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Introduction

A complex analytic space S is holomorphically convex if there is a proper holo-
morphic morphism π : S → T with π∗OS = OT such that T is a Stein space. T
is then called the Cartan-Remmert reduction of S.

The so-called Shafarevich conjecture of holomorphic convexity predicts that

the universal covering space X̃univ of a complex compact projective manifold X
should be holomorphically convex.

This is trivial if the fundamental group is finite. The Shafarevich conjecture
is a corollary of the Riemann uniformization theorem in dimension 1. The study
of the Shafarevich conjecture for smooth projective surfaces was initiated in the
mid 80s by Gurjar and Shastri [GurSha85] and Napier [Nap90].

In the mid nineties, new ideas introduced by J. Kóllar and independently by
F. Campana have revolutionized the subject. The outcome was what is still the
best result available with no assumption on the fundamental group, namely the
construction of the Shafarevich map (aka Γ-reduction) [Cam94, Kol93, Kol95].

At the same time, Corlette and Simpson [Cor88, Cor93, Sim88, Sim92,
Sim94] were developing Nonabelian Hodge theory. A bit later a p- adic ver-
sion of Nonabelian Hodge theory in degree 1 was developed by Gromov and
Schoen [GroSch92].

The idea that Nonabelian Hodge theory can be used to prove Shafarevich
conjecture was introduced in 1994 by the second author. He proved Shafare-
vich conjecture for nilpotent fundamental groups [Kat97]. At about the same
time the second and the fourth author proved the Shafarevich conjecture for
smooth projective surfaces with fundamental group admitting faithful Zariski
dense representation, in a reductive complex algebraic group [KatRam98].

The first author then found a way to extend this Nonabelian Hodge theo-
retic argument to higher dimension and showed that the Shafarevich conjecture
holds for any smooth projective variety with fundamental group having a faith-
ful representation, Zariski dense in a reductive complex algebraic group - see
[Eys04].

Several influential contributions to these and closely related topics were
also made by Lasell and the fourth author [LasRam96], Mok [Mok92] and Zuo
[Zuo94].
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The present article studies the conjecture in the case when π1(X,x) has a
finite dimensional complex linear representation with infinite monodromy group.
It combines and develops further some known techniques in Non abelian Hodge
theory. In particular we prove the conjecture for projective manifolds X whose
fundamental group admits a faithful representation in GLn(C).

The general strategy has two main steps. First we use the given faithful
linear representation to construct certain complex variations of mixed Hodge
structures (C-VMHS). Then we utilize the associated period mappings to con-
struct a Shafarevich morphism. This is quite similar to the way period maps
for complex variations of pure Hodge structures (C-VHS) were used in [Eys04].
Once the Shafarevich morphism is constructed, holomorphic convexity is much
simpler to obtain here. The crucial point in the construction of the Shafare-
vich morphism is a rather subtle rationality lemma which turned out to rely on
Mixed Hodge Theory.

The paper is organized as follows. Section 2 introduces Absolute Con-
structible Sets and recalls results from [Eys04]. Section 3 introduces a C-VMHS
constructed in [EysSim09] which serves as a main ingredient of the proof. Sec-
tion 4 contains the proof of an important strictness statement. Section 5 con-
tains a rationality lemma and the reduction to finite number of local systems.
Section 6 contains the construction of the Shafarevich morphism and the proof
of the main theorem.

Given present-day technology, it seems difficult to go significantly further
in the direction of proving the Shafarevich conjecture. Perhaps, the generaliza-
tion to the Kähler case or understanding sufficient conditions for holomorphic
convexity of the universal covering space of a singular projective variety might
produce interesting developments. Several interesting observations have been
made in cases of nonresidually finite fundamental groups. Bogomolov and the
second author suggest [BoKa98] that the Shafarevich conjecture might fail in
the case of nonresidually finite fundamental groups. From another point of view,
papers by Bogomolov and de Oliveira [BoDe0O5, BoDe0O6] suggest that big
part of universal coverings of smooth projective varieties might still be holomor-
phically convex.

Notations

In what follows, X will denote a connected projective algebraic complex mani-
fold, x ∈ X a point, Q ⊂ ℓ ⊂ C a field of definition for X , and Z a connected
projective algebraic variety.

Statement of the Main Theorem

Theorem 1 Let G be a reductive algebraic group defined over Q. Let M =
MB(X,G) be the character scheme of π1(X,x) with values in G.

(a) Let H̃∞
M ⊂ π1(X,x) be the intersection of the kernels of all representations

π1(X,x) → G(A), where A is an arbitrary C-algebra of finite type. Then,
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the associated Galois covering space of X:

X̃∞
M = X̃univ/H̃∞

M

is holomorphically convex.

(b) There exists a natural non-increasing family

H̃1
M ⊆ H̃2

M ⊆ · · · ⊆ H̃k
M ⊆ · · · ⊆ H̃∞

M E π1(X,x)

of normal subgroups in π1(X,x). For a given k the group H̃k
M corresponds

to representations π1(X,x) → G(A), with A an Artin local algebra, and
such that the Zariski closure of their monodromy group has k-step unipo-

tent radical. For every H̃k
M the associated cover

X̃k
M = X̃univ/H̃k

M

is holomorphically convex.

Remarks. Let π : X̃k
M → S̃kM (X) be the Cartan-Remmert reduction of X̃k

M .

The quotient group π1(X,x)
k
M := π1(X,x)/H̃k

M acts properly discontinuously

on X̃k
M and π is equivariant. We then define the Shafarevich variety as the

normal compact complex space ShkM (X) = S̃kM (X)/π1(X,x)
k
M . The resulting

Shafarevich morphism shkM : X → ShkM (X) is then independent on k ∈ N∗∪∞.

For every subgroup H ⊂ π1(X,x) such that H̃∞
M ⊂ H ⊂ H̃1

M the covering

space X̃univ/H is holomorphically convex as well.

See section 3.1 for the precise definition of H̃k
M . If G = GL1, this theorem is

a restatement of [Kat97]. Actually, the theorem is likely to hold when we replace
MB(X,G) by an arbitrary absolutely closed set M defined over Q [Sim93].

Acknowledgments:

We thank Frédéric Campana, János Kollár and Carlos Simpson for useful
conversations on the Shafarevich conjecture and non-abelian Hodge Theory.

We have to apologize for the excessive delay between our first announcement
talks on this subject and the availability of a text in preprint form.

