Solving BSDE with adaptive control variate. A note on the rate of convergence of the operator \mathcal{P}^k

Emmanuel Gobet*

Céline Labart[†]

April 4, 2009

This note is a complement of the paper "Solving BSDE with adaptive control variate" [1]. It deals with the convergence of the approximating operator \mathcal{P} , based on a non parametric regression technique called local averaging, and defined in Definition 1.1. Although the computations are quite standard (see [3], [2]), the specificities of the paper are

Although the computations are quite standard (see [3], [2]), the specificities of the paper are the following

- the support of the variables is unbounded;
- the error has to be measured using specific L_2 -norms;
- errors on the gradient are provided.

1 Definitions

Let us first introduce some notations

- Let $C_b^{k,l}$ be the set of continuously differentiable functions $\phi:(t,x)\in[0,T]\times\mathbb{R}^d$ with continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to order l).
- C_p^k denotes the set of C^{k-1} functions whose k-th derivative is piecewise continuous.
- Constants $c_{i,j}(\cdot)$ and C(d). For any function ϕ in $C_b^{i,j}$, $c_{i,j}(\phi)$ denotes $\sum_{k,l=0}^{i,j} |\partial_t^k \partial_x^l \phi|_{\infty}$. For i=j=0, we set $c_0(\phi):=c_{0,0}(\phi)$. C(d) denotes a constant depending only on d.
- Functions K(T). $K(\cdot)$ denotes a generic function non decreasing in T which may depend on d, μ , β , on the coefficients b and σ (through σ_0 , σ_1 , $c_{1,3}(\sigma)$, $c_{0,1}(\partial_t \sigma)$, $c_{1,3}(b)$) and on other constants appearing in [1, Appendix A]. The parameter β is defined in [1, Section 2.1], μ is defined in [1, Section 3.2], σ_0 and σ_1 are defined in [1, Hypothesis 1].
- Functions $K_0(T)$. $K_0(T)$ are analogous to K(T) except that they may also depend on the operator \mathcal{P} (through $c_1(K_t)$ and $c_2(K_x)$, defined in Section [1, Section 7].

^{*}Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041 Grenoble cedex 9, FRANCE(emmanuel.gobet@imag.fr).

[†]LPMA, Université Pierre et Marie Curie, Paris, FRANCE (celine.labart@upmc.fr).

Definition 1.1. We approximate a function v(t,x) by

$$\mathcal{P}^{k}v(t,x) = \frac{r_{n}^{k}(t,x)}{f_{n}^{k}(t,x)}g(2^{d+1}T\lambda(B)f_{n}^{k}(t,x)), \tag{1.1}$$

where

- $r_n^k(t,x) = \frac{1}{nh_t h_x^d} \sum_{i=1}^n K_t(\frac{t-T_i^k}{h_t}) K_x(\frac{x-X_i^k}{h_x}) v(T_i^k, X_i^k);$
- $f_n^k(t,x) = \frac{1}{nh_t h_x^d} \sum_{i=1}^n K_t(\frac{t-T_i^k}{h_t}) K_x(\frac{x-X_i^k}{h_x});$
- the points $(T_i^k, X_i^k)_{1 \le i \le n}$ are uniformly distributed on $[0, T] \times B$ where $B := B_{\infty}(0, a) = [-a, a]^d$, and A_k denotes the set of points $(T_i^k, X_i^k)_{1 \le i \le n}$;
- $\lambda(B) = (2a)^d$;
- \bullet and g is such that

$$g(y) = \begin{cases} 0 & \text{if } y < 0, \\ 1 & \text{if } y > 1, \\ -y^4 + 2y^2 & \text{if } y \in [0, 1]; \end{cases}$$
 (1.2)

- The kernel function K_t is defined on the compact support [-1,1], bounded, even, nonnegative, C_p^2 and $\int_{\mathbb{R}} K_t(u) du = 1$;
- The kernel function K_x is defined on the compact support $[-1,1]^d$, bounded, and such that $\forall y = (y_1, \dots, y_d) \in \mathbb{R}^d$, $K_x(y) = \prod_{j=1}^d K_x^j(y_j)$, where for $j = 1, \dots, d$ $K_x^j : \mathbb{R} \to \mathbb{R}$ is an even non-negative C_p^2 function and $\int_{\mathbb{R}} K_x^j(u) du = 1$;
- δ_n denotes $\frac{1}{nh_th^d}$, and $T\lambda(B)\delta_n \ll 1$;
- $h_x \ll a$ and $h_t \ll \frac{T}{2}$. Since we study the convergence when h_t and h_x tend to 0, we assume in the following that $h_t \leq 1$ and $h_x \leq 1$.

Remark 1.2. We give some useful bounds for g and its first derivative. The function $G: x \longmapsto \frac{g(x)}{x}$ is bounded by 2, g' is bounded by 2, $x \longmapsto \frac{g'(x)}{x}$ is bounded by 4 and $x \longmapsto \frac{g(x)}{x^2}$ is bounded by 2. Then, G' is bounded by 6.

Remark 1.3. This choice for the operator \mathcal{P}^k is not harmless. \mathcal{P}^k should be continuous and differentiable. That's why we multiply $\frac{r_n^k}{f_n^k}$ by a regularising function g at the point $2^{d+1}T\lambda(B)f_n^k$. Since the function $f_n^k(t,x)$ converges to $\frac{1}{T\lambda(B)}$ when n goes to infinity for $t \in]0,T[$ and $|x_i| < a,\ i=1,\cdots,d,\ g(2^{d+1}T\lambda(B)f_n^k(t,x))$ converges to 1 when n goes to ∞ . Hence, if $f_n^k \sim \frac{1}{T\lambda(B)}$, $\mathcal{P}^k v(t,x) = \frac{r_n^k(t,x)}{f_n^k(t,x)}$, which is a standard estimator. The function g has an impact on \mathcal{P}^k only when f_n^k is strictly positive and small (compared to $\frac{1}{T\lambda(B)}$).

We also introduce the space $H_{\beta,X}^{m,\mu}$:

Definition 1.4 (Space $H_{\beta,X}^{m,\mu}$). Let X denote the \mathbb{R}^d -valued process solution of

$$X_t = x + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s,$$
 (1.3)

where W is a q-dimensional standard Brownian motion, $b:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$, and $\sigma:[0,T]\times\mathbb{R}^d\to\mathbb{R}^{d\times q}$. For any $m\leq 2,\beta>0,\mu>0$, let $H^{m,\mu}_{\beta,X}$ define the space of functions $v:[0,T]\times\mathbb{R}^d\to\mathbb{R}$ such that

$$||v||_{H^{m,\mu}_{\beta,X}}^2 = \int_0^T e^{\beta s} \int_{\mathbb{R}^d} e^{-\mu|x|} \sum_{k \le m} \mathbb{E}|\partial_x^k v(s, X_s^x)|^2 dx ds < \infty.$$

Definition 1.5 (Function ν_{μ}^{t}). For any $s,t \in [0,T]$ and any $x,y \in \mathbb{R}^{d}$ such that t < s we define $\nu_{\mu}^{t}(s,y) := \int_{\mathbb{R}^{d}} e^{-\mu|x|} p(t,x;s,y) dx$, where μ is a positive constant and p is the transition density function of the process X defined by (1.3).

Remark 1.6. Using the definition of ν , we also get $||v||_{H^{\mu}_{\beta,X}}^2 = \int_0^T e^{\beta s} \int_{\mathbb{R}^d} dy \nu_{\mu}^0(s,y) |v(s,y)|^2$.

Hypothesis 1. We assume that the coefficients σ and b are Lipschitz and bounded measurable functions on $[0,T]\times\mathbb{R}^d$. We also assume that σ satisfies the ellipticity condition.

2 Main results

We aim at proving the following Propositions, which correspond to [1, Theorem 7.4].

Proposition 2.1. Assume Hypothesis 1. We also assume that v is a $C^{1,2}([0,T]\times\mathbb{R}^d)$ function and v and $\partial_x v$ are bounded by $c_{0,1}(v)$ and v satisfies $\forall t,t'\in[0,T], \forall x\in\mathbb{R}^d, \ |\partial_x v(t,x)-\partial_x v(t',x)|\leq c_{1/2}(v)\sqrt{|t'-t|}$, where $c_{1/2}(v)$ is a positive constant. Then,

$$\mathbb{E}\|\mathcal{P}^{k}v - v\|_{H_{\beta,X}^{\mu}}^{2} + \mathbb{E}\|\partial_{x}(\mathcal{P}^{k}v) - \partial_{x}v\|_{H_{\beta,X}^{\mu}}^{2} \leq \epsilon_{1}(\mathcal{P})(\mathbb{E}\|v\|_{H_{\beta,X}^{2,\mu}}^{2} + \mathbb{E}\|\partial_{t}v\|_{H_{\beta,X}^{\mu}}^{2}) + \epsilon_{2}(\mathcal{P})(c_{1/2}^{2}(v) + c_{0,1}^{2}(v)),$$

where $\epsilon_1(\mathcal{P}) = K_0(T)(h_t^2 + h_x^2 + \frac{T\lambda(B)\delta_n}{h_x^2}), \ e_2(\mathcal{P}) = K_0(T)(h_t + e^{-\mu a}\frac{a^{d-1}}{h_x} + e^{-\frac{\mu a}{\sqrt{d}}} + \frac{T\lambda(B)\delta_n}{h_x^2}).$ Moreover, if v is a $C_b^{1,2}$ function, we get $\mathbb{E}\|\mathcal{P}^k v - v\|_{H_{\beta,X}^{\mu}}^2 + \mathbb{E}\|\partial_x(\mathcal{P}^k v) - \partial_x v\|_{H_{\beta,X}^{\mu}}^2 \leq (\epsilon_1(\mathcal{P}) + \epsilon_2(\mathcal{P}))(c_{1/2}^2(v) + c_{1/2}^2(v)).$

The proof of Proposition 2.1 is done in Sections 4 and 5. Section 4 (resp. Section 5) deals with the bound for $\mathbb{E}\|\mathcal{P}^k v - v\|_{H^{\mu}_{a,V}}^2$ (resp. $\mathbb{E}\|\partial_x(\mathcal{P}^k v) - \partial_x v\|_{H^{\mu}_{a,V}}^2$).

