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SOLVING BSDE WITH ADAPTIVE CONTROL VARIATE

EMMANUEL GOBET∗ AND CÉLINE LABART†

Abstract. We present and analyze an algorithm to solve numerically BSDEs based on Picard’s
iterations and on a sequential control variate technique. Its convergence is geometric. Moreover, the
solution provided by our algorithm is regular both w.r.t. time and space.

Key words. Backward stochastic differential equations, adaptive control variate, semilinear
parabolic PDE

AMS subject classifications. 60H10, 60H35, 65C05, 65G99

1. Introduction. Let (Ω,F , P) be a given probability space on which is defined
a q-dimensional standard Brownian motion W , whose natural filtration, augmented
with P-null sets, is denoted (Ft)0≤t≤T (T is a fixed terminal time). We aim at numer-
ically approximating the solution (Y, Z) of the following forward backward stochastic
differential equation (FBSDE) with fixed terminal time T

−dYt = f(t, Xt, Yt, Zt)dt − ZtdWt, YT = Φ(XT ), (1.1)

where f : [0, T ] × R
d × R × R

q → R, Φ : R
d → R and X is the R

d-valued process
solution of

Xt = x +

∫ t

0

b(s, Xs)ds +

∫ t

0

σ(s, Xs)dWs, (1.2)

b : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×q. The main focus of this work is to
provide and analyze an algorithm — based on Picard’s iterations and an adaptive
Monte Carlo method — to approximate the solution (Y, Z) of (1.1).
Several algorithms to solve BSDEs can be found in the literature. Ma, Protter and
Yong [20] present an algorithm to solve quasilinear PDEs (associated to forward BS-
DEs) using a finite difference approximation. Concerning algorithms based on the
dynamic programming equation, we refer to Bouchard and Touzi [6], Gobet, Lemor
and Warin [14], Bally and Pagès [3] and Delarue and Menozzi [8]. In [6], the authors
compute the conditional expectations appearing in the dynamic programming equa-
tion by using Malliavin calculus techniques, whereas [14] proposes a scheme based
on iterative regression functions which are approximated by projections on a reduced
set of functions, the coefficients of the projection being evaluated using Monte Carlo
simulations. [3] and [8] use quantization techniques for solving reflected BSDEs and
forward BSDEs respectively. Bender and Denk [4] propose a forward scheme which
avoids the nesting of conditional expectations backwards through the time steps. In-
stead, it mimics Picard’s type iterations for BSDEs and, consequently, has nested
conditional expectations along the iterations. This work has some connections with
our approach but it does not handle the error analysis for the conditional expecta-
tions.
Our algorithm works as follows. First, we use Picard’s iterations to approximate the
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2 E. GOBET AND C. LABART

solution (Y, Z) of (1.1) by the solutions of a sequence of linear BSDEs converging
geometrically fast to (Y, Z) (see El Karoui, Peng and Quenez [10] for more details).
Then, since we can link linear BSDEs and linear PDEs, we use the adaptive con-
trol variate method proposed by Gobet and Maire [15]. This method approximates
the solutions of linear PDEs, which can be written as expectations of functionals of
Markov processes via Feynman-Kac’s formula. The authors use a control variate,
changing at each step of the algorithm, to reduce the variance of the simulations. The
convergence of this technique is also geometric w.r.t. the iterations (see [15] for more
details). As a consequence, we can guess that combining these two methods in order
to solve BSDEs will lead to a geometrically converging algorithm. As a difference with
previous works, we provide an approximated solution to the semi-linear PDE that has
the same smoothness as the exact solution, which is quite satisfactory and potentially
useful. As another difference with other Monte Carlo approaches, the final accuracy
does not depend much on the number of simulations, but rather on an operator P
used for approximating functions. It means that our algorithm benefits of the ability
of Monte Carlo methods to solve high dimensional problems, without suffering for
their relatively low rate of convergence.
The paper is organized as follows. In Section 1, we give some definitions and no-
tations, and recall the link between BSDEs and semilinear PDEs. In section 2, we
describe the two main ingredients (Picard’s iterations and adaptive control variate)
of our algorithm. In Section 3, we define the norm used to measure the convergence
of the algorithm, and in Section 4, we present the operator P used in the algorithm to
approximate functions, emphasizing the important properties that P should satisfy in
order to make our algorithm converge. We give the main convergence result in Section
5, and its proof in Section 6. We present in Section 7 an example of an operator P
based on kernel estimators. Finally, in Section 8, we expose some numerical results
in the field of financial mathematics.

1.1. Definitions and Notations.

• Let C
k,l
b be the set of continuously differentiable functions φ : (t, x) ∈ [0, T ]×

R
d with continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t.

x) up to order k (resp. up to order l). The function φ is also bounded.
• Ck

p denotes the set of Ck−1 functions with piecewise continuous k-th deriva-
tive.

• Ck+α, α ∈]0, 1] is the set of Ck functions whose k-th derivative is Hölder
continuous of order α.

• fv function. Let fv : [0, T ]× R
d → R denote the following function

fv(t, x) = f(t, x, v(t, x), (∂xvσ)(t, x)),

where f denotes the driver of BSDE (1.1), σ denotes the diffusion coefficient
of the SDE satisfied by X and v : [0, T ]× R

d → R is C1 in space.
• Euler scheme. When it exists, we approximate the solution of (1.2) by its

N -time-steps Euler scheme, denoted XN :

∀s ∈ [0, T ], dXN
s = b(ϕ(s), XN

ϕ(s))ds + σ(ϕ(s), XN
ϕ(s))dWs, (1.3)

ϕ(s) := sup{tj : tj ≤ s} and {0 = t0 < t1 < · · · < tN = T } is a regular
subdivision of the interval [0, T ].

• Transition density function p(t, x; s, y). If σ is uniformly elliptic, the Markov
process X admits a transition probability density p(t, x; s, y). Concerning



SOLVING BSDE WITH ADAPTIVE CONTROL VARIATE 3

XN (which is not Markovian except at times (tk)k), for any s > 0 XN
s has a

probability density pN (0, x; s, y) w.r.t. the Lebesgue measure.
• Ψ(s, y, g1, g2, W ) and ΨN (s, y, g1, g2, W ). We define the two following func-

tions

Ψ(s, y, g1, g2, W ) =

∫ T

s

g1(r, X
s,y
r (W ))dr + g2(X

s,y
T (W )),

ΨN(s, y, g1, g2, W ) =

∫ T

s

g1(r, X
N,s,y
r (W ))dr + g2(X

N,s,y
T (W )),

where Xs,y (resp. XN,s,y) denotes the diffusion process solving (1.2) and
starting from y at time s (resp. its approximation using an Euler scheme with
N time steps), and W denotes the standard Brownian motion appearing in
(1.2) and used to simulate XN , as given in (1.3).

• Constants ci,j(·). For any function φ in C
i,j
b , ci,j(φ) denotes

∑i,j
k,l=0 |∂k

x∂l
tφ|∞.

For i = j = 0, we set c0(φ) := c0,0(φ).
• Functions K(T ). K(·) denotes a generic function non decreasing in T which

may depend on d, µ, β, on the coefficients b and σ (through σ0, σ1, c1,3(σ),
c0,1(∂tσ), c1,3(b)) and on other constants appearing in the Appendix A (i.e.
KA.1(T ), α1, α2, cA.2, KA.2(T ) , cA.3, KA.3(T ), cA.4, KA.4(T ), cA.5, KA.5(T )
and KB.2(T )). The parameter β is defined in Section 2.1, µ is defined in
Section 3.2, σ0 and σ1 are defined in Hypothesis 1.

• Functions K0(T ). K0(T ) are analogous to K(T ) except that they may also
depend on the operator P (through c1(Kt) and c2(Kx), defined in Section 7).

Hypothesis 1.
• The driver f is a bounded Lipschitz continuous function, i.e. for all

(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ]× R
d × R × R

d×q,

|f(t1, x1, y1, z1) − f(t2, x2, y2, z2)| ≤ Lf (|t1 − t2| + |x1 − x2| + |y1 − y2| + |z1 − z2|).

• σ is uniformly elliptic on [0, T ]×R
d: there exist two positive constants σ0, σ1

s.t. for any vector ξ and any (t, x) ∈ [0, T ]× R
d

σ0|ξ|2 ≤
d
∑

i,j=1

[σσ∗]i,j(t, x)ξiξj ≤ σ1|ξ|2.

• Φ is bounded in C2+α, α ∈]0, 1].
• b and σ are in C

1,3
b and ∂tσ is in C

0,1
b .

