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This note is a complement of the paper ”Solving BSDE with adaptive control variate” H]
It deals with the convergence of the approximating operator P, based on a non parametric
regression technique called local averaging, and defined in Definition [Tl

Although the computations are quite standard (see E], E]), the specificities of the paper are
the following

e the support of the variables is unbounded;
e the error has to be measured using specific Lo-norms;

e errors on the gradient are provided.

1 Definitions

Let us first introduce some notations

o Let le ! be the set of continuously differentiable functions ¢ : (t,x) € [0,T] x R? with
continuous and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. z) up to order k
(resp. up to order ).

° CI’f denotes the set of C*~1 functions whose k-th derivative is piecewise continuous.

e Constants ¢; ;j(-) and C(d). For any function ¢ in Cé’j, ¢i,j(¢) denotes Z%:o OFOL b
For i = j =0, we set co(¢) := co,0(¢). C(d) denotes a constant depending only on d.

e Functions K (7). K(-) denotes a generic function non decreasing in 7" which may depend
on d, u, 3, on the coefficients b and o (through o, o1, ¢13(0), co,1(0¢0), ¢1,3(b)) and on
other constants appearing in H, Appendix A]. The parameter 3 is defined in ﬁ, Section
2.1], p is defined in H, Section 3.2], 0p and o7 are defined in ﬁ, Hypothesis 1]. .

e Functions Ky(T). Ko(T) are analogous to K (T') except that they may also depend on
the operator P (through ¢;(K;) and cy(K,), defined in Section [, Section 7].
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Definition 1.1. We approximate a function v(¢,x) by

rh(t, x
Pru(t,z) = %g(2d+lT)\(B)fS(t,x)), (1.1)

where

t—TF —XFk
o ri(t,x) = #thg Sy Ki(5,5) Ko (5525 )o(TF, XF);

t—Tk —Xk
o fR(t,x)= m > i Kt(h—j)Kx(xh—x'%

e the points (T, X¥); <<, are uniformly distributed on [0, 7] x B where B := By (0,a) =
[—a,a]?, and Ay, denotes the set of points (T, XF)1<i<n;

e A(B) = (2a)";
e and g is such that

0 if y <0,

g9(y) = 1 ify>1, (1.2)
—yt+2y% ify e 0,1];

e The kernel function K; is defined on the compact support [—1, 1], bounded, even, non-
negative, Cp and [, Ky(u)du = 1;

e The kernel function K, is defined on the compact support [—1, 1]d, bounded, and such
that Yy = (y1,- - ,yq) € RY, K.(y) = H;lle%(yj), where for j =1,--- ,d K :R —R

is an even non-negative C’S function and [ K7 (u)du = 1;

e 0, denotes and TA(B)d, < 1;

1
nhyhd?
e h, < aand h; < % Since we study the convergence when h; and h, tend to 0, we

assume in the following that h; <1 and h, < 1.

Remark 1.2. We give some useful bounds for ¢ and its first derivative. The function G :
T — @ is bounded by 2, ¢’ is bounded by 2, z —— % %
bounded by 2. Then, G’ is bounded by 6.

is bounded by 4 and z +— is
Remark 1.3. This choice for the operator P* is not harmless. P* should be continuous
and differentiable. That’s why we multiply % by a regularising function ¢ at the point
2HITN\(B) fk. Since the function f¥(t,2) converges to ﬁ
t €]0,T[ and |z;| < a,i=1,---,d, g4 TN(B)f¥(t,x)) converges to 1 when n goes to occ.
Hence, if f,’f ~ #(B), ka(t,x) = ;ggi;, which is a standard estimator. The function g has
an impact on P* only when f¥ is strictly positive and small (compared to #(B))

when n goes to infinity for

We also introduce the space Hgf}’g



Definition 1.4 (Space H;@’;) Let X denote the R?-valued process solution of

t t
Xi=z+ / b(s, Xs)ds + / o(s, Xs)dWs, (1.3)
0 0

where W is a g-dimensional standard Brownian motion, b : [0,7] x R? — R% and o :
[0,7] x R — R4, For any m < 2,8 > 0, > 0, let Hgg‘(‘ define the space of functions

v:[0,7] x R? — R such that

T
[0l e :/0 e’ /Rd e LN " E|ofu(s, X2)[Pdads < oo.

k<m

Definition 1.5 (Function yﬁ) For any s,t € [0,7] and any z,y € R? such that t < s we
define Vﬁ(s, Y) = Jpa e Mlp(t, z; 5, y)dx, where p is a positive constant and p is the transition
density function of the process X defined by ([L3).

Remark 1.6. Using the definition of v, we also get ||v||fqH = fOT e [oa dyyg(s, y)|v(s, y)|?.
B,X

Hypothesis 1. We assume that the coefficients ¢ and b are Lipschitz and bounded measurable
functions on [0,7] x R?. We also assume that o satisfies the ellipticity condition.

2 Main results

We aim at proving the following Propositions, which correspond to H, Theorem 7.4].

Proposition 2.1. Assume Hypothesisl. We also assume that v is a C12([0, T]| xR%) function
and v and dyv are bounded by co1(v) and v satisfies Vt,t' € [0,T],Vx € RY, |0,v(t,x) —
O v(t',2)| < cqya(v)\/It —t[, where ¢y /5(v) is a positive constant. Then,

k 2 k 2 2 2
E[P"0 — v}y _+E0:(P*) = vllly  <e(P)Ev]a, +Elonly )

+ea(P)( o (v) + 51 (v),

ad—1

where e1(P) = Ko(T)(h} + 2 + D280 e)(P) = Ko(T)(hy + e o8 4 7 Vi 4 2B
Moreover, if v is a C,}’Q function, we get E|P*v — v”fqu +E||0(Pkv) — vaH%,gX < (a(P)+
e2(P))(c} 5 (v) + €F 5(v)).