1 Absolute Constructible Sets

1.1 Basic facts

Let G be an algebraic reductive group defined over Q. The representation
scheme of π1(X,x) is an affine Q-algebraic scheme described by its functor of
points:

R(π1(X,x), G)(Spec(A)) := Hom(π1(X,x), G(A))
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for any Q algebra A. The character scheme of π1(X,x) with values in G is the
affine scheme

MB(X,G) = R(π1(X,x), G)//G.

Let k̄ be an algebraically closed field of characteristic zero. ThenMB(X,G)(k̄)
is the set of G(k̄)-conjugacy classes of reductive representations of π1(X,x) with
values in G(k̄), see [LuMa85].

Character schemes of fundamental groups of complex projective manifolds
are rather special. In [Sim94], two additional quasi-projective schemes over ℓ
are constructed: MDR(X,G) and MDol(X,G). The C-points of MDR(X,G) are
in bijection with the equivalence classes of flat G-connections with reductive
monodromy, and the C-points of MDol(X,G) are in bijection with the isomor-
phism classes of polystable G-Higgs G-bundles with vanishing first and second
Chern class. Whereas the notion of a polystable Higgs bundle depends on the
choice of a polarization on X the moduli space MDol(X,G) does not, i.e. - all
moduli spaces one constructs for the different polarizations are naturally iso-
morphic, [Sim94]. This is analogous to the classical statement that the usual
Hodge decomposition on the de Rham cohomology is purely complex analytic,
i.e. independent of a choice of a Kähler metric1. MDol(X,G) is acted upon
algebraically by the multiplicative group C∗. There is furthermore a complex
analytic biholomorphic map

RH : MB(X,G)(C) →MDR(X,G)(C)

and a real analytic homeomorphism

KH : MB(X,G)(C) →MDol(X,G)(C).

RH andKH are also independant of the choice of a Kähler metric. When l = Q,
one defines an absolute constructible subset of MB(X,G)(C) to be a subset M
such that:

• M is the set of complex points of a Q-constructible subset of MB(X,G),

• RH(M) is the set of complex points of a Q-constructible subset ofMDR(X,G),

• KH(M) is a C∗-invariant set of complex points of a Q-constructible subset
of MDol(X,G).

There is a rich theory describing the structure of absolutely constructible
subsets in MB(X,G). Here we briefly summarize only those properties of abso-
lutely constructible sets that we will need later. Full proofs and details can be
found in [Sim93].

• The full moduli space MB(X,G) of representations of π1(X,x) in G de-
fined in [Sim94] is absolutely constructible and quasi compact (acqc).

1The harmonic representative of a cohomology class depends in general on the Kähler
metric. A helpful remark in the present context is that the harmonic representative of a
degree 1 cohomology class actually does not depend on the Kähler metric.
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• The closure (in the classical topology) of an acqc subset is also acqc.

• Whenever ρ is an isolated point in MB(X,G), {ρ} is acqc.

• Absolute constructibility is invariant under standard geometric construc-
tions. For instance, for any morphism f : Y → X of smooth connected
projective varieties, the property of a subset being absolutely constructible
is preserved when taking images and preimages via f∗ : MB(X,G) →
MB(Y,G). Similarly, for any homomorphism µ : G → G′ of reductive
groups, taking images and preimages under µ∗ : MB(X,G) →MB(X,G′)
preserves absolute constructibility.

• Given a dominant morphism f : Y → X and i ∈ N the set M i
f(X,GLn) of

local systems V on Y such that Rif∗V is a local system is ac. Also, taking
images and inverse images under Rif∗ : M i

f (X,GLn) → MB(Y,GLn′)
preserves acqc sets.

• The complex points of a closed acqc set M are stable under the C∗ action
defined by [Sim88] in terms of Higgs bundles. By [Sim88] the fixed point
set MVHS := MC∗

consists of representations underlying polarizable com-
plex Variations of Hodge structure (C-VHS, for short). Furthermore M is
then the smallest closed acqc set in MB(X,G) containing MVHS.

1.2 Reductive Shafarevich conjecture

After complete results were obtained for surfaces in [KatRam98], the Shafarevich
conjecture on holomorphic convexity for reductive linear coverings of arbitrary
projective algebraic manifolds over C was settled affirmatively in [Eys04].

Theorem 1.1 Let M ⊂MB(X,G) be an absolute constructible set of conjugacy
classes of linear reductive representations of π1(X,x) in some reductive algebraic
group G over Q.

Define a normal subgroup HM ⊂ π1(X,x) by:

HM =
⋂

ρ∈M(Q)

ker(ρ).

The Galois covering space X̃M = X̃univ/HM is holomorphically convex.

Without a loss of generality we may assume in this theorem that M is a
closed absolutely constructible set since X̃M = X̃M̄ .

Let ΓM be the quotient group defined by

ΓM = π1(X,x)/
⋂

ρ∈M(Q)

ker(ρ).
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ΓM is the Galois group of X̃M over X . and acts in a proper discontinuous
fashion on the Cartan-Remmert reduction S̃M (X) of X̃M , which is a normal
complex space. The quotient space

ShM (X) = S̃M (X)/ΓM

is then a normal projective variety and the quotient morphism shM : X →
ShM (X) is called the Shafarevich morphism attached to M . This morphism is
a fibration, i.e.: is surjective with connected fibers.

Its fibers Z are connected, have the property that π1(Z) → ΓM has finite
image and are maximal with respect to these properties.

Corollary 1.2 If π1(X,x) is almost reductive (i.e. has a Zariski dense rep-
resentation with finite kernel in a reductive algebraic group over C) then the
Shafarevich conjecture holds for X.

2 C-VMHS attached to an absolute closed set

We will first review some of the results in [Hai98] and [EysSim09] that enable
one to construct various C-VMHS on X out of M .

The results in [Hai98] are important, general and abstract since they deal
with general compactifiable Kähler spaces. The results in [EysSim09] deal with
the less general situation of a compact Kähler manifold but are more explicit and
give some useful properties we have not been able to deduce from [Hai98]. More
to the point, [EysSim09] will be sufficient for proving the Shafarevich conjecture
in the case when π1(X,x) has a faithful complex linear representation. On the
other hand, the results in [Hai98, Sections 1-12] are needed for the optimal form
of our results.