Proposition 2.2. Under Hypothesis 1, for any random function v from $[0,T] \times \mathbb{R}^d$ to \mathbb{R} independent of A_k , one has

$$\mathbb{E}\|\mathcal{P}^k v\|_{H^{\mu}_{\beta,X}}^2 + \mathbb{E}\|\partial_x(\mathcal{P}^k v)\|_{H^{\mu}_{\beta,X}}^2 \le c_4(\mathcal{P})\mathbb{E}\|v\|_{H^{\mu}_{\beta,X}}^2, \text{ where } c_4(\mathcal{P}) = \frac{K_0(T)}{h_*^2}.$$

If $\mathbb{E}(v(t,x)) = 0$, one has $\mathbb{E}\|\mathcal{P}^k v\|_{H^{\mu}_{\beta,X}}^2 + \mathbb{E}\|\partial_x(\mathcal{P}^k v)\|_{H^{\mu}_{\beta,X}}^2 \le \epsilon_4(\mathcal{P})\mathbb{E}\|v\|_{H^{\mu}_{\beta,X}}^2$, where $\epsilon_4(\mathcal{P}) = K_0(T)\frac{T\lambda(B)\delta_n}{h_x^2}$.

The proof of Proposition 2.1 is done in Section 6.

Remark 2.3. For the sake of clearness, we omit the superscript k in the definition of r_n^k and f_n^k . From now on, r_n (resp. f_n) denotes r_n^k (resp. f_n^k).

3 Properties on f_n , r_n and other useful results

In this Section, we only recall some technical results on f_n and r_n proved in [4].

Lemma 3.1 (Lemma 12.13, [4]). For all $(s, y) \in [0, T] \times \mathbb{R}^d$,

$$\mathbb{E}[f_n(s,y)] = \frac{1}{T\lambda(B)} \int_{-1\sqrt{\frac{s}{h_t}}}^{1\wedge\frac{T-s}{h_t}} K_t(r) dr \Pi_{j=1}^d \int_{-1\sqrt{\frac{a-y_j}{h_x}}}^{1\wedge\frac{a-y_j}{h_x}} K_x^j(x_j) dx_j, \tag{3.1}$$

and $\mathbb{E}[f_n(s,y)] \leq \frac{1}{T\lambda(B)}$. Moreover, for $(s,y) \in [0,T] \times B$, $\mathbb{E}[f_n(s,y)] \geq \frac{1}{T\lambda(B)2^{d+1}}$, and for $(s,y) \in [h_t, T - h_t] \times B_{\infty}(0,a-h_x)$, $\mathbb{E}[f_n(s,y)] = \frac{1}{T\lambda(B)} = \overline{f}(s,y)$.

Proposition 3.2 (Proposition 12.20, [4]). Assume $v : [0,T] \times \mathbb{R}^d \to \mathbb{R}$ is a bounded function. Then, for all $(s,y) \in [0,T] \times \mathbb{R}^d$,

$$(\mathbb{E}[r_n(s,y)])^2 \le \frac{c_0^2(v)}{(T\lambda(B))^2} \mathbf{1}_{\{y \in B_\infty(0,a+h_x)\}},$$

$$Var(r_n(s,y)) \le 2^{d+1} \frac{c_0^2(K_t)c_0^2(K_x)c_0^2(v)\delta_n}{T\lambda(B)} \mathbf{1}_{\{y \in B_\infty(0,a+h_x)\}}.$$

Using $T\lambda(B)\delta_n << 1$ yields $\mathbb{E}(r_n^2(s,y)) \leq 2^{d+2} \frac{c_0^2(K_t)c_0^2(K_x)c_0^2(v)}{(T\lambda(B))^2} \mathbf{1}_{\{y \in B_\infty(0,a+h_x)\}}$. Assume $v: [0,T] \times \mathbb{R}^d \to \mathbb{R}^+$ is a continuous function. Then,

$$\mathbb{E}(r_n(s,y))^2 \le \frac{2^{d+1}}{h_t h_x^d (T\lambda(B))^2} \int_0^T dr K_t^2 \left(\frac{s-r}{h_t}\right) \int_B dz K_x^2 \left(\frac{y-z}{h_x}\right) v^2(r,z),$$

$$Var(r_n(s,y)) \le \frac{1}{n h_t^2 h_x^{2d} T\lambda(B)} \int_0^T dr K_t^2 \left(\frac{s-r}{h_t}\right) \int_B dz K_x^2 \left(\frac{y-z}{h_x}\right) v^2(r,z).$$

Using $T\lambda(B)\delta_n \ll 1$ yields

$$\mathbb{E}(r_n^2(s,y)) \leq \frac{2^{d+2}}{h_t h_x^d (T\lambda(B))^2} \int_0^T dr K_t^2 \left(\frac{s-r}{h_t}\right) \int_B dz K_x^2 \left(\frac{y-z}{h_x}\right) v^2(r,z).$$

Lemma 3.3 (Lemma 12.17, [4]). For all $(s,y) \in [0,T] \times \mathbb{R}^d$, for all $i \in \{1, \dots, d\}$, the following assertion holds

$$\mathbb{E}(\partial_{x_i} f_n(s,y))^2 \le 2^{2d+3} \frac{c_0^2(K_t)c_{0,1}^2(K_x)}{h_x^2(T\lambda(B))^2} \mathbf{1}_{\{y \in B_\infty(0,a+h_x)\}}.$$

Proposition 3.4 (Proposition 12.19, [4]). Under Hypothesis 1, one has

$$\int_0^T ds e^{\beta s} \int_B dy \nu^0(s, y) |\mathbb{E}(\partial_{x_i} f_n(s, y))|^2 \le \frac{K_0(T)}{h_x(T\lambda(B))^2} e^{-\mu a} a^{d-1}.$$

Lemma 3.5 (Lemma 12.10, [4]). Assume Hypothesis 1 and let f be a function from $[0,T] \times \mathbb{R}^d$ into \mathbb{R}^+ , g_t a positive bounded function with compact support in [-1,1] and g_x a positive bounded function with compact support in $[-1,1]^d$. Then,

$$\int_0^T ds e^{\beta s} \int_{\mathbb{R}^d} dy \nu^0(s,y) \int_0^T dr g_t \left(\frac{s-r}{h_t}\right) \int_{\mathbb{R}^d} dz g_x \left(\frac{y-z}{h_x}\right) f(r,z) \le K(T) c_0(g_t) c_0(g_x) h_t h_x^d \int_0^T dr e^{\beta r} \int_{\mathbb{R}^d} dz \nu^0(r,z) f(r,z).$$

4 Proof of Proposition 2.1: term $\mathbb{E}\|\mathcal{P}^k v - v\|_{H^{\mu}_{\beta,X}}^2$

The study of $\mathbb{E}\|\mathcal{P}^k v - v\|_{H^{\mu}_{\beta,X}}^2$ will be done in two steps. To do so, we add and substract

$$C_n(s,y) := \frac{r_n(s,y)}{\mathbb{E}[f_n(s,y)]} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}}$$
(4.1)

to the term $v - \mathcal{P}^k v$. C_n approximates well v inside the domain $[0,T] \times B$. We get $\mathbb{E} \| \mathcal{P}^k v - v \|_{H^{\mu}_{\beta,X}}^2 \leq 2\mathbb{E} \| \mathcal{P}^k v - C_n \|_{H^{\mu}_{\beta,X}}^2 + 2\mathbb{E} \| C_n - v \|_{H^{\mu}_{\beta,X}}^2$. The two following sections are devoted to the study of $\mathbb{E} \| C_n - v \|_{H^{\mu}_{\beta,X}}^2$ and $\mathbb{E} \| \mathcal{P}^k v - C_n \|_{H^{\mu}_{\beta,X}}^2$.

4.1 Study of $\mathbb{E}||C_n - v||^2_{H^{\mu}_{\beta, X}}$

Using the definition of C_n , we get

$$C_n(s,y) - v(s,y) = \frac{r_n(s,y) - v(s,y)\mathbb{E}[f_n(s,y)]}{\mathbb{E}[f_n(s,y)]} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}} - v(s,y) \mathbf{1}_{\{s \notin [0,T] \cup y \notin B\}}.$$
(4.2)

Then, we split $\mathbb{E}\|C_n - v\|_{H^{\mu}_{\beta,X}}^2$ in two terms, by using the bias-variance decomposition: $\mathbb{E}\|C_n - v\|_{H^{\mu}_{\beta,X}}^2 = \|\mathbb{E}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2 + \|\text{Std}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2$, where $\text{Std}(Y(s,y)) = \sqrt{\text{Var}(Y(s,y))}$.

4.1.1 Study of $\|\mathbb{E}(C_n - v)\|_{H^{\mu}_{\beta, \mathbf{v}}}^2$

We have

$$\mathbb{E}(C_n - v)(s, y) = \frac{\mathbb{E}[r_n(s, y)] - v(s, y)\mathbb{E}[f_n(s, y)]}{\mathbb{E}[f_n(s, y)]} \mathbf{1}_{\{s \in [0, T]\}} \mathbf{1}_{\{y \in B\}} - v(s, y) \mathbf{1}_{\{s \notin [0, T] \cup y \notin B\}}.$$

Since $\mathbb{E}[r_n(s,y)] = \frac{1}{T\lambda(B)h_th_x^d} \int_B dz \int_0^T dr v(r,z) K_x(\frac{y-z}{h_x}) K_t(\frac{s-r}{h_t})$, we obtain

$$\mathbb{E}[r_n(s,y)] - v(s,y)\mathbb{E}[f_n(s,y)] = \frac{1}{T\lambda(B)h_t h_x^d} \int_B dz \int_0^T dr K_x(\frac{y-z}{h_x}) K_t(\frac{s-r}{h_t}) (v(r,z) - v(s,y)).$$

We use the second property of Lemma 3.1 and the equality v(r,z) - v(s,y) = v(r,z) - v(s,z) + v(s,z) - v(s,y) to bound $|\mathbb{E}(C_n - v)(s,y)|$ by $|A_1(s,y)| + |A_2(s,y)| + |A_3(s,y)|$, where

$$A_{1}(s,y) := \frac{2^{d+1}}{h_{t}h_{x}^{d}} \int_{B} dz \int_{0}^{T} dr K_{x} \left(\frac{y-z}{h_{x}}\right) K_{t} \left(\frac{s-r}{h_{t}}\right) (v(r,z) - v(s,z)),$$

$$A_{2}(s,y) := \frac{2^{d+1}}{h_{t}h_{x}^{d}} \int_{B} dz \int_{0}^{T} dr K_{x} \left(\frac{y-z}{h_{x}}\right) K_{t} \left(\frac{s-r}{h_{t}}\right) (v(s,z) - v(s,y)),$$

$$A_{3}(s,y) := v(s,y) \mathbf{1}_{\{s \notin [0,T] \cup y \notin B\}}.$$

We analyze each term in the following three Lemmas.

Lemma 4.1. Let us assume Hypothesis 1 and v is a function C^1 in time. Then,

$$||A_1(s,y)||_{H^{\mu}_{\beta,X}}^2 \le K_0(T)h_t^2||\partial_t v||_{H^{\mu}_{\beta,X}}^2,$$

If $\partial_t v$ is bounded, we get $||A_1(s,y)||^2_{H^{\mu}_{\beta,X}} \le K_0(T)c^2_{1,0}(v)h^2_t$.

This Lemma ensues from [4, Lemma 12.36].