The proof of Proposition 11 is done in Sections Hl and B. Section Hl (resp. Section H) deals
with the bound for E||PFv — |2, (resp. E| 0, (Pkv) — D3 ).
8,x B.x

Proposition 2.2. Under Hypothesis O, for any random function v from [0,T] x R? to R
independent of Ay, one has

Ko(T)
E 12 N 2 0
E|P UHHZ,X +E|0.(P U)HHZ,X < c;;(P)EHvHHg’X, where c4(P) = 2

If E(v(t,xz)) = 0, one has EHP’%}H?{H + IEH(?;E(PICU)H%{H < E4(P)EHUH§{H , where e4(P) =
B8,X B8,X B,X
KO(T)L(,?‘S” .

The proof of Proposition Z1] is done in Section B

Remark 2.3. For the sake of clearness, we omit the superscript k in the definition of 7* and
fk. From now on, r,, (resp. f,) denotes r¥ (resp. f¥).



3 Properties on f,, r, and other useful results

In this Section, we only recall some technical results on f,, and r, proved in M]

Lemma 3.1 (Lemma 12.13, []). For all (s,y) € [0,T] x R4,

1 1/\Th_ts J 1/\a;j] )
E[f,(s,9)] = ——— Ky (r)drITe_ K7 () dx;, 1
s = 7357 [ G / e, K (31)

and E[fn(s,y)] < #(m. Moreover, for (s,y) € [0,T] x B, E[fn(s,y)] >
(S,y) € [htaT - ht] X Boo(oaa - h:v)y E[fn(s,y)] = T)\I(B) = ?(S,y)-

Proposition 3.2 (Proposition 12.20, M]) Assume v : [0,T] x R — R is a bounded function.
Then, for all (s,y) € [0,T] x R,

1
W’ and fOT’

02 v
(Elra(s, y)])* < %Hye&m(o@mz)},

) < gd+1 C%(Kt)cg(Kﬂc)cg(v)én

Var(r,(s,y TB) 1{yeBuo (0,a4ha)}-

. . c2(K4)c2(Kg)c2(v
Using TA(B)d, << 1 yields E(r2(s,y)) < 2d+2%1{y63w(0,a+hx)}-

Assume v : [0,T] x R* — R* is a continuous function. Then,
9d+1 T s—1r T
E(r, 2 = | arK? / dzK? 2
nss)P < s [k (S0 a2 (S0)
1 T s—r Y—z
Var(r,, <—— | arK? dzk2 (L=2) (. 2).

Using TA(B)d,, << 1 yields

E(r2(s,y)) < %/{)T drK? <3};T> /deKg <%) v (r, 2).

Lemma 3.3 (Lemma 12.17, M]) For all (s,y) € [0,T] x RY, for all i € {1,--- ,d}, the
following assertion holds

C(%(Kt)cg,l(Kx)l
h2(TA(B))2 {y€Boo (0,a+ha)}
Proposition 3.4 (Proposition 12.19, M]) Under Hypothesis O, one has
T
Ko(T)
dse’s dur/° E(Oy. fr 2 o O\
| s [ a0 <t

Lemma 3.5 (Lemma 12.10, [E]) Assume HypothesisIl and let f be a function from [0, T]x R?
into RY, g; a positive bounded function with compact support in [—1,1] and g, a positive
bounded function with compact support in [—1,1]%. Then,

T T o _
| s [ i) [ drgt<3 ) [ 0 (y Z)f(m)é
0 Rd 0 hy Rd hg

T
K(T)CO(gt)CO(gar)hthgcl /0 dreﬁr /Rd dzyo(r, Z)f(?“, Z)

E(Oy, fn(s,y))? < 2%4+3

—pa  d—1




4 Proof of Proposition ZT: term E|P"v — v||,

The study of E|P*v — ’UH?{H will be done in two steps. To do so, we add and substract
B,X

. ’I“n(S, y)

Cn(s,y) == ml{se[O,T]}l{yeB} (4.1)
to the term v — P*v. C,, approximates well v inside the domain [0, 7] x B. We get E|P*v —
of2. < 2E||PFv — Cull3u  +2E[C, — ]|} . The two following sections are devoted to

B,X B,X B,X
the study of E[|Cy, — v[|%, and E[|[P*v — Cp |3 .
5,X 8,X

4.1 Study of E||C,, — v||fqu

Using the definition of C,,, we get

(s, y) —v(s,y)E[fn(s,y
Cn(s,y) —v(s,y) = (5,9) E[f( s )y)][ ( )]l{se[O,T]}l{yeB} —v(8,Y)L{sgo,1)Uye B} -

(4.2)

Then, we split E||C,, —UH?{,L in two terms, by using the bias-variance decomposition: E||C,, —
B,X

o = IECo — )3+ IS6d(Co — )l . where Std(Y(s,3)) = /Var(¥ (5.9))

4.1.1 Study of ||[E(C,, — )%,
B,X

We have

E n\°» - 9 E n\°»
E(Cy —v)(s,y) = rals y)]E[f:Ez zi] (s y)]l{se[O,T]}l{yEB} —v(8,y)1{s¢o,T)Uye B} -

Since E[r,(s,y)] = m Jgdz fOT dro(r, 2) Ky (52) K (5F), we obtain

sS—7r

T —z
Bl (s9)) = v(s 0Bl ()] = i [ 42 | (K () = v(s.a).