2.1 C-VMHS, definition, basic properties

The notion of polarized C-VHS was introduced in [Sim88] as a straightforward
variant of [Gri73]. We will use another equivalent definition:

Definition 2.1 A C-VHS (polarized complex variation of Hodge structures) on

X of weight w ∈ Z is a 5-tuple (X,V,F•,G
•
, S) where:

1. V is a local system of finite dimensional C-vector spaces,

2. S a non degenerate flat sesquilinear pairing on V,

3. F• = (Fp)p∈Z a biregular decreasing filtration of V ⊗C OX by locally free
coherent analytic sheaves such that d′Fp ⊂ Fp−1 ⊗ Ω1

X ,

4. G
•

= (G
q
)q∈Z a biregular decreasing filtration of V ⊗C OX̄ by locally free

coherent antianalytic sheaves such that d′′G
p
⊂ G

p−1
⊗ Ω1

X̄
,
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5. for every point x ∈ X the fiber at x (Vx,F•
x ,G

•

x) is a C-MHS polarized by
Sx.

The conjugate C-VHS is the C-VHS obtained on V setting F•
V

= G
•
, etc.

The local system V ⊕ V carries a real polarized Variation of Hodge Structures.
Recall that a real reductive algebraic group E is said to be of Hodge type if

there is a morphism h : U(1) → Aut(E) such that h(−1) is a Cartan involution
of E, see [Sim92, p.46]. By definition, h is a Hodge structure on E. Connected
groups of Hodge type are precisely those admitting a compact Cartan subgroup.
A Hodge representation of E is a finite dimensional complex representation
α : E(R) → GL(VC) such that h fixes ker(α).In this case, VC inherits a pure
polarized Hodge structures of weight zero. The adjoint representation of a
Hodge group is Hodge. Thus the Lie algebra E of E has a natural real Hodge
structure of weight 0 compatible with the Lie bracket. The Lie algebra action
EC ⊗ VC → VC respects the Hodge structures.

The real Zariski closure Eρ of the monodromy group of a representation
ρ : π1(X,x) → G(C) underlying a C-VHS is a group of Hodge type. We have
Eρ ⊂ RC|RGC, where RC|R is the Weil restriction of scalars functor. Every
Hodge representation α of E gives rise to

α ◦ ρ : π1(X,x) → GL(Vα)

a representation that underlies a C-VHS [Sim92, Lemma 5.5].
The notion of C-VMHS (or graded-polarized variation of C-mixed Hodge

structures) used in [EysSim09] is a straightforward generalization of that given
in [StZ85, Usu83]:

Definition 2.2 A C-VMHS on X is a 6-tuple (X,V,W•,F
•,G

•
, (Sk)k∈Z) where:

1. V is a local system of finite dimensional C-vector spaces,

2. W• = (Wk)k∈Z is a decreasing filtration of V by local subsystems,

3. F• = (Fp)p∈Z a biregular decreasing filtration of V ⊗C OX by locally free
coherent analytic sheaves such that d′Fp ⊂ Fp−1 ⊗ Ω1

X ,

4. G
•

= (G
q
)q∈Z a biregular decreasing filtration of V ⊗C OX̄ by locally free

coherent antianalytic sheaves such that d′′G
p
⊂ G

p−1
⊗ Ω1

X̄
,

5. ∀x ∈ X the stalk (Vx,W•,x,F
•
x ,G

•

x) is a C-MHS,

6. Sk is flat sesquilinear non degenerate pairing on GrW
k V,

7. (X,GrW
k V, GrW⊗COX

k F•, Gr
W⊗COX̄

k G
•
, Sk) is a C-VHS.

We use the following terminology in the sequel:

Definition 2.3 A homomorphism of groups ρ : Γ → Γ′ will be called trivial
if ρ(Γ) = {e}. A VMHS will be called trivial (or constant) if its monodromy
representation is trivial.
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2.2 Mixed Hodge theory for the relative completion

In [Hai98, Theorem 13.10], certain R-VMHS are attached to a R-VHS on com-
pact Kähler manifold. In this section we review the results of [Hai98] relevant
to our discussion and complement them with some explicit examples. We will
omit the proofs of the statements that are not essential to our present goals but
we will describe in greater detail the examples we need.

2.2.1 Hain’s theorems

Let us first review [Hai98, Sections 1-12]. Another reference where this material
(and much more) has been nicely rewritten in a more general form is [Pri07,
Section 6]. Let Eρ be a real reductive group of Hodge type. Let ρ : π1(X,x) →
Eρ(R) be a Zariski dense representation underlying a VHS, and let

1 → Uρx → Gρx → Eρ → 1, a : π1(X,x) → Gρx(R)

be its relative completion [Hai98].
Gρx is a proalgebraic group over R and Uρx is its prounipotent radical.
Let k ≥ 1 be an integer, Uρx,k be the k-th term of the lower central series of

Uρx and Gρx,k be Gρx/U
ρ
kx

.
The commutative Hopf algebra R[Gρx] of the regular functions on Gρx carries a

compatible R-MHS with nonnegative weights. The increasing weight filtration
is described by the formula:

WkR[Gρx] = R[Gρx,k]

where R[Gρx,k] is identified with its image in R[Gρx]. Although these MHS are
not necessarily finite dimensional, they are always filtered direct limits of finite
dimensional ones.

Let Mx = (Mx,W•, F
•) be a finite dimensional complex mixed Hodge struc-

ture and consider α : Gρx(R) → GL(Mx) a representation of Gρx. We will say α
is a Mixed Hodge representation iff α is the representation arising from the real
points of a rational representation of Gρx in Mx and the coaction

α∗ : Mx →Mx ⊗ C[Gρx]

respects the natural MHS.
The main result of [Hai98, Section 13] can now be stated as follows.

Proposition 2.4 Let α be a Mixed Hodge representation. The representation
α ◦ a : π1(X,x) → GL(Mx) underlies a C-VMHS. Moreover, any C-VMHS M
whose graded constituents GrkWM are VHS such that their monodromy repre-
sentations π1(X,x) → GL(GrkWMx) factor through ρ is of this type. A similar
statement holds for R-VMHS.

The recent preprint [Ara09] gives among other things an alternative approach
to this material.
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2.2.2 Example

In [Hai98] Hain describes the steps WkM of the weight filtration in Proposi-
tion 2.4 through iterated integrals. This however is somewhat technical and
goes beyond the scope of the present paper. Instead of discussing the general
construction, we will spell out the definition of the C-VMHS underlying some
very specific C-Mixed Hodge representations of Gρx,1 which will play a prominent
role in our considerations.

Let (X,V,F•,G
•
, S) be a C-VHS that will be assumed with no loss of gen-

erality of weight 0. We will write V for short, since this will not cause any
confusion.