1.2. Link with semilinear PDE. According to [21, Theorem 3.1] (see also [10,
Proposition 4.3] and [8, Theorem 2.1]), we can link (Y, Z)— the solution of the BSDE
(1.1) — to u, the solution of the following PDE :

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), (∂xuσ)(t, x)) = 0,

u(T, x) = Φ(x),
(1.4)

where L is defined by

Lu(t, x) =
1

2

∑

i,j

[σσ∗]ij(t, x)∂2
xixj

u(t, x) +
∑

i

bi(t, x)∂xi
u(t, x).
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Theorem 1.1 ([8], Theorem 2.1). Under Hypothesis 1, the solution u of PDE
(1.4) belongs to C

1,2
b . Moreover, (Yt, Zt)0≤t≤T — solution of (1.1)— satisfies

∀t ∈ [0, T ], (Yt, Zt) = (u(t, Xt), ∂xu(t, Xt)σ(t, Xt)). (1.5)

2. Description of the algorithm. As said in the introduction, the current
algorithm is based on two ingredients: Picard’s iterations and adaptive control vari-
ates. We present these ingredients in the following section, before describing the main
algorithm in Section 2.3.

2.1. First ingredient: Picard’s iterations. ¿From [10, Corollary 2.1], we
know that under standard assumptions on Φ and f , the sequence (Ŷ k, Ẑk)k recursively
defined by (Ŷ0 = 0, Ẑ0 = 0) and

−dŶ k+1
t = f(t, Xt, Ŷ

k
t , Ẑk

t )dt − Ẑk+1
t dWt, Ŷ k+1

T = Φ(XT )

converges to (Y, Z), dP ⊗ dt a.s. (and in H
2
T,β(R) × H

2
T,β(Rq)) as k goes to +∞,

where H
2
T,β(Rq) := {φ ∈ H

2
T (Rq) such that E

∫ T

0 eβt|φt|2dt < ∞} and β is such that
2(1 + T )Lf < β. This sequence of linear BSDEs can be linked to a sequence of linear

PDEs: by writing Ŷ k
t = ûk(t, Xt) and Ẑk

t = ∂xûk(t, Xt)σ(t, Xt), one has

∂tûk+1 + Lûk+1 + f(·, ·, ûk, ∂xûkσ) = 0 and ûk+1(T, ·) = Φ(·).
It means that the sequence of solutions of linear PDEs (ûk, ∂xûk)k converges (in a L2

norm) to (u, ∂xu), solution of the semi-linear PDE (1.4).

2.2. Second ingredient: Adaptive control variate. In their work [15], Go-
bet and Maire present an adaptive algorithm to solve linear PDEs of type

∂tv + Lv + g = 0 and v(T, ·) = Φ(·).
Thanks to the Feynman-Kac formula, we know that the probabilistic solution of this

PDE is v(t, x) = Et,x[Φ(XT ) +
∫ T

t
g(s, Xs)ds] = E(Ψ(t, x, g, Φ, W )).

Their idea is to compute a sequence of solutions (vk)k by writing

vk+1 = vk + Monte Carlo evaluations of the error (v − vk).

The probabilistic representation of the correction term ck := v − vk is

ck(t, x) = v(t, x) − vk(t, x) = E(Ψ(t, x, g + ∂tvk + Lvk, Φ − vk(T, .), W )).

Their algorithm computes iterative approximations (vk)k of the global solution v.
These approximations rely on the computations of E(ΨN (t, x, g̃, Φ̃, W )) (for data g̃ and
Φ̃ possibly different from g+∂tvk+Lvk and Φ−vk(T, .)) at some points (ti, xi)1≤i≤n ⊂
[0, T ] × R

d. We briefly recall below their algorithm and the associated convergence
result.

Algorithm 1. Begin with v0 ≡ 0 and assume that an approximated solution vk

of class C
1,2
b is built at step k.

• Evaluate ck(ti, xi) using M independent simulations

cM
k (ti, xi) =

1

M

M
∑

m=1

ΨN (ti, xi, g + ∂tvk + LNvk, Φ − vk, Wm)

where
LNu(s, x) = 1

2

∑

i,j [σσ∗]ij(ϕ(s), x)∂2
xixj

u(s, x) +
∑

i bi(ϕ(s), x)∂xi
u(s, x).
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• Build the global solution cM
k (·) based on the values [cM

k (ti, xi)]1≤i≤n by using
a linear approximation operator: PcM

k (·) =
∑n

i=1 cM
k (ti, xi)ωi(·) for some

weight functions ωi. Then, get vk+1 = P(vk + cM
k ). (Examples of operator

P: interpolation, projection, Kernel-based estimator...)

The main result of their paper is the following

Theorem 2.1 (Theorems 3.1 and 3.2, [15]). Define ‖v−vk‖2
2 := sup1≤i≤n |E((v−

vk)(ti, xi))|2 + sup1≤i≤n Var(vk(ti, xi)). Then for any k ≥ 0, one has

‖v − vk+1‖2
2 ≤ ρ‖v − vk‖2

2 + C‖v − Pv‖2
2(

1

N
+

1

M
),

where ρ < 1 (depending on M , N and P) and ‖v − Pv‖2 is a suitable norm related
to the approximation error v − Pv (that we do not detail).

As for Picard’s iterations, the algorithm converges at a geometric rate. Moreover,
there is no need to take N and M large (in practice, in their experiments, they take
M = 10 to get accurate approximations). The final error is strongly related to the
ability of the operator P to approximate well the true solution v. In the following
Section, we present an algorithm combining these two ingredients and leading to the
same features.

2.3. Algorithm. We recall that we aim at numerically solving BSDE (1.1),
which is equivalent to solving the semilinear PDE (1.4). The current algorithm pro-
vides an approximation of the solution of this PDE. Then, by simulating the diffusion
X through an Euler scheme, we deduce from Equality (1.5) an approximation of the
solution of BSDE (1.1). More precisely, let uk (resp. (Y k, Zk)) denote the approx-
imation of u (resp. (Y, Z)) at step k, and let XN denote the approximation of X

obtained with a N -time-steps Euler scheme. We write

(Y k
t , Zk

t ) = (uk(t, XN
t ), ∂xuk(t, XN

t )σ(t, XN
t )), for all t ∈ [0, T ]. (2.1)

where XN is described in Section 1.1. It remains to build uk+1.
Adaptive control variate. As in Algorithm 1, we write

uk+1 = uk + Monte Carlo evaluations of the error(u − uk).

Combining Itô’s formula applied to u(s, Xs) and to uk(s, XN
s ) between t and T and

the semilinear PDE (1.4) satisfied by u, we get that the correction term ck := u− uk

is

ck(t, x) = E
[

Ψ (t, x, fu, Φ, W ) − ΨN
(

t, x,−(∂t + LN )uk, uk(T, .), W
)

|Gk

]

.

Remark 2.2. As we will see later (see Remark 2.3), uk depends on several
random variables. Gk is the σ-algebra generated by the set of all random variables
used to build uk. In the above equation, we compute the expectation w.r.t. the law of
X and XN and not w.r.t. the law of uk, which is Gk measurable.
Picard’s iteration. The correction term ck cannot be used directly: we have to replace
u and ∂xu (unknown terms) appearing in f by uk and ∂xuk, as suggested by Picard’s
contraction principle:

ĉk(t, x) = E
[

Ψ (t, x, fuk
, Φ, W ) − ΨN

(

t, x,−(∂t + LN )uk, uk, W
)

|Gk

]

. (2.2)
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We still have to replace the expectation by a Monte Carlo summation, and Ψ by
ΨN . Then, the algorithm computes iterative approximations of (uk)k of the global
solution u at some points (tki , xk

i )1≤i≤n ∈ [0, T ] × R
d, which may change over the

iterations.

Algorithm 2. We begin with u0 ≡ 0. Assume that an approximated solution uk

of class C1,2 is built at step k.

• Evaluate ĉk(tki , xk
i ) using M independent simulations

ĉM
k (tki , xk

i ) =
1

M

M
∑

m=1

[

ΨN
(

ti, xi, fuk
+ (∂t + LN )uk, Φ − uk, Wm,k,i

)]

.

• Build the global solution ĉM
k (·) based on the values [ĉM

k (tki , xk
i )]1≤i≤n by using

a linear approximation operator:

Pkc(·) =

n
∑

i=1

c(tki , xk
i )ωi(·), (2.3)

where (ωk
i )i are some weight functions. Deduce the approximation of u at

step k + 1

uk+1(t, x) = Pk(uk + ĉM
k )(t, x), (2.4)

where (Pk)k satisfies Hypothesis 2 (defined later in Section 4).