We use the second property of Lemma Bl and the equality v(r, 2) —v(s,y) = v(r, z) —v(s, z) +
v(s,2) —v(s,y) to bound [E(Cp —v)(s,y)| by [A1(s,y)| + |A2(s,y)| + [Az(s, y)|, where

Ai(s,y) = f::/dz/ K, ( ) t<8f;r>(v(r,z)—v(s,z)),
Ag(s,y) = f:;/dz/ K, ( > t<8f;r>(v(s,z)—v(s,y)),

A3(5’ y) = U(Sa y)l{si[O,T}inB}'

We analyze each term in the following three Lemmas.

Lemma 4.1. Let us assume Hypothesis Ol and v is a function C' in time. Then,
2 2 2
41 (5, s < Bo(TIRZ0u0l

If Oyv is bounded, we get HAl(s,y)H%{H < Ko(T)c? oV YhZ.
8,X



This Lemma ensues from M, Lemma 12.36].

Lemma 4.2. Let us assume Hypothesis O and v is a function C' in space. There exists a
function Ko(T') such that

142 (s, )7 < Ko(T)hZ[0w0] 3 -

In particular, if Oyv is bounded, we get || Aa(s,y) < K()(T)cg,l(v)h2

||§{S’X fo

Proof. The proof of this Lemma is the same as the one of Lemma BTl except that we split the
difference v(s, z) — v(s,y) as a sum of d terms: v(s,z) — v(s,y) = Zf’l:1 v(8,Z;) —v(8,Zi-1),

where Z; = (21,292, , 2i,Yit1, " »Yd), Vi € {1,-+- ,d}, and Zg = y. For all i € {1,--- ,d},

we get /U(S?Ei) - U(Sazifl) = f;: dla:viv(‘s?Ei‘)? where Ei = (Zla T, Zi—1, l7yi+1, e ayd)‘ u

Lemma 4.3. Assume Hypothesis O and v is bounded. Then, ||As(s, y)||§{gx <
K(T)cg(v)e_%.

Proof. Since v is bounded, we get HAg(s,y)Hzg’X < c2(v) fOT dre®" |5, dyvy)(r,y). To conclude,
we use uB(r,y) < 24K ec2m o1yl (see the proof of ﬂ, Proposition 3.8]). [ |
Combining Lemmas BT B2 yields to the following Proposition.

Proposition 4.4. Let us assume Hypothesis [ and v is a bounded C™' function. Then,

R

[ECn = o)l < Ko(T) (0wl + B210w0]3 ) + (o) K (T)e

Moreover, if Opv and Oyv are bounded, we get |E(Cy,—v) < KO(T)cil(v)(h?—l—hi—i—ef%).

7
B,X
4.1.2  Study of [|Std(C, — )|/
B,X
T
Let us study ||Std(C), — v)H%{gx =/ dseP® [o dyug(s,y)Var(Cn —v)(s,y).
Proposition 4.5. Let us assume Hypothesisl. Then,

|Std(Co = 0) 77 < Ko(T)TAB)Slo] 7 -

77
B,X

If v is bounded, we get ||Std(C,, — v) < Ko(T)cA(v)TA(B),.

[
B,X

. T s
Proof. Using [2) leads to ||Std(C, —v)||§{g’x =/ dse’s [ dyyg(s,y)Var(rn(s,y))W.
We use Lemma BTl to get

T
IStd(Cr = ) < 22d+2(T/\(B))2/0 dseﬁs[gdyV2(s,y)Var(rn(s,y))-

The end of the proof is similar to the one of M, Proposition 12.34]. [



4.1.3 Conclusion

We combine Propositions EE4l and to get the following result

Proposition 4.6. Let us assume Hypothesis 0 and v is a bounded C™' function. Then,
BlICo— ol | < Ko(T)TNBYlulys + 2100l +R210s0l% )+ @K (e .
Moreover, if Qv and 0yv are bounded, we get |E(C,, — U)H%,g < Ko(T)ei 1 (0)(TA(B)6, +
h2+h2 +e Vi), B

4.2 Study of E||P*v — C"H?{gx

By using the definition of P¥v(s,y) and C,,(s,y), we write

ka(svy) - Cn(s7y) = rn(s,y) fn(i y)g(2d+1T)‘(B)fn(say)) - ml{se[O,T}}l{yeB}

Ify ¢ Boo(00 + ha), Pru(s,y) — Cn(s,y) = 0. If y € Boo(0,a + ha) \ B, PFu(s,y) —

Cn(s,y) = 7 Esy;g@d“T)\( )fn(s,y)). Since g is bounded by 1 and |r,(s,y)| <

Fn(5,9) SUD (5 )€ (0.7 % Boo (0,04 ho B V(5 9) ], We get [PRo(s,y) — Cp(s,y)| < co(v). If y € B,

Pru(s,y) — Cn(s,y) = anS y; [g(29FYTN(B) fr(s,y)) — E{}L,ffsyy))]] Let us give two upper bounds

for P*u(s,y) — Cpn(s,y) when y € B.
Lemma 4.7. For y € B, the two following assertions hold

P*u(s,y) — Cu(s, )| < 23TA(B )}ZES y;lfn( y) — Elfu(s, )],

[PEu(s,y) = Cu(s,y)l < 2773(TA(B))[ra(s, 9)l| fu(s,y) — Elfals, »)]l-
Proof. Let g(z) := g(2¢T'TA(B)x) — m. Then, we use the second property of Lemma
B to get (E[fa(s9)]) = 0, and PFu(s,y) — Cu(s,9) = ZEBG(f(59)) = JE[fals9))-

Fn(s,y)

Moreover, Remark[[@leads to |§(f,(s,y))—G(E[fn(s,y)])| < 29T3TN(B)| fuls,y)—E[ful(s, y)]|.