Let E•(X,V) be the de Rham complex of V. This de Rham complex inherits
a Hodge filtration from F and the Hodge filtration on E•(X) and an anti-Hodge
filtration from G and the anti-Hodge filtration on E•(X). The resulting two
filtrations on its cohomology groups define on Hp(X,V) a C-Hodge structure
of weight p. Furthermore, once we fix a Kähler form on X , there is a subspace
Hp(X,V) ⊂ Ep(X,V) consisting of harmonic forms in a suitable sense such that
the composite map [ ] : Hp(X,V) ⊂ Zp(X,V) → Hp(X,V) is an isomorphism.
This is standard and can be found in e.g. [Zuc79] for V a R-VHS. The general
C-VHS case follows in exactly the same way.

Remark 2.5 When p = 1, the space of harmonic forms is actually independent
of the Kähler metric and of the polarization S. Furthermore if Y → X is a
morphism f∗H1(X,V) ⊂ H1(Y,V). Indeed H1(X,V) = ker(D′) ∩ ker(D′′) ∩
E1(X,V).

Consider α ∈ H1(X,V) such that [α] is of pure Hodge type (P,Q). Then,
for all y ∈ X , α(p) ∈ VP−1,Q

y ⊗ Ω1,0 ⊕ VP,Q−1
y ⊗ Ω0,1.

Let (αi)i∈I be a C-basis of H1(X,V) such that each [αi] is of pure Hodge
type. Let ([αi]

∗)i∈I be the dual basis of the dual vector space H1(X,V)∗ and
define

Ω ∈ E1(X,V ⊗H1(X,V)∗)

by the formula:

Ω =
∑

i

αi ⊗ [αi]
∗.

Note that Ω does not depend on the chosen basis. Now we define a new
connection on the vector bundle underlying the local system M0 = C ⊕ V∗ ⊗
H1(X,V) on X a new connection by setting:

dM =

(
dC Ω
0 dV∗ ⊗ IdH1(X,V)

)
.

The duality pairings H1(X,V) ⊗H1(X,V)∗ → C and V ⊗ V∗ → C are tacitly
used in this formula. Since dVαi = 0, the connection follows that dM is a flat
connection and this gives rise to a local system M. Furthermore, the connection
dM respects the 2-step filtration W 0M = C W 1M = M, hence M is a filtered
local system whose graded parts are Gr0WM = C and Gr1WM = V∗ ⊗H1(X,V).
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We now define a Hodge filtration F• of the smooth vector bundle underlying
M by the formula valid for every p ∈ X :

Fk
p =

{
Fk

V∗

p⊗H
1(X,V) ⊂ V∗

p ⊗H1(X,V) if k > 0,

Cp ⊕Fk
V∗

p⊗H
1(X,V) ⊂ Cp ⊕ V∗

p ⊗H1(X,V) if k ≤ 0.

Similarly, one defines an anti-Hodge filtration on M which we denote by G
•

by
the formula valid for every p ∈ X :

G
k

p =




G
k

V∗

p⊗H
1(X,V) ⊂ V∗

p ⊗H1(X,V) if k > 0,

Cp ⊕ G
k

V∗

p⊗H
1(X,V) ⊂ Cp ⊕ V∗

p ⊗H1(X,V) if k ≤ 0.

It defines on each stalk Mp a C-MHS such that Gr0WMp is the trivial Hodge
structure on C and Gr1WMp is the given Hodge Structure on V∗

p ⊗H1(X,V).

Lemma 2.6 Fk is a holomorphic subbundle of the holomorphic vector bundle
M underlying M and satisfies Griffiths transversality.

Proof: First observe that the ∂̄ operator of M is given by d0,1
M . Consider the

original flat connection

d =

(
dC 0
0 dV∗ ⊗ IdH1(X,V)

)
.

Obviously

d0,1
M = d0,1 +

(
0 Ω0,1

0 0

)
.

Since d0,1 preserves Fk, it follows that Fk is an holomorphic subbundle of M
iff (

0 Ω0,1

0 0

)
Fk ⊂ Ω0,1 ⊗Fk,

where Ω0,1 ∈ E0,1(X,V) ⊗H1(X,V)∗ is the (0, 1)-component of Ω. This condi-
tion is equivalent to Ω0,1 · Fk

V∗⊗H1(X,V) = 0 if k > 0.

We are thus reduced to checking that for every α ∈ H1(X,V) such that [α]
is of pure Hodge type (P,Q) and [β]∨ ∈ (H1(X,V)∗)−P,−Q

α0,1 ⊗ [β]∨ · Fk
V∗⊗H1(X,V) = 0, if k > 0.

It is enough to check that [α]⊗[β]∨·Hk,1−k
V∗⊗H1(X,V) = 0, or further decomposing

in Hodge type that

α0,1 ⊗ [β]∨ · h−P
′+k,−Q′−k+1 ⊗ [β]P

′,Q′

= O

where h−P
′+k,−Q′−k+1 ∈ (V∗)−P

′+k,−Q′−k+1 and [β]P
′,Q′

∈ H1(X,V)P
′,Q′

.
The only non trivial case is when P ′ = P,Q′ = Q and this reduces to showing
that VP,Q−1 ⊗ Ω0,1.(V∗)−P+k,−Q−k+1 = 0 which is the case since k > 0.
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Griffiths transversality is the statement that d1,0
M Fk ⊂ Fk−1 ⊗ Ω1,0 and

follows from the same argument. �

Antiholomorphicity and Griffiths anti-transversality for G• can be proved by
the same method. Hence we have defined on M a graded polarizable VMHS
with weights 0, 1, the polarizations being the natural ones. In [HaiZuc87], the
case of V = CX is treated. In that case, the VMHS is actually defined over Z.

Definition 2.7 M = M(V) := (X,M,W•,F
•
M ,G

•

M , (Sk)k=0,1) is the 1-step C-
VMHS attached to V.

2.3 Mixed Hodge theory for the deformation functor

In this paragraph, we review the construction of [EysSim09]. The ‘new’ aspects
of this construction actually grew out of the previous example. The older as-
pects, on the other hand, were part of Goldman-Millson’s theory of deformations
for representations of Kähler groups [GolMil88].

In this paragraph, we fix N ∈ N and assume that G = GLN and M =
MB(X,GLN ). Let ρ : π1(X,x) → GLN (C) be the monodromy represention of
a C-VHS. Let Ôρ be the complete local ring of [ρ] ∈ R(π1(X,x), GLN )(C). Let

obs2 = [−;−] : S2H1(X,End(Vρ)) → H1(X,End(Vρ))

be the Goldman-Millson obstruction to deforming ρ. Define I2, (In)n≥2, (Πn)n≥0,
as follows:

Π0 = C

Π1 = H1(X,End(Vρ))
∗

I2 = Im(tobs2) ⊂ S2H1(X,End(Vρ))
∗

In = I2S
n−2H1(X,End(Vρ))

∗

Πn = SnH1(X,End(Vρ))
∗/In

Then the complete local C-algebra

(ÔT ,m) := (
∑

n≥0

Πn,
∑

n≥1

Πn)

is the function algebra of a formal scheme T which is the germ at 0 of the
quadratic cone

obs
−1
2 (0) ⊂ H1(X,End(Vρ)).

