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We present and analyze an algorithm to solve numerically BSDEs based on Picard's iterations and on a sequential control variate technique. Its convergence is geometric. Moreover, the solution provided by our algorithm is regular both w.r.t. time and space.

1. Introduction. Let (Ω, F , P) be a given probability space on which is defined a q-dimensional standard Brownian motion W , whose natural filtration, augmented with P-null sets, is denoted (F t ) 0≤t≤T (T is a fixed terminal time). We aim at numerically approximating the solution (Y, Z) of the following forward backward stochastic differential equation (FBSDE) with fixed terminal time T

-dY t = f (t, X t , Y t , Z t )dt -Z t dW t , Y T = Φ(X T ), (1.1) 
where f : [0, T ] × R d × R × R q → R, Φ : R d → R and X is the R d -valued process solution of

X t = x + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , (1.2) 
b : [0, T ] × R d → R d and σ : [0, T ] × R d → R d×q .
The main focus of this work is to provide and analyze an algorithm -based on Picard's iterations and an adaptive Monte Carlo method -to approximate the solution (Y, Z) of (1.1).

Several algorithms to solve BSDEs can be found in the literature. Ma, Protter and Yong [START_REF] Ma | Solving forward backward stochastic differential equations explicitly-a four step scheme[END_REF] present an algorithm to solve quasilinear PDEs (associated to forward BS-DEs) using a finite difference approximation. Concerning algorithms based on the dynamic programming equation, we refer to Bouchard and Touzi [START_REF] Bouchard | Discrete time approximation and Monte Carlo simulation of backward stochastic differential equations[END_REF], Gobet, Lemor and Warin [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF], Bally and Pagès [START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF] and Delarue and Menozzi [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF]. In [START_REF] Bouchard | Discrete time approximation and Monte Carlo simulation of backward stochastic differential equations[END_REF], the authors compute the conditional expectations appearing in the dynamic programming equation by using Malliavin calculus techniques, whereas [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF] proposes a scheme based on iterative regression functions which are approximated by projections on a reduced set of functions, the coefficients of the projection being evaluated using Monte Carlo simulations. [START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF] and [START_REF] Delarue | A forward-backward stochastic algorithm for quasi-linear PDEs[END_REF] use quantization techniques for solving reflected BSDEs and forward BSDEs respectively. Bender and Denk [START_REF] Bender | A forward scheme for backward SDEs[END_REF] propose a forward scheme which avoids the nesting of conditional expectations backwards through the time steps. Instead, it mimics Picard's type iterations for BSDEs and, consequently, has nested conditional expectations along the iterations. This work has some connections with our approach but it does not handle the error analysis for the conditional expectations.

Our algorithm works as follows. First, we use Picard's iterations to approximate the solution (Y, Z) of (1.1) by the solutions of a sequence of linear BSDEs converging geometrically fast to (Y, Z) (see El Karoui, Peng and Quenez [START_REF] Karoui | Backward Stochastic Differential Equations in Finance[END_REF] for more details).

Then, since we can link linear BSDEs and linear PDEs, we use the adaptive control variate method proposed by Gobet and Maire [START_REF] Gobet | Sequential control variates for functionals of Markov processes[END_REF]. This method approximates the solutions of linear PDEs, which can be written as expectations of functionals of Markov processes via Feynman-Kac's formula. The authors use a control variate, changing at each step of the algorithm, to reduce the variance of the simulations. The convergence of this technique is also geometric w.r.t. the iterations (see [START_REF] Gobet | Sequential control variates for functionals of Markov processes[END_REF] for more details). As a consequence, we can guess that combining these two methods in order to solve BSDEs will lead to a geometrically converging algorithm. As a difference with previous works, we provide an approximated solution to the semi-linear PDE that has the same smoothness as the exact solution, which is quite satisfactory and potentially useful. As another difference with other Monte Carlo approaches, the final accuracy does not depend much on the number of simulations, but rather on an operator P used for approximating functions. It means that our algorithm benefits of the ability of Monte Carlo methods to solve high dimensional problems, without suffering for their relatively low rate of convergence. The paper is organized as follows. In Section 1, we give some definitions and notations, and recall the link between BSDEs and semilinear PDEs. In section 2, we describe the two main ingredients (Picard's iterations and adaptive control variate) of our algorithm. In Section 3, we define the norm used to measure the convergence of the algorithm, and in Section 4, we present the operator P used in the algorithm to approximate functions, emphasizing the important properties that P should satisfy in order to make our algorithm converge. We give the main convergence result in Section 5, and its proof in Section 6. We present in Section 7 an example of an operator P based on kernel estimators. Finally, in Section 8, we expose some numerical results in the field of financial mathematics.

Definitions and Notations.

• Let C k,l b be the set of continuously differentiable functions φ : (t, x) ∈ [0, T ] × R d with continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t.

x) up to order k (resp. up to order l). The function φ is also bounded. • C k p denotes the set of C k-1 functions with piecewise continuous k-th derivative.

• C k+α , α ∈]0, 1] is the set of C k functions whose k-th derivative is Hölder continuous of order α. • f v function. Let f v : [0, T ] × R d → R denote the following function f v (t, x) = f (t, x, v(t, x), (∂ x vσ)(t, x)),
where f denotes the driver of BSDE (1.1), σ denotes the diffusion coefficient of the SDE satisfied by X and v :

[0, T ] × R d → R is C 1 in space.
• Euler scheme. When it exists, we approximate the solution of (1.2) by its N -time-steps Euler scheme, denoted X N :

∀s ∈ [0, T ], dX N s = b(ϕ(s), X N ϕ(s) )ds + σ(ϕ(s), X N ϕ(s) )dW s , (1.3) 
ϕ(s) := sup{t j : t j ≤ s} and

{0 = t 0 < t 1 < • • • < t N = T } is a regular subdivision of the interval [0, T ].
• Transition density function p(t, x; s, y). If σ is uniformly elliptic, the Markov process X admits a transition probability density p(t, x; s, y). Concerning X N (which is not Markovian except at times (t k ) k ), for any s > 0 X N s has a probability density p N (0, x; s, y) w.r.t. the Lebesgue measure. • Ψ(s, y, g 1 , g 2 , W ) and Ψ N (s, y, g 1 , g 2 , W ). We define the two following functions

Ψ(s, y, g 1 , g 2 , W ) = T s g 1 (r, X s,y r (W ))dr + g 2 (X s,y T (W )), Ψ N (s, y, g 1 , g 2 , W ) = T s g 1 (r, X N,s,y r (W ))dr + g 2 (X N,s,y T (W )),
where X s,y (resp. X N,s,y ) denotes the diffusion process solving (1.2) and starting from y at time s (resp. its approximation using an Euler scheme with N time steps), and W denotes the standard Brownian motion appearing in (1.2) and used to simulate X N , as given in (1.3).

• Constants c i,j (•). For any function φ in C i,j b , c i,j (φ) denotes i,j k,l=0 |∂ k x ∂ l t φ| ∞ . For i = j = 0, we set c 0 (φ) := c 0,0 (φ).
• Functions K(T ). K(•) denotes a generic function non decreasing in T which may depend on d, µ, β, on the coefficients b and σ (through

σ 0 , σ 1 , c 1,3 (σ), c 0,1 (∂ t σ), c 1,3 (b)
) and on other constants appearing in the Appendix A (i.e.

K A.1 (T ), α 1 , α 2 , c A.2 , K A.2 (T ) , c A.3 , K A.3 (T ), c A.4 , K A.4 (T ), c A.5 , K A.5 (T ) and K B.2 (T ))
. The parameter β is defined in Section 2.1, µ is defined in Section 3.2, σ 0 and σ 1 are defined in Hypothesis 1. • Functions K 0 (T ). K 0 (T ) are analogous to K(T ) except that they may also depend on the operator P (through c 1 (K t ) and c 2 (K x ), defined in Section 7). Hypothesis 1.