Lemma 4.2. Let us assume Hypothesis 1 and v is a function C^1 in space. There exists a function $K_0(T)$ such that

$$||A_2(s,y)||_{H^{\mu}_{\beta,X}}^2 \le K_0(T)h_x^2||\partial_x v||_{H^{\mu}_{\beta,X}}^2.$$

In particular, if $\partial_x v$ is bounded, we get $||A_2(s,y)||^2_{H^{\mu}_{\beta,X}} \leq K_0(T)c^2_{0,1}(v)h^2_x$.

Proof. The proof of this Lemma is the same as the one of Lemma 4.1, except that we split the difference v(s,z)-v(s,y) as a sum of d terms: $v(s,z)-v(s,y)=\sum_{i=1}^d v(s,\overline{z}_i)-v(s,\overline{z}_{i-1}),$ where $\overline{z}_i=(z_1,z_2,\cdots,z_i,y_{i+1},\cdots,y_d), \forall i\in\{1,\cdots,d\},$ and $\overline{z}_0=y.$ For all $i\in\{1,\cdots,d\},$ we get $v(s,\overline{z}_i)-v(s,\overline{z}_{i-1})=\int_{y_i}^{z_i}dl\partial_{x_i}v(s,\overline{z}_i^l),$ where $\overline{z}_i^l=(z_1,\cdots,z_{i-1},l,y_{i+1},\cdots,y_d).$

Lemma 4.3. Assume Hypothesis 1 and v is bounded. Then, $||A_3(s,y)||^2_{H^{\mu}_{\beta,X}} \le K(T)c_0^2(v)e^{-\frac{\mu a}{\sqrt{d}}}$.

Proof. Since v is bounded, we get $||A_3(s,y)||^2_{H^\mu_{\beta,X}} \le c_0^2(v) \int_0^T dr e^{\beta r} \int_{B^c} dy \nu_\mu^0(r,y)$. To conclude, we use $\nu_\mu^0(r,y) \le 2^d K e^{c_2 r} e^{-\mu|y|}$ (see the proof of [1, Proposition 3.8]).

Combining Lemmas 4.1, 4.2, 4.3 yields to the following Proposition.

Proposition 4.4. Let us assume Hypothesis 1 and v is a bounded $C^{1,1}$ function. Then,

$$\|\mathbb{E}(C_n - v)\|_{H_{\beta, X}^{\mu}}^2 \le K_0(T)(h_t^2 \|\partial_t v\|_{H_{\beta, X}^{\mu}}^2 + h_x^2 \|\partial_x v\|_{H_{\beta, X}^{\mu}}^2) + c_0^2(v)K(T)e^{-\frac{\mu a}{\sqrt{d}}}.$$

Moreover, if $\partial_t v$ and $\partial_x v$ are bounded, we get $\|\mathbb{E}(C_n-v)\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)c_{1,1}^2(v)(h_t^2+h_x^2+e^{-\frac{\mu a}{\sqrt{d}}})$.

4.1.2 Study of $\|\mathbf{Std}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2$

Let us study $\|\operatorname{Std}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2 = \int_0^T ds e^{\beta s} \int_{\mathbb{R}^d} dy \nu_{\mu}^0(s,y) \operatorname{Var}(C_n - v)(s,y).$

Proposition 4.5. Let us assume Hypothesis 1. Then,

$$||Std(C_n - v)||^2_{H^{\mu}_{\beta,X}} \le K_0(T)T\lambda(B)\delta_n ||v||^2_{H^{\mu}_{\beta,X}}.$$

If v is bounded, we get $||Std(C_n - v)||_{H^{\mu}_{\beta,X}}^2 \le K_0(T)c_0^2(v)T\lambda(B)\delta_n$.

Proof. Using (4.2) leads to $\|\text{Std}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2 = \int_0^T ds e^{\beta s} \int_B dy \nu_{\mu}^0(s,y) \text{Var}(r_n(s,y)) \frac{1}{\mathbb{E}[f_n(s,y)]^2}$. We use Lemma 3.1 to get

$$\|\operatorname{Std}(C_n - v)\|_{H^{\mu}_{\beta,X}}^2 \le 2^{2d+2} (T\lambda(B))^2 \int_0^T ds e^{\beta s} \int_B dy \nu_{\mu}^0(s,y) \operatorname{Var}(r_n(s,y)).$$

The end of the proof is similar to the one of [4, Proposition 12.34].

4.1.3 Conclusion

 $h_t^2 + h_r^2 + e^{-\frac{\mu a}{\sqrt{d}}}$).

We combine Propositions 4.4 and 4.5 to get the following result

Proposition 4.6. Let us assume Hypothesis 1 and v is a bounded $C^{1,1}$ function. Then,

$$\mathbb{E}\|C_{n}-v\|_{H^{\mu}_{\beta,X}}^{2} \leq K_{0}(T)(T\lambda(B)\delta_{n}\|v\|_{H^{\mu}_{\beta,X}}^{2} + h_{t}^{2}\|\partial_{t}v\|_{H^{\mu}_{\beta,X}}^{2} + h_{x}^{2}\|\partial_{x}v\|_{H^{\mu}_{\beta,X}}^{2}) + c_{0}^{2}(v)K(T)e^{-\frac{\mu a}{\sqrt{d}}}.$$
Moreover, if $\partial_{t}v$ and $\partial_{x}v$ are bounded, we get $\|\mathbb{E}(C_{n}-v)\|_{H^{\mu}_{\beta,X}}^{2} \leq K_{0}(T)c_{1,1}^{2}(v)(T\lambda(B)\delta_{n} + t)$

4.2 Study of $\mathbb{E}\|\mathcal{P}^k v - C_n\|_{H^{\mu}_{\sigma, \mathbf{v}}}^2$

By using the definition of $\mathcal{P}^k v(s,y)$ and $C_n(s,y)$, we write

$$\mathcal{P}^k v(s,y) - C_n(s,y) = r_n(s,y) \left[\frac{1}{f_n(s,y)} g(2^{d+1} T \lambda(B) f_n(s,y)) - \frac{1}{\mathbb{E}[f_n(s,y)]} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}} \right].$$

If $y \notin B_{\infty}(0, a + h_x)$, $\mathcal{P}^k v(s, y) - C_n(s, y) = 0$. If $y \in B_{\infty}(0, a + h_x) \setminus B$, $\mathcal{P}^k v(s, y) - C_n(s, y) = \frac{r_n(s, y)}{f_n(s, y)} g(2^{d+1} T \lambda(B) f_n(s, y))$. Since g is bounded by 1 and $|r_n(s, y)| \le f_n(s, y) \sup_{(s, y) \in [0, T] \times B_{\infty}(0, a + h_x) \setminus B} |v(s, y)|$, we get $|\mathcal{P}^k v(s, y) - C_n(s, y)| \le c_0(v)$. If $y \in B$, $\mathcal{P}^k v(s, y) - C_n(s, y) = \frac{r_n(s, y)}{f_n(s, y)} [g(2^{d+1} T \lambda(B) f_n(s, y)) - \frac{f_n(s, y)}{\mathbb{E}[f_n(s, y)]}]$. Let us give two upper bounds for $\mathcal{P}^k v(s, y) - C_n(s, y)$ when $y \in B$.

Lemma 4.7. For $y \in B$, the two following assertions hold

$$|\mathcal{P}^{k}v(s,y) - C_{n}(s,y)| \leq 2^{d+3}T\lambda(B)\frac{r_{n}(s,y)}{f_{n}(s,y)}|f_{n}(s,y) - \mathbb{E}[f_{n}(s,y)]|,$$

$$|\mathcal{P}^{k}v(s,y) - C_{n}(s,y)| \leq 2^{d+3}(T\lambda(B))^{2}|r_{n}(s,y)||f_{n}(s,y) - \mathbb{E}[f_{n}(s,y)]|.$$

Proof. Let $\tilde{g}(x) := g(2^{d+1}T\lambda(B)x) - \frac{x}{\mathbb{E}[f_n(s,y)]}$. Then, we use the second property of Lemma 3.1 to get $\tilde{g}(\mathbb{E}[f_n(s,y)]) = 0$, and $\mathcal{P}^k v(s,y) - C_n(s,y) = \frac{r_n(s,y)}{f_n(s,y)} (\tilde{g}(f_n(s,y)) - \tilde{g}(\mathbb{E}[f_n(s,y)])$. Moreover, Remark 1.2 leads to $|\tilde{g}(f_n(s,y)) - \tilde{g}(\mathbb{E}[f_n(s,y)])| \le 2^{d+3}T\lambda(B)|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. The first result follows. To get the second one, we introduce $\overline{g}(x) := \frac{g(2^{d+1}T\lambda(B)x)}{x}$. We have $\overline{g}(\mathbb{E}[f_n(s,y)]) = \frac{1}{\mathbb{E}[f_n(s,y)]}$ and $|\overline{g}(f_n(s,y)) - \overline{g}(\mathbb{E}[f_n(s,y)])| \le 2^{2d+3}(T\lambda(B))^2|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$.

Proposition 4.8. Assume Hypothesis 1 and v is bounded. Then, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$, one has

$$\mathbb{E} \|\mathcal{P}^{k}v - C_{n}\|_{H^{\mu}_{\beta,X}}^{2} \leq K_{0}(T)\epsilon^{2}(T\lambda(B))^{2} \|v\|_{H^{\mu}_{\beta,X}}^{2} + K_{0}(T)c_{0}^{2}(v)(T\lambda(B))^{2}(\epsilon^{2} + \frac{\delta_{n}}{T\lambda(B)}) \exp\left(-\frac{c\epsilon^{2}T\lambda(B)}{\delta_{n}}\right).$$

Proof. Using Lemma 4.7, we split $\mathcal{P}^k v(s,y) - C_n(s,y)$ in two terms, depending on the value of $|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ w.r.t. a constant ϵ . When $|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \leq \epsilon$, we use the second inequality of Lemma 4.7, otherwise we use the first one. Since $r_n(s,y) \leq c_0(v) f_n(s,y)$, we use [4, Proposition 12.16] to get $\mathbb{E}|\mathcal{P}^k v(s,y) - C_n(s,y)|^2 \leq K(T)\epsilon^2(T\lambda(B))^4\mathbb{E}[r_n^2(s,y)] + K(T)c_0^2(v)(\epsilon^2 + \frac{\delta_n}{T\lambda(B)}) \exp\left(-\frac{c\epsilon^2T\lambda(B)}{\delta_n}\right)$. We apply Proposition 3.2 and Lemma 3.5 to conclude.