We endow ÔT with a split mixed Hodge structure with non positive weights,
whose weight filtration is given by the formula WkÔT = m−k for k ≤ 0, arising
from the identifications:

ÔT =
∑

n≥0

mn/mn+1 =
∑

n∈N

Πn,

12



Πn being endowed with its natural C-Hodge structure of weight −n. This mixed
Hodge structure is infinite dimensional, but can be described as the limit of the
resulting finite dimensional MHS on ÔT /m

n.
In [GolMil88], an isomorphism between Spf(Ôρ) and T ×A is constructed,

where A is the germ at zero of a finite dimensionnal vector space. In [EysSim09],
this constuction is revisited. A slight reinterpretation of Goldman-Millson the-
ory is that one can realize the formal local scheme T as a hull of the de-
formation functor for ρ. Actually, there are three preferred such realizations
GMc,GM′,GM′′ which are given by three canonical representations:

ρGMT :π1(X,x) → GLN (ÔT )

ρGM
′

T :π1(X,x) → GLN (ÔT )

ρGM
′′

T :π1(X,x) → GLN (ÔT )

These three representations are conjugate up to an isomorphism of T .
We can now summarize the results developped by [EysSim09] in the form

we shall need:

Definition 2.8 Let η1, . . . , ηb ∈ E•(X,End(Vρ)) form a basis of the subspace
H1(X,End(Vρ)) of harmonic twisted one forms, each ηi being of pure Hodge type
(Pi, Qi) for the Deligne-Zucker C-Mixed Hodge Complex E•(X,End(Vρ)). Then
{ηi} is a basis of H1(X,End(Vρ)) whose dual basis we denote by ({η1}

∗, . . . , {ηb}
∗).

The End(Vρ) ⊗ Π1-valued one-form αv1 is defined by the formula:

αv1 =

b∑

i=1

ηi ⊗ {ηi}
∗.

Proposition 2.9 For k ≥ 2, we can construct a unique D′′-exact form αvk ∈
E1(X,End(Vρ)) ⊗ Πk such that the following relation holds:

D′αvk + αvk−1α
v
1 + αvk−2α

v
2 + . . .+ αv1α

v
k−1 = 0.

Proposition 2.10 Let Av =
∑
αvk acting on the vector bundle underlying the

filtered local system (Vρ ⊗ ÔT ,Wk(Vρ ⊗ ÔT ) = Vρ ⊗ mk−wght(Vρ)), whose con-
nection will be denoted by D.

Then, D+Av respects this weight filtration, satisfies Griffiths’ transversality
for the Hodge filtration F• defined by

Fp =
0⊕

k=−n

Fp(Vρ ⊗ Π−k)

and we can construct an anti-Hodge filtration so that the resulting structure is
a graded polarizable C-VMHS whose monodromy representation is ρGM

′′

T .

A detailed proof of this proposition is given in [EysSim09]. The essential
part is the construction of the anti-Hodge filtration which is similar in spirit
but somewhat subtler than construction given in Example 2.2.2.
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Definition 2.11 The C-VMHS obtained by reduction mod mn corresponds
to

ρT,n := (ρcGM
v

T mod mn) : π1(X,x) → GLN (ÔT /m
n).

It will be called the n-th deformation of Vρ and will be denoted by Dn(Vρ).

By construction, D + Av is an ÔT -linear connection. As a consequence of
the methods in [EysSim09, pp 18-23], we also have:

Proposition 2.12 There is a MHS on ÔT whose weight filtration is given
by the powers of the maximal ideal and such that the natural map ÔT →
EndC(Dn(Vρ)) respects the natural MHS.

This MHS is not the split MHS constructed above. This split MHS is just
the weight graded counterpart of the true object. These MHS and VMHS are
not uniquely defined when the deformation functor of ρ is not prorepresentable.
This phenomenon does not occur when the representation is irreducible.

Remark 2.13 The restriction G = GLn in the above considerations was intro-
duced only for convenience. It is not essential. In [EysSim09], similar state-
ments are proven for arbitrary reductive groups G.

3 Subgroups of π1(X, x) attached to M

Let G be a reductive algebraic group defined over Q. Suppose as before M ⊂
MB(X,G) is an absolute closed subset.

3.1 Definitions

Definition 3.1 Let MVHS be the subset of M(C) consisting of the conjugacy
classes of C-VHS that is MVHS := KH−1(MDol(X,G)C∗

(C)).

We choose a set M∗ of reductive representations ρ : π1(X,x) → G(C)
mapping onto MV HS under the natural map R(π1(X,x), G) → MB(X,G).
To be more precise, we define M∗ to be the union of the closed G-orbits on
R(π1(X,x), G) -or equivalently the set of reductive complex representations-
whose equivalence class lie in MVHS . Similarly, we define M ′ to be the union
of the closed G-orbits on R(π1(X,x), G) whose equivalence class lie in M . To
each ρ ∈M∗ we attach Eρ the real Zariski closure of its monodromy group and
the other constructions reviewed in paragraph 2.2.1.

Definition 3.2 The tannakian categories T VHS
M and TM are defined as follows:

T V HS
M is the full Tannakian subcategory of the category of local systems on X

generated by the elements of MVHS .
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TM is the full Tannakian subcategory of the category of local systems on X
generated by the elements of M .

Every object in T V HS
M is isomorphic to an object which is a subquotient of

α1(ρ1)⊗ . . .⊗ αs(ρs), where ρ1, . . . , ρs are elements of M∗ and αi is a complex
linear finite dimensionnal representation of Eρi(R). Let M∗∗ be the set of all
such subquotients. The objects of T V HS

M underly polarizable C-VHS.
Let T VMHS

M be the thick Tannakian subcategory of (C-VMHS) whose graded
constituents are objects of T VHS

M . The full subcategory of T VMHS
M with a weight

filtration of length at most k + 1 will be denoted by T VMHS
M (k) .

Example 3.3 For every ρ ∈ M∗∗, α as above and σ = α ◦ ρ, Dk(Vσ) is an
object of T VMHS

M (k).

Definition 3.4 Given X, G, and M ⊂ MB(X,G) as above, and k ∈ N we
define the following natural quotients of π1(X,x):

Γ∞
M is the quotient of π1(X,x) by the intersection H∞

M of the kernels of the
objects of T VMHS

M and of the objects of M .