Remark 2.3. Since uk+1 is computed by using (2.4), uk+1 is a random
function depending on the random variables needed to compute uk and Wm,k,i,
1 ≤ m ≤ M, 1 ≤ i ≤ n, appearing in the computation of ĉM

k . Moreover, Pk may be
random. In such a case, uk+1 also depends on the random variables used to build Pk.

Definition 2.4 (Definition of the σ-algebra Gk). Let Gk+1 define the σ-algebra
generated by the set of all random variables used to build uk+1. Using (2.4) yields

Gk+1 = Gk ∨ σ(Ak,Sk),

where Ak is the set of random points used at step k to build the estimator Pk, Sk :=
{Wm,k,i, 1 ≤ m ≤ M, 1 ≤ i ≤ n}, the set of independent Brownian motions used to
simulate the paths Xm,k,N (xk

i ), and Gk is the σ-algebra generated by the set of all
random variables used to build uk.

3. Choice of the norm to measure the convergence. The choice of the
norm to measure the convergence is not harmless. To prove the convergence of the
algorithm we combine results on BSDEs stated in a norm leading to the integration
w.r.t. eβsds (see [10]), and results on the bounds for solutions of linear PDEs in
weighted Sobolev spaces (leading to the integration w.r.t. e−µ|x|dx), coming from
[5], and recalled in Theorem B.2. Although rather technical, this section is crucial in
order to analyze the convergence of the algorithm and it is interesting for itself.

3.1. Norm of the convergence.
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Definition 3.1 (Definition of H
µ
β(Rq)). For any β > 0, we define

(Hµ
β(Rq), ‖ · ‖µ,β) the set of processes V : Ω × [0, T ]× R

d → R
q that are Pr ⊗ B(Rd)-

measurable (where Pr is the σ-field of predictable subsets of Ω× [0, T ]) and such that

‖V ‖2
µ,β := E

[

∫ T

0

∫

Rd

eβs|Vs(x)|2e−µ|x|dxds

]

< ∞.

We use this norm to measure the error (Y − Y k, Z −Zk), corresponding to the error
we make at step k of the algorithm. Using (1.5) and (2.1), we get

‖Y − Y k‖2

µ,β = E

[

∫ T

0

∫

Rd

eβs|u(s, Xx
s ) − uk(s, XN,x

s )|2e−µ|x|dxds

]

, (3.1)

and ‖Z − Zk‖2

µ,β = E

[

∫ T

0

∫

Rd eβs|(∂xuσ)(s, Xx
s ) − (∂xukσ)(s, XN,x

s )|2e−µ|x|dxds
]

.

Since u, uk, ∂xu and ∂xuk are bounded (see
Theorem 1.1 and Hypothesis 2 defined later),

‖Y − Y k‖2

µ,β and ‖Z − Zk‖2

µ,β are finite.

Remark 3.2. We point out that the expectation appearing in the above definition

of ‖Y k − Y ‖2

µ,β and ‖Zk − Z‖2

µ,β is computed w.r.t. the law of X, XN and all the
possible random variables used to compute uk.

3.2. Some other useful norms. The following Definitions introduce two norms
strongly related to ‖ · ‖µ,β . They will be useful in the proof of the main result.

Definition 3.3 (Space H
m,µ
β ). For any m ≤ 2, β > 0 and µ > 0, let H

m,µ
β

define the space of functions v : [0, T ]× R
d → R such that

‖v‖2
Hm,µ

β
=

∫ T

0

eβs

∫

Rd

e−µ|x|
∑

k≤m

|∂k
xv(s, x)|2dxds < ∞.

For m = 0, we set H
0,µ
β = H

µ
β .

Definition 3.4 (Function νt
µ). For any s, t ∈ [0, T ] and any x, y ∈ R

d such that

t < s we define νt
µ(s, y) :=

∫

Rd e−µ|x|p(t, x; s, y)dx, where µ is a positive constant.

Definition 3.5 (Space H
m,µ

β,X̃
). For any m ≤ 2, β > 0, µ > 0 and any diffusion

process X̃s, 0 ≤ s ≤ T starting from x at time 0, let H
m,µ

β,X̃
define the space of functions

v : [0, T ]× R
d → R such that

‖v‖2
Hm,µ

β,X̃

=

∫ T

0

eβs

∫

Rd

e−µ|x|
∑

k≤m

E|∂k
xv(s, X̃x

s )|2dxds < ∞.

For m = 0, we set H
0,µ

β,X̃
= H

µ

β,X̃
. By using the definition of ν, we also get ‖v‖2

Hµ
β,X

=
∫ T

0
eβs
∫

Rd ν0
µ(s, y)|v(s, y)|2dyds.

Remark 3.6. We can interpret ‖v‖2
Hµ

β,X

as
∫ T

0
eβs

E|v(s, Xµ
s )|2ds where (Xµ

s )s

stands for (Xs)s starting at time 0 with a random initial law having a density propor-
tional to e−µ|x|.

Remark 3.7. In the above definition of ‖v‖2
Hm,µ

β,X̃

, we compute the expectation

w.r.t. the law of X̃. If v is a random function, ‖v‖2
Hm,µ

β,X̃

is random too.
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3.3. Norm equivalence results. The following proposition gives a norm equiv-
alence result between ‖·‖Hµ

β,X
and ‖·‖Hµ

β
. It can be compared to Bally and Matoussi[2,

Proposition 5.1].
Proposition 3.8 (Norm equivalence). Assume that the coefficients σ, b are

bounded measurable functions on [0, T ] × R
d, Lipschitz w.r.t. x and that σ satis-

fies the ellipticity condition. There exist two constants c > 0 and c > 0 (depending on
T, d, µ, KA.1(T ), α1, α2) s.t. for every v ∈ L2([0, T ]× R

d, eβtdt ⊗ e−µ|x|dx)

c‖v‖2
Hµ

β
≤ ‖v‖2

Hµ
β,X

≤ c‖v‖2
Hµ

β
.

Proof. Proving Proposition 3.8 boils down to showing that there exist two con-
stants ci, i = 1, 2 depending on µ, d, αi s.t. ∀y ∈ R

d

1

2dK(T )
e−µ|y|ec1(s−t) ≤ νt

µ(s, y) ≤ 2dK(T )ec2(s−t)e−µ|y|. (3.2)

The r.h.s. (resp. the l.h.s.) of the above inequality ensues from Proposition A.1 and

Lemma C.1, with c = 1
2α2

(resp. c = 1
2α1

). Moreover, we have ci = dµ2αi

2 , i = 1, 2.

Proposition 3.9. Assume σ is uniformly elliptic and b and σ are in C
0,2
b . For

every v ∈ L2([0, T ]× R
d, eβtdt ⊗ e−µ|x|dx) it holds ‖v‖2

Hµ

β,XN

≤ K(T )‖v‖2
Hµ

β,X

.

Proof. Since ‖v‖2
Hµ

β,XN

=
∫ T

0 eβs
∫

Rd e−µ|x| ∫
Rd v2(s, y)pN (0, x; s, y)dydxds, we ap-

ply successively Proposition A.5, Lemma C.1 and the l.h.s. of (3.2).
The following Proposition bounds the solution of a linear PDE in norm ‖ · ‖Hµ

β,X
.

Proposition 3.10. Assume σ is uniformly elliptic, σ ∈ C
1,1
b , b is C1,1 and

bounded, and g ∈ L2([0, T ] × R
d, eβtν0

µ(t, y)dt ⊗ dy). We also assume that v satisfies
the linear PDE (∂t + L)v(t, x) + g(t, x) = 0, with a terminal condition v(T, ·) = 0.
Then,

‖v‖2
H2,µ

β,X

+ ‖∂tv‖2
Hµ

β,X
≤ K3.10(T )‖g‖2

Hµ
β,X

,

where K3.10(T ) depends on KB.2(T ), β, c, c and T .

Proof. Let v(t, x) := eβt/2v(t, x). Using the PDE satisfied by v, we get

−∂tv(t, x) − Lv(t, x) +
β

2
v(t, x) = e

βt
2 g(t, x), v(T, x) = 0.

Then, we apply Theorem B.2 to v to obtain ‖v‖2
H2,µ

β

+ ‖∂tv‖2
Hµ

β

≤ K(T )‖g‖2
Hµ

β

, where

K(T ) denotes a constant depending on KB.2(T ) and on β. Proposition 3.8 (applied
to v and its derivatives) ends the proof.

4. Approximation operator P. P denotes the sequence of approximation op-
erators (Pk)k satisfying the following Hypothesis. In Section 7, we give an example
of such an operator P , based on kernel estimators.