• The driver f is a bounded Lipschitz continuous function, i.e. for all

(t 1 , x 1 , y 1 , z 1 ), (t 2 , x 2 , y 2 , z 2 ) ∈ [0, T ] × R d × R × R d×q , |f (t 1 , x 1 , y 1 , z 1 ) -f (t 2 , x 2 , y 2 , z 2 )| ≤ L f (|t 1 -t 2 | + |x 1 -x 2 | + |y 1 -y 2 | + |z 1 -z 2 |).
• σ is uniformly elliptic on [0, T ] × R d : there exist two positive constants σ 0 , σ 1 s.t. for any vector ξ and any

(t, x) ∈ [0, T ] × R d σ 0 |ξ| 2 ≤ d i,j=1 [σσ * ] i,j (t, x)ξ i ξ j ≤ σ 1 |ξ| 2 . • Φ is bounded in C 2+α , α ∈]0, 1]. • b and σ are in C 1,3 b and ∂ t σ is in C 0,1 b . 1.2.
Link with semilinear PDE. According to [START_REF] Pardoux | Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential Equations[END_REF]Theorem 3.1] (see also [START_REF] Karoui | Backward Stochastic Differential Equations in Finance[END_REF]Proposition 4.3] and [8, Theorem 2.1]), we can link (Y, Z)-the solution of the BSDE (1.1) -to u, the solution of the following PDE :

∂ t u(t, x) + Lu(t, x) + f (t, x, u(t, x), (∂ x uσ)(t, x)) = 0, u(T, x) = Φ(x), (1.4) 
where L is defined by

Lu(t, x) = 1 2 i,j [σσ * ] ij (t, x)∂ 2 xixj u(t, x) + i b i (t, x)∂ xi u(t, x).
Theorem 1.1 ([8], Theorem 2.1). Under Hypothesis 1, the solution u of PDE (1.4) 

belongs to C 1,2 b . Moreover, (Y t , Z t ) 0≤t≤T -solution of (1.1)-satisfies ∀t ∈ [0, T ], (Y t , Z t ) = (u(t, X t ), ∂ x u(t, X t )σ(t, X t )).
(1.5)

2. Description of the algorithm. As said in the introduction, the current algorithm is based on two ingredients: Picard's iterations and adaptive control variates. We present these ingredients in the following section, before describing the main algorithm in Section 2.3.

2.1. First ingredient: Picard's iterations. ¿From [10, Corollary 2.1], we know that under standard assumptions on Φ and f , the sequence ( Ŷ k , Ẑk ) k recursively defined by ( Ŷ0 = 0, Ẑ0 = 0) and 

-d Ŷ k+1 t = f (t, X t , Ŷ k t , Ẑk t )dt -Ẑk+1 t dW t , Ŷ k+1 T = Φ(X T ) converges to (Y, Z), dP ⊗ dt a.s. (and in H 2 T,β (R) × H 2 T,β (R q )) as k goes to +∞, where H 2 T,β (R q ) := {φ ∈ H 2 T (R q ) such that E T 0 e βt |φ t | 2 dt < ∞} and β is such that 2(1 + T )L f < β.
∂ t ûk+1 + Lû k+1 + f (•, •, ûk , ∂ x ûk σ) = 0 and ûk+1 (T, •) = Φ(•).
It means that the sequence of solutions of linear PDEs (û k , ∂ x ûk ) k converges (in a L 2 norm) to (u, ∂ x u), solution of the semi-linear PDE (1.4).

Second ingredient:

Adaptive control variate. In their work [START_REF] Gobet | Sequential control variates for functionals of Markov processes[END_REF], Gobet and Maire present an adaptive algorithm to solve linear PDEs of type

∂ t v + Lv + g = 0 and v(T, •) = Φ(•).
Thanks to the Feynman-Kac formula, we know that the probabilistic solution of this PDE is v(t, x) = E t,x [Φ(X T ) + T t g(s, X s )ds] = E(Ψ(t, x, g, Φ, W )). Their idea is to compute a sequence of solutions (v k ) k by writing

v k+1 = v k + Monte Carlo evaluations of the error (v -v k ).

The probabilistic representation of the correction term c

k := v -v k is c k (t, x) = v(t, x) -v k (t, x) = E(Ψ(t, x, g + ∂ t v k + Lv k , Φ -v k (T, .), W )).
Their algorithm computes iterative approximations (v k ) k of the global solution v. These approximations rely on the computations of E(Ψ N (t, x, g, Φ, W )) (for data g and Φ possibly different from g +∂ t v k +Lv k and Φ-v k (T, .)) at some points (t i , x i ) 1≤i≤n ⊂ [0, T ] × R d . We briefly recall below their algorithm and the associated convergence result.

Algorithm 1. Begin with v 0 ≡ 0 and assume that an approximated solution

v k of class C 1,2 b is built at step k. • Evaluate c k (t i , x i ) using M independent simulations c M k (t i , x i ) = 1 M M m=1 Ψ N (t i , x i , g + ∂ t v k + L N v k , Φ -v k , W m ) where L N u(s, x) = 1 2 i,j [σσ * ] ij (ϕ(s), x)∂ 2 xixj u(s, x) + i b i (ϕ(s), x)∂ xi u(s, x).
• Build the global solution c M k (•) based on the values [c M k (t i , x i )] 1≤i≤n by using a linear approximation operator:

Pc M k (•) = n i=1 c M k (t i , x i )ω i (•) for some weight functions ω i . Then, get v k+1 = P(v k + c M k ).
(Examples of operator P: interpolation, projection, Kernel-based estimator...)

The main result of their paper is the following Theorem 2.1 (Theorems 3.1 and 3.2, [START_REF] Gobet | Sequential control variates for functionals of Markov processes[END_REF]). Define v-v k

2 2 := sup 1≤i≤n |E((v- v k )(t i , x i ))| 2 + sup 1≤i≤n Var(v k (t i , x i )). Then for any k ≥ 0, one has v -v k+1 2 2 ≤ ρ v -v k 2 2 + C v -Pv 2 2 ( 1 N + 1 M ),
where ρ < 1 (depending on M , N and P) and v -Pv 2 is a suitable norm related to the approximation error v -Pv (that we do not detail).

As for Picard's iterations, the algorithm converges at a geometric rate. Moreover, there is no need to take N and M large (in practice, in their experiments, they take M = 10 to get accurate approximations). The final error is strongly related to the ability of the operator P to approximate well the true solution v. In the following Section, we present an algorithm combining these two ingredients and leading to the same features.

2.3. Algorithm. We recall that we aim at numerically solving BSDE (1.1), which is equivalent to solving the semilinear PDE (1.4). The current algorithm provides an approximation of the solution of this PDE. Then, by simulating the diffusion X through an Euler scheme, we deduce from Equality (1.5) an approximation of the solution of BSDE (1.1). More precisely, let u k (resp. (Y k , Z k )) denote the approximation of u (resp. (Y, Z)) at step k, and let X N denote the approximation of X obtained with a N -time-steps Euler scheme. We write

(Y k t , Z k t ) = (u k (t, X N t ), ∂ x u k (t, X N t )σ(t, X N t )), for all t ∈ [0, T ]. (2.1)
where X N is described in Section 1.1. It remains to build u k+1 . Adaptive control variate. As in Algorithm 1, we write

u k+1 = u k + Monte Carlo evaluations of the error(u -u k ).
Combining Itô's formula applied to u(s, X s ) and to u k (s, X N s ) between t and T and the semilinear PDE (1.4) satisfied by u, we get that the correction term

c k := u -u k is c k (t, x) = E Ψ (t, x, f u , Φ, W ) -Ψ N t, x, -(∂ t + L N )u k , u k (T, .), W |G k .
Remark 2.2. As we will see later (see Remark 2.3), u k depends on several random variables. G k is the σ-algebra generated by the set of all random variables used to build u k . In the above equation, we compute the expectation w.r.t. the law of X and X N and not w.r.t. the law of u k , which is G k measurable. Picard's iteration. The correction term c k cannot be used directly: we have to replace u and ∂ x u (unknown terms) appearing in f by u k and ∂ x u k , as suggested by Picard's contraction principle:

ĉk (t, x) = E Ψ (t, x, f u k , Φ, W ) -Ψ N t, x, -(∂ t + L N )u k , u k , W |G k . (2.2)
We still have to replace the expectation by a Monte Carlo summation, and Ψ by Ψ N . Then, the algorithm computes iterative approximations of (u k ) k of the global solution u at some points (t k i , x k i ) 1≤i≤n ∈ [0, T ] × R d , which may change over the iterations.