The first result follows. To get the second one, we introduce g(z) := 9ETITNB)D) -y

have GE[fu(s,9)]) = gty and [@(fa(s.v)) — GELfu(s.0)])| < ZH3TAB)| fuls.9)
E{fu(s. 0]

Proposition 4.8. Assume Hypothesis 0 and v is bounded. Then, Ve > 0 such that €2 <
(TA(B))~2, one has

E||P*v — C"H%JZ,X SKO(T)EQ(T)\(B))QHUH?{E"X

+ Ko (T)cg (v)(TA(B))* (¢ +

Tf?B))eXp <_C€21:52(B)> '

Proof. Using Lemma BT, we split P*v(s,y) — Cp(s,y) in two terms, depending on the value
of |fn(s,y) — E[fn(s,y)]| w.r.t. a constant e. When |f,(s,y) — E[f.(s,y)]| < €, we use the
second inequality of Lemma T otherwise we use the first one. Since r,(s,y) < ¢o(v) fn(s,y),
we use [, Proposition 12.16] to get E[P*u(s,y) — Cn(s, y)> < K(T)e2(TA(B))*E[r2(s,y)] +
K(T)A3(v)(e® + %ELB)) exp (—%). We apply Proposition and Lemma to con-
clude. u



4.3 Conclusion

To conclude, we combine Propositions L8 and EER] (with €2 TA( )) We obtain

Proposition 4.9. We assume Hypothesis Ol and v is a bounded CY' function. Then,
k 2 2
B[ PR — olify  <Ko(T)(TAB) ol

Moreover, if ;v and Oyv are bounded, we get ||E(PFv — U)quu < KO(T)C1 1) (TAN(B)oy, +
e 5,X
h? 4+ h% +e Vd).

5 Proof of Proposition ZI: term E|9,(P"v) — 9,v|/%.

We study E[|0,(P*v) — 0,v(12,. componentwise then we deal with E||0y, (P*v) — 05,v(1%,. K

for 1 <14 < d. The study of thls term will be done in two steps. To do so, we add and substract
the term 9,.,C,(s,y) (see ([EI) for the definition of Cy,) to Oy, (P*v)(s,y) — Oz, v(s,y).

_ Ozirn(s,y) _ E[0z, fn(s,9)]
02,Cn(s,y) = (E[fn(s,y)] n( 7y)—(E[fn(S,y)])2> 1ise0,mliyeny (5.1)

We get B0y, (P*v) — 0p,0)1%n < 2E||02,(P*0) — 05,Cnl|%n  + 2E[|0y,Cr — O5,0]|%s - The
B,X B,X B,X
two following sections are devoted to the study of E||0y,C, — z,v[|%,.  and E||0y,(P*v) —
B,X
(93310”\%5’)(.

5.1 Study of E|9,,C,, — 0,,v||5u
8,X

Using the definition of 9,,Cy,(s,y), we get

02,Cn(5,y) — 0z,v(8,Y) = —02,0(8,Y) L {s¢[0,T]Uy¢ B} (5.2)
Ou;1n(8,y) — 0z, 0(8, YE[fu (s, y)] E[ax'fn(say)]>
+ - - — TnlS, : 1 s 1 :
( B[70(5.v) Sl ()2 ) oot oen)
Then, we split E||0,,C,, — 8%.1)\\?{# in two terms, by using the bias-variance decomposition:
5,X
E|0z,Cy, — a:m””?qu = ||E(0x,Cr. — )HHH + [[Std (0, Ch, a:vzv)HHﬂ

5.1.1 Study of |E(9,,Cp — 950)|1 %
8,X

By using (B2), we split E(0,,Cp(s,y) — 0z,v(s,y)) in three terms :

E[axﬂ'n(&y)] - axiv(s,y)E[fn(s,y)] 1 L
E[fn(s,9)] {se[0,71} L{yeBy

Ba(s,y) = _E[TN(*s?y)]%ml{se[o,ﬂ}l{yéfi}v

B1(87 y) =

Bs(s,y) = _amiv(S,y)l{sé[O,T]UygéB}



such that E(9z, Cn(s,y) — 0x,0(s,y)) = Bi(s,y) + Ba(s,y) + Bs(s,y).
We analyze each term in the three following Lemmas.

Lemma 5.1. Let us assume Hypothesis . We also assume v is a bounded C*? function
which satisfies Vt,t' € [0,T],Va € RY, [0v(t, x) — Opv(t',x)| < ¢1/2(v)\/ |t — t]. Then,

adfl

IIBl(S,y)H?{gX < Ko(T)hillf?ivH?{gX + Ko(T)(c] j (v)he + cf(v)e ™ ——

hg )

d—1

If 9%v is bounded, we get HBI(S’y)H?{Z,X < Ko(T)(CO2( v)h2 + 61/2( v)hy + c%( e~ Maahx ).

Proof. Let us recall By(s,y) = E[azirn(s’y)é?fi?iU(;’y)E[fn(&y)]1{se[OT}}1{yeB}- We  have

E(Op,mn(s,y)) = hhld“ TXE) fo dth( )fB dz0,, Ky ( ) (7’ z) We integrate by
parts f dz;(KL) <y1 ;Z) v(r,z) and we get hi <y1hxz'> v(r,z) =
~Ki <y1 a) v(r, ) + Ki (y'+a) v(r, 2 ,) + f dz;0y,0(r, 2) VK (y' Z')

n,

where z; denotes the vector (21, 3 Zim 1 Ys Zik 1y " 5 2d)- The

T s—1r
E[0r,n(5,9)] = Oe,0(5, 0)EL s, 0] = i Jo dEe (52) [ oK (52) 0000, 2) —
T s—r i Z 1 i 4
(9;,31,2)(5 y)] + m fO dr K, (h_t> f[fa,a]d_l dz H;l 1 Kj(ylh J)[ K < >U(T‘, Za) +
K (y'+a) v(r, 24 ,)] Combining this with the bound E[f,(s,y)] > WA(B)
(see  Lemma BIl) leads to the following wupper bound for Bj(s,y)
[Bi(s,y)| < Bii(s,y) + Bi2(s,y) + Bis(s,y), where