Hypothesis 2 (Hypotheses on (Pk)k). Let ǫi(P), i = 1 · · · 4 denote some con-
stants depending on P and tending to 0 when the parameters of P tend to infinity.
For any k, the random operator Pk satisfies the following properties.
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1. Measurability and linearity. Pk is linear and it writes (see (2.3))

Pkc(·) =

n
∑

i=1

c(tki , xk
i )ωi(·).

As said in Definition 2.4, the points (tki , xk
i )i are σ(Ak)-measurable and Ak is

independent of Aj for k 6= j. In addition, the weights wk
i (.) : Ω×[0, T ]×R

d 7→
R are measurable w.r.t. σ(Ak) × B([0, T ]× R

d).
2. Regularity. For any function v : [0, T ] × R

d → R, Pkv ∈ C1,2 (equivalently,
the weights (wk

i )i are C1,2 w.r.t. (t, x)).
3. Boundedness. For any bounded function v : [0, T ] × R

d → R, Pkv, ∂t(Pkv),
∂x(Pkv) and ∂2

x(Pkv) are bounded by a constant depending on c0(v) and on
the parameters of the operator Pk (the explicit form of the bounds is not
needed).

4. Approximation. Pk approximates well a function and its spatial derivatives.
Let v be a C1,2 random function, independent of Ak, from [0, T ]×R

d in R. We
also assume that v and ∂xv are bounded (by c0,1(v)) and ∀t, t′ ∈ [0, T ], ∀x ∈
R

d, |∂xv(t, x) − ∂xv(t′, x)| ≤ c1/2(v)
√

|t′ − t|. Then,

E‖v − Pkv‖2
Hµ

β,X
+ E‖∂xv − ∂x(Pkv)‖2

Hµ

β,X
≤ ǫ1(P)(E‖v‖2

H2,µ
β,X

+ E‖∂tv‖2
Hµ

β,X
)

+ ǫ2(P)(c2
1/2(v) + c2

0,1(v)).

5. Let v be a C
1,2
b function from [0, T ] × R

d in R. Then E‖v − Pkv‖2
Hµ

β,X

+

E‖∂xv − ∂x(Pkv)‖2
Hµ

β,X

≤ ǫ3(P)(c2
1/2(v) + c2

1,2(v)).

6. Stability and centering property for random functions. For any random func-
tion v from [0, T ] × R

d in R, one has E‖Pkv‖2
Hµ

β,X

+ E‖∂x(Pkv)‖2
Hµ

β,X

≤
c4(P)E‖v‖2

Hµ
β,X

, where c4(P) is a constant depending on P. If E(v(t, x)) = 0,

one has E‖Pkv‖2
Hµ

β,X

+ E‖∂x(Pkv)‖2
Hµ

β,X

≤ ǫ4(P)E‖v‖2
Hµ

β,X

.

5. Main result. The following Theorem states the convergence of (Y k, Zk)k

defined in (2.1) towards (Y, Z) in the ‖ · ‖2
µ,β norm. See Section 6 for a proof of it.

Theorem 5.1. Assume that Hypotheses 1 and 2 hold. We also assume that f

is a bounded Lipschitz function and Φ ∈ C2+α
b . Then, there exists a constant K(T )

such that

‖Y − Y k‖2
µ,β + ‖Z − Zk‖2

µ,β ≤Sk + K(T )
c2
0,2(u)

N
, where Sk ≤ ηSk−1 + ǫ and

η = K(T )

(

4(1 + T )L2
f

β
+ ǫ1(P)K3.10(T )L2

f +
ǫ4(P)

M

)

,

ǫ = K(T )

(

ǫ3(P)c2
1,2(u) + (ǫ2(P) + ǫ3(P))c2

0(f) +
ǫ4(P)c2

0,2(u)

MN
+

c4(P)

N2
(c2

0(f) + c2
0(Φ))

)

.

Corollary 5.2. Under the assumptions of Theorem 5.1, for β and P-parameters
large enough so that η < 1, we have

lim sup
k→∞

‖Y − Y k‖2
µ,β + ‖Z − Zk‖2

µ,β ≤ ǫ

1 − η
+ K(T )

c2
0,2(u)

N
.
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Remark 5.3. Using a sequential Monte Carlo method leads to an error of 1
M

appearing in the contraction term η. If we had implemented a non adaptive method
(i.e. using only Picard’s iterations), M−1 would have appeared in ǫ and this would
have led us to choose a much larger M , while practically M = 100 does the trick. A
quick analysis of the form of ǫ shows that it is sufficient to take M and N of the
same magnitude (taking N = M = 100 gives usually small related errors). Then,
the final algorithm accuracy relies heavily on the quality of the operator P , through
the convergence rates ǫ2(P) and ǫ3(P). These rates are related to those obtained in
the approximation of a function v and its first partial derivative ∂xv, when roughly
speaking the function v is C

1,2
b and ∂xv is 1

2 -Hölder in time.

6. Proof of Theorem 5.1. In this section, we assume that Hypotheses 1 and
2 hold.

We want to measure the error ‖Y − Y k‖2

µ,β + ‖Z − Zk‖2

µ,β. To do so, we split
the different sources of errors: Euler scheme approximation, Picard’s approximation,
approximation operator P and Monte Carlo simulations. We prove Theorem 5.1 by
combining Proposition 6.1, Equation (6.2), Propositions 6.3, 6.4 and 6.8.

6.1. First source of error: Euler scheme approximation.

Proposition 6.1. It holds

‖Y − Y k‖2

µ,β + ‖Z − Zk‖2

µ,β ≤c2
0,2(u)

K(T )

N
+ K(T )(‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β),

where (Ỹ k
s , Z̃k

s ) := (uk(s, Xs), (∂xukσ)(s, Xs)).

Proof. We start from (3.1) and we introduce
±u(s, XN,x

s ) in |u(s, Xx
s ) − uk(s, XN,x

s )|. We get
|u(s, Xx

s )− uk(s, XN,x
s )|2 ≤ 2|u(s, Xx

s ) − u(s, XN,x
s )|2 + 2|u(s, XN,x

s ) − uk(s, XN,x
s )|2.

Since u is a C
1,2
b function (see Theorem 1.1), we bound the first term by

2c2
0,1(u)|Xx

s − XN,x
s |2 and we use the well known strong error bound for the Euler

scheme to get ‖Y − Y k‖2

µ,β ≤ c2
0,1(u)K(T )

N + 2E ‖u − uk‖2
Hµ

β,XN
. The same technique

enables to bound ‖Z − Zk‖2

µ,β . Finally, we apply Proposition 3.9 and use the

equality E ‖u − uk‖2
Hµ

β,X
= ‖Y − Ỹ k‖2

µ,β (see Remark 6.2) to end the proof.

Remark 6.2. We recall that the expectation appearing in the definition of

‖Y − Ỹ k‖2

µ,β is computed w.r.t. the law of X and all the variables used to com-

pute uk, whereas the one appearing in the definition of ‖ · ‖2
Hµ

β,X
is computed w.r.t.

the law of X, that’s why we have ‖Y − Ỹ k‖2

µ,β = E ‖u − uk‖2
Hµ

β,X
. ‖u − uk‖2

Hµ

β,X
is

Gk-measurable.

Let us now work on the remaining term ‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β .

6.2. Second source of error: Picard’s approximation. We

aim at bounding ‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β . To do so, we consider the sequence

(Y
k
, Z

k
)k≥1, where (Y

k
, Z

k
) is the solution of the linear BSDE

Y
k

t = Φ(XT ) +

∫ T

t

f(s, Xs, Ỹ
k−1
s , Z̃k−1

s )ds −
∫ T

t

Z
k

sdWs. (6.1)



SOLVING BSDE WITH ADAPTIVE CONTROL VARIATE 11

We split ‖Y − Ỹ k‖2

µ,β and ‖Z − Z̃k‖2

µ,β by introducing Y
k

and Z
k
:

‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β ≤2(‖Y − Y
k‖

2

µ,β + ‖Z − Z
k‖

2

µ,β)

+ 2(‖Y k − Ỹ k‖
2

µ,β + ‖Zk − Z̃k‖
2

µ,β). (6.2)

Let us study ‖Y − Y
k‖

2

µ,β + ‖Z − Z
k‖

2

µ,β . The study of ‖Y k − Ỹ k‖
2

µ,β and

‖Zk − Z̃k‖
2

µ,β is postponed to the next step.

Proposition 6.3. For any β > 0 and any µ > 0, it holds

‖Y − Y
k‖

2

µ,β + ‖Z − Z
k‖

2

µ,β ≤
2(1 + T )L2

f

β

(

‖Y − Ỹ k−1‖2

µ,β + ‖Z − Z̃k−1‖2

µ,β

)

,

where (Y
k
, Z

k
) is the solution of (6.1).