Algorithm 2. We begin with u 0 ≡ 0. Assume that an approximated solution u k of class C 1,2 is built at step k.

• Evaluate ĉk (t k i , x k i ) using M independent simulations

ĉM k (t k i , x k i ) = 1 M M m=1 Ψ N t i , x i , f u k + (∂ t + L N )u k , Φ -u k , W m,k,i . • Build the global solution ĉM k (•) based on the values [ĉ M k (t k i , x k i )]
1≤i≤n by using a linear approximation operator:

P k c(•) = n i=1 c(t k i , x k i )ω i (•), (2.3) 
where (ω k i ) i are some weight functions. Deduce the approximation of u at step k + 1

u k+1 (t, x) = P k (u k + ĉM k )(t, x), (2.4) 
where (P k ) k satisfies Hypothesis 2 (defined later in Section 4).

Remark 2.3. Since u k+1 is computed by using (2.4), u k+1 is a random function depending on the random variables needed to compute u k and W m,k,i , 1 ≤ m ≤ M, 1 ≤ i ≤ n, appearing in the computation of ĉM k . Moreover, P k may be random. In such a case, u k+1 also depends on the random variables used to build P k . Definition 2.4 (Definition of the σ-algebra G k ). Let G k+1 define the σ-algebra generated by the set of all random variables used to build u k+1 . Using (2.4) yields

G k+1 = G k ∨ σ(A k , S k ),
where A k is the set of random points used at step k to build the estimator P k , S k := {W m,k,i , 1 ≤ m ≤ M, 1 ≤ i ≤ n}, the set of independent Brownian motions used to simulate the paths X m,k,N (x k i ), and G k is the σ-algebra generated by the set of all random variables used to build u k .

3. Choice of the norm to measure the convergence. The choice of the norm to measure the convergence is not harmless. To prove the convergence of the algorithm we combine results on BSDEs stated in a norm leading to the integration w.r.t. e βs ds (see [START_REF] Karoui | Backward Stochastic Differential Equations in Finance[END_REF]), and results on the bounds for solutions of linear PDEs in weighted Sobolev spaces (leading to the integration w.r.t. e -µ|x| dx), coming from [START_REF] Bensoussan | Applications des inéquations variationnelles en contrôle stochastique[END_REF], and recalled in Theorem B.2. Although rather technical, this section is crucial in order to analyze the convergence of the algorithm and it is interesting for itself.

3.1. Norm of the convergence.

Definition 3.1 (Definition of H µ β (R q )).
For any β > 0, we define

(H µ β (R q ), • µ,β ) the set of processes V : Ω × [0, T ] × R d → R q that are Pr ⊗ B(R d )- measurable (where Pr is the σ-field of predictable subsets of Ω × [0, T ]) and such that V 2 µ,β := E T 0 R d e βs |V s (x)| 2 e -µ|x| dxds < ∞.
We use this norm to measure the error (Y -Y k , Z -Z k ), corresponding to the error we make at step k of the algorithm. Using (1.5) and (2.1), we get

Y -Y k 2 µ,β = E T 0 R d e βs |u(s, X x s ) -u k (s, X N,x s )| 2 e -µ|x| dxds , (3.1) 
and

Z -Z k 2 µ,β = E T 0 R d e βs |(∂ x uσ)(s, X x s ) -(∂ x u k σ)(s, X N,x s )| 2 e -µ|x| dxds . Since u, u k , ∂ x u and ∂ x u k are bounded (see Theorem 1.1 and Hypothesis 2 defined later), Y -Y k 2 µ,β and Z -Z k 2 µ,β are finite.
Remark 3.2. We point out that the expectation appearing in the above definition of Y k -Y 2 µ,β and Z k -Z 2 µ,β is computed w.r.t. the law of X, X N and all the possible random variables used to compute u k .

3.2. Some other useful norms. The following Definitions introduce two norms strongly related to • µ,β . They will be useful in the proof of the main result.

Definition 3.3 (Space H m,µ β ). For any m ≤ 2, β > 0 and µ > 0, let H m,µ β define the space of functions v : [0, T ] × R d → R such that v 2 H m,µ β = T 0 e βs R d e -µ|x| k≤m |∂ k x v(s, x)| 2 dxds < ∞.
For m = 0, we set H 0,µ β = H µ β . Definition 3.4 (Function ν t µ ). For any s, t ∈ [0, T ] and any x, y ∈ R d such that t < s we define ν t µ (s, y) := R d e -µ|x| p(t, x; s, y)dx, where µ is a positive constant.

Definition 3.5 (Space H m,µ β, X ).
For any m ≤ 2, β > 0, µ > 0 and any diffusion process Xs , 0 ≤ s ≤ T starting from x at time 0, let H m,µ β,

X define the space of functions v : [0, T ] × R d → R such that v 2 H m,µ β, X = T 0 e βs R d e -µ|x| k≤m E|∂ k x v(s, Xx s )| 2 dxds < ∞.
For m = 0, we set H 0,µ β,

X = H µ β,
X . By using the definition of ν, we also get v 2

H µ β,X = T 0 e βs R d ν 0 µ (s, y)|v(s, y)| 2 dyds. Remark 3.6. We can interpret v 2 H µ β,X as T 0 e βs E|v(s, X µ s )| 2 ds
where (X µ s ) s stands for (X s ) s starting at time 0 with a random initial law having a density proportional to e -µ|x| .

Remark 3.7. In the above definition of v 

T, d, µ, K A.1 (T ), α 1 , α 2 ) s.t. for every v ∈ L 2 ([0, T ] × R d , e βt dt ⊗ e -µ|x| dx) c v 2 H µ β ≤ v 2 H µ β,X ≤ c v 2 H µ β .
Proof. Proving Proposition 3.8 boils down to showing that there exist two con-

stants c i , i = 1, 2 depending on µ, d, α i s.t. ∀y ∈ R d 1 2 d K(T ) e -µ|y| e c1(s-t) ≤ ν t µ (s, y) ≤ 2 d K(T )e c2(s-t) e -µ|y| . (3.2) 
The r.h.s. (resp. the l.h.s.) of the above inequality ensues from Proposition A.1 and Lemma C.1, with c = 1 2α2 (resp. c = 1 2α1 ). Moreover, we have

c i = dµ 2 αi 2 , i = 1, 2.
Proposition 3.9. Assume σ is uniformly elliptic and b and σ are in

C 0,2 b . For every v ∈ L 2 ([0, T ] × R d , e βt dt ⊗ e -µ|x| dx) it holds v 2 H µ β,X N ≤ K(T ) v 2 H µ β,X . Proof. Since v 2 H µ β,X N = T 0 e βs R d e -µ|x| R d v 2
(s, y)p N (0, x; s, y)dydxds, we apply successively Proposition A.5, Lemma C.1 and the l.h.s. of (3.2).

The following Proposition bounds the solution of a linear PDE in norm

• H µ β,X . Proposition 3.10. Assume σ is uniformly elliptic, σ ∈ C 1,1 b , b is C 1,1
and bounded, and g ∈ L 2 ([0, T ] × R d , e βt ν 0 µ (t, y)dt ⊗ dy). We also assume that v satisfies the linear PDE (∂ t + L)v(t, x) + g(t, x) = 0, with a terminal condition v(T, •) = 0. Then,

v 2 H 2,µ β,X + ∂ t v 2 H µ β,X ≤ K 3.10 (T ) g 2 H µ β,X
, where K 3.10 (T ) depends on K B.2 (T ), β, c, c and T .

Proof. Let v(t, x) := e βt/2 v(t, x). Using the PDE satisfied by v, we get

-∂ t v(t, x) -Lv(t, x) + β 2 v(t, x) = e βt 2 g(t, x), v(T, x) = 0.
Then, we apply Theorem B.2 to v to obtain v 2

H 2,µ β + ∂ t v 2 H µ β ≤ K(T ) g 2 H µ β
, where K(T ) denotes a constant depending on K B.2 (T ) and on β. Proposition 3.8 (applied to v and its derivatives) ends the proof.