B ( )_2d+1/dK<S r)/d <—y Z)[ (r,2) — (s,2)]1 liyen
5,1Y) = —— r 2K, Ox,v(r, 2) — Og,v(s, 2)] Ly )
11 y hthg 0 t h h:L' { E[O7T]} {ye }

t

od+1 T s—r y—z
BIQ(S,y) = W/O dr Ky h /BdZK:v n [amiv(sa Z) - amv(s’y)]l{se[O,T]}l{yeB},

t T

2d+1 T s—r
Bls(s,y)=m—th(v)00(Kx)/o dth( » >(1{|y+aghx}+1{|y—ashx})l{se[ovT}}l{yeB}-

By using M, Lemmas 12.53 and 12.54], we get ||Bll(s,y)||fqH < 03/2(0)K(T)ht,
8,X

HBlg(s,y)H2 - < Ko(T )h2H821)H2 . It remains to bound HBlg(:S y)H?{# We obtain
Ko(T)
| B13(s, y)H < 0(760f0 dseﬁ fB\B(Oa hx)dy’/ (s,y). Since fB\B(Oa hx)dy’/ (s,y) <
K(T)e o= hl‘ a®h, (see ﬂ], Equation (12.5), page 132]), we get ||Bis(s,y)5. <
8,X
Ko(T )CO(U)e pag d— 1
|
Lemma 5.2. Assume Hypothesis O and v is bounded. Then, |Ba(s,y)|5m <
B,X

d—1

Ko(T)cj(v)e o4

Proof. Since v is bounded, we get E[r,(s,y)] < co(v)E[fn(s,y)]. Hence, |Ba(s,y)| <

cﬂv)%l{se[oﬂ}l{yeg}. To conclude, we apply Lemma Bl and Proposition B4 W



Lemma 5.3. Assume Hypothesis 0 and Oyv is bounded. — Then, ||Bs(s,y)|%.
B,X

K(T)cal(v)e_%.

Proof. We refer to the proof of Lemma |

We combine Lemmas BT and to get the following Proposition.

Proposition 5.4. Assume HypothesisOl and v is a C%? CO ! function which satisfies Vt,t' €
[0, T],Vx € RY, |0,0(t, ) — Opu(t', )| < cr2(0)V/It —t|. Then,

d—1
hy
Moreover, z'f 02v is bounded, we get |E(0,,C,, — amiv)H?{gX < Ko(T)(c§o(v) + C%/Q(’U))(hi +

0 @
IE(D; Cro = Oa0) [y - < Ko(T)hzl|Ozvl s+ Ko(T)(ct o (v)he + cgv)e™

ht +e ,uaa + e 7)
5.1.2  Study of [|Std(8,,Cr — 05,v) %
8,X

T S
Let us study ||Std(0,,Cy, — amiv)H?{g’X = dse’® [a dyyg(s,y)Var(ﬁxiCn — 0z,0)(s,Y).

Proposition 5.5. Assume Hypothesis[. It holds

TA(B)d,

2
|td(0e, Co = D203 < Ko(T) = ol

If v is bounded, we get ||Std(0r,Cp — 0z, 0)||3u < Ko(T)cg(v) TA(;Z‘””
5,X g

Proof. We have [|Std(9,,Cr, — 0y,0)[3 = fOTdseﬁs [ dyvp)(s,y)Var(9,,Cn (s, y)).
8,X
Using (5ym1) leads to Var(0,,Cn(s,v))

E[0z. fn(s, 2
2 (e Var@era(s,) + Var (ra(s, ) S0 ) Lacom L yen)

Then, we  use M, Proposition 12.51] and Lemma BI to  get

fOTdseﬁszdyug(s,y)W < Ko(T )T)‘(B = |v H . It remains to bound

Oz, fn(s, .
fOT dse’s [ dyyg(s,y)Var(rn(s,y))%. To do it, we use Lemmas B], and the

proof of Proposition |

IN

5.1.3 Conclusion

We combine Propositions (B4 and to get the following result

Proposition 5.6. Assume HypothesisO and v is a C1? CO ! function which satisfies Vt,t' €
[0, T],Vx € R, |0,0(t, ) — Opu(t', )| < c12(v)\/ |t —t|. Then,
TX(B)d
2 2 2
E||0z,Cr, — @CZUHH;X <Ky(T) <hx + T”) HUHHE’,EL(
2 2 at™t —
+ Ko(T) <cl/2(v)ht + cg(v)e H® - +cpa(v)e \/3> .

Moreover, if 0%v is bounded, we get ||E(0,,C,, — amiv)H?{gX < Ko(T)(c§o(v) + C%/Q(’U))(h% +
T)\( )

€T

+hy e POl 4 TV,

10
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+cg1(v)e va).



5.2 Study of E|d,, (P*v) — 0, Cullf

We have axz (ka)(sa y) -
Oy, (5, y) LEIANBMn () | 92442\ (B)) 21, (s, y) G (UL TA(B) fu (5, ), fu(5, ), where

In(s:y)

G has been introduced in Remark [C2 Using the definition of d,,C,, (see (&) yields

d+1 s
01, (PH0)(5:9) = 1, Cul) = D) ( LEMI) oty ey )
, E[0x, fn
T ra(sy) (2d+2<TA<B>>2amfn<s, Y)C'QITA(B) fuls,y)) — Wl{se ) T]}l{ye(B}))
5.3

Let us study 9y, (P*v)(s,y) — 0z,Cy(s,y) w.r.t. the value of y. The first Lemma ensues from
the Definition of f,.