Γ̃∞
M is the quotient of π1(X,x) by the intersection H̃∞

M of the kernels of the
monodromy representation of Dn(Vσ), σ ∈M∗∗, n ∈ N, and of the objects
of M .

ΓkM is the quotient of π1(X,x) by the intersection Hk
M of the kernels of the

objects of T VMHS
M (k) and of the objects of M .

Γ̃kM is the quotient of π1(X,x) by the intersection H̃k
M of the kernels of the

monodromy representation of Dk(Vσ), σ ∈M∗∗, and of the objects of M .

It is likely that the canonical quotient morphism ΓkM → Γ̃kM is an isomor-
phism but we do not have a proof of this fact yet. We will thus have to work
with the above slightly clumsy notation.

Note that we have the inclusions:

Γ∞
M =

⋂

k∈N

ΓkM ⊂ Γk+1
M ⊂ ΓkM ⊂ Γ0

M = ΓM ,

Γ̃∞
M =

⋂

k∈N

Γ̃kM ⊂ Γ̃k+1
M ⊂ Γ̃1

M ⊂ Γ̃0
M = Γ̃M .

It should be noted that since Hk
M (respectively H̃k

M ) is normal the various base
point changing isomorphisms πX(X,x′) → π1(X,x) respect Hk

M (respectively

H̃k
M ). Hence, dropping the base point dependance in the notation Hk

M (respec-

tively H̃k
M ) is harmless.

For future reference, we state the following lemma whose proof is tautologi-
cal.

Lemma 3.5 Hk
M is the intersection of ΓM and the kernels of aρk : π1(X,x) →

Gρx,k(R).

15



3.2 Strictness

Let z ∈ Z be a base point in the connected projective variety Z.

Proposition 3.6 For every f : (Z, z) → (X,x) such that π1(Z, z) → ΓM is
trivial, the following are equivalent:

1. For every V in T VHS
M , H1(X,V) → H1(Z,V) is trivial,

2. π1(Z, z) → Γ1
M is trivial,

3. π1(Z, z) → Γ̃1
M is trivial,

4. For every V in T V HS
M , for every Ẑi → Z a resolution of singularities of

an irreducible component, the VMHS M(V) bZi
is trivial.

5. For every σ ∈ M∗∗ and k ∈ N , for every Ẑi → Z a resolution of singu-
larities of an irreducible component, the VMHS Dk(Vσ) bZi

is trivial.

6. π1(Z, z) → Γ̃∞
M is trivial.

7. π1(Z, z) → Γ∞
M is trivial.

Proof:

(1 ⇐⇒ 2). Fix ρ ∈M∗∗. Denote byEρ the real Zariski closure of ρ(π1(X,x)).
By hypothesis ρ(π1(Z, z)) = {e} and thanks to [Hai98], section 11, 2 we have a
diagram:

π1(Z, z)
aZ7→ π̂DR1 (Z, z)

↓ ↓

π1(X,x)
aX7→ Uρx ⊂ Gρx

where π1(Z, z)
aZ7→ π̂DR1 (Z, z) = Ue(Z, z) = Ge(Z, z) is the Malcev completion of

π1(Z, z), i.e.: its relative completion with respect to the trivial representation.
Let {Vα}α be a set of representatives of all isomorphism classes of complex

irreducible left Eρ-modules.
The prounipotent group morphism f∗ : π̂DR1 (Z, z) → Uρx gives rise to a

morphism of proalgebraic complex vector groups (=limits of finite dimensional
complex vector spaces viewed as algebraic groups):

H1(π̂
DR
1 (Z, z))(C) → H1(U

ρ
x)(C)

where H1(U) = U/U ′ is the abelianization. One has identifications ( see [Hai98]
p 73):

2Stricto sensu, in order to apply [Hai98] sect. 11, we need that Z be a smooth connected
manifold. We can replace Z by a neighborhood U of it in some embedding in P

N (C) such
that Z → U is an homotopy equivalence and apply [Hai98] sect. 11 to U .
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H1(π̂
DR
1 (Z, z))(C) = H1(Z,C),

H1(U
ρ
x)(C) =

∏

α

H1(X,Vα) ⊗ V ∗
α

where Vα is the local system attached to ρ and Vα. The map is the transpose
of the map ⊕

α

H1(X,V∗
α) ⊗ Vα → H1(X,C)

given on each factor by the composition:

H1(X,V∗
α)⊗ Vα

i∗Z⊗idVα→ H1(Z,V∗
α)⊗ Vα = H1(Z,C)⊗ V ∗

α ⊗ Vα
id⊗tr
→ H1(Z,C).

For the middle equality in this formula, we used that Vα|Z is the trivial local
system, which follows from the assumption that π1(Z, z) → ΓM is trivial.

Hence condition 1 is equivalent to H1(π̂
DR
1 (Z, z)(C)) → H1(U

ρ
x)(C) being

zero which in turn is equivalent to condition 2.
(2 =⇒ 3) Condition 3 is obviously implied by condition 2.
(3 =⇒ 1) If 3 holds D1(Vσ)|Z is a trivial local system . But, by construction

this local system is a deformation of a trivial local system by a one-step nilpotent
matrix of closed one forms written in the following block form:

(
0 A
0 0

)

hence, in the same basis, its monodromy on any γ ∈ π1(Z, z) is given by:

(
1

∫
γ
A

0 1

)
.

Hence the triviality of D1(Vσ)|Z implies that
∫
γ
A = 0, or that the cohomology

class of A is zero. But by construction, the cohomology class of A is zero iff
condition 1 holds.

(1 =⇒ 4) The cohomology class of the form α1 vanishes after restriction to

Z and so vanishes after pullback to Ẑi. We denote by fi the composition of f
with the map Ẑi → Z. But α1 ∈ ker(D′) ∩ ker(D′′). Hence f∗

i α1 ∈ ker(D′)i,1 ∩

ker(D′′)i,1 where D′
i,1, D

′′
i,1 are the usual D′, D′′ acting on E1(Ẑi,End(f∗

i Vρ)).
As mentioned before, Hodge theory implies that:

ker(D′)i,1 ∩ ker(D′′)i,1 = H1(Ẑi,End(f∗
i Vρ)).

Hence f∗
i α1 is the harmonic representative of its class. From this it follows

that f∗
i αi = 0. This implies that f∗

i M is the trivial deformation of f∗
i M0 and

condition 4 follows.
(4 =⇒ 1) The method we used to prove (3 =⇒ 1) works to yield that

H1(X,V) → H1(Ẑi,V) is zero. But this implies by the argument we used to
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show (1 =⇒ 4) that f∗
i α1 = 0. This in turn implies that i∗Aα1 = 0 if f(Z) =

∐
A

is a smooth stratification. Hence the holonomy of M(V)Z is trivial. Applying
once again the method for (3 =⇒ 1) completes the argument.