4. Approximation operator P. P denotes the sequence of approximation operators (P k ) k satisfying the following Hypothesis. In Section 7, we give an example of such an operator P, based on kernel estimators.

Hypothesis 2 (Hypotheses on (P k ) k ). Let ǫ i (P), i = 1 • • • 4 denote some constants depending on P and tending to 0 when the parameters of P tend to infinity. For any k, the random operator P k satisfies the following properties.

1. Measurability and linearity. P k is linear and it writes (see (2.3))

P k c(•) = n i=1 c(t k i , x k i )ω i (•).
As said in Definition 2.4, the points (t k i , x k i ) i are σ(A k )-measurable and A k is independent of A j for k = j. In addition, the weights w k i (.

) : Ω×[0, T ]×R d → R are measurable w.r.t. σ(A k ) × B([0, T ] × R d ). 2. Regularity. For any function v : [0, T ] × R d → R, P k v ∈ C 1,2 (equivalently, the weights (w k i ) i are C 1,2 w.r.t. (t, x)).

Boundedness. For any bounded function

v : [0, T ] × R d → R, P k v, ∂ t (P k v), ∂ x (P k v) and ∂ 2
x (P k v) are bounded by a constant depending on c 0 (v) and on the parameters of the operator P k (the explicit form of the bounds is not needed). 4. Approximation. P k approximates well a function and its spatial derivatives.

Let v be a C 1,2 random function, independent of A k , from [0, T ]×R d in R. We also assume that v and ∂ x v are bounded (by c 0,1 (v)) and ∀t,

t ′ ∈ [0, T ], ∀x ∈ R d , |∂ x v(t, x) -∂ x v(t ′ , x)| ≤ c 1/2 (v) |t ′ -t|. Then, E v -P k v 2 H µ β,X + E ∂ x v -∂ x (P k v) 2 H µ β,X ≤ ǫ 1 (P)(E v 2 H 2,µ β,X + E ∂ t v 2 H µ β,X ) + ǫ 2 (P)(c 2 1/2 (v) + c 2 0,1 (v)). 5. Let v be a C 1,2 b function from [0, T ] × R d in R. Then E v -P k v 2 H µ β,X + E ∂ x v -∂ x (P k v) 2 H µ β,X ≤ ǫ 3 (P)(c 2 1/2 (v) + c 2 1,2 (v) 
). 6. Stability and centering property for random functions. For any random func-

tion v from [0, T ] × R d in R, one has E P k v 2 H µ β,X + E ∂ x (P k v) 2 H µ β,X ≤ c 4 (P)E v 2 H µ β,X
, where c 4 (P) is a constant depending on P. If E(v(t, x)) = 0,

one has E P k v 2 H µ β,X + E ∂ x (P k v) 2 H µ β,X ≤ ǫ 4 (P)E v 2 H µ β,X . 
5. Main result. The following Theorem states the convergence of (Y k , Z k ) k defined in (2.1) towards (Y, Z) in the • 2 µ,β norm. See Section 6 for a proof of it. Theorem 5.1. Assume that Hypotheses 1 and 2 hold. We also assume that f is a bounded Lipschitz function and Φ ∈ C 2+α b . Then, there exists a constant K(T ) such that

Y -Y k 2 µ,β + Z -Z k 2 µ,β ≤S k + K(T ) c 2 0,2 (u) N , where S k ≤ ηS k-1 + ǫ and η = K(T ) 4(1 + T )L 2 f β + ǫ 1 (P)K 3.10 (T )L 2 f + ǫ 4 (P) M , ǫ = K(T ) ǫ 3 (P)c 2 1,2 (u) + (ǫ 2 (P) + ǫ 3 (P))c 2 0 (f ) + ǫ 4 (P)c 2 0,2 (u) M N + c 4 (P) N 2 (c 2 0 (f ) + c 2 0 (Φ)) .
Corollary 5.2. Under the assumptions of Theorem 5.1, for β and P-parameters large enough so that η < 1, we have

lim sup k→∞ Y -Y k 2 µ,β + Z -Z k 2 µ,β ≤ ǫ 1 -η + K(T ) c 2 0,2 (u) N .
Remark 5.3. Using a sequential Monte Carlo method leads to an error of 1 M appearing in the contraction term η. If we had implemented a non adaptive method (i.e. using only Picard's iterations), M -1 would have appeared in ǫ and this would have led us to choose a much larger M , while practically M = 100 does the trick. A quick analysis of the form of ǫ shows that it is sufficient to take M and N of the same magnitude (taking N = M = 100 gives usually small related errors). Then, the final algorithm accuracy relies heavily on the quality of the operator P, through the convergence rates ǫ 2 (P) and ǫ 3 (P). These rates are related to those obtained in the approximation of a function v and its first partial derivative ∂ x v, when roughly speaking the function v is C 1,2 b and ∂ x v is 1 2 -Hölder in time. 6. Proof of Theorem 5.1. In this section, we assume that Hypotheses 1 and 2 hold.

We want to measure the error

Y -Y k 2 µ,β + Z -Z k 2 µ,β .
To do so, we split the different sources of errors: Euler scheme approximation, Picard's approximation, approximation operator P and Monte Carlo simulations. We prove Theorem 5.1 by combining Proposition 6.1, Equation (6.2), Propositions 6.3, 6.4 and 6.8.

6.1. First source of error: Euler scheme approximation. Proposition 6.1. It holds

Y -Y k 2 µ,β + Z -Z k 2 µ,β ≤c 2 0,2 (u) 
K(T ) N + K(T )( Y -Ỹ k 2 µ,β + Z -Zk 2 µ,β ),
where

( Ỹ k s , Zk s ) := (u k (s, X s ), (∂ x u k σ)(s, X s )).
Proof. We start from (3.1) and we introduce ±u(s, 

X N,x s ) in |u(s, X x s ) -u k (s, X N,x s )|. We get |u(s, X x s ) -u k (s, X N,x s )| 2 ≤ 2|u(s, X x s ) -u(s, X N,x s )| 2 + 2|u(s, X N,x s ) -u k (s, X N,x s )| 2 . Since u is a C 1
-Y k 2 µ,β ≤ c 2 0,1 (u) K(T ) N + 2E u -u k 2 H µ β,X N
. The same technique enables to bound Z -Z k 2 µ,β . Finally, we apply Proposition 3.9 and use the equality

E u -u k 2 H µ β,X = Y -Ỹ k 2
µ,β (see Remark 6.2) to end the proof.

Remark 6.2. We recall that the expectation appearing in the definition of Y -Ỹ k 2 µ,β is computed w.r.t. the law of X and all the variables used to compute u k , whereas the one appearing in the definition of

• 2 H µ β,X is computed w.r.t.
the law of X, that's why we have 

Y -Ỹ k 2 µ,β = E u -u k 2 H µ β,X . u -u k 2 H µ β,X is G k -measurable.

Let us now work on the remaining term

Y -Ỹ k 2 µ,β + Z -Zk 2 µ,
Y k t = Φ(X T ) + T t f (s, X s , Ỹ k-1 s , Zk-1 s )ds - T t Z k s dW s . (6.1) We split Y -Ỹ k 2 µ,β and Z -Zk 2 µ,β by introducing Y k and Z k : Y -Ỹ k 2 µ,β + Z -Zk 2 µ,β ≤2( Y -Y k 2 µ,β + Z -Z k 2 µ,β ) + 2( Y k -Ỹ k 2 µ,β + Z k -Zk 2 µ,β ). (6.2) Let us study Y -Y k 2 µ,β + Z -Z k 2 µ,β . The study of Y k -Ỹ k 2 µ,β and Z k -Zk
Y -Y k 2 µ,β + Z -Z k 2 µ,β ≤ 2(1 + T )L 2 f β Y -Ỹ k-1 2 µ,β + Z -Zk-1 2 µ,β ,
where (Y k , Z k ) is the solution of (6.1).

Proof. 