Lemma 5.7. If y ¢ Boo(0,a + hy), Or,(P*0)(s,y) — 0,Crn(s,y) = 0.

Lemma 5.8. Ify € Bo(0,a + hy) \ B and v is bounded, for alli € {1,--- ,d},

Ko(T)cE(v
E]8$Z(ka)(s,y) - 8$,Cn(s7y)‘2 S %0()

Proof. Let us introduce ?;(S,y) = o hd“ S 1Kt< )|(9le |( ) The in-
dicators in (B3) are null Since g(yy) is bounded by 2 (see Remark
for the bounds for ¢ and its first derivative), %g(ﬁ“TA(B) fn(syy)) <
22T\ (B)co(v) (s, 1) It remains to bound the term containing G'. To do
so, we write G'(y) = # - %. Since |G(y)] < 2 and |ru(s,y)] <

o)), Il )| RN, (5, )] < 2UATNBo(e) 0 s 9)l. - Simce

¢ is bounded by 2, 2d+1T)\(B)\rn(s,y)]g 2d+1?n’\((s;f"(s’y |0z, fr(s,y)| is bounded by

2d+2T)\(B)co(v)|(9xifn(s y)|. To conclude, we use |0y, fn(s,y)| < fn(s,y) and M, Lemma
12.8], which states E(f,,(s,y))? < % |

Lemma 5.9. Ify € B, 9,,(P*v)(s,y) — 02,Cn(s,y) = A(s,y) + B(s,y) + C(s,y) where

o (@HTAB)f(sy) 1
Al#:4) = Ozr(5.9) ( Fals.0) ElGs y)])
Bls,y) = 242 (TA(B))ru(5,9)0s, fu (5, 9) (G (2P TAB) fu(s5,)) — G (24 TAB)EL o5, )]

C(s,y) = 2°T2(TA(B))*ra(s,y)G' @ TAB)E[fa(s,9)]) 05, fu(5,y) — ElDa, fuls, y)]]-
Proof. We add and substract = 22F2(TX(B))?r,(s,9)0s, fn(s,y)G' T ITAB)E[f,(s,9)])
1

in @3) and we uwe GCHTABE[f(sy)) = - memEmreE (e
2HLITN(B)E[fn(s,y)] > 1). u

11



5.2.1 Bound for E[A%(s,y)]
Lemma 5.10. If v is bounded, Ye > 0 such that €2 < (TA(B))~2, we have

E[A%(s, )] < K(T)(TA(B)*@E[dsra(s,y)P
(TA(B))? on, ce’T\(B) on c
(M) KE”TA(B))“" <‘ 5 )*mm P <‘TA<B>an>]'

Proof. Studying A(s,y) boils down to study P*v — C,, where 7, is replaced by Oy, . First,
the second inequality of Lemma BT gives us

|[A(s, )| < 2772(TA(B))? |00, (5, 9)l| fu(5,9) — Elfu(s, )],

and since |0z,7,(s,y)| < co(v)?i(s,y) (?Zn(s,y) has been introduced in the proof of Lemma

BER), we also have |A(s,y)| < 2%3(TA(B))2co(v) fr(5,9)| fu(s,y) — E[fa(s,y)]|. As in the
proof of Proposition EE§ we split A(s,y) in two terms, depending on the value of |f,(s,y) —

E[fn(s,y)]| w.r.t. a constant €g. When |f,,(s,y) — E[fn(s,y)]| < €, we use the first inequality,
otherwise we use the second one. We get

|A(s, )| <27T3(TA(B))?€0|0z,70 (s, y)]
+ 2d+3(T>‘(B))200(v)?Zn(S, y)|fn(5, y) - E[fn(s’ y)] |1{‘fn $,9)—E[fn(s,y)]|>e0}"

We split again the second right hand term of the above inequality by introducing +E[f f (s,y)].
We get

|A(s, y)| < 2973(TA(B))? 60\3a:ﬂ“n( Y|
+23(TA(B)) 2o (0)[ (s, ) — E[Fn (s, )]l fu(5,) - E[fn (8 DL 0 (5,9)=ELfn (s0)] €0}
+ 2d+3(T)\(B))co(v)K o(T)

| (8, 9) = Elfn(8s WIL{1 1 (5,0)Elfn (s,9)][ >0} +

where we have used E(f (5,9))% < % Then, we split the second term of the r.h.s. in

two terms, depending on the value of |f,(s,) — E[?;(S, y)]| w.r.t. a constant ¢;. We obtain
[A(s,9)* < K(T)(TA(B)) €5|0s,7n (s, y) |

+ K(T)(TAB)) ) E" (5, 1) EX(5: 1)1 B )20}  Bsa)2er}

1
+K(DTABP ) (5 + (NP ) B 001 p(oyse

where E(s,y) := |fu(s,y) — E[fu(s,9)]| and E(s,y) := \f (s,9) — [f;(s,y)]] To conclude,
it remains to apply M, Propositions 12.16 and 12.18] (since f;(s y) is almost d,, fy,), Cauchy

Schwarz inequality, to choose e; = ;2 and to use €3 < (TA(B))~2. We get

E[A%(s,y)] < K(T)(TA(B))*E[0z, (s, y))?

062
+ Ko(T)e <U>Lf§2 g4 iy e (- S

B (i) e () il (i)
12

+ Ko(T)cj(v)




Since €2 < (TA(B))~2 and TA(B)d, < 1, we obtain (T\(B))?(e2 + %)2 <€+ %{L&, and
the result follows. |

5.2.2 Bound for E[B%(s,y)]
Lemma 5.11. If v is bounded, Ve > 0 such that €2 < (TA(B))~2, we have

62
E[B*(s,y)] < C(d)(T>\(B))4ﬁﬂﬂ[rn(s,y)]2

R P (e oo (R (e )]

xT

Proof. First, we split B(s,y) in two terms By + By by introducing +E[0,, fn(s,y)]. We get

Bi(s,y) = 2°H(TAN(B)*ra(s,y)(a, fa(s,y) — El0s, fals, y))AG,
Bs(s,y) = 22T A(B))*ra(s, y)E [0, fu(s, y)]AG,

where AG := G'(24TYTN(B) f,.(s,y)) — G' T TAB)E[fn(s,)]).