Proof. Let us do the proof for the error on Y . Using
a priori estimates (see [10, Proposition 2.1]) and the

standard BSDE (1.1) leads to
∫ T

0
eβs

E[|Ys − Y
k

s |2
∣

∣Gk−1]ds ≤
T
β

∫ T

0
eβs

E[|f(s, Xs, Ys, Zs) − f(s, Xs, Ỹ
k−1
s , Z̃k−1

s )|2
∣

∣Gk−1]ds.

Since f is Lipschitz,
∫ T

0 eβs
E

[

|Ys − Y
k

s |2
∣

∣Gk−1

]

ds ≤
2TL2

f

β

∫ T

0
eβs

E

[

|Ys − Ỹ k−1
s |2 + |Zs − Z̃k−1

s |2
∣

∣Gk−1

]

ds. By integrating w.r.t. e−µ|x|dx

and taking the expectation, the result follows.

It remains to measure the error ‖Y k − Ỹ k‖
2

µ,β and ‖Zk − Z̃k‖
2

µ,β .

6.3. Third source of error: approximation operator P. In this part, we

split the remaining errors ‖Y k − Ỹ k‖
2

µ,β and ‖Zk − Z̃k‖
2

µ,β in three error terms (see
(6.4) for the decomposition of Y ). The first two are approximation errors connected
to P and the last one is studied in the next section.

Proposition 6.4. It holds

‖Y k − Ỹ k‖
2

µ,β + ‖Zk − Z̃k‖
2

µ,β ≤ η(‖Y − Ỹ k−1‖2

µ,β + ‖Z − Z̃k−1‖2

µ,β)

+ 3E ‖Pk−1(ĉk−1 − ĉM
k−1)‖

2

Hµ
β,X

+3c2
0(σ)E ‖∂xPk−1(ĉk−1 − ĉM

k−1)‖
2

Hµ
β,X

+ǫ

where η = 3ǫ1(P)K3.10(T )L2
f and ǫ = K(T )(ǫ3(P)c2

1,2(u) + (ǫ2(P) + ǫ3(P))c2
0(f)).

Before proving Proposition 6.4, we introduce two sequences (uk)k and (Hk)k.

Definition 6.5. ∀k ≥ 1, uk denotes the solution of the linear PDE

(∂t + L)uk(t, x) + fuk−1
(t, x) = 0, uk(T, x) = Φ(x).

Then, ∀t ∈ [0, T ], (Y
k

t , Z
k

t ) = (uk(t, Xt), (∂xukσ)(t, Xt)), where (Y
k

t , Z
k

t )k is the
solution of BSDE (6.1).

Definition 6.6. ∀k ≥ 0, Hk denotes the solution of the linear PDE

(∂t + L)Hk(t, x) + fuk
(t, x) − fu(t, x) = 0, Hk(T, x) = 0. (6.3)
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Clearly, one has uk = u + Hk−1 for any k ≥ 1.

Proof. [Proof of Proposition6.4] Let us work on ‖Y k − Ỹ k‖
2

µ,β = E ‖uk − uk‖2
Hµ

β,X
.

Using (2.4) gives uk − uk = uk − Pk−1(uk−1 + ĉM
k−1) = uk − Pk−1(uk−1 + ĉk−1) +

Pk−1(ĉk−1 − ĉM
k−1). Since uk−1 + ĉk−1 = uk = u + Hk−1 (see (2.2)), we get

uk − uk = (u − Pk−1u) + (Hk−1 − Pk−1Hk−1) + Pk−1(ĉk−1 − ĉM
k−1). (6.4)

Then, since u and its derivatives are bounded and since Hk−1 satisfies PDE (6.3), we
combine Lemma 6.7 and the features of Pk−1 (see Hypothesis 2) to get

E ‖uk − uk‖2
Hµ

β,X
≤ 3ǫ3(P)(c2

1/2(u) + c2
1,2(u)) + 3ǫ1(P)(E ‖Hk−1‖2

H2,µ
β,X

+E ‖∂tHk−1‖2
Hµ

β,X
)

+ 3ǫ2(P)(c2
1/2(Hk−1) + c2

0,1(Hk−1)) + 3E ‖Pk−1(ĉk−1 − ĉM
k−1)‖

2

Hµ

β,X

. (6.5)

We bound the second term on the r.h.s. by using Proposition 3.10:
E ‖Hk−1‖2

H2,µ
β,X

+E ‖∂tHk−1‖2
Hµ

β,X
≤ K3.10(T )E ‖fuk−1

− fu‖2

Hµ
β,X

. Since f is

Lipschitz, the result follows. The proof is similar for ‖Zk − Z̃k‖
2

µ,β , except that (6.5)

contains c2
0(σ)E ‖∂xPk−1(ĉk−1 − ĉM

k−1)‖
2

Hµ
β,X

(and not E ‖Pk−1(ĉk−1 − ĉM
k−1)‖

2

Hµ
β,X

).

Lemma 6.7 (resp. Proposition B.3) enables to replace constants
c2
1/2(Hk−1) + c2

0,1(Hk−1) (resp. c2
1/2(u)) by K(T )c2

0(f). (resp. K(T )(c2
0(f) + c2

2(Φ))).

Since Φ(·) = u(T, ·), we get c2
2(Φ) ≤ c2

0,2(u) and the result follows.

Lemma 6.7. For all k, Hk and ∂xHk are bounded by a
constant of the form K(T )c0(f). Moreover, for all t, t′ ∈ [0, T ],
|∂xHk(t′, x) − ∂xHk(t, x)| ≤ c1/2(Hk)

√

|t′ − t| with c1/2(Hk) = K(T )c0(f)

Proof. [Proof of the lemma] First, we prove that Hk and ∂xHk are bounded. Us-

ing Feynman-Kac’s formula yields Hk(t, x) = E

[

∫ T

t (fuk
(s, Xt,x

s ) − fu(s, Xt,x
s ))ds|Gk

]

.

Since f is bounded, we get that H is bounded by 2Tc0(f). To prove that ∂xHk is

bounded, we write Hk(t, x) =
∫ T

t

∫

Rd f̃k(s, y)p(t, x; s, y)dyds, where p denotes the

transition density of X and f̃k := fuk
− fu. We differentiate Hk w.r.t. x and we use

Proposition A.2 to get |∂xHk(t, x)| ≤ 2K(T )c0(f)
∫ T

t
ds√
s−t

∫

Rd e−
c|x−y|2

s−t
dy

(s−t)
d
2
. Our

statement on ∂xHk readily follows.
The second assertion ensues from Proposition B.3.

6.4. Fourth source of error: Monte Carlo simulations. In this section, we

study E ‖Pk(ĉk − ĉM
k )‖2

Hµ
β,X

and E ‖∂xPk(ĉk − ĉM
k )‖2

Hµ
β,X

.

Proposition 6.8. Let ∆ck denote ĉk − ĉM
k . It holds

E ‖Pk(∆ck)‖2

Hµ
β,X

+E ‖∂xPk(∆ck)‖2

Hµ
β,X

≤ǫ4(P)
K(T )

M
(‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β)

+ǫ4(P)
K(T )

MN
c2
0,2(u) + c4(P)

K(T )

N2
(c2

0(f) + c2
0(Φ)).

.



SOLVING BSDE WITH ADAPTIVE CONTROL VARIATE 13

Proof. We split ∆ck into two terms: the bias and the noise

Pk(∆ck) = Pk(E(∆ck|Gk)) + Pk(∆ck − E(∆ck|Gk)) := Pk(E(∆ck|Gk)) + Pk(εk),

where εk := ∆ck − E(∆ck|Gk) = ĉM
k − E(ĉM

k |Gk). The same decomposition holds for
∂xPk(∆ck). It remains to apply Propositions 6.9 and 6.10 to end the proof.

6.4.1. Bias terms Pk(E(∆ck|Gk)) and ∂xPk(E(∆ck|Gk)).
Proposition 6.9. It holds

E‖Pk(E(∆ck|Gk))‖2
Hµ

β,X

+ E‖∂xPk(E(∆ck|Gk))‖2
Hµ

β,X

≤ c4(P)K(T )
N2 .

Proof. First, we use the properties of P (see Point 6, Hypothesis 2) to get
E‖Pk(E(∆ck|Gk))‖2

Hµ
β,X

+E‖∂xPk(E(∆ck|Gk))‖2
Hµ

β,X

≤ c4(P)‖E(∆ck|Gk)‖2
Hµ

β,X

. Then,

we define ∆(s, y) := Φ(Xs,y
T ) − Φ(XN,s,y

T ) +
∫ T

s
(fuk

(r, Xs,y
r ) − fuk

(r, XN,s,y
r ))dr. We

have

E(∆ck|Gk) = ĉk − E(ĉM
k |Gk) = E(∆|Gk).