Let
T 0 e βs E[|Y s -Y k s | 2 G k-1 ]ds ≤ T β T 0 e βs E[|f (s, X s , Y s , Z s ) - f (s, X s , Ỹ k-1 s , Zk-1 s )| 2 G k-1 ]ds. Since f is Lipschitz, T 0 e βs E |Y s -Y k s | 2 G k-1 ds ≤ 2T L 2 f β T 0 e βs E |Y s -Ỹ k-1 s | 2 + |Z s -Zk-1 s | 2 G k-
Y k -Ỹ k 2 µ,β + Z k -Zk 2 µ,β ≤ η( Y -Ỹ k-1 2 µ,β + Z -Zk-1 2 µ,β ) + 3E P k-1 (ĉ k-1 -ĉM k-1 ) 2 H µ β,X +3c 2 0 (σ)E ∂ x P k-1 (ĉ k-1 -ĉM k-1 ) 2 H µ β,X
+ǫ where η = 3ǫ 1 (P)K 3.10 (T )L 2 f and ǫ = K(T )(ǫ 3 (P)c 2 1,2 (u) + (ǫ 2 (P) + ǫ 3 (P))c 2 0 (f )). Before proving Proposition 6.4, we introduce two sequences (u k ) k and (H k ) k . Definition 6.5. ∀k ≥ 1, u k denotes the solution of the linear PDE

(∂ t + L)u k (t, x) + f u k-1 (t, x) = 0, u k (T, x) = Φ(x). Then, ∀t ∈ [0, T ], (Y k t , Z k t ) = (u k (t, X t ), (∂ x u k σ)(t, X t )), where (Y k t , Z k t ) k
is the solution of BSDE (6.1). Definition 6.6. ∀k ≥ 0, H k denotes the solution of the linear PDE

(∂ t + L)H k (t, x) + f u k (t, x) -f u (t, x) = 0, H k (T, x) = 0. (6.3)
Clearly, one has u k = u + H k-1 for any k ≥ 1.

Proof. [Proof of Proposition6.4] Let us work on Y

k -Ỹ k 2 µ,β = E u k -u k 2 H µ β,X . Using (2.4) gives u k -u k = u k -P k-1 (u k-1 + ĉM k-1 ) = u k -P k-1 (u k-1 + ĉk-1 ) + P k-1 (ĉ k-1 -ĉM k-1 ). Since u k-1 + ĉk-1 = u k = u + H k-1 (see (2.
2)), we get

u k -u k = (u -P k-1 u) + (H k-1 -P k-1 H k-1 ) + P k-1 (ĉ k-1 -ĉM k-1 ). (6.4)
Then, since u and its derivatives are bounded and since H k-1 satisfies PDE (6.3), we combine Lemma 6.7 and the features of P k-1 (see Hypothesis 2) to get

E u k -u k 2 H µ β,X ≤ 3ǫ 3 (P)(c 2 1/2 (u) + c 2 1,2 (u)) + 3ǫ 1 (P)(E H k-1 2 H 2,µ β,X +E ∂ t H k-1 2 H µ β,X ) + 3ǫ 2 (P)(c 2 1/2 (H k-1 ) + c 2 0,1 (H k-1 )) + 3E P k-1 (ĉ k-1 -ĉM k-1 ) 2 H µ β,X . (6.5)
We bound the second term on the r.h.s. by using Proposition 3.10:

E H k-1 2 H 2,µ β,X +E ∂ t H k-1 2 H µ β,X ≤ K 3.10 (T )E f u k-1 -f u 2 H µ β,X .
Since f is Lipschitz, the result follows. The proof is similar for

Z k -Zk 2 µ,β , except that (6.5) contains c 2 0 (σ)E ∂ x P k-1 (ĉ k-1 -ĉM k-1 ) 2 H µ β,X
(and not

E P k-1 (ĉ k-1 -ĉM k-1 ) 2 H µ β,X
).

Lemma 6.7 (resp. Proposition B.3) enables to replace constants

c 2 1/2 (H k-1 ) + c 2 0,1 (H k-1 ) (resp. c 2 1/2 (u)) by K(T )c 2 0 (f ). (resp. K(T )(c 2 0 (f ) + c 2 2 (Φ))). Since Φ(•) = u(T, •), we get c 2 2 (Φ) ≤ c 2 0,2 ( 
u) and the result follows.

Lemma 6.7. For all k, H k and ∂ x H k are bounded by a constant of the form K(T )c 0 (f ).

Moreover, for all t, t ′ ∈ [0, T ],

|∂ x H k (t ′ , x) -∂ x H k (t, x)| ≤ c 1/2 (H k ) |t ′ -t| with c 1/2 (H k ) = K(T )c 0 (f )
Proof. [Proof of the lemma] First, we prove that H k and ∂ x H k are bounded. Using Feynman-Kac's formula yields

H k (t, x) = E T t (f u k (s, X t,x s ) -f u (s, X t,x s ))ds|G k . Since f is bounded, we get that H is bounded by 2T c 0 (f ). To prove that ∂ x H k is bounded, we write H k (t, x) = T t
R d fk (s, y)p(t, x; s, y)dyds, where p denotes the transition density of X and fk := f u kf u . We differentiate H k w.r.t. x and we use

Proposition A.2 to get |∂ x H k (t, x)| ≤ 2K(T )c 0 (f ) T t ds √ s-t R d e -c|x-y| 2 s-t dy (s-t) d 2
. Our statement on ∂ x H k readily follows. The second assertion ensues from Proposition B.3.

Fourth source of error: Monte Carlo simulations.

In this section, we study

E P k (ĉ k -ĉM k ) 2 H µ β,X and E ∂ x P k (ĉ k -ĉM k ) 2 H µ β,X . Proposition 6.8. Let ∆c k denote ĉk -ĉM k . It holds E P k (∆c k ) 2 H µ β,X +E ∂ x P k (∆c k ) 2 H µ β,X ≤ǫ 4 (P) K(T ) M ( Y -Ỹ k 2 µ,β + Z -Zk 2 µ,β ) +ǫ 4 (P) K(T ) M N c 2 0,2 (u) + c 4 (P) K(T ) N 2 (c 2 0 (f ) + c 2 0 (Φ)).
. Proof. We split ∆c k into two terms: the bias and the noise

P k (∆c k ) = P k (E(∆c k |G k )) + P k (∆c k -E(∆c k |G k )) := P k (E(∆c k |G k )) + P k (ε k ),
where

ε k := ∆c k -E(∆c k |G k ) = ĉM k -E(ĉ M k |G k ).
The same decomposition holds for ∂ x P k (∆c k ). It remains to apply Propositions 6.9 and 6.10 to end the proof.

6.4.1. Bias terms P k (E(∆c k |G k )) and ∂ x P k (E(∆c k |G k )). Proposition 6.9. It holds E P k (E(∆c k |G k )) 2 H µ β,X + E ∂ x P k (E(∆c k |G k )) 2 H µ β,X ≤ c 4 (P) K(T ) N 2 .
Proof. First, we use the properties of P (see Point 6, Hypothesis 2) to get

E P k (E(∆c k |G k )) 2 H µ β,X +E ∂ x P k (E(∆c k |G k )) 2 H µ β,X ≤ c 4 (P) E(∆c k |G k ) 2 H µ β,X
. Then, we define ∆(s, y)

:= Φ(X s,y T ) -Φ(X N,s,y T ) + T s (f u k (r, X s,y r ) -f u k (r, X N,s,y r 
))dr. We have

E(∆c k |G k ) = ĉk -E(ĉ M k |G k ) = E(∆|G k ).
Let us bound E(∆|G k ). First, we work on the first term:

E[Φ(X s,y T ) - Φ(X N,s,y T )] = R d Φ(y ′ )(p(s, y; T, y ′ )-p N (s, y; T, y ′ ))dy ′ . By using Proposition A.4, we get E[Φ(X s,y T ) -Φ(X N,s,y T )] ≤ K(T ) N √ T -s R d |Φ(y ′ )| 1 (T -s) d 2 exp -cA.4|y ′ -y| 2 T -s dy ′ . Then, |E[Φ(X s,y T ) -Φ(X N,s,y T )]| ≤ c 0 (Φ) K(T ) N √ T -s. The same proof holds for T s (f u k (r, X s,y r ) -f u k (r, X N,s,y r ))dr: E|f u k (r, X s,y r ) -f u k (r, X N,s,y r )| ≤ K(T ) N T -s √ r-s c 0 (f ).
Integrating both sides w.r.t. r between s and T leads to

|E[∆(s, y)|G k ]| ≤ K(T ) N √ T -s(c 0 (Φ) + (T -s)c 0 (f ))
, and the result follows.