Bound for Bs. First, we use Lemma B3 to bound E[0y, fn(s,y)]: E[0s, fn(s,y)] < %.
Then, we give two bounds for By. The first one uses that G’ is a Lipschitz function on
(0,00 We get G'(2*1TA(B) fu(s,)) — G' QT TAB)E[fuls,y)]) < CA)TAB)|fuls,y) —
Elfu(s,y))l.  Thus, |Ba(s,9)] < C(d)P2XE 0 (5,)|fuls,y) — Elfuls,9)]l. The second
bound relies on the inequality r,(s,y) < co(v)fn(s,y) and the fact that the function
§(x) == xG'2ITN(B)x) — 2G' (29T TA(B)E[f.(s,y)]) satisfies G(E[f(s,%)]) = 0 and is
a Lipschitz function. We get |Ba(s,y)| < C(d)co(v)T;‘l(B) |fr(s,y) — E[fn(s,v)]|- Once again,
we split Ba(s,y) in two terms, depending on the value of |fn(s,y) — E[fn(s,y)]| w.r.t. a con-
stant €. When | fn(s,yé — E[fn(s,v)]] < €, we use the first inequality, otherwise we use the

second one. By using M4, Proposition 12.16], we get

TA(B))* (TA(B))? 5n ce?TA\(B)
2 2 2 2 2 _
BlBa(s, ) < Bl ()] + KoM/ 2 (@ + e (S
Bound for B;. As for By, we give two bounds for Bi:  |Bi(s,y)]

<
C(d)(TAB))rn(5,9)|0, fu(5,y) — Ela, fuls, 9)llfn(s,y) — Elfuls,p)ll and [Bi(s,y)] <
C(d)CO(v)(TA(B))Z|8:vlfn(8ay) = E[0x, fu(s, Yl fu(s,y) — E[fu(s,y)]|. Then, we split By in
four terms, depending on the value of |f,(s,y) — E[f.(s,y)]| w.r.t. a constant ¢y and on
the value of |0, fn(s,y) — E[Oy, fu(s,y)]| w.r.t. a constant ¢;. We introduce E'(s,y) :=

|0z, fr(8,y) — E[0s, fn(s,y)]|- Then, we get

|Bi(s, y)| <IB1(s,9)11ipr<ey1{m<eo} + |B1($,9) 1 imr<ey 1 {m>e0}
+ [B1(s,¥) L prsey L{m<eo) + 1B W)L {m>e 1 E>eo}-

We bound the first term (resp. the three other terms) by using the first (resp. second) bound
for By. Applying Cauchy-Schwarz inequality, M, Propositions 12.16 and 12.18] and choosing

13
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€ = Z—i yield

E|Bi(s,y)* < K(T)(TA(B))° OH'E[?“n(S’y)]2

h2
TA(B))*e? On ce2T )\
+ K(T)c%(v)( (h%)) 0 (2 + T)\(B))exp < —o= =/ 5n( )>

(i) oo (5 + e o (o)

For € < (TA(B))~2, we get (TA(B))%7% 4 < (TA(B))*7% 4 < (TA}EJ Hence, the first two

terms of the bound for E|B (s, y)|? are smaller than the terms bounding E|Bs(s,y)|?. We end
the proof as in Lemma [ [ ]

4
T k(1)) AP

xT

5.2.3 Bound for E[C?(s,y)]
Lemma 5.12. If v is bounded, Ye > 0 such that €2 < (TA(B))~2, we have

E[C*(s,y)] < K(T)(TA(B))* h2 Elrn(s, y)]”

+ Ko(T)e (v)w [(62 + Tf? B)> exXp (‘CEQIQ(B)) " (Tf?B)) o Gﬁ)] |

T

Proof. We recall C(s,y) = 22W2(TA(B))?ru(s,y)G' QT ITANB)E[fn(5,9)])[0n, fn(5,y) —
E[0z, fn(s,y)]]. We use that G’ is bounded and we split C'(s,y) in two terms depending
on the value of E' = |0y, fun(s,y) — E[0z, fn(s,y)]| w.r.t. a constant e;. We get

C(s,)? < CA)(TAB)) e lrals, y)I* + C(A)(TAB) G (0)| fu s, )P (E)*L(mrs ey

where we have used 7,(s,y) < co(v)fn(s,y). Then, we split the second term of the r.h.s. of
the above inequality by introducing £E[f,(s,y)]. Since E[f,(s,y)] < T}\( 7, e obtain

C(s,y)]> <K(T)(TAB)) eflrn(s,y)* + K(T)(TAB))*c(0)(E') Liprsey
+ K (T)(TAB) (o) (B )L {mrsey | fals,y) — Elfals,y)]1*.

Finally, we split the last term of the above inequality in two terms depending on the value of
E =|fn(s,y) — E[fun(s,y)]| w.r.t. a constant ¢y. We get

C(s. )2 <K (T)TAB)) (s ) + C(d)(TA(B))? (ﬁ T ea) A)(E ) Lipay
(T TAB) AW E Loy EL oy

Combining Cauchy Schwarz inequality,ﬂz, Propositions 12.16 and 12.18], choosing €; = ;—2
and using ¢y < (TA(B))~! and TA(B)d, < 1 lead to the result. [
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5.2.4 Conclusion

Combining Lemmas BEI0, BT and leads to the following Proposition.