Let us bound E(∆|Gk). First, we work on the first term: E[Φ(Xs,y
T ) −

Φ(XN,s,y
T )] =

∫

Rd Φ(y′)(p(s, y; T, y′)−pN(s, y; T, y′))dy′. By using Proposition A.4, we

get
∣

∣

∣E[Φ(Xs,y
T ) − Φ(XN,s,y

T )]
∣

∣

∣ ≤ K(T )
N

√
T − s

∫

Rd |Φ(y′)| 1

(T−s)
d
2

exp
(

− cA.4|y′−y|2
T−s

)

dy′.

Then, |E[Φ(Xs,y
T ) − Φ(XN,s,y

T )]| ≤ c0(Φ)K(T )
N

√
T − s. The same proof

holds for
∫ T

s
(fuk

(r, Xs,y
r ) − fuk

(r, XN,s,y
r ))dr: E|fuk

(r, Xs,y
r ) − fuk

(r, XN,s,y
r )| ≤

K(T )
N

T−s√
r−s

c0(f). Integrating both sides w.r.t. r between s and T leads to

|E[∆(s, y)|Gk]| ≤ K(T )
N

√
T − s(c0(Φ) + (T − s)c0(f)), and the result follows.

6.4.2. Noise terms Pk(εk) and ∂xPk(εk).
Proposition 6.10. It holds E‖Pk(εk)‖2

Hµ
β,X

+ E‖∂xPk(εk)‖2
Hµ

β,X

≤

ǫ4(P)K(T )
M (

c2
0,2(u)

N + ‖Y − Ỹ k‖2

µ,β + ‖Z − Z̃k‖2

µ,β).

Proof. Since E(εk|Gk) = 0, the properties of P (Point 6, Hypothesis 2) give
E(‖Pkεk‖2

Hµ
β,X

|Gk) + +E(‖∂xPk(εk)‖2
Hµ

β,X

|Gk) ≤ ǫ4(P)E(‖εk‖2
Hµ

β,X

|Gk).

Since E(‖εk‖2
Hµ

β,X

|Gk) =
∫ T

0
eβs
∫

Rd ν0
µ(s, y)E(|εk(s, y)|2|Gk)dsdy =

∫ T

0 eβs
∫

Rd ν0
µ(s, y)Var(εk(s, y)|Gk)dsdy, it remains to bound

Var(εk(s, y)|Gk) =
1

M
Var(ΨN (s, y, fuk

+ (∂t + LN )uk, Φ − uk, W )|Gk).

By applying Itô’s formula to u(r, XN
r ) between s and T and to uk(r, XN

r ) between s

and T , we get ΨN (s, y, fuk
+(∂t+LN)uk, Φ−uk, W ) = (u−uk)(s, y)+

∫ T

s
fuk

(r, XN
r )+

(∂t + LN )u(r, XN
r )dr +

∫ T

s (∂xu(r, XN
r ) − ∂xuk(r, XN

r ))σ(ϕ(r), XN
ϕ(r))dWr . Then,

Var(εk(s, y)|Gk) ≤ 2

M
E





(

∫ T

s

fuk
(r, XN

r ) + (∂t + LN )u(r, XN
r )dr

)2

|Gk





+
2

M
E





(

∫ T

s

(∂xu(r, XN
r ) − ∂xuk(r, XN

r ))σ(ϕ(r), XN
ϕ(r))dWr

)2

|Gk



 .
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To bound the first term, we introduce ±fu(r, XN
r ). Since f is Lipschitz

continuous with constant Lf and u satisfies (∂t + L)u + f = 0, we get
|fuk

(r, XN
r ) + (∂t + LN )u(r, XN

r )| ≤ Lf (|uk − u|(r, XN
r ) + |∂xukσ − ∂xuσ|(r, XN

r )) +
∑d

i=1 |bi(r, X
N
r ) − bi(ϕ(r), XN

ϕ(r))||∂xi
u(r, XN

r )| + 1
2

∑d
i,j=1 |[σσ∗]ij(r, XN

r ) −
[σσ∗]ij(ϕ(r), XN

ϕ(r))||∂2
xixj

u(r, XN
r )|. Since b, σ and u are bounded with

bounded derivatives, we get |fuk
(r, XN

r ) + (∂t + LN )u(r, XN
r )| ≤

Lf (|u − uk|(r, XN
r ) + |∂xukσ − ∂xuσ|(r, XN

r )) + K(T )c0,2(u)( T
N + |XN

r − XN
ϕ(r)|).

Thus,

Var(εk(s, y)|Gk) ≤ K(T )

M

(

c2
0,2(u)

N
+

∫ T

s

E(Θ(r, XN
r )|Gk)dr

)

,

where Θ(r, z) = |u − uk|2(r, z) + |∂xu − ∂xuk|2(r, z). Finally, it remains to compute
∫ T

0 eβs
∫

Rd ν0
µ(s, y)

∫ T

s E(Θ(r, XN
r )|Gk)drdyds. To do so, we write E(Θ(r, XN

r )|Gk) =
∫

Rd dzΘ(r, z)pN(s, y; r, z) and we use successively the r.h.s. of (3.2), Proposi-
tion A.5, Lemma C.1 and the l.h.s. of (3.2). We get E(‖εk‖2

Hµ
β,X

|Gk) ≤
K(T )

M

(

c2
0,2(u)

N + E(‖u − uk‖2
Hµ

β,X
|Gk) + E(‖∂xu − ∂xuk‖2

Hµ
β,X

|Gk)
)

. It remains to use

the ellipticity condition on σ to end the proof.

7. An example of operator P based on kernel estimators. In
this Section we present an operator satisfying Hypothesis 2. It is based on a non
parametric regression technique called local averaging. We refer to Györfi et al [16,
Chapter 2] and Härdle [17] for more details on non parametric regression.

Definition 7.1. We approximate a function v(t, x) by

Pkv(t, x) =
rk
n(t, x)

fk
n(t, x)

g(2d+1Tλ(B)fk
n(t, x)), (7.1)

where
• rk

n(t, x) = 1
nhthd

x

∑n
i=1 Kt(

t−T k
i

ht
)Kx(

x−Xk
i

hx
)v(T k

i , Xk
i ),

• fk
n(t, x) = 1

nhthd
x

∑n
i=1 Kt(

t−T k
i

ht
)Kx(

x−Xk
i

hx
),

• the points (T k
i , Xk

i )1≤i≤n are uniformly distributed on [0, T ]× B where B :=
[−a, a]d,

• λ(B) = (2a)d,
• g is such that

g(y) =







0 if y < 0,

1 if y > 1,

−y4 + 2y2 if y ∈ [0, 1].
(7.2)

• The kernel function Kt is defined on the compact support [−1, 1], bounded,
even, non-negative, C2

p and
∫

R
Kt(u)du = 1.

• The kernel function Kx is defined on the compact support [−1, 1]d, bounded,
and such that ∀ y = (y1, · · · , yd) ∈ R

d, Kx(y) = Πd
j=1K

j
x(yj), where for j =

1, · · · , d Kj
x : R → R is an even non-negative C2

p function and
∫

R
Kj

x(y)dy =
1.

• δn denotes 1
nhthd

x
, and Tλ(B)δn << 1.

• hx << a and ht << T
2 . Since we study the convergence when ht and hx tend

to 0, we assume in the following that ht ≤ 1 and hx ≤ 1.
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Remark 7.2. Since we want to solve the PDE on [0, T ]×R
d, we have to choose

the interval [−a, a] large enough. Besides, g(2d+1Tλ(B)fk
n(t, x)) is nothing more than

a regularizing term. If we had defined Pkv(t, x) as
rk

n(t,x)
fk

n(t,x)
, Pkv(t, x) would not have

satisfied the regularity property of Hypothesis 2. Now, let us check that Pk satisfies
the properties of Hypothesis 2. Since we pick new random points at each iteration,
the required measurability property is easily satisfied (with Ak := (T k

i , Xk
i )1≤i≤n).

The linearity property ensues from the definition of rn and the regularity property
comes from the definition of g (see Remark 7.2). Concerning the boundedness, the
following Proposition holds

Lemma 7.3. For any bounded function v, Pkv, ∂xPkv, ∂2
xPkv and ∂tPkv are

bounded by some constants depending on ht, hx, c0(v), c1(Kt), c2(Kx), T and λ(B).