6.4.2. Noise terms P k (ε k ) and ∂ x P k (ε k ). Proposition 6.10.

It holds

E P k (ε k ) 2 H µ β,X + E ∂ x P k (ε k ) 2 H µ β,X ≤ ǫ 4 (P) K(T ) M ( c 2 0,2 (u) N + Y -Ỹ k 2 µ,β + Z -Zk 2 µ,β ).
Proof. Since E(ε k |G k ) = 0, the properties of P (Point 6, Hypothesis 2) give

E( P k ε k 2 H µ β,X |G k ) + +E( ∂ x P k (ε k ) 2 H µ β,X |G k ) ≤ ǫ 4 (P)E( ε k 2 H µ β,X |G k ). Since E( ε k 2 H µ β,X |G k ) = T 0 e βs R d ν 0 µ (s, y)E(|ε k (s, y)| 2 |G k )dsdy = T 0 e βs R d ν 0 µ (s, y)Var(ε k (s, y)|G k )dsdy, it remains to bound Var(ε k (s, y)|G k ) = 1 M Var(Ψ N (s, y, f u k + (∂ t + L N )u k , Φ -u k , W )|G k ).
By applying Itô's formula to u(r, X N r ) between s and T and to u k (r, X N r ) between s and T , we get Ψ N (s, y, f

u k +(∂ t +L N )u k , Φ-u k , W ) = (u-u k )(s, y)+ T s f u k (r, X N r )+ (∂ t + L N )u(r, X N r )dr + T s (∂ x u(r, X N r ) -∂ x u k (r, X N r ))σ(ϕ(r), X N ϕ(r) )dW r . Then, Var(ε k (s, y)|G k ) ≤ 2 M E   T s f u k (r, X N r ) + (∂ t + L N )u(r, X N r )dr 2 |G k   + 2 M E   T s (∂ x u(r, X N r ) -∂ x u k (r, X N r ))σ(ϕ(r), X N ϕ(r) )dW r 2 |G k   .
To bound the first term, we introduce ±f u (r, X N r ). Since f is Lipschitz continuous with constant L f and u satisfies (

∂ t + L)u + f = 0, we get |f u k (r, X N r ) + (∂ t + L N )u(r, X N r )| ≤ L f (|u k -u|(r, X N r ) + |∂ x u k σ -∂ x uσ|(r, X N r )) + d i=1 |b i (r, X N r ) -b i (ϕ(r), X N ϕ(r) )||∂ xi u(r, X N r )| + 1 2 d i,j=1 |[σσ * ] ij (r, X N r ) - [σσ * ] ij (ϕ(r), X N ϕ(r) )||∂ 2 xixj u(r, X N r )|.
Since b, σ and u are bounded with bounded derivatives, we get |f u k (r,

X N r ) + (∂ t + L N )u(r, X N r )| ≤ L f (|u -u k |(r, X N r ) + |∂ x u k σ -∂ x uσ|(r, X N r )) + K(T )c 0,2 (u)( T N + |X N r -X N ϕ(r) |). Thus, Var(ε k (s, y)|G k ) ≤ K(T ) M c 2 0,2 (u) N + T s E(Θ(r, X N r )|G k )dr , where Θ(r, z) = |u -u k | 2 (r, z) + |∂ x u -∂ x u k | 2 (r, z). Finally, it remains to compute T 0 e βs R d ν 0 µ (s, y) T s E(Θ(r, X N r )|G k )drdyds.
To do so, we write E(Θ(r, X N r )|G k ) = R d dzΘ(r, z)p N (s, y; r, z) and we use successively the r.h.s. of (3.2), Proposition A.5, Lemma C.1 and the l.h.s. of (3.2).

We get

E( ε k 2 H µ β,X |G k ) ≤ K(T ) M c 2 0,2 (u) N + E( u -u k 2 H µ β,X |G k ) + E( ∂ x u -∂ x u k 2 H µ β,X
|G k ) . It remains to use the ellipticity condition on σ to end the proof.

An example of operator P based on kernel estimators.

In this Section we present an operator satisfying Hypothesis 2. It is based on a non parametric regression technique called local averaging. We refer to Györfi et al [16, Chapter 2] and Härdle [START_REF] Härdle | Applied nonparametric regression[END_REF] for more details on non parametric regression.

Definition 7.1. We approximate a function v(t, x) by

P k v(t, x) = r k n (t, x) f k n (t, x) g(2 d+1 T λ(B)f k n (t, x)), (7.1) 
where • r k n (t, x) = 1 nhth d x n i=1 K t ( t-T k i ht )K x ( x-X k i hx )v(T k i , X k i ), • f k n (t, x) = 1 nhth d x n i=1 K t ( t-T k i ht )K x ( x-X k i hx ), • the points (T k i , X k i ) 1≤i≤n are uniformly distributed on [0, T ] × B where B := [-a, a] d , • λ(B) = (2a) d , • g is such that g(y) =    0 if y < 0, 1 if y > 1, -y 4 + 2y 2 if y ∈ [0, 1]. (7.2) • The kernel function K t is defined on the compact support [-1, 1], bounded, even, non-negative, C 2 p and R K t (u)du = 1. • The kernel function K x is defined on the compact support [-1, 1] d , bounded,
and

such that ∀ y = (y 1 , • • • , y d ) ∈ R d , K x (y) = Π d j=1 K j x (y j ), where for j = 1, • • • , d K j x : R → R is an even non-negative C 2 p function and R K j x (y)dy = 1. • δ n denotes 1 nhth d x
, and T λ(B)δ n << 1.

• h x << a and h t << T 2 . Since we study the convergence when h t and h x tend to 0, we assume in the following that h t ≤ 1 and h x ≤ 1.

Remark 7.2. Since we want to solve the PDE on [0, T ] × R d , we have to choose the interval [-a, a] large enough. Besides, g(2 d+1 T λ(B)f k n (t, x)) is nothing more than a regularizing term. If we had defined P k v(t, x) as r k n (t,x) f k n (t,x) , P k v(t, x) would not have satisfied the regularity property of Hypothesis 2. Now, let us check that P k satisfies the properties of Hypothesis 2. Since we pick new random points at each iteration, the required measurability property is easily satisfied (with

A k := (T k i , X k i ) 1≤i≤n
). The linearity property ensues from the definition of r n and the regularity property comes from the definition of g (see Remark 7.2). Concerning the boundedness, the following Proposition holds Lemma 7.3. For any bounded function v, P k v, ∂ x P k v, ∂ 2 x P k v and ∂ t P k v are bounded by some constants depending on h t , h x , c 0 (v), c 1 (K t ), c 2 (K x ), T and λ(B).

Proof. It is sufficient to note that x -→ g(x)

x is bounded with bounded derivatives up to order 2. To get more details on the bounds, we refer the reader to [START_REF] Labart | BSDE: analysis of the discretisation error and simulation using adaptive Monte Carlo methods; Domain perturbations for American options[END_REF]Proposition 11.8].

The convergence rates are proved in the companion paper [START_REF] Gobet | Solving BSDE with adaptive control variate[END_REF] and are stated in the next theorem.

Theorem 7.4. Assume that the coefficients σ, b are bounded measurable functions on [0, T ] × R d , Lipschitz w.r.t. x and that σ satisfies the ellipticity condition. The sequence (P k ) k satisfy the Hypothesis 2 with:

ǫ 1 (P) = K 0 (T )(h 2 t + h 2 x + T λ(B)δ n h 2 x ), ǫ 2 (P) = K 0 (T )(h t + e -µa a d-1 h x + e -µa √ d + T λ(B)δ n h 2 x ), ǫ 3 (P) = ǫ 1 (P) + ǫ 2 (P), ǫ 4 (P) = K 0 (T ) T λ(B)δ n h 2 x , c 4 (P) = K 0 (T ) h 2 x .
8. Numerical results.