Proposition 5.13. If v is bounded, Ye > 0 such that €2 < (TA(B))~2 and y € B, we have

{00 (P40 5) = 9. o)) < CDTAEN* (B0 (5] + Bl

xT

+ K0<T>ca<v>ﬂ—f”2 [(62 7 f? B)> exp (‘CEQIQ(B)) " (Tf?B)) o Gﬁ)] |

T

Combining Lemmas BT, B8 Proposition and following the same proof as M, Theorem
12.50] yields

Proposition 5.14. Assume Hypothesis O and v is bounded. Then, Ye > 0 such that €* <
(TA(B))~2, we have

1
El|0z, (P*v) = Ou Cullfys < Ko(T/(TAB)?E (100l + 5 [0llz ) + ()

A (1 (DAY ()

5.3 Conclusion

We combine Propositions B.T4] and with €2 = %{LB) to get the following result

Proposition 5.15. Assume Hypothesis 0 and v is a C1? — 0 ! function satisfying Vt,t' €
[0,T),Va € RY, [0,0(t,2) — Opv(t, @)| < ¢qy9(v) /[ —t]. Then

TA(B)S
k n
E10x(Po) = Orolfy | < Ko() (12 + T30 ) ol

T
d—1

a0 e
+ 8(T) (ol + Gode U 4 a0+ BT

Moreover, if 0%v is bounded, we get |E(0,,Cy, — amiv)H?{g < Ko(T)(c§o(v) + C%/Q(’U))(hi +

DABIn |y om0 gt 4 e Vi),

6 Proof of Proposition

6.1 Bound for E||73kv||fqu

From the definition of P* and since L;) is bounded by 2, we deduce |PFu(s,y)]? <
224+3(T\(B))?|rn|?(s,y). Then, Proposition gives

E(|P (s, y)*) < 2°M72(TA(B))E(|ral*(5,9)),




Using the definition of || - ||H5,X and Lemma B yields EHkaH?{;X < KO(T)IEHUH?{;X. If v
is unbiased, E(|r,|?(s,y)) = Var(r,(s,y)). Proposition B2 gives

E(|P o (s, y)|) < 2473(TA(B))* Var(ra(s, y)),

= %/g k(- D )/deKi(y};Z)E(M(r,z)),

and we get EHP%H?{ELX < KO(T)T)\(B)(SnEHvH%,ZX.

k 2
6.2 Bound for E|0,(P v)(t,x)HHgX

We  have 9., P*v(s,y) = 2HLTN(B)Oy,rn (5, y)G(2UTYTA(B) fu(s,y))  +
(QUITAB))?1n(5, )0 fu (5, )G 24 TA(B) fu(s,y))  where G has  been
introduced in Remark [L[2A Using the bounds for G and G’, we obtain

102, PF0(s,y)| < 2T2TN(B)|0z, (s, y)| + 6 % 22F2(TA(B))?|ru (s, 9)l10, fa(s, )], and

El|0; (P*0)ll7 < C()(TAB)*(E|Oarallzgs  + (TAB))Ell(rnda fo) 7 )

6.2.1 Bound for (T)\(B))ZEH(?xﬁnH?qu

We write E(|0,,7n(s,y)|?) = (E(@mlrn(s y)))? + Var(dz,7,(s,y)). As in Proposition B2, we
get (B(Drra(s,9)? < kit o drEE (5) [ d2(00 K0)? (52 ) E(2(r, 2)),
Var((0z,7n(s,9))) < mfo drK2< >fB dz (0, K, )* ( o )E(UQ(T z)). Since we
assume TA(B)d,, << 1, Lemma B yields (T\(B ))QEH@ernH g Ko T)EH H Ifois

unbiased, we get (TA(B))?E||dy,rn|%n < Ko(T )TA(B "EHUH
B3,X

6.2.2 Bound for (TA(B))'E|[r,8z, fullu
6,X

First, we develop the product 72 (5,9) (0, fr)*(5,9)
by using the following formulae (O, fn(s,9))? =

h2h2d+2 (Z] 1Kt( 1)(0, Kz )*(4 )"—sz’:l,i;éj Ky (1) K(5) (0, K2) (1) (0s ZKm)(J)) = A+
ra(s,y) = W <Zk=1KtQ(k7)K§(k)U2(k) + 221 1,k Ky (k) K(1) Ky (k) Ko (Dv(k U(l)) =
C + D, where K,(j) := K, (;—TJ> K,(j) = K, (%) (00, K2)(j) = (05, K,) (ﬁfﬂ') and
v(k) := v(Tk, Xi). Developing A x C' leads to

—~

B(A % €)=~y (RE(RA(D) (00, K PR3 (12(1)
+n(n — DE(KF (1) (00, Ko (D)) E(KE (1) K (1)0*(1))) -
Since E(K?(1)(0,,K.)*(1)) is bounded by KO(T)h we get E(A x C) <

T
2
t

A(B)
mfl—é@E(Kfu)(axin)2(1)Kg(1)v 1) + WE( (1)K2(1)v2(1)). We write terms
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of type E(gu(1)gs(1)v2(1)) as gxtgy Jy dron (%) [ dzge (42 ) B3 (r,2)), where g; (vesp
g.) represents a function depending on K; (resp. on K, and 0,K,). Finally, by
using the same procedure for the other terms, we obtain E((0y,fn(s,y))?(r2(s,y))) <

m(g)(;%fo drgt( )fB dzgx( > )E(vz(r, 2)). Applying Lemma yields
(TAB) Elrade fuly < S0l

If v is unbiased, terms like (IE(Klt(l)KJC(1)1)(1)))2 are null and this leads to
Ko(T)TA(B)n
(TA(B) Ellrada: fullfy < %Euv\@gx.
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