4.3 Conclusion

To conclude, we combine Propositions 4.6 and 4.8 (with $\epsilon^2 = \frac{\delta_n}{T\lambda(B)}$). We obtain

Proposition 4.9. We assume Hypothesis 1 and v is a bounded $C^{1,1}$ function. Then,

$$\mathbb{E}\|\mathcal{P}^{k}v - v\|_{H^{\mu}_{\beta,X}}^{2} \leq K_{0}(T)(T\lambda(B)\delta_{n}\|v\|_{H^{\mu}_{\beta,X}}^{2} + h_{t}^{2}\|\partial_{t}v\|_{H^{\mu}_{\beta,X}}^{2} + h_{x}^{2}\|\partial_{x}v\|_{H^{\mu}_{\beta,X}}^{2}) + c_{0}^{2}(v)K(T)(e^{-\frac{\mu a}{\sqrt{d}}} + T\lambda(B)\delta_{n}).$$

Moreover, if $\partial_t v$ and $\partial_x v$ are bounded, we get $\|\mathbb{E}(\mathcal{P}^k v - v)\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)c_{1,1}^2(v)(T\lambda(B)\delta_n + h_t^2 + h_x^2 + e^{-\frac{\mu a}{\sqrt{d}}})$.

5 Proof of Proposition 2.1: term $\mathbb{E}\|\partial_x(\mathcal{P}^k v) - \partial_x v\|_{H^{\mu}_{\beta,X}}^2$

We study $\mathbb{E}\|\partial_x(\mathcal{P}^k v) - \partial_x v\|_{H^{\mu}_{\beta,X}}^2$ componentwise, then we deal with $\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v) - \partial_{x_i} v\|_{H^{\mu}_{\beta,X}}^2$, for $1 \leq i \leq d$. The study of this term will be done in two steps. To do so, we add and substract the term $\partial_{x_i} C_n(s,y)$ (see (4.1) for the definition of C_n) to $\partial_{x_i}(\mathcal{P}^k v)(s,y) - \partial_{x_i} v(s,y)$.

$$\partial_{x_i} C_n(s, y) = \left(\frac{\partial_{x_i} r_n(s, y)}{\mathbb{E}[f_n(s, y)]} - r_n(s, y) \frac{\mathbb{E}[\partial_{x_i} f_n(s, y)]}{(\mathbb{E}[f_n(s, y)])^2}\right) \mathbf{1}_{\{s \in [0, T]\}} \mathbf{1}_{\{y \in B\}}$$
(5.1)

We get $\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v) - \partial_{x_i}v\|_{H^{\mu}_{\beta,X}}^2 \leq 2\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v) - \partial_{x_i}C_n\|_{H^{\mu}_{\beta,X}}^2 + 2\mathbb{E}\|\partial_{x_i}C_n - \partial_{x_i}v\|_{H^{\mu}_{\beta,X}}^2$. The two following sections are devoted to the study of $\mathbb{E}\|\partial_{x_i}C_n - \partial_{x_i}v\|_{H^{\mu}_{\beta,X}}^2$ and $\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v) - \partial_{x_i}C_n\|_{H^{\mu}_{\beta,X}}^2$.

5.1 Study of $\mathbb{E}\|\partial_{x_i}C_n - \partial_{x_i}v\|_{H^{\mu}_{\partial,X}}^2$

Using the definition of $\partial_{x_i} C_n(s,y)$, we get

$$\partial_{x_{i}}C_{n}(s,y) - \partial_{x_{i}}v(s,y) = -\partial_{x_{i}}v(s,y)\mathbf{1}_{\{s\notin[0,T]\cup y\notin B\}}
+ \left(\frac{\partial_{x_{i}}r_{n}(s,y) - \partial_{x_{i}}v(s,y)\mathbb{E}[f_{n}(s,y)]}{\mathbb{E}[f_{n}(s,y)]} - r_{n}(s,y)\frac{\mathbb{E}[\partial_{x_{i}}f_{n}(s,y)]}{(\mathbb{E}[f_{n}(s,y)])^{2}}\right)\mathbf{1}_{\{s\in[0,T]\}}\mathbf{1}_{\{y\in B\}}.$$
(5.2)

Then, we split $\mathbb{E}\|\partial_{x_i}C_n - \partial_{x_i}v\|_{H^{\mu}_{\beta,X}}^2$ in two terms, by using the bias-variance decomposition: $\mathbb{E}\|\partial_{x_i}C_n - \partial_{x_i}v\|_{H^{\mu}_{\beta,X}}^2 = \|\mathbb{E}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\beta,X}}^2 + \|\operatorname{Std}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\beta,X}}^2.$

5.1.1 Study of $\|\mathbb{E}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\sigma, v}}^2$

By using (5.2), we split $\mathbb{E}(\partial_{x_i}C_n(s,y) - \partial_{x_i}v(s,y))$ in three terms :

$$B_{1}(s,y) = \frac{\mathbb{E}[\partial_{x_{i}} r_{n}(s,y)] - \partial_{x_{i}} v(s,y) \mathbb{E}[f_{n}(s,y)]}{\mathbb{E}[f_{n}(s,y)]} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}},$$

$$B_{2}(s,y) = -\mathbb{E}[r_{n}(s,y)] \frac{\mathbb{E}[\partial_{x_{i}} f_{n}(s,y)]}{(\mathbb{E}[f_{n}(s,y)])^{2}} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}},$$

$$B_{3}(s,y) = -\partial_{x_{i}} v(s,y) \mathbf{1}_{\{s \notin [0,T] \cup y \notin B\}}$$

such that $\mathbb{E}(\partial_{x_i}C_n(s,y) - \partial_{x_i}v(s,y)) = B_1(s,y) + B_2(s,y) + B_3(s,y)$. We analyze each term in the three following Lemmas.

Lemma 5.1. Let us assume Hypothesis 1. We also assume v is a bounded $C^{0,2}$ function which satisfies $\forall t, t' \in [0, T], \forall x \in \mathbb{R}^d, |\partial_x v(t, x) - \partial_x v(t', x)| \leq c_{1/2}(v) \sqrt{|t' - t|}$. Then,

$$||B_1(s,y)||_{H^{\mu}_{\beta,X}}^2 \le K_0(T)h_x^2||\partial_x^2 v||_{H^{\mu}_{\beta,X}}^2 + K_0(T)(c_{1/2}^2(v)h_t + c_0^2(v)e^{-\mu a}\frac{a^{d-1}}{h_{\pi}}).$$

If $\partial_x^2 v$ is bounded, we get $||B_1(s,y)||^2_{H^{\mu}_{\beta,X}} \leq K_0(T)(c_{0,2}^2(v)h_x^2 + c_{1/2}^2(v)h_t + c_0^2(v)e^{-\mu a}\frac{a^{d-1}}{h_x})$.

Proof. Let us recall $B_1(s,y) = \frac{\mathbb{E}[\partial_{x_i}r_n(s,y)] - \partial_{x_i}v(s,y)\mathbb{E}[f_n(s,y)]}{\mathbb{E}[f_n(s,y)]} \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}}$. We have $\mathbb{E}(\partial_{x_i}r_n(s,y)) = \frac{1}{h_t h_x^{d+1}} \frac{1}{T\lambda(B)} \int_0^T dr K_t \left(\frac{s-r}{h_t}\right) \int_B dz \partial_{x_i} K_x \left(\frac{y-z}{h_x}\right) v(r,z)$. We integrate by parts $\frac{1}{h_x} \int_{-a}^a dz_i (K_x^i)' \left(\frac{y_i-z_i}{h_x}\right) v(r,z)$ and we get $\frac{1}{h_x} \int_{-a}^a dz_i (K_x^i)' \left(\frac{y_i-z_i}{h_x}\right) v(r,z) = -K_x^i \left(\frac{y_i-a}{h_x}\right) v(r,z_a^i) + K_x^i \left(\frac{y_i+a}{h_x}\right) v(r,z_a^i) + \int_{-a}^a dz_i \partial_{x_i} v(r,z) K_x^i \left(\frac{y_i-z_i}{h_x}\right),$ where z_y^i denotes the vector $(z_1, \cdots, z_{i-1}, y, z_{i+1}, \cdots, z_d)$. Then, $\mathbb{E}[\partial_{x_i}r_n(s,y)] - \partial_{x_i}v(s,y)\mathbb{E}[f_n(s,y)] = \frac{1}{T\lambda(B)h_t h_x^d} \int_0^T dr K_t \left(\frac{s-r}{h_t}\right) \int_B dz K_x \left(\frac{y-z}{h_x}\right) [\partial_{x_i}v(r,z) - \partial_{x_i}v(s,y)] + \frac{1}{T\lambda(B)h_t h_x^d} \int_0^T dr K_t \left(\frac{s-r}{h_t}\right) \int_{[-a,a]^{d-1}} dz^i \prod_{j=1,j\neq i}^d K_x^j (\frac{y_j-z_j}{h_x}) [-K_x^i \left(\frac{y_i-a}{h_x}\right) v(r,z_a^i) + K_x^i \left(\frac{y_i+a}{h_x}\right) v(r,z_a^i)].$ Combining this with the bound $\mathbb{E}[f_n(s,y)] \geq \frac{1}{2^{d+1}T\lambda(B)}$ (see Lemma 3.1) leads to the following upper bound for $B_1(s,y)$: $|B_1(s,y)| \leq B_{11}(s,y) + B_{12}(s,y) + B_{13}(s,y)$, where

$$\begin{split} B_{11}(s,y) &= \frac{2^{d+1}}{h_t h_x^d} \int_0^T dr K_t \left(\frac{s-r}{h_t} \right) \int_B dz K_x \left(\frac{y-z}{h_x} \right) \left[\partial_{x_i} v(r,z) - \partial_{x_i} v(s,z) \right] \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}}, \\ B_{12}(s,y) &= \frac{2^{d+1}}{h_t h_x^d} \int_0^T dr K_t \left(\frac{s-r}{h_t} \right) \int_B dz K_x \left(\frac{y-z}{h_x} \right) \left[\partial_{x_i} v(s,z) - \partial_{x_i} v(s,y) \right] \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}}, \\ B_{13}(s,y) &= \frac{2^{d+1}}{h_t h_x} c_0(v) c_0(K_x) \int_0^T dr K_t \left(\frac{s-r}{h_t} \right) \left(\mathbf{1}_{\{|y+a| \le h_x\}} + \mathbf{1}_{\{|y-a| \le h_x\}} \right) \mathbf{1}_{\{s \in [0,T]\}} \mathbf{1}_{\{y \in B\}}. \end{split}$$

By using [4, Lemmas 12.53 and 12.54], we get $||B_{11}(s,y)||_{H^{\mu}_{\beta,X}}^2 \leq c_{1/2}^2(v)K(T)h_t$, $||B_{12}(s,y)||_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)h_x^2||\partial_x^2v||_{H^{\mu}_{\beta,X}}^2$. It remains to bound $||B_{13}(s,y)||_{H^{\mu}_{\beta,X}}^2$. We obtain $||B_{13}(s,y)||_{H^{\mu}_{\beta,X}}^2 \leq \frac{K_0(T)c_0^2(v)}{h_x^2} \int_0^T ds e^{\beta s} \int_{B\setminus B(0,a-h_x)} dy \nu_{\mu}^0(s,y)$. Since $\int_{B\setminus B(0,a-h_x)} dy \nu_{\mu}^0(s,y) \leq K(T)e^{-\mu(a-h_x)}a^{d-1}h_x$ (see [4, Equation (12.5), page 132]), we get $||B_{13}(s,y)||_{H^{\mu}_{\beta,X}}^2 \leq \frac{K_0(T)c_0^2(v)}{h_x}e^{-\mu a}a^{d-1}$.