(1 =⇒ 5) Continuing the same line of reasoning as in proving (1 =⇒ 4)
and using the fact that the (αvk) constructed in proposition 2.9 are uniquely
determined, it follows that (f∗

i α
v
k) is the family of twisted forms one gets from

applying the construction of proposition 2.9 starting with f∗
i α1 = 0. Hence

f∗
i α

v
k = 0 and f∗

i A
v = 0. Condition 5 then follows.

(1 =⇒ 6) Continuing this line of reasoning, the argument made in (4 =⇒ 1)
implies that the restriction of Dk(Vσ) to Z has trivial monodromy, which is
equivalent to condition 6.

(6 =⇒ 2) is trivial.
(6 =⇒ 5) comes from the fact that condition 6 implies that the restriction

of Dk(Vσ) to Z has trivial monodromy, condition 5 follows a fortiori.
(7 =⇒ 3) is trivial.
(1 =⇒ 7) The proof is an easy adaptation of the argument of [Kat97], section

2. We nevertheless feel it is necessary to give some details.
The Lie algebras L(Z, z) = Lie(π̂DR1 (Z, z)) and Uρx = Lie(Uρx) are nilpotent

and so come equiped with a decreasing filtration given by their lower central
series. The map iZ gives rise to a Lie algebra morphism (iZ)∗ : L(Z, z) → Uρx.
It is enough to show that (iZ)∗ = 0

By relabelling we can convert the lower central series into an increasing filtra-
tion B•L(Z, z) and B•Uρx with indices ≤ −1. For both Lie algebras Gr−1

B ( ) =
H1( ) and Gr−1

B (L(Z, z)) generates the graded Lie algebra Gr•B(L(Z, z)). Hence
condition 3 implies that Gr•B(iZ)∗ : Gr•BL(Z, z) → Gr•BUρx is zero.

First consider the case where Z is smooth. Then, by [Hai87] [Hai98], both
L(Z, z) and Uρx carry a functorial Mixed Hodge structure whose weight filtration
is B•. Hence, since the map (iZ)∗ respects the Mixed Hodge structures, it is
strict for the weight filtration and Gr•B(iZ)∗ = 0 ⇒ (iZ)∗ = 0.

Next we consider the case where H1(Z) is pure of weight one. We recall, see
[Hai87], that R[π̂DR1 (Z, z)] = H0(B(R, E•(Z),R)) where B is the reduced bar
construction and E•(Z) is a multiplicative mixed Hodge complex computing
H•(Z) endowed with a base point at z. B(R, E•(Z),R) carries an increasing
filtration B•, the bar filtration. It follows from [Hai87] that B(R, E•(Z),R)
endowed with the bar filtration is a filtered mixed Hodge complex so that the
bar filtration on R[π̂DR1 (Z, z)] is a filtration by MHS. The Eilenberg-Moore
spectral sequence which is the spectral sequence associated to the bar filtration
is a spectral sequence in the category of MHS and, since H1(Z) is pure of weight
one, Es,−s1 = H1(Z)⊗s is pure of weight s. Hence Grk

B
R[π̂DR1 (Z, z)] is pure of

weight k. Since the bar filtration is a refinement of the weight filtration, it
follows that the bar filtration and the weight filtration coincide. Combining
this with the preceding argument, one easily finishes the proof of the case when
H1(Z) is pure of weight one.

Finally note that by passing to a hyperplane section we may assume that
Z is a curve which without a loss of generality can be taken to be seminormal
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and the argument of [Kat97] p. 340-341 applies verbatim. One concludes using
lemma 2.4 p. 342 in [Kat97].

�

Remark 3.7 If we skip items 2 and 7 in the previous proposition we obtain a
strictness statement which can be proved without relying on [Hai98].

Remark 3.8 As far as the equivalence of condition 7 with the rest is concerned,
we believe that one can adapt the explicit argument made for (1 =⇒ 6) using
the more sophisticated iterated integrals of [Hai98].

Except perhaps for condition 7, that depends on X being projective, the
proposition is valid in the compact Kähler case.

Remark 3.9 A generalization to the Kähler case of the main result in [Kat97]
with an alternative proof has been given in the unpublished thesis [Ler99] (see
also [Cla08]) as a byproduct of her exegesis of [Hai87] and [Hai85b]. The core
of her argument could be reformulated in such a way that it becomes equivalent
to the special case of the present one where G = {e} is the trivial group.

3.3 Reduction to using VSHM

Proposition 3.10 Let n be a non negative integer. Let Hn be the intersec-
tion of the kernels of all linear representations π1(X) → GLn(A), A being an

arbitrary C-algebra. Let M = M(X,GLn). Then, Hn = H̃∞
M .

Proof: The inclusion Hn ⊂ H̃∞
M is obvious. Now let γ ∈ H̃∞

M . Then
γ defines a matrix valued regular function F on R(π1(X,x), GLn) (i.e.: F ∈
Matn×n(C[R(π1(X,x), GLn)])) which reduces to the constant function with
value In on Tρ ⊂ R(π1(X,x), GLn) for every element ρ ∈ MV HS . Goldman-

Millson theory implies that the tautological representation π1(X,x) → GLn(Ôρ)
is conjugate to the pull back by cGM of ρcGMT . Hence F induces the trivial ma-

trix valued function when reduced to Spf(Ôρ). Hence F induces the constant
matrix valued function with value In on some complex analytic neighborhood
of MVHS .

Let ρ̃ be a semisimple complex representation mapping toM−MVHS . Then,
by [Sim88], ρ̃ correspond to a polystable Higgs bundle (E , θ). For t ∈ C∗, let ρ̃(t)
corresponds to (E , t.θ). By applying the Goldman-Millson construction to each
˜ρ(t), we get a real analytic family of flat connections (Dt)t∈C∗ on the smooth

vector bundle underlying E ⊗ Oρ̃(t) (see for instance [Pri06, pp. 21]) such that
the image Ft of the matrix function F in the complete local ring at ρ̃(t), satisfies
Ft = hol(Dt) ∈ Matn×n(Oρ̃(t)). Since Ft = In for small t then F1 = In. Hence
F maps to In in Matn×n(C[(Γ, GLn)]ρ̃). Hence F = In in a complex analytic
neighborhood of the set of semisimple representations.

