α] µ .

0

 i=M α i] µ . If ν = + or ν = -, the result depends on the form of α L (w.l.o.g we may suppose that it is nonzero).If α L = α L + exp L (ω)ω p , then the result is [0 i=M α i] µ as well. Otherwise, it is [L i=M α i] ν .This concludes the proof of the effective closure by .

B. 4

 4 Closure by sup +We have to show that for[α] µ , [β] ν ∈ Ω, we can compute sup + i ([α] µ) i [β] ν, and the result is in Ω.Case α = exp N (ω)ω p +α . If [α] µ = [exp N (ω)ω p] + , then ([α] µ) i = [α] µ and sup

 ν . We conclude by previously proved closure properties. Otherwise, [α] µ ≥ [exp N (ω)ω p] -. But then, by the lemmas of the previous section, it follows easily that([α] µ) i ≤ ([exp N (ω)ω p] -) i+1 = [exp N (ω)ω p (i + 1)] -. Thus, + sup i ([α] µ) i [β] ν = + sup i [exp N (ω)ω p i] -[β] ν = + sup i [exp N (ω)ω p i] + [β] ν .Let L n=M β n be the usual presentation of β with β L > 0. There are only three cases to consider, all the others being verified just by combining those three.1.If L > N , [exp N (ω)ω p i] + [β] ν = [β] ν and we conclude like in the first case. 2. If M < N , [exp N (ω)ω p i] + [β] ν = [exp N (ω)ω p i] + , and sup + i ([α] µ) i [β] ν = [exp N (ω)ω p+1] + . 3. Suppose that L = N . Let β N = exp N (ω)(ω p+1 η + ω p j) + β N with η < ω ω , j < ω, and β N < exp N (ω)ω p . Then,by applying the properties of the operation given by Lemma 11, we reason as follows.If ν = +, β N = 0, and j = 0, we get [exp N (ω)ω p i] + [β] ν = [N +1n=M β n + exp N (ω)ηω p] + , and since i does not occur in the previous formula, we obtain that+ sup i ([α] µ) i [β] + = [N +1 n=M β n + exp N (ω)ω p+1 η] + . Suppose ν = + or β N > 0.Under each of the two conditions we have[exp N (ω)ω p i] + [β] ν = [N +1 n=M β n + exp N (ω)(ω p+1 η + ω p (i + j))] +and so+ sup i ([α] µ) i [β] ν = [N +1 n=M β n + exp N (ω)ω p+1 (η + 1)] + .Finally, if ν = +, β N = 0, and j > 0, it holds that[exp N (ω)ω p i] + [β] ν = [N +1 n=M β n + exp N (ω)(ω p+1 η + ω p (i + j -1))] +and we conclude like before. Case α = exp N (p) + α or α < ω . If α = exp N (1) and µ ∈ {+, -}, we get ([α] µ) i = [α] µ , and the claim follows. Otherwise, [α] ≥ w [exp N (1)] ± like before, by the properties of , we have

Acknowledgment. We thank David Janin for initiating this research by showing the interest in the topological complexity of weak alternating automata, Sławek Lasota for bringing linear automata into our attention, Igor Walukiewicz for helpful comments and inspiring discussions, Claire David for space-saving tricks, and the anonymous referees for their suggestions.

Research supported by a grant from the Swiss National Science Foundation, n. 100011-116508: Project "Topological Complexity, Games, Logic and Automata". On leave from the University of Warsaw; partially supported by the Polish government grant no. N206 008 32/0810.

2

Lemma 7. For initializable A, B and arbitrary A , B and A n , B n , n < ω

B.2 Closure by ∨ and →

For n > 0, let Ωn denote the set of signed ordinals of the form Σ N i=1 exp n (i)k i µ for µ ∈ {+, -, ±} and some natural N ,

Recall that by Ω we denote the set of signed ordinals of the form [α k + . . .

The signing convention we adopted, in short, constitutes in assigning + to the equivalence classes whose canonical represents were obtained as + (A, B), which corresponds to sup + , and to those obtained as Let us now concentrate on →. First we state yet another simple observation. By μ we denote the dual sign:

Lemma 9. For arbitrary tree sets A n ,

Observe that by Proposition 6

It is easy to see that

and we can conclude from the previous case. The remaining case is that of

B.3 Closure by

First of all note that since β

Proof. We only give a proof of the first assertion. The remaining two are very similar. We proceed by induction on the sum of the coefficients of α and β. The basic step is α = exp n (p), β = exp n (q). By Lemma 6, we find r and λ such that α µ β ν = exp n (r) λ . In the inductive step we give argument for the case α µ = exp n (p) µ → (γ -∨ γ +) and β ν = exp n (q) ν → (δ -∨ δ +); the case when α = exp n (p) or β = exp n (q) is very similar, only uses the second assertion of Lemma 7. Since exp n (p) µ and exp n (q) ν are initializable, by Lemma 7 and Lemma 8, we get

By induction hypothesis we compute α µ δ -, α µ δ + , γ -β ν , γ + β ν ∈ Ωn and by the properties of ∨ we get

Again by Lemma 6 we get an expression of the form exp n (r

where M is the least i > 1 such that α i or β i is nonzero.

Proof. Again, we prove all the equations simultaneously by induction on (α, β). It is easy to observe that the inequality "≥" is in each case very simple. We concentrate on "≤". Further more, since in all three cases the arguments are very similar we only give the calculations for the first case:

We only give the calculation for p, q > 0 (if one or both are zero the calulation is entirely analogous):

and for q = 0 the computation is analogous.

Finally suppose that K = 0. For α K = α K + ω p and α K = α K + 1 the calculations are entirely analogous to the ones above save for three cases we consider below. For

In either case we have

We can treat K > 0 and K = 0 uniformly. We only give the calculation for p, q > 0 (if one or both are zero its entirely analogous):

and for q = 0 the computation is analogous.

We can treat K > 0 and K = 0 uniformly. We only give the calculation for p > 0 (if p = 0 it is entirely analogous). For µ =we have

Suppose now that α K = α K + exp K (p). We have

If β L > 0, we can transform this further as

and we are done. Suppose β L = 0. Let M be the least i > L such that β i > 0. If β M = β M + exp M (ω)ω r , then we have

If β M = β M + exp M (r), then we have