Proof. It is sufficient to note that x 7−→ g(x)
x is bounded with bounded deriva-

tives up to order 2. To get more details on the bounds, we refer the reader to [18,
Proposition 11.8].

The convergence rates are proved in the companion paper [13] and are stated in
the next theorem.

Theorem 7.4. Assume that the coefficients σ, b are bounded measurable functions
on [0, T ] × R

d, Lipschitz w.r.t. x and that σ satisfies the ellipticity condition. The
sequence (Pk)k satisfy the Hypothesis 2 with:

ǫ1(P) = K0(T )(h2
t + h2

x +
Tλ(B)δn

h2
x

),

ǫ2(P) = K0(T )(ht + e−µa ad−1

hx
+ e

− µa√
d +

Tλ(B)δn

h2
x

),

ǫ3(P) = ǫ1(P) + ǫ2(P),

ǫ4(P) = K0(T )
Tλ(B)δn

h2
x

, c4(P) =
K0(T )

h2
x

.

8. Numerical results.

8.1. Choice of the parameters a, n, hx, ht, M and N and

complexity of the algorithm. By using the operator P described in
Section 7, the constants η and ǫ defined in Theorem 5.1 become

η =
(

K(T )
4(1+T )L2

f

β + K0(T )(1 + K3.10(T )L2
f)(h2

t + h2
x + Tλ(B)δn

h2
x

(1 + M−1)
)

and ǫ = K0(T )(c2
1,2(u) + c2

0(f) +

c2
0(Φ))

(

ht + h2
x + Tλ(B)δn

h2
x

(1 + (MN)−1) + e−µaad−1

hx
+ e

− µa√
d + 1

N2h2
x

)

. From this, we

deduce the assumptions to be imposed on the coefficients to get a converging
algorithm: h2

t ≪ 1, h2
x ≪ 1, Tλ(B)δn ≪ h2

x, N−2 ≪ h2
x, a large enough and M as

small as we want. In particular, it means n ≫ Tλ(B)h−1
t h−d−2

x .
The complexity of Algorithm 2 is of order KmaxnM(n + N), where Kmax denotes
the number of iteration steps. Numerically, one can choose N ≪ n, then the
complexity is equivalent to KmaxMn2. We don’t need to choose M large, however
getting an accurate approximating operator requires a quite large value of n. The
limiting factor of the complexity is undoubtedly n.

8.2. Application to financial problems. In this Section we present two
applications of Algorithm 2 to financial problems. As presented in [10], BSDEs
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appear in numerous financial problems, like the pricing and the hedging of European
and American options.

First, in order to check the convergence of the algorithm, we consider a problem for
which the exact solution is known. Let us consider the BSDE (1.1)-(1.2) in dimension

d = 1 and with the following parameters: b(t, x) = µ0 − σ2

2 , σ(t, x) = σ, f(t, x, y, z) =

−ry − µ0−r
σ z and Φ(x) = (ex −K)+. Although the driver and the terminal condition

are not bounded and Φ is not C2+α, it seems that the convergence of our algorithm
still holds.

We explicitly know the value of the solution (Y, Z) of the BSDE: Yt = F (t, eXt)
and Zt = ∂xF (t, eXt)σeXt , where F is the price function of a standard call option in
the Black and Scholes model.

To bring out the result of Theorem 5.1, we compute in Table 8.1 an

approximation of ‖Y − Y k‖2

µ,β (denoted e(Y − Y k)) and ‖Z − Zk‖2

µ,β (denoted

e(Z − Zk)) when k increases: e(Y k − Y ) =
∫ T

0

∫ x+

x−
|u(s, y) − uk(s, y)|2e−|y|dyds,

where ex− = 90, ex+ = 120, β = 0 and µ = 1. The option parameters are µ0 = 0.1,
σ = 0.2, r = 0.02, T = 1 and K = 100. The algorithm parameters are n = 2500,
N = M = 100, hx = ht = 0.1 and 2a = 1.2. We use a truncated Gaussian kernel, i.e.
K(x) = 1√

2π
e−

1
2x2

1|x|≤6. We notice that e(Y k − Y ) (resp. e(Zk − Z)) is almost

e(Y k − Y ) e(Zk − Z)
k=1 0.0743476 0.0265350
k=2 0.0014802 0.0104687
k=3 0.0010029 0.0082452
k=4 0.0008865 0.0076881
k= 5 0.0008373 0.0075321

Fig. 8.1. Evolution of e(Y k
− Y ) and e(Zk

− Z) w.r.t. k

divided by 100 (resp. by 4) between the first and the fifth iterations. The huge
difference between the two reduction coefficients is due to the fact Z is linked to the
“derivative” of Y : it is well known that a function is always better approximated
than its derivatives. Moreover, the errors drastically decrease between the first and
the second iterations. From iteration 2, the algorithm does not improve so much the
result anymore. Figure 8.2 represents the level-sets of the pointwise error on Y at
iteration 10. Time goes from 0 to 1 and space varies between 4.5 and 4.81 (which
means that the starting point for eX belongs to [90, 120]). We notice that the error
is quite small, except around the point t = 1 and ex = 100. This corresponds to the
fact that at maturity time, the solution YT is equal to Φ(XT ), which is continuous
(but not C1) in (1, K).

Second, let us consider the pricing of a basket call option in dimension 3 in the
Black and Scholes model with the following parameters: b(t, x) = rx, σ(t, x) = σx,
f is kept the same as above, and Φ(x) = (x1+x2+x3

3 − K)+. We aim at computing
the price at time 0 and for X0 = (100, 100, 100). The reference price is given by the
approximated formula given in [7]. The option parameters are µ0 = r = 0.02, σ = 0.2,
T = 1, β = 0 and µ = 1. The algorithm parameters are N = M = 100, Kmax = 10
and 2a = 127 for each space component, i.e. we solve the BSDE on [0, T ]× [55, 182]3.
As above, we use a truncated Gaussian kernel. Figure 8.3 shows the evolution of Y0
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Fig. 8.2. Evolution of the pointwise error on Y

(i.e the price of the option at time 0) w.r.t. the number of iterations k, when n = 250,
n = 500, n = 1000 and n = 2000. The values of ht and hx depend on the value of
n. They are computed with the following formula: ht = (T

n )1/3 and hx = 2a(T
n )1/3.

We notice that the larger is n, the better is the approximation and the faster is the
convergence.
This algorithm also enables to price and hedge contingent claims with constraints

ref price
app price n=250
app price n=500

app. price n=1000
app price n=2000

1 2 3 4 5 6 7 8 9 10
5.5

6.0

6.5

7.0

7.5

Fig. 8.3. Evolution of Y0 w.r.t. the iterations

on the wealth or portfolio processes. For example, we can use it to hedge with higher
interest rate for borrowing, which boils down to solving a non linear BSDE. We can
also deal with the pricing and hedging of American options by using a penalization
method. Since pricing American options is equivalent to solving a reflected BSDE,
we approximate the solutions of the RBSDEs by a sequence of standard BSDEs with
penalizations (see [9] for more details). We refer to [18, Chapter 15] for more precisions
on these applications, and for other financial applications.

Appendix A. Properties of the transition density of a diffusion process.

Proposition A.1 (Aronson [1]). Assume that the coefficients σ and b are
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bounded measurable functions and that σ is elliptic. There exist positive constants
KA.1(T ), α1, α2 s.t. for any s, t ∈ [0, T ](s > t) and any x, y ∈ R

d

K−1
A.1(T )

(2πα1(s − t))
d
2

e
− |x−y|2

2α1(s−t) ≤ p(t, x; s, y) ≤ KA.1(T )

(2πα2(s − t))
d
2

e
− |x−y|2

2α2(s−t) .

The constant KA.1(T ) depends on d and on the suprema of the coefficients σ, b, and
α1 and α2 depend on σ0 and σ1.

Proposition A.2. [Ladyzenskaja et al. [19], pages 376-377] Assume that σ

is uniformly elliptic and that the coefficients σ, b are bounded, Hölder continuous of
order α in x and α

2 in t. There exist two positive constants cA.2 (depending on
σ0, σ1) and KA.2(T ) (depending on d, α and on the suprema of σ, b), s.t. for any
s, t ∈ [0, T ] (s > t) and any x, y ∈ R

d

|∂r
t ∂q

xp(t, x; s, y)| ≤ KA.2(T )(s − t)−
(d+2r+q)

2 e−cA.2
|x−y|2

s−t , where 2r + q ≤ 2.