Given a non semi simple representation ρarb we may find a sequence (ρm)m∈N

of conjugate representations converging to a semi simple one we see that ρm(γ) =
Idn for m ≫ 0 hence ρarb(γ) = Idn one concludes that F = In or in other
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words that γ lies in the kernel of every representation π1(X) → GLn(A), for an
arbitrary C-algebra A. In particular γ ∈ Hn. �

Corollary 3.11 Assume π1(X,x) has a faithful representation in GLn(C). Then

H̃∞
M = {1}.

4 Rationality lemma

4.1 Some pure Hodge substructures attached to an abso-

lute closed set M and a fiber of shM

Let f : Z → X be a morphism and M ⊂MB(X,G) an absolute closed subset.
For V be an object of TM , we denote by tr : V ⊗ V∗ → C the natural

contraction. Consider the subspace PV(Z/X) ⊂ H1(Z,C) defined by:

PV(Z/X) := Im
[
f∗H1(X,V) ⊗H0(Z,V∗)

∪
−→ H1(Z,V ⊗ V∗)

tr
−→ H1(Z,C)

]
.

In this formula, we denoted by V the local system on Z defined as f∗V.
Obviously, no confusion can arise from this slight abuse of notation.

Definition 4.1 We also define PM (Z/X), PM (Z/X) ⊂ H1(Z,C) as follows:

PM (Z/X) ⊂ H1(Z,C): the subspace of H1(Z,C) spanned by the PV(Z/X), when
V runs over all objects in T VHS

M .

PM (Z/X) ⊂ H1(Z,C): the subspace of H1(Z,C) spanned by the PV(Z/X), when
V runs over all objects in TM .

H1(Z,C) is defined over Z since it is the complexification of H1
sing(Z,Z).

This Betti integral structure is the one we will tacitly use.

Lemma 4.2 PM (Z/X) is a pure C-Hodge substructure of weight one of the
C-MHS underlying Deligne’s MHS on H1(Z,C).

Proof: Since each V is a C-VHS of weight zero, and X is smooth, it follows
that H1(X,V) is a pure C-Hodge structure of weight one. Also by [Del71-75]
the mixed Hodge structures on the cohomology of varieties with coefficients in
variations of Hodge structures are functorial and hence PV(Z/X) is a C-Hodge
substructure of H1(Z,C). Finally by strictness [Del71-75] the span PM (Z/X)
of the PV(Z/X)’s will also be pure and of weight one. �

Lemma 4.3 If G is defined over Q and that the absolutely closed subset M ⊂
MB(X,G) is defined over Q, PM (Z/X) is defined over Q

Assume now that f(Z) is contained in a fiber of the reductive Shafarevich
morphism for M or that equivalently a finite étale cover of Z lifts to a compact
analytic subspace of X̃M . Then after a finite etale cover we may assume that
f∗π1(Z, z) ⊂ HM , ie that every object ρ in TM satisfies ρ(π1(Z, z)) = {e}. The
rationality lemma is the following statement:
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Theorem 4.4 Assume G is defined over Q and M = MB(X,G). Assume that
f∗π1(Z, z) ⊂ HM . If π1(Z) → ΓM is trivial then PM (Z/X) = PM (Z/X).

Corollary 4.5 If G and M = MB(X,G) are defined over Q, then PM (Z/X)
is also defined over Q.

The rest of this section will be devoted to the proof of theorem 4.4.
We will also assume dimM > 0 since the result is obvious for an absolute

closed subset consisting of isolated points. The proof will be done in several
steps which reduce the general statement to special situations.

Remark 4.6 It seems likely that Theorem 4.4 holds true for arbitrary absolute
closed subsets defined over Q. One basically needs to adapt [EysSim09] to this
situation.

4.2 Reduction to the smooth case

First we reduce to the case when Z is smooth. We need the following lemma:

Lemma 4.7 PM (Z/X) is a pure weight one substructure of Deligne’s MHS on
H1(Z).

Proof: Let V be an object of TM By [Sim97, Theorem 4.1] the space
H1(X,V) carries a pure twistor structure of weight one. Furthermore by [Sim97,
Theorem 5.2] the spaceH1(Z,V) carries a canonical mixed twistor structure and
f∗H1(X,V) ⊂ H1(Z,V) is a twistor substructure. By functoriality PV(Z/X) ⊂
H1(Z,C) will be a pure weight one twistor substructure and hence the span
PM (Z/X)

∑
V PV(Z/X) ⊂ H1(Z,C) is a pure weight one twistor substructure

of the mixed Hodge structure H1(Z,C). However the Dolbeault realization
of PM (Z/X) is clearly preserved by C∗ since by assumption C∗ leaves MDol

invariant. Therefore PM (Z/X) is a sub Hodge structure. �

In order to prove Theorem 4.4, since PM (Z/X) ⊂ PM (Z/X) is pure of
weight one, it is enough to prove that GrW1 PM (Z/X) = GrW1 PM (Z/X). Hence,
without a loss of generality, we can assume that Z is smooth.

4.3 Reduction to a finite number of local systems

Lemma 4.8 There is a finite set S of objects of T VHS
M such that whenever a

morphism Z → X has the property im [π1(Z) → ΓM ] = 0 it follows that

PM (Z/X) =
∑

V∈S

PV(Z/X).

Similarly, there is a finite set S of objects of TM , so that PM (Z/X) =∑
V∈S PV(Z/X). Furthermore the set S can be chosen so that for any Higgs

bundle (E, θ) corresponding to a V ∈ S the C-VHS associated to limt→0(E, t.θ)
belongs to S.
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Proof: Consider (Sα)α a stratification of ShM (X) by locally closed smooth
algebraic subsets such that sα := shM |(shM )−1(Sα) : (shM )−1(Sα) → Sα is a
topological fibration. Fix pα ∈ Sα. Let Zα = s−1

α (pα), let Zα,o be a connected
component and let Z ′

α,o → Zα,o be the topological covering space defined by

Z ′
α,o = Z̃univα,o / ker(π1(Zα,o) → ΓM ). Z ′

α,o → Zα,o.
Since H1(Zα,o,C) is finite dimensional, it follows that a finite set S exists

with the required properties for Z = Zα,o. Since the cohomology classes coming
from X are flat under the Gauss Manin connection, this statement holds true
for all fibers of sα. Since every f : Z → X with the required properties factors
through one of the Zα,o’s, the lemma follows. �

4.4 Hodge theoretical argument

From now on, we really need to assume that M = MB(X,G), and that G is
defined over Q.

Let A be a noetherian C-algebra and ρA : π1(X,x) → GLN (A) be a repre-
sentation. Let VA