8.1. Choice of the parameters a, n, h x , h t , M and N and complexity of the algorithm. By using the operator P described in Section 7, the constants η and ǫ defined in Theorem 5.1 become

η = K(T ) 4(1+T )L 2 f β + K 0 (T )(1 + K 3.10 (T )L 2 f )(h 2 t + h 2 x + T λ(B)δn h 2 x (1 + M -1 ) and ǫ = K 0 (T )(c 2 1,2 (u) + c 2 0 (f ) + c 2 0 (Φ)) h t + h 2 x + T λ(B)δn h 2 x (1 + (M N ) -1 ) + e -µa a d-1 hx + e -µa √ d + 1 N 2 h 2 x
. From this, we deduce the assumptions to be imposed on the coefficients to get a converging algorithm:

h 2 t ≪ 1, h 2 x ≪ 1, T λ(B)δ n ≪ h 2 x , N -2 ≪ h 2
x , a large enough and M as small as we want. In particular, it means n ≫ T λ(B)h

-1 t h -d-2
x . The complexity of Algorithm 2 is of order K max nM (n + N ), where K max denotes the number of iteration steps. Numerically, one can choose N ≪ n, then the complexity is equivalent to K max M n 2 . We don't need to choose M large, however getting an accurate approximating operator requires a quite large value of n. The limiting factor of the complexity is undoubtedly n.

Application to financial problems.

In this Section we present two applications of Algorithm 2 to financial problems. As presented in [START_REF] Karoui | Backward Stochastic Differential Equations in Finance[END_REF], BSDEs appear in numerous financial problems, like the pricing and the hedging of European and American options.

First, in order to check the convergence of the algorithm, we consider a problem for which the exact solution is known. Let us consider the BSDE (1.1)-(1.2) in dimension d = 1 and with the following parameters: b(t, x) = µ 0 -σ 2 2 , σ(t, x) = σ, f (t, x, y, z) = -ry -µ0-r σ z and Φ(x) = (e x -K) + . Although the driver and the terminal condition are not bounded and Φ is not C 2+α , it seems that the convergence of our algorithm still holds.

We explicitly know the value of the solution (Y, Z) of the BSDE: Y t = F (t, e Xt ) and Z t = ∂ x F (t, e Xt )σe Xt , where F is the price function of a standard call option in the Black and Scholes model.

To bring out the result of Theorem 5.1, we compute in Table 8. divided by 100 (resp. by 4) between the first and the fifth iterations. The huge difference between the two reduction coefficients is due to the fact Z is linked to the "derivative" of Y : it is well known that a function is always better approximated than its derivatives. Moreover, the errors drastically decrease between the first and the second iterations. From iteration 2, the algorithm does not improve so much the result anymore. Figure 8.2 represents the level-sets of the pointwise error on Y at iteration 10. Time goes from 0 to 1 and space varies between 4.5 and 4.81 (which means that the starting point for e X belongs to [90,120]). We notice that the error is quite small, except around the point t = 1 and e x = 100. This corresponds to the fact that at maturity time, the solution Y T is equal to Φ(X T ), which is continuous

(but not C 1 ) in (1, K).
Second, let us consider the pricing of a basket call option in dimension 3 in the Black and Scholes model with the following parameters: b(t, x) = rx, σ(t, x) = σx, f is kept the same as above, and Φ(x) = ( x1+x2+x3 3 -K) + . We aim at computing the price at time 0 and for X 0 = (100, 100, 100). The reference price is given by the approximated formula given in [START_REF] Carmona | Generalizing the Black-Scholes formula to multivariate contingent claims[END_REF]. The option parameters are µ 0 = r = 0.02, σ = 0.2, T = 1, β = 0 and µ = 1. The algorithm parameters are N = M = 100, K max = 10 and 2a = 127 for each space component, i.e. we solve the BSDE on [0, T ] × [55, 182] 3 . As above, we use a truncated Gaussian kernel. Figure 8 on the wealth or portfolio processes. For example, we can use it to hedge with higher interest rate for borrowing, which boils down to solving a non linear BSDE. We can also deal with the pricing and hedging of American options by using a penalization method. Since pricing American options is equivalent to solving a reflected BSDE, we approximate the solutions of the RBSDEs by a sequence of standard BSDEs with penalizations (see [START_REF] Karoui | Reflected solutions of backward SDE's, and related obstacle problems for PDE's[END_REF] for more details). We refer to [START_REF] Labart | BSDE: analysis of the discretisation error and simulation using adaptive Monte Carlo methods; Domain perturbations for American options[END_REF]Chapter 15] for more precisions on these applications, and for other financial applications.

Appendix A. Properties of the transition density of a diffusion process. Proposition A.1 (Aronson [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]). Assume that the coefficients σ and b are bounded measurable functions and that σ is elliptic. There exist positive constants K A.1 (T ), α 1 , α 2 s.t. for any s, t ∈ [0, T ](s > t) and any x, y ∈ R

d K -1 A.1 (T ) (2πα 1 (s -t)) d 2 e -|x-y| 2 2α 1 (s-t) ≤ p(t, x; s, y) ≤ K A.1 (T ) (2πα 2 (s -t)) d 2 e -|x-y| 2 2α 2 (s-t) .
The constant K A.1 (T ) depends on d and on the suprema of the coefficients σ, b, and α 1 and α 2 depend on σ 0 and σ 1 .

Proposition A. < ∞.

For m = 0, H µ := H 0,µ .

• Space L 2 (0, T ; F ). Let (F, • F ) be a Banach space. L 2 (0, T ; F ) defines the space of functions φ from [0, T ] into F s.t. φ 2 L2(0,T ;F ) = T 0 φ(t) 2 F dt < ∞. The following result is a direct application of Bensoussan and Lions [5, Theorem 6.12 page 130].

Theorem B.2 (Bensoussan and Lions [START_REF] Bensoussan | Applications des inéquations variationnelles en contrôle stochastique[END_REF]). Assume σ is uniformly elliptic, σ is in C 1,1 b , b is in C 1,1 , b is bounded and k is bounded from below. We also assume that g ∈ L 2 (0, T ; H µ ). Then, the solution v of (∂ t + L)v(t, x) + k(t, x)v(t, x) + g(t, x) = 0, with terminal condition v(T, •) = 0, is in L 2 (0, T ; H 2,µ ) and ∂ t v ∈ L 2 (0, T ; H µ ). Furthermore, we have Proof. First, we do the proof in the special case Π ≡ 0. Assume without loss of generality that t < t 

(λt ′ + (1 -λ)t)) √ s -t ′ ) -1 dλ ≤ K(T ) √ t ′ -t -1 . T t ′ ds (s-(λt ′ +(1-λ)t)) √ s-t ′ = 2 √ T -t ′ 0 du u 2 +(1-λ)(t ′ -t) = 2 √ (1-λ)(t ′ -t) q T -t ′ (1-λ)(t ′ -t) 0 dv 1+v 2 . Thus, T t ′ ds 1 0 1 (s-(λt ′ +(1-λ)t)) √ s-t ′ dλ ≤ π √ t ′ -t 1 0
dλ √ 1-λ , and the result follows. In the general case, we introduce v 0 (t, x) := v(t, x) -Π(x). v 0 satisfies the PDE (∂ t + L)v 0 (t, x) + LΠ(x) + g(t, x) = 0, with terminal condition v 0 (T, •) = 0. Then, the first part of the Proposition yields that for all t, t ′ ∈ [0, T ], it holds |∂ x v 0 (t ′ , x) -∂ x v 0 (t, x)| ≤ c 1/2 (v 0 ) |t ′ -t|, where c 1/2 (v 0 ) is of the form K(T )(c 0 (g) + c 2 (Π)). Since ∂ x v 0 (t ′ , x) -∂ x v 0 (t, x) = ∂ x v(t ′ , x) -∂ x v(t, x), we get the result.

, 2 b| 2

 22 scheme to get Y -Y k 2 µ,β ≤ c 2 0,1 (u) K(T ) N + 2E uu k

2 µ,β is postponed to the next step. Proposition 6 . 3 .