The following Corollary bounds ∂2
txp(t, x; s, y). It ensues from a result bounding

∂m+a
x ∂b

yp(t, x; s, y), 0 ≤ |a| + |b| ≤ 2, m = 0, 1, stated by Friedman (see [11, page
261]). We refer to [18, Proposition 6.9] for a detailed proof.

Corollary A.3. Assume that σ and b are in C
1,2
b and that σ is uniformly

elliptic. It holds for any s, t ∈ [0, T ] (s > t) and any x, y ∈ R
d

|∂2
txp(t, x; s, y)| ≤ KA.3(T )(s − t)−

d+3
2 e−cA.3

|x−y|2
s−t ,

where cA.3 depends on σ0, σ1 and KA.3(T ) depends on d and on the suprema of σ, b .
Proposition A.4 (Gobet and Labart [12]). Assume σ is uniformly elliptic, b

and σ are in C
1,3
b and ∂tσ is in C

0,1
b . Then, ∀(s, x, y) ∈ [0, T ] × R

d × R
d, there exist

two positive constants cA.4 and KA.4(T ) s.t.

|p(0, x; s, y) − pN(0, x; s, y)| ≤ KA.4(T )T

Ns
d+1
2

exp(−cA.4|x − y|2
s

),

where cA.4 depends on σ0, σ1 and KA.4(T ) depends on the dimension d, on the upper
bounds of σ, b and their derivatives.

Proposition A.5 (Gobet and Labart [12]). Assume σ is uniformly elliptic and
b and σ are in C

0,2
b . Then, for any x, y ∈ R

d, s ∈ [0, T ], there exist two positive
constants cA.5 and KA.5(T ) s.t.

pN (0, x; s, y) ≤ KA.5(T )

sd/2
e−cA.5

|x−y|2
s ,

where cA.5 depends on σ0, σ1 and KA.5(T ) depends on d, on the upper bounds of b, σ

and their derivatives.

Appendix B. Bounds for linear PDEs in weighted Sobolev spaces.

Definition B.1 (Space Hm,µ and L2(0, T ; F )).
• For any m ≤ 2 and µ > 0, Hm,µ defines the space of functions v : R

d → R

s.t.

‖v‖Hm,µ =





∑

k≤m

∫

Rd

e−µ|x||∂kv(x)|2dx





1
2

< ∞.

For m = 0, Hµ := H0,µ.
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• Space L2(0, T ; F ). Let (F, ‖ · ‖F ) be a Banach space. L2(0, T ; F ) defines the

space of functions φ from [0, T ] into F s.t. ‖φ‖2
L2(0,T ;F ) =

∫ T

0
‖φ(t)‖2

F dt < ∞.

The following result is a direct application of Bensoussan and Lions [5, Theorem
6.12 page 130].

Theorem B.2 (Bensoussan and Lions [5]). Assume σ is uniformly elliptic, σ is
in C

1,1
b , b is in C1,1, b is bounded and k is bounded from below. We also assume that

g ∈ L2(0, T ; Hµ). Then, the solution v of (∂t +L)v(t, x) + k(t, x)v(t, x) + g(t, x) = 0,
with terminal condition v(T, ·) = 0, is in L2(0, T ; H2,µ) and ∂tv ∈ L2(0, T ; Hµ).
Furthermore, we have

‖∂tv‖L2(0,T ;Hµ) + ‖v‖L2(0,T ;H2,µ) ≤ KB.2(T )‖g‖L2(0,T ;Hµ).

Proposition B.3. Let v be the solution of (∂t + L)v(t, x) + g(t, x) = 0, with
terminal condition v(T, ·) = Π(·). Assume g ∈ C

0,0
b , Π ∈ C2

b and σ and b are in C
1,2
b .

Then, for all t, t′ ∈ [0, T ], it holds |∂xv(t′, x) − ∂xv(t, x)| ≤ c1/2(v)
√

|t′ − t|, where
c1/2(v) is of the form K(T )(c0(g) + c2(Π)).

Proof. First, we do the proof in the special case Π ≡ 0. Assume with-
out loss of generality that t < t′. Feynman-Kac’s formula gives v(t, x) =

E[
∫ T

t g(s, Xs)ds]. Using the transition density function of Xs leads to ∂xi
v(t, x) =

∫

Rd dy
∫ T

t
g(s, y)∂xi

p(t, x; s, y)ds. Then,

∂xi
v(t′, x) − ∂xi

v(t, x) =

∫

Rd

dy

∫ T

t′
g(s, y)[∂xi

p(t′, x; s, y) − ∂xi
p(t, x; s, y)]ds

−
∫ t′

t

g(s, y)∂xi
p(t, x; s, y)ds := A1 − A2.

Let us establish upper bounds for A1 and A2.
Upper bound for A2. Applying Proposition A.2 yields

|A2| ≤ K(T )c0(g)
∫

Rd dy
∫ t′

t
ds

(s−t)
(d+1)

2

e−c |x−y|2
s−t ≤ K(T )c0(g)

√
t′ − t.

Upper bound for A1. Applying Taylor’s formula gives

∂xi
p(t′, x; s, y) − ∂xi

p(t, x; s, y) = (t′ − t)
∫ 1

0
∂2

txp(λt′ + (1 − λ)t, x; s, y)dλ.
Then, we use Corollary A.3:

|A1| ≤ K(T )c0(g)(t′−t)
∫

Rd dy
∫ T

t′ ds
∫ 1

0
(s−(λt′+(1−λ)t))−

d+3
2 e

−c |x−y|2
(s−(λt′+(1−λ)t)) dλ ≤

K(T )c0(g)(t′ − t)
∫ T

t′ ds
∫ 1

0
(s− (λt′ + (1 − λ)t))−

3
2 dλ. Since λt′ + (1 − λ)t ∈ [t, t′], we

can write (s − (λt′ + (1 − λ)t))−
3
2 ≤ ((s − (λt′ + (1 − λ)t))

√
s − t′)−1. It remains to

prove that
∫ T

t′ ds
∫ 1

0
((s − (λt′ + (1 − λ)t))

√
s − t′)−1dλ ≤ K(T )

√
t′ − t

−1
.

∫ T

t′
ds

(s−(λt′+(1−λ)t))
√

s−t′
= 2

∫

√
T−t′

0
du

u2+(1−λ)(t′−t) = 2√
(1−λ)(t′−t)

∫

q

T−t′
(1−λ)(t′−t)

0
dv

1+v2 .

Thus,
∫ T

t′ ds
∫ 1

0
1

(s−(λt′+(1−λ)t))
√

s−t′
dλ ≤ π√

t′−t

∫ 1

0
dλ√
1−λ

, and the result follows. In

the general case, we introduce v0(t, x) := v(t, x) − Π(x). v0 satisfies the PDE
(∂t + L)v0(t, x) + LΠ(x) + g(t, x) = 0, with terminal condition v0(T, ·) = 0. Then,
the first part of the Proposition yields that for all t, t′ ∈ [0, T ], it holds
|∂xv0(t

′, x) − ∂xv0(t, x)| ≤ c1/2(v0)
√

|t′ − t|, where c1/2(v0) is of the form
K(T )(c0(g) + c2(Π)). Since ∂xv0(t

′, x) − ∂xv0(t, x) = ∂xv(t′, x) − ∂xv(t, x), we get
the result.
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Appendix C. Technical results.

Lemma C.1. Let I =
∫

Rd dxe−µ|x| 1

(s−t)
d
2

exp
(

−c
|x−y|2

s−t

)

, where c > 0. For any

s, t ∈ [0, T ] and any x, y ∈ R
d such that t < s, the following assertion holds

1

2d

(π

c

)d/2

e−
dµ2

4c
(s−t)e−µ|y| ≤ I ≤ 2d

(π

c

)d/2

e
dµ2

4c
(s−t)e−µ|y|.

Proof. Using a change of variables in I yields I =
(

π
c

)d/2
E[e

−µ| 1√
2c

Ws−t+y|
].

Furthermore, e−µ|y|
E[e

−µ| 1√
2c

Ws−t|] ≤ E[e
−µ| 1√

2c
Ws−t+y|

] ≤ e−µ|y|
E[e

µ 1√
2c

|Ws−t|]. The

components (W i
s−t)1≤i≤d of Ws−t are i.i.d., then E[e

µ 1√
2c

|Ws−t|] ≤
(

E[e
µ 1√

2c
|W 1

s−t|]
)d ≤

2d(E[ch(µ 1√
2c

W 1
s−t)])

d ≤ 2de
dµ2(s−t)

4c . The last term being bounded, we get the upper

bound for I. Since E[e
−µ| 1√

2c
Ws−t|] ≥ 1

E[e
µ| 1√

2c
Ws−t|]

, the same proof gives the lower

bound.
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