Lemma 5.2. Assume Hypothesis 1 and v is bounded. Then, $||B_2(s,y)||^2_{H^{\mu}_{\beta,X}} \le K_0(T)c_0^2(v)e^{-\mu a}\frac{a^{d-1}}{h_x}$.

Proof. Since v is bounded, we get $\mathbb{E}[r_n(s,y)] \leq c_0(v)\mathbb{E}[f_n(s,y)]$. Hence, $|B_2(s,y)| \leq c_0(v)\frac{\mathbb{E}[\partial_{x_i}f_n(s,y)]}{\mathbb{E}[f_n(s,y)]}\mathbf{1}_{\{s\in[0,T]\}}\mathbf{1}_{\{y\in B\}}$. To conclude, we apply Lemma 3.1 and Proposition 3.4.

Lemma 5.3. Assume Hypothesis 1 and $\partial_x v$ is bounded. Then, $\|B_3(s,y)\|_{H^{\mu}_{\beta,X}}^2 \leq K(T)c_{0,1}^2(v)e^{-\frac{\mu a}{\sqrt{d}}}$.

Proof. We refer to the proof of Lemma 4.3.

We combine Lemmas 5.1, 5.2 and 5.3 to get the following Proposition.

Proposition 5.4. Assume Hypothesis 1 and v is a $C^{0,2} - C_b^{0,1}$ function which satisfies $\forall t, t' \in [0,T], \forall x \in \mathbb{R}^d, \ |\partial_x v(t,x) - \partial_x v(t',x)| \le c_{1/2}(v)\sqrt{|t'-t|}$. Then,

$$\|\mathbb{E}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\beta,X}}^2 \le K_0(T)h_x^2\|\partial_x^2v\|_{H^{\mu}_{\beta,X}}^2 + K_0(T)(c_{1/2}^2(v)h_t + c_0^2(v)e^{-\mu a}\frac{a^{d-1}}{h_x} + c_{0,1}^2(v)e^{-\frac{\mu a}{\sqrt{d}}}).$$

Moreover, if $\partial_x^2 v$ is bounded, we get $\|\mathbb{E}(\partial_{x_i} C_n - \partial_{x_i} v)\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)(c_{0,2}^2(v) + c_{1/2}^2(v))(h_x^2 + h_t + e^{-\mu a} \frac{a^{d-1}}{h_x} + e^{-\frac{\mu a}{\sqrt{d}}}).$

5.1.2 Study of $\|\operatorname{Std}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{g,y}}^2$

Let us study $\|\operatorname{Std}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\beta,Y}}^2 = \int_0^T ds e^{\beta s} \int_{\mathbb{R}^d} dy \nu_{\mu}^0(s,y) \operatorname{Var}(\partial_{x_i}C_n - \partial_{x_i}v)(s,y).$

Proposition 5.5. Assume Hypothesis 1. It holds

$$||Std(\partial_{x_i}C_n - \partial_{x_i}v)||_{H^{\mu}_{\beta,X}}^2 \le K_0(T) \frac{T\lambda(B)\delta_n}{h_x^2} ||v||_{H^{\mu}_{\beta,X}}^2.$$

If v is bounded, we get $||Std(\partial_{x_i}C_n - \partial_{x_i}v)||^2_{H^{\mu}_{\beta,X}} \leq K_0(T)c_0^2(v)\frac{T\lambda(B)\delta_n}{h_x^2}$.

Proof. We have $\|\operatorname{Std}(\partial_{x_i}C_n - \partial_{x_i}v)\|_{H^{\mu}_{\beta,X}}^2 = \int_0^T ds e^{\beta s} \int_B dy \nu_{\mu}^0(s,y) \operatorname{Var}(\partial_{x_i}C_n(s,y)).$ Using (5.1) leads to $\operatorname{Var}(\partial_{x_i}C_n(s,y)) \leq 2\left(\frac{1}{(\mathbb{E}[f_n(s,y)])^2}\operatorname{Var}(\partial_{x_i}r_n(s,y)) + \operatorname{Var}(r_n(s,y))\frac{(\mathbb{E}[\partial_{x_i}f_n(s,y)])^2}{(\mathbb{E}[f_n(s,y)])^4}\right) \mathbf{1}_{\{s\in[0,T]\}}\mathbf{1}_{\{y\in B\}}.$ Then, we use [4, Proposition 12.51] and Lemma 3.1 to get $\int_0^T ds e^{\beta s} \int_B dy \nu_{\mu}^0(s,y) \frac{\operatorname{Var}(\partial_{x_i}r_n(s,y))}{(\mathbb{E}[f_n(s,y)])^2} \leq K_0(T) \frac{T\lambda(B)\delta_n}{h_x^2} \|v\|_{H^{\mu}_{\beta,X}}^2.$ It remains to bound $\int_0^T ds e^{\beta s} \int_B dy \nu_{\mu}^0(s,y) \operatorname{Var}(r_n(s,y)) \frac{(\mathbb{E}[\partial_{x_i}f_n(s,y)])^2}{(\mathbb{E}[f_n(s,y)])^4}.$ To do it, we use Lemmas 3.1, 3.3 and the proof of Proposition 4.5.

5.1.3 Conclusion

We combine Propositions 5.4 and 5.5 to get the following result

Proposition 5.6. Assume Hypothesis 1 and v is a $C^{1,2} - C_b^{0,1}$ function which satisfies $\forall t, t' \in [0,T], \forall x \in \mathbb{R}^d, \ |\partial_x v(t,x) - \partial_x v(t',x)| \le c_{1/2}(v)\sqrt{|t'-t|}$. Then,

$$\mathbb{E}\|\partial_{x_{i}}C_{n} - \partial_{x_{i}}v\|_{H^{\mu}_{\beta,X}}^{2} \leq K_{0}(T)\left(h_{x}^{2} + \frac{T\lambda(B)\delta_{n}}{h_{x}^{2}}\right)\|v\|_{H^{2,\mu}_{\beta,X}}^{2} + K_{0}(T)\left(c_{1/2}^{2}(v)h_{t} + c_{0}^{2}(v)e^{-\mu a}\frac{a^{d-1}}{h_{x}} + c_{0,1}^{2}(v)e^{-\frac{\mu a}{\sqrt{d}}}\right).$$

Moreover, if $\partial_x^2 v$ is bounded, we get $\|\mathbb{E}(\partial_{x_i} C_n - \partial_{x_i} v)\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)(c_{0,2}^2(v) + c_{1/2}^2(v))(h_x^2 + \frac{T\lambda(B)\delta_n}{h_x^2} + h_t + e^{-\mu a}\frac{a^{d-1}}{h_x} + e^{-\frac{\mu a}{\sqrt{d}}}).$

5.2 Study of $\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v) - \partial_{x_i}C_n\|_{H^{\mu}_{\mathcal{Q},V}}^2$

We have $\partial_{x_i}(\mathcal{P}^k v)(s,y) = \partial_{x_i}r_n(s,y)\frac{g(2^{d+1}T\lambda(B)f_n(s,y))}{f_n(s,y)} + 2^{2d+2}(T\lambda(B))^2r_n(s,y)G'(2^{d+1}T\lambda(B)f_n(s,y))\partial_{x_i}f_n(s,y), \text{ where } G \text{ has been introduced in Remark 1.2. Using the definition of } \partial_{x_i}C_n \text{ (see (5.1)) yields}$

$$\partial_{x_{i}}(\mathcal{P}^{k}v)(s,y) - \partial_{x_{i}}C_{n}(s,y) = \partial_{x_{i}}r_{n}(s,y)\left(\frac{g(2^{d+1}T\lambda(B)f_{n}(s,y))}{f_{n}(s,y)} - \frac{1}{\mathbb{E}[f_{n}(s,y)]}\mathbf{1}_{\{s\in[0,T]\}}\mathbf{1}_{\{y\in B\}}\right) + r_{n}(s,y)\left(2^{d+2}(T\lambda(B))^{2}\partial_{x_{i}}f_{n}(s,y)G'(2^{d+1}T\lambda(B)f_{n}(s,y)) - \frac{\mathbb{E}[\partial_{x_{i}}f_{n}(s,y)]}{(\mathbb{E}[f_{n}(s,y)])^{2}}\mathbf{1}_{\{s\in[0,T]\}}\mathbf{1}_{\{y\in B\}}\right)$$
(5.3)

Let us study $\partial_{x_i}(\mathcal{P}^k v)(s,y) - \partial_{x_i}C_n(s,y)$ w.r.t. the value of y. The first Lemma ensues from the Definition of f_n .

Lemma 5.7. If $y \notin B_{\infty}(0, a + h_x)$, $\partial_{x_i}(\mathcal{P}^k v)(s, y) - \partial_{x_i}C_n(s, y) = 0$.

Lemma 5.8. If $y \in B_{\infty}(0, a + h_x) \setminus B$ and v is bounded, for all $i \in \{1, \dots, d\}$,

$$\mathbb{E}|\partial_{x_i}(\mathcal{P}^k v)(s,y) - \partial_{x_i}C_n(s,y)|^2 \le \frac{K_0(T)c_0^2(v)}{h_x^2}.$$

Proof. Let us introduce $\overline{f}_n^i(s,y) = \frac{1}{nh_th_x^{d+1}}\sum_{i=1}^n K_t\left(\frac{s-T_i}{h_t}\right)|\partial_{x_i}K_x|\left(\frac{y-X_i}{h_x}\right)$. The indicators in (5.3) are null. Since $\frac{g(y)}{y}$ is bounded by 2 (see Remark 1.2 for the bounds for g and its first derivative), $\frac{|\partial_{x_i}r_n(s,y)|}{f_n(s,y)}g(2^{d+1}T\lambda(B)f_n(s,y)) \leq 2^{d+2}T\lambda(B)c_0(v)\overline{f}_n^i(s,y)$. It remains to bound the term containing G'. To do so, we write $G'(y) = \frac{g'(y)}{y} - \frac{g(y)}{y^2}$. Since $|G(y)| \leq 2$ and $|r_n(s,y)| \leq c_0(v)f_n(s,y), |r_n(s,y)|\frac{g(2^{d+1}T\lambda(B)f_n(s,y))}{f_n^2(s,y)}|\partial_{x_i}f_n(s,y)| \leq 2^{d+2}T\lambda(B)c_0(v)|\partial_{x_i}f_n(s,y)|$. Since $|G'(y)| \leq 2^{d+2}T\lambda(B)c_0(v)|\partial_{x_i}f_n(s,y)|$. Since $|G'(y)| \leq 2^{d+2}T\lambda(B)c_0(v)|\partial_{x_i}f_n(s,y)|$. To conclude, we use $|\partial_{x_i}f_n(s,y)| \leq \overline{f}_n^i(s,y)$ and [4, Lemma 12.8], which states $\mathbb{E}(\overline{f}_n^i(s,y))^2 \leq \frac{K_0(T)}{h_x^2(T\lambda(B))^2}$.