 263 For any β > 0 and any µ > 0, it holds

Ỹ k 2 µ,β and Z k -Zk 2 µ,β . 6 . 3 .Ỹ k 2 µ,β and Z k -Zk 2 µ

 226322 1 ds. By integrating w.r.t. e -µ|x| dx and taking the expectation, the result follows.It remains to measure the error Yk -Third source of error: approximation operator P. In this part, we split the remaining errors Y k -,β in three error terms (see(6.4) for the decomposition of Y ). The first two are approximation errors connected to P and the last one is studied in the next section. Proposition 6.4. It holds

1 √Fig. 8 . 1 .

 181 Fig. 8.1. Evolution of e(Y k -Y ) and e(Z k -Z) w.r.t. k

|∂ 2

 2 tx p(t, x; s, y)| ≤ K A.3 (T )(st) -d+3 2 e -cA.3 |x-y| 2 s-t , where c A.3 depends on σ 0 , σ 1 and K A.3 (T ) depends on d and on the suprema of σ, b . Proposition A.4 (Gobet and Labart[START_REF] Gobet | Sharp estimates for the convergence of the density of the Euler scheme in small time[END_REF]). Assume σ is uniformly elliptic, b and σ are inC 1,3 b and ∂ t σ is in C 0,1 b . Then, ∀(s, x, y) ∈ [0, T ] × R d × R d ,there exist two positive constants c A.4 and K A.4 (T ) s.t. |p(0, x; s, y)p N (0, x; s, y)| ≤ K A.4 (c A.4 depends on σ 0 , σ 1 and K A.4 (T ) depends on the dimension d, on the upper bounds of σ, b and their derivatives. Proposition A.5 (Gobet and Labart [12]). Assume σ is uniformly elliptic and b and σ are in C 0,2 b . Then, for any x, y ∈ R d , s ∈ [0, T ], there exist two positive constants c A.5 and K A.5 (T ) s.t. p N (0, x; s, y) ≤ K A.5 (T ) s d/2 e -cA.5 |x-y| 2 s , where c A.5 depends on σ 0 , σ 1 and K A.5 (T ) depends on d, on the upper bounds of b, σ and their derivatives. Appendix B. Bounds for linear PDEs in weighted Sobolev spaces. Definition B.1 (Space H m,µ and L 2 (0, T ; F )). • For any m ≤ 2 and µ > 0, H m,µ defines the space of functions v : R d → R s.t. v H m,µ =   k≤m R d e -µ|x| |∂ k v(x)| 2 dx

∂

  t v L2(0,T ;H µ ) + v L2(0,T ;H 2,µ ) ≤ K B.2 (T ) g L2(0,T ;H µ ) . Proposition B.3. Let v be the solution of (∂ t + L)v(t, x) + g(t, x) = 0, with terminal condition v(T, •) = Π(•). Assume g ∈ C 0,0 b , Π ∈ C 2 b and σ and b are in C 1,2 b . Then, for all t, t ′ ∈ [0, T ], it holds |∂ x v(t ′ , x) -∂ x v(t, x)| ≤ c 1/2 (v) |t ′ -t|, where c 1/2 (v) is of the form K(T )(c 0 (g) + c 2 (Π)).

  This sequence of linear BSDEs can be linked to a sequence of linear PDEs: by writing Ŷ k t = ûk (t, X t ) and Ẑk t = ∂ x ûk (t, X t )σ(t, X t ), one has

  Norm equivalence results. The following proposition gives a norm equivalence result between • H µ β,X and • H µ β . It can be compared to Bally and Matoussi[2, Proposition 5.1]. Proposition 3.8 (Norm equivalence). Assume that the coefficients σ, b are bounded measurable functions on [0, T ] × R d , Lipschitz w.r.t. x and that σ satisfies the ellipticity condition. There exist two constants c > 0 and c > 0 (depending on

	3.3.
	2 H m,µ β, X , we compute the expectation w.r.t. the law of X. If v is a random function, v 2 H m,µ β, X is random too.

  us do the proof for the error on Y .

										Using
	a	priori	estimates	(see	[10,	Proposition	2.1])	and	the
	standard	BSDE	(1.1)	leads	to			

  .[START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF] shows the evolution of Y 0 Evolution of the pointwise error on Y (i.e the price of the option at time 0) w.r.t. the number of iterations k, when n = 250, n = 500, n = 1000 and n = 2000. The values of h t and h x depend on the value of n. They are computed with the following formula: h t = ( T n ) 1/3 and h x = 2a( T n ) 1/3 . We notice that the larger is n, the better is the approximation and the faster is the convergence.This algorithm also enables to price and hedge contingent claims with constraints
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Fig. 8.3. Evolution of Y 0 w.r.t. the iterations

  2. [Ladyzenskaja et al.[START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF], pages 376-377] Assume that σ is uniformly elliptic and that the coefficients σ, b are bounded, Hölder continuous of order α in x and α 2 in t. There exist two positive constants c A.2 (depending on σ 0 , σ 1 ) and K A.2 (T ) (depending on d, α and on the suprema of σ, b), s.t. for any s, t ∈ [0, T ] (s > t) and any x, y ∈ R d ≤ |a| + |b| ≤ 2, m = 0, 1, stated by Friedman (see[11, page 261]). We refer to [18, Proposition 6.9] for a detailed proof.Corollary A.3. Assume that σ and b are in C 1,2 b and that σ is uniformly elliptic. It holds for any s, t ∈ [0, T ] (s > t) and any x, y ∈ R d

	|∂ r t ∂ q x p(t, x; s, y)| ≤ K A.2 (T )(s -t) -(d+2r+q) 2	e -cA.2 |x-y| 2 s-t , where 2r + q ≤ 2.
	The following Corollary bounds ∂ 2 tx p(t, x; s, y). It ensues from a result bounding ∂ m+a x ∂ b y p(t, x; s, y), 0

  ′ . Feynman-Kac's formula gives v(t, x) = E[ T t g(s, X s )ds]. Using the transition density function of X s leads to ∂ xi v(t, x) = R d dy T t g(s, y)∂ xi p(t, x; s, y)ds. Then,∂ xi v(t ′ , x) -∂ xi v(t, x) = (s, y)[∂ xi p(t ′ , x; s, y) -∂ xi p(t, x; s, y)]ds , y)∂ xi p(t, x; s, y)ds := A 1 -A 2 .Let us establish upper bounds for A 1 and A 2 .Upper bound for A 2 . Applying Proposition A.2 yields|A 2 | ≤ K(T )c 0 (g) R d dyUpper bound for A 1 . Applying Taylor's formula gives∂ xi p(t ′ , x; s, y) -∂ xi p(t, x; s, y) = (t ′t) |A 1 | ≤ K(T )c 0 (g)(t ′ -t) R d dy -(λt ′ + (1λ)t)) -3 2 dλ. Since λt ′ + (1λ)t ∈ [t, t ′ ], we can write (s -(λt ′ + (1λ)t)) -3 2 ≤ ((s -(λt ′ + (1λ)t)) √ st ′ ) -1 . It remains to prove that

				T	
			dy		
		R d	t ′	
			t ′		
		-			
	t ′ t	ds (s-t) (d+1) 2	e -c |x-y| 2 s-t	≤ K(T )c 0 (g) √	t ′ -t.
	Then, K(T )c 0 (g)(t ′ -t) 0 (s T we T t ′ ds 1 t ′ ds 1 0 ((s -	T t ′ ds	1 0 ∂ 2 tx p(λt ′ + (1 -λ)t, x; s, y)dλ. Corollary A.3: 0 (s-(λt ′ +(1-λ)t)) -d+3 use 1 2 e -c |x-y| 2 (s-(λt ′ +(1-λ)t)) dλ ≤

gt g(s

Appendix C. Technical results. Lemma C.1.

, where c > 0. For any s, t ∈ [0, T ] and any x, y ∈ R d such that t < s, the following assertion holds

Proof. Using a change of variables in

. The last term being bounded, we get the upper bound for I. Since E[e

, the same proof gives the lower bound.