Lemma 5.9. If $y \in B$, $\partial_{x_i}(\mathcal{P}^k v)(s,y) - \partial_{x_i}C_n(s,y) = A(s,y) + B(s,y) + C(s,y)$ where

$$\begin{split} A(s,y) &= \partial_{x_i} r_n(s,y) \left(\frac{g(2^{d+1}T\lambda(B)f_n(s,y))}{f_n(s,y)} - \frac{1}{\mathbb{E}[f_n(s,y)]} \right), \\ B(s,y) &= 2^{2d+2} (T\lambda(B))^2 r_n(s,y) \partial_{x_i} f_n(s,y) [G'(2^{d+1}T\lambda(B)f_n(s,y)) - G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)])], \\ C(s,y) &= 2^{2d+2} (T\lambda(B))^2 r_n(s,y) G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)]) [\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]]. \end{split}$$

 $\begin{array}{lll} \textit{Proof.} \ \ \text{We add and substract} &= 2^{2d+2}(T\lambda(B))^2 r_n(s,y) \partial_{x_i} f_n(s,y) G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)]) \\ \text{in} & (5.3) \ \ \text{and} \ \ \text{we use} \ \ G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)]) &= -\frac{1}{2^{2d+2}(T\lambda(B))^2\mathbb{E}[f_n(s,y)]^2} \ \ \text{(since } 2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)] \geq 1). \end{array}$

5.2.1 Bound for $\mathbb{E}[A^2(s,y)]$

Lemma 5.10. If v is bounded, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$, we have

$$\mathbb{E}[A^{2}(s,y)] \leq K(T)(T\lambda(B))^{4} \epsilon^{2} \mathbb{E}[\partial_{x_{i}} r_{n}(s,y)]^{2} + K_{0}(T)c_{0}^{2}(v) \frac{(T\lambda(B))^{2}}{h_{x}^{2}} \left[\left(\epsilon^{2} + \frac{\delta_{n}}{T\lambda(B)} \right) \exp\left(-\frac{c\epsilon^{2}T\lambda(B)}{\delta_{n}} \right) + \frac{\delta_{n}}{T\lambda(B)} \exp\left(-\frac{c}{T\lambda(B)\delta_{n}} \right) \right].$$

Proof. Studying A(s,y) boils down to study $\mathcal{P}^k v - C_n$ where r_n is replaced by $\partial_{x_i} r_n$. First, the second inequality of Lemma 4.7 gives us

$$|A(s,y)| \le 2^{d+3} (T\lambda(B))^2 |\partial_{x_i} r_n(s,y)| |f_n(s,y) - \mathbb{E}[f_n(s,y)]|,$$

and since $|\partial_{x_i}r_n(s,y)| \leq c_0(v)\overline{f}_n^i(s,y)$ ($\overline{f}_n^i(s,y)$ has been introduced in the proof of Lemma 5.8), we also have $|A(s,y)| \leq 2^{d+3}(T\lambda(B))^2c_0(v)\overline{f}_n^i(s,y)|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. As in the proof of Proposition 4.8, we split A(s,y) in two terms, depending on the value of $|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ w.r.t. a constant ϵ_0 . When $|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \leq \epsilon_0$, we use the first inequality, otherwise we use the second one. We get

$$|A(s,y)| \leq 2^{d+3} (T\lambda(B))^2 \epsilon_0 |\partial_{x_i} r_n(s,y)|$$

$$+ 2^{d+3} (T\lambda(B))^2 c_0(v) \overline{f}_n^i(s,y) |f_n(s,y) - \mathbb{E}[f_n(s,y)]| \mathbf{1}_{\{|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \geq \epsilon_0\}}.$$

We split again the second right hand term of the above inequality by introducing $\pm \mathbb{E}[\overline{f}_n^i(s,y)]$. We get

$$\begin{split} |A(s,y)| &\leq 2^{d+3} (T\lambda(B))^2 \epsilon_0 |\partial_{x_i} r_n(s,y)| \\ &+ 2^{d+3} (T\lambda(B))^2 c_0(v) |\overline{f}_n^i(s,y) - \mathbb{E}[\overline{f}_n^i(s,y)]| |f_n(s,y) - \mathbb{E}[f_n(s,y)]| \mathbf{1}_{\{|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \geq \epsilon_0\}} \\ &+ 2^{d+3} (T\lambda(B)) c_0(v) \frac{K_0(T)}{h_x} |f_n(s,y) - \mathbb{E}[f_n(s,y)]| \mathbf{1}_{\{|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \geq \epsilon_0\}}, \end{split}$$

where we have used $\mathbb{E}(\overline{f}_n^i(s,y))^2 \leq \frac{K_0(T)}{h_x^2(T\lambda(B))^2}$. Then, we split the second term of the r.h.s. in two terms, depending on the value of $|\overline{f}_n^i(s,y) - \mathbb{E}[\overline{f}_n^i(s,y)]|$ w.r.t. a constant ϵ_1 . We obtain

$$\begin{split} |A(s,y)|^2 & \leq K(T)(T\lambda(B))^4 \epsilon_0^2 |\partial_{x_i} r_n(s,y)|^2 \\ & + K(T)(T\lambda(B))^4 c_0^2(v) \overline{E}^2(s,y) E^2(s,y) \mathbf{1}_{\{E(s,y) \geq \epsilon_0\}} \mathbf{1}_{\{\overline{E}(s,y) \geq \epsilon_1\}} \\ & + K_0(T)(T\lambda(B))^2 c_0^2(v) \left(\frac{1}{h_x^2} + (T\lambda(B))^2 \epsilon_1^2\right) E^2(s,y) \mathbf{1}_{\{E(s,y) \geq \epsilon_0\}}. \end{split}$$

where $E(s,y) := |f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ and $\overline{E}(s,y) := |\overline{f}_n^i(s,y) - \mathbb{E}[\overline{f}_n^i(s,y)]|$. To conclude, it remains to apply [4, Propositions 12.16 and 12.18] (since $\overline{f}_n^i(s,y)$ is almost $\partial_{x_i} f_n$), Cauchy Schwarz inequality, to choose $\epsilon_1 = \frac{\epsilon_0}{h_x}$ and to use $\epsilon_0^2 \leq (T\lambda(B))^{-2}$. We get

$$\begin{split} & \mathbb{E}[A^2(s,y)] \leq K(T)(T\lambda(B))^4 \epsilon_0^2 \mathbb{E}[\partial_{x_i} r_n(s,y)]^2 \\ & + K_0(T) c_0^2(v) \frac{(T\lambda(B))^2}{h_x^2} (\epsilon_0^2 + \frac{\delta_n}{T\lambda(B)}) \exp\left(-\frac{c\epsilon_0^2 T\lambda(B)}{\delta_n}\right) \\ & + K_0(T) c_0^2(v) \frac{(T\lambda(B))^4}{h_x^2} \left[\left(\epsilon_0^2 + \frac{\delta_n}{T\lambda(B)}\right)^2 \exp\left(-\frac{c\epsilon_0^2 T\lambda(B)}{\delta_n}\right) + \frac{\delta_n}{(T\lambda(B))^3} \exp\left(-\frac{c}{T\lambda(B)\delta_n}\right) \right]. \end{split}$$

Since $\epsilon_0^2 \leq (T\lambda(B))^{-2}$ and $T\lambda(B)\delta_n \ll 1$, we obtain $(T\lambda(B))^2(\epsilon_0^2 + \frac{\delta_n}{T\lambda(B)})^2 \leq \epsilon_0^2 + \frac{\delta_n}{T\lambda(B)}$, and the result follows.

5.2.2 Bound for $\mathbb{E}[B^2(s,y)]$

Lemma 5.11. If v is bounded, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$, we have

$$\mathbb{E}[B^{2}(s,y)] \leq C(d)(T\lambda(B))^{4} \frac{\epsilon^{2}}{h_{x}^{2}} \mathbb{E}[r_{n}(s,y)]^{2} + K_{0}(T)c_{0}^{2}(v) \frac{(T\lambda(B))^{2}}{h_{x}^{2}} \left[\left(\epsilon^{2} + \frac{\delta_{n}}{T\lambda(B)} \right) \exp\left(-\frac{c\epsilon^{2}T\lambda(B)}{\delta_{n}} \right) + \frac{\delta_{n}}{(T\lambda(B))} \exp\left(-\frac{c}{T\lambda(B)\delta_{n}} \right) \right].$$

Proof. First, we split B(s,y) in two terms $B_1 + B_2$ by introducing $\pm \mathbb{E}[\partial_{x_i} f_n(s,y)]$. We get

$$B_1(s,y) = 2^{2d+2} (T\lambda(B))^2 r_n(s,y) (\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]) \Delta G,$$

$$B_2(s,y) = 2^{2d+2} (T\lambda(B))^2 r_n(s,y) \mathbb{E}[\partial_{x_i} f_n(s,y)] \Delta G,$$

where $\Delta G := G'(2^{d+1}T\lambda(B)f_n(s,y)) - G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)]).$

Bound for B_2 . First, we use Lemma 3.3 to bound $\mathbb{E}[\partial_{x_i} f_n(s,y)]$: $\mathbb{E}[\partial_{x_i} f_n(s,y)] \leq \frac{K_0(T)}{T\lambda(B)hx}$. Then, we give two bounds for B_2 . The first one uses that G' is a Lipschitz function on $[0,\infty[$. We get $G'(2^{d+1}T\lambda(B)f_n(s,y)) - G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)]) \leq C(d)T\lambda(B)|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. Thus, $|B_2(s,y)| \leq C(d)\frac{(T\lambda(B))^2}{h_x}r_n(s,y)|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. The second bound relies on the inequality $r_n(s,y) \leq c_0(v)f_n(s,y)$ and the fact that the function $\tilde{g}(x) := xG'(2^{d+1}T\lambda(B)x) - xG'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)])$ satisfies $\tilde{g}(\mathbb{E}[f_n(s,y)]) = 0$ and is a Lipschitz function. We get $|B_2(s,y)| \leq C(d)c_0(v)\frac{T\lambda(B)}{h_x}|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. Once again, we split $B_2(s,y)$ in two terms, depending on the value of $|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ w.r.t. a constant ϵ . When $|f_n(s,y) - \mathbb{E}[f_n(s,y)]| \leq \epsilon$, we use the first inequality, otherwise we use the second one. By using [4, Proposition 12.16], we get

$$\mathbb{E}[B_2(s,y)]^2 \le \epsilon^2 \frac{(T\lambda(B))^4}{h_x^2} \mathbb{E}[r_n(s,y)^2] + K_0(T)c_0^2(v) \frac{(T\lambda(B))^2}{h_x^2} (\epsilon^2 + \frac{\delta_n}{T\lambda(B)}) \exp\left(-\frac{c\epsilon^2 T\lambda(B)}{\delta_n}\right).$$

Bound for B_1 . As for B_2 , we give two bounds for B_1 : $|B_1(s,y)| \leq C(d)(T\lambda(B))^3 r_n(s,y) |\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]||f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ and $|B_1(s,y)| \leq C(d)c_0(v)(T\lambda(B))^2 |\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]||f_n(s,y) - \mathbb{E}[f_n(s,y)]|$. Then, we split B_1 in four terms, depending on the value of $|f_n(s,y) - \mathbb{E}[f_n(s,y)]|$ w.r.t. a constant ϵ_0 and on the value of $|\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]|$ w.r.t. a constant ϵ_1 . We introduce $E'(s,y) := |\partial_{x_i} f_n(s,y) - \mathbb{E}[\partial_{x_i} f_n(s,y)]|$. Then, we get

$$|B_1(s,y)| \le |B_1(s,y)| \mathbf{1}_{\{E' \le \epsilon_1\}} \mathbf{1}_{\{E \le \epsilon_0\}} + |B_1(s,y)| \mathbf{1}_{\{E' \le \epsilon_1\}} \mathbf{1}_{\{E > \epsilon_0\}} + |B_1(s,y)| \mathbf{1}_{\{E' > \epsilon_1\}} \mathbf{1}_{\{E < \epsilon_0\}} + |B_1(s,y)| \mathbf{1}_{\{E' > \epsilon_1\}} \mathbf{1}_{\{E > \epsilon_0\}}.$$

We bound the first term (resp. the three other terms) by using the first (resp. second) bound for B_1 . Applying Cauchy-Schwarz inequality, [4, Propositions 12.16 and 12.18] and choosing

$$\epsilon_1 = \frac{\epsilon_0}{h_x}$$
 yield

$$\begin{split} & \mathbb{E}|B_1(s,y)|^2 \leq K(T)(T\lambda(B))^6 \frac{\epsilon_0^4}{h_x^2} \mathbb{E}[r_n(s,y)]^2 \\ & + K(T)c_0^2(v) \frac{(T\lambda(B))^4 \epsilon_0^2}{h_x^2} (\epsilon_0^2 + \frac{\delta_n}{T\lambda(B)}) \exp\left(-\frac{c\epsilon_0^2 T\lambda(B)}{\delta_n}\right) \\ & + K(T)c_0^2(v) \frac{(T\lambda(B))^4}{h_x^2} \left[\left(\epsilon_0^2 + \frac{\delta_n}{T\lambda(B)}\right)^2 \exp\left(-\frac{c\epsilon_0^2 T\lambda(B)}{\delta_n}\right) + \frac{\delta_n}{(T\lambda(B))^3} \exp\left(-\frac{c}{T\lambda(B)\delta_n}\right) \right]. \end{split}$$

For $\epsilon_0^2 \leq (T\lambda(B))^{-2}$, we get $(T\lambda(B))^6 \frac{\epsilon_0^4}{h_x^2} \leq (T\lambda(B))^4 \frac{\epsilon_0^2}{h_x^2} \leq \frac{(T\lambda(B))^2}{h_x^2}$. Hence, the first two terms of the bound for $\mathbb{E}|B_1(s,y)|^2$ are smaller than the terms bounding $\mathbb{E}|B_2(s,y)|^2$. We end the proof as in Lemma 5.10.

5.2.3 Bound for $\mathbb{E}[C^2(s,y)]$

Lemma 5.12. If v is bounded, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$, we have

$$\mathbb{E}[C^{2}(s,y)] \leq K(T)(T\lambda(B))^{4} \frac{\epsilon^{2}}{h_{x}^{2}} \mathbb{E}[r_{n}(s,y)]^{2} + K_{0}(T)c_{0}^{2}(v) \frac{(T\lambda(B))^{2}}{h_{x}^{2}} \left[\left(\epsilon^{2} + \frac{\delta_{n}}{T\lambda(B)} \right) \exp\left(-\frac{c\epsilon^{2}T\lambda(B)}{\delta_{n}} \right) + \frac{\delta_{n}}{(T\lambda(B))} \exp\left(-\frac{c}{T\lambda(B)\delta_{n}} \right) \right].$$

Proof. We recall $C(s,y) = 2^{2d+2}(T\lambda(B))^2 r_n(s,y) G'(2^{d+1}T\lambda(B)\mathbb{E}[f_n(s,y)])[\partial_{x_i}f_n(s,y) - \mathbb{E}[\partial_{x_i}f_n(s,y)]]$. We use that G' is bounded and we split C(s,y) in two terms depending on the value of $E' = |\partial_{x_i}f_n(s,y) - \mathbb{E}[\partial_{x_i}f_n(s,y)]|$ w.r.t. a constant ϵ_1 . We get

$$|C(s,y)|^2 \le C(d)(T\lambda(B))^4 \epsilon_1^2 |r_n(s,y)|^2 + C(d)(T\lambda(B))^4 c_0^2(v) |f_n(s,y)|^2 (E')^2 \mathbf{1}_{\{E' > \epsilon_1\}},$$

where we have used $r_n(s,y) \leq c_0(v) f_n(s,y)$. Then, we split the second term of the r.h.s. of the above inequality by introducing $\pm \mathbb{E}[f_n(s,y)]$. Since $\mathbb{E}[f_n(s,y)] \leq \frac{1}{T\lambda(B)}$, we obtain

$$|C(s,y)|^{2} \leq K(T)(T\lambda(B))^{4} \epsilon_{1}^{2} |r_{n}(s,y)|^{2} + K(T)(T\lambda(B))^{2} c_{0}^{2}(v)(E')^{2} \mathbf{1}_{\{E'>\epsilon_{1}\}} + K(T)(T\lambda(B))^{4} c_{0}^{2}(v)(E')^{2} \mathbf{1}_{\{E'>\epsilon_{1}\}} |f_{n}(s,y) - \mathbb{E}[f_{n}(s,y)]|^{2}.$$

Finally, we split the last term of the above inequality in two terms depending on the value of $E = |f_n(s, y) - \mathbb{E}[f_n(s, y)]|$ w.r.t. a constant ϵ_0 . We get

$$|C(s,y)|^{2} \leq K(T)(T\lambda(B))^{4} \epsilon_{1}^{2} |r_{n}(s,y)|^{2} + C(d)(T\lambda(B))^{4} \left(\frac{1}{(T\lambda(B))^{2}} + \epsilon_{0}^{2}\right) c_{0}^{2}(v)(E')^{2} \mathbf{1}_{\{E' > \epsilon_{1}\}} E^{2} \mathbf{1}_{\{E > \epsilon_{0}\}}.$$

Combining Cauchy Schwarz inequality,[4, Propositions 12.16 and 12.18], choosing $\epsilon_1 = \frac{\epsilon_0}{h_x}$ and using $\epsilon_0 \leq (T\lambda(B))^{-1}$ and $T\lambda(B)\delta_n \ll 1$ lead to the result.

5.2.4 Conclusion

Combining Lemmas 5.10, 5.11 and 5.12 leads to the following Proposition.

Proposition 5.13. If v is bounded, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$ and $y \in B$, we have

$$\mathbb{E}[|\partial_{x_i}(\mathcal{P}^k v)(s,y) - \partial_{x_i} C_n(s,y)|^2] \le C(d)(T\lambda(B))^4 \epsilon^2 \left(\mathbb{E}[\partial_{x_i} r_n(s,y)]^2 + \frac{1}{h_x^2} \mathbb{E}[r_n(s,y)]^2 \right) \\ + K_0(T) c_0^2(v) \frac{(T\lambda(B))^2}{h_x^2} \left[\left(\epsilon^2 + \frac{\delta_n}{T\lambda(B)} \right) \exp\left(-\frac{c\epsilon^2 T\lambda(B)}{\delta_n} \right) + \frac{\delta_n}{(T\lambda(B))} \exp\left(-\frac{c}{T\lambda(B)\delta_n} \right) \right].$$

Combining Lemmas 5.7, 5.8, Proposition 5.13 and following the same proof as [4, Theorem 12.50] yields

Proposition 5.14. Assume Hypothesis 1 and v is bounded. Then, $\forall \epsilon \geq 0$ such that $\epsilon^2 \leq (T\lambda(B))^{-2}$, we have

$$\mathbb{E}\|\partial_{x_{i}}(\mathcal{P}^{k}v) - \partial_{x_{i}}C_{n}\|_{H_{\beta,X}^{\mu}}^{2} \leq K_{0}(T)(T\lambda(B))^{2}\epsilon^{2}(\|\partial_{x}v\|_{H_{\beta,X}^{\mu}}^{2} + \frac{1}{h_{x}^{2}}\|v\|_{H_{\beta,X}^{\mu}}^{2}) + c_{0}^{2}(v)\frac{K_{0}(T)}{h_{x}}e^{-\mu a}a^{d-1} + K_{0}(T)c_{0}^{2}(v)\frac{(T\lambda(B))^{2}}{h_{x}^{2}}\left[\left(\epsilon^{2} + \frac{\delta_{n}}{T\lambda(B)}\right)\exp\left(-\frac{c\epsilon^{2}T\lambda(B)}{\delta_{n}}\right) + \frac{\delta_{n}}{T\lambda(B)}\exp\left(-\frac{c}{T\lambda(B)\delta_{n}}\right)\right].$$

5.3 Conclusion

We combine Propositions 5.14 and 5.6 with $\epsilon^2 = \frac{\delta_n}{T\lambda(B)}$ to get the following result

Proposition 5.15. Assume Hypothesis 1 and v is a $C^{1,2} - C_b^{0,1}$ function satisfying $\forall t, t' \in [0,T], \forall x \in \mathbb{R}^d, |\partial_x v(t,x) - \partial_x v(t',x)| \leq c_{1/2}(v)\sqrt{|t'-t|}$. Then,

$$\mathbb{E}\|\partial_x(\mathcal{P}^k v) - \partial_x v\|_{H^{\mu}_{\beta,X}}^2 \le K_0(T) \left(h_x^2 + \frac{T\lambda(B)\delta_n}{h_x^2}\right) \|v\|_{H^{2,\mu}_{\beta,X}}^2 \\ + K_0(T) \left(c_{1/2}^2(v)h_t + c_0^2(v)e^{-\mu a}\frac{a^{d-1}}{h_x} + c_{0,1}^2(v)e^{-\frac{\mu a}{\sqrt{d}}} + c_0^2(v)\frac{T\lambda(B)\delta_n}{h_x^2}\right).$$

Moreover, if $\partial_x^2 v$ is bounded, we get $\|\mathbb{E}(\partial_{x_i} C_n - \partial_{x_i} v)\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)(c_{0,2}^2(v) + c_{1/2}^2(v))(h_x^2 + \frac{T\lambda(B)\delta_n}{h_x^2} + h_t + e^{-\mu a}\frac{a^{d-1}}{h_x} + e^{-\frac{\mu a}{\sqrt{d}}}).$

6 Proof of Proposition 2.2

6.1 Bound for $\mathbb{E}\|\mathcal{P}^k v\|_{H^{\mu}_{\beta,X}}^2$

From the definition of \mathcal{P}^k and since $\frac{g(x)}{x}$ is bounded by 2, we deduce $|\mathcal{P}^k v(s,y)|^2 \le 2^{2d+3} (T\lambda(B))^2 |r_n|^2 (s,y)$. Then, Proposition 3.2 gives

$$\begin{split} \mathbb{E}(|\mathcal{P}^k v(s,y)|^2) & \leq 2^{2d+3} (T\lambda(B))^2 \mathbb{E}(|r_n|^2(s,y)), \\ & \leq \frac{K_0(T)}{h_t h_x^d} \int_0^T dr K_t^2 (\frac{s-r}{h_t}) \int_B dz K_x^2 (\frac{y-z}{h_x}) \mathbb{E}(v^2(r,z)). \end{split}$$

Using the definition of $\|\cdot\|_{H^{\mu}_{\beta,X}}$ and Lemma 3.5 yields $\mathbb{E}\|\mathcal{P}^k v\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)\mathbb{E}\|v\|_{H^{\mu}_{\beta,X}}^2$. If v is unbiased, $\mathbb{E}(|r_n|^2(s,y)) = \operatorname{Var}(r_n(s,y))$. Proposition 3.2 gives

$$\begin{split} \mathbb{E}(|\mathcal{P}^k v(s,y)|^2) & \leq 2^{2d+3} (T\lambda(B))^2 \mathrm{Var}(r_n(s,y)), \\ & \leq \frac{K_0(T) T\lambda(B)}{n h_t^2 h_x^{2d}} \int_0^T dr K_t^2 (\frac{s-r}{h_t}) \int_B dz K_x^2 (\frac{y-z}{h_x}) \mathbb{E}(v^2(r,z)), \end{split}$$

and we get $\mathbb{E}\|\mathcal{P}^k v\|_{H^{\mu}_{\beta,X}}^2 \leq K_0(T)T\lambda(B)\delta_n \mathbb{E}\|v\|_{H^{\mu}_{\beta,X}}^2$.

6.2 Bound for $\mathbb{E}\|\partial_x(\mathcal{P}^k v)(t,x)\|_{H^{\mu}_{\partial X}}^2$

We have $\partial_{x_i} \mathcal{P}^k v(s,y) = 2^{d+1} T \lambda(B) \partial_{x_i} r_n(s,y) G(2^{d+1} T \lambda(B) f_n(s,y)) + (2^{d+1} T \lambda(B))^2 r_n(s,y) \partial_{x_i} f_n(s,y) G'(2^{d+1} T \lambda(B) f_n(s,y))$ where G has been introduced in Remark 1.2. Using the bounds for G and G', we obtain $|\partial_{x_i} \mathcal{P}^k v(s,y)| \leq 2^{d+2} T \lambda(B) |\partial_{x_i} r_n(s,y)| + 6 * 2^{2d+2} (T \lambda(B))^2 |r_n(s,y)| |\partial_{x_i} f_n(s,y)|$, and

$$\mathbb{E}\|\partial_{x_i}(\mathcal{P}^k v)\|_{H^{\mu}_{\beta,X}}^2 \leq C(d)(T\lambda(B))^2(\mathbb{E}\|\partial_{x_i} r_n\|_{H^{\mu}_{\beta,X}}^2 + (T\lambda(B))^2\mathbb{E}\|(r_n \partial_{x_i} f_n)\|_{H^{\mu}_{\beta,X}}^2).$$

6.2.1 Bound for $(T\lambda(B))^2 \mathbb{E} \|\partial_{x_i} r_n\|_{H^{\mu}_{\partial X}}^2$

We write $\mathbb{E}(|\partial_{x_i}r_n(s,y)|^2) = (\mathbb{E}(\partial_{x_i}r_n(s,y)))^2 + \operatorname{Var}(\partial_{x_i}r_n(s,y))$. As in Proposition 3.2, we get $(\mathbb{E}(\partial_{x_i}r_n(s,y)))^2 \leq \frac{1}{h_t h_x^{d+2}} \frac{1}{(T\lambda(B))^2} \int_0^T dr K_t^2 \left(\frac{s-r}{h_t}\right) \int_B dz (\partial_{x_i}K_x)^2 \left(\frac{y-z}{h_x}\right) \mathbb{E}(v^2(r,z))$, $\operatorname{Var}((\partial_{x_i}r_n(s,y))) \leq \frac{1}{nh_t h_x^{d+2}T\lambda(B)} \int_0^T dr K_t^2 \left(\frac{s-r}{h_t}\right) \int_B dz (\partial_{x_i}K_x)^2 \left(\frac{y-z}{h_x}\right) \mathbb{E}(v^2(r,z))$. Since we assume $T\lambda(B)\delta_n << 1$, Lemma 3.5 yields $(T\lambda(B))^2 \mathbb{E}\|\partial_{x_i}r_n\|_{H_{\beta,X}^\mu}^2 \leq \frac{K_0(T)}{h_x^2} \mathbb{E}\|v\|_{H_{\beta,X}^\mu}^2$. If v is unbiased, we get $(T\lambda(B))^2 \mathbb{E}\|\partial_{x_i}r_n\|_{H_{\beta,X}^\mu}^2 \leq K_0(T) \frac{T\lambda(B)\delta_n}{h_x^2} \mathbb{E}\|v\|_{H_{\beta,X}^\mu}^2$.

6.2.2 Bound for $(T\lambda(B))^4 \mathbb{E} \|r_n \partial_{x_i} f_n\|_{H^{\mu}_{\beta,X}}^2$

First, we develop the product $r_n^2(s,y)(\partial_{x_i}f_n)^2(s,y)$ by using the following formulae $(\partial_{x_i}f_n(s,y))^2 = \frac{1}{n^2h_t^2h_x^{2d+2}}\left(\sum_{j=1}^nK_t^2(j)(\partial_{x_i}K_x)^2(j) + \sum_{i,j=1,i\neq j}^nK_t(i)K_t(j)(\partial_{x_i}K_x)(i)(\partial_{x_i}K_x)(j)\right) := A+B,$ $r_n^2(s,y) = \frac{1}{n^2h_t^2h_x^{2d}}\left(\sum_{k=1}^nK_t^2(k)K_x^2(k)v^2(k) + \sum_{k,l=1,k\neq l}^nK_t(k)K_t(l)K_x(k)K_x(l)v(k)v(l)\right) := C+D, \text{ where } K_t(j) := K_t\left(\frac{s-T_j}{h_t}\right), K_x(j) := K_x\left(\frac{y-X_j}{h_x}\right), (\partial_{x_i}K_x)(j) := (\partial_{x_i}K_x)\left(\frac{y-X_j}{h_x}\right) \text{ and } v(k) := v(T_k, X_k). \text{ Developing } A \times C \text{ leads to}$

$$\mathbb{E}(A \times C) = \frac{1}{n^4 h_t^4 h_x^{4d+2}} \left(n \mathbb{E}(K_t^4(1)(\partial_{x_i} K_x)^2(1) K_x^2(1) v^2(1)) + n(n-1) \mathbb{E}(K_t^2(1)(\partial_{x_i} K_x)^2(1)) \mathbb{E}(K_t^2(1) K_x^2(1) v^2(1)) \right).$$

Since $\mathbb{E}(K_t^2(1)(\partial_{x_i}K_x)^2(1))$ is bounded by $K_0(T)\frac{h_t h_x^d}{T\lambda(B)}$, we get $\mathbb{E}(A \times C) \leq \frac{\delta_n^3}{h_t h_x^{d+2}} \mathbb{E}(K_t^4(1)(\partial_{x_i}K_x)^2(1)K_x^2(1)v^2(1)) + \frac{\delta_n^2}{T\lambda(B)h_t h_x^{d+2}} \mathbb{E}(K_t^2(1)K_x^2(1)v^2(1))$. We write terms

of type $\mathbb{E}(g_t(1)g_x(1)v^2(1))$ as $\frac{1}{T\lambda(B)}\int_0^T drg_t\left(\frac{s-r}{h_t}\right)\int_B dzg_x\left(\frac{y-z}{h_x}\right)\mathbb{E}(v^2(r,z))$, where g_t (resp. g_x) represents a function depending on K_t (resp. on K_x and $\partial_x K_x$). Finally, by using the same procedure for the other terms, we obtain $\mathbb{E}((\partial_{x_i}f_n(s,y))^2(r_n^2(s,y))) \leq \frac{K_0(T)}{(T\lambda(B))^4h_th_x^{d+2}}\int_0^T drg_t\left(\frac{s-r}{h_t}\right)\int_B dzg_x\left(\frac{y-z}{h_x}\right)\mathbb{E}(v^2(r,z))$. Applying Lemma 3.5 yields $(T\lambda(B))^4\mathbb{E}\|r_n\partial_{x_i}f_n\|_{H^\mu_{\beta,X}}^2 \leq \frac{K_0(T)}{h_x^2}\mathbb{E}\|v\|_{H^\mu_{\beta,X}}^2$. If v is unbiased, terms like $(\mathbb{E}(K_t(1)K_x(1)v(1)))^2$ are null and this leads to $(T\lambda(B))^4\mathbb{E}\|r_n\partial_{x_i}f_n\|_{H^\mu_{\beta,X}}^2 \leq \frac{K_0(T)T\lambda(B)\delta_n}{h_x^2}\mathbb{E}\|v\|_{H^\mu_{\beta,X}}^2$.

References

- [1] E. Gobet and C. Labart. Solving BSDE with adaptive control variate. Submitted, available on HAL preprint server at http://hal.archives-ouvertes.fr/, 2009.
- [2] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression. Springer, 2002.
- [3] W. Härdle. Applied nonparametric regression. Cambridge University Press, 1992.
- [4] C. Labart. BSDE: analysis of the discretisation error and simulation using adaptive Monte Carlo methods; Domain perturbations for American options. PhD thesis, CMAP, Ecole Polytechnique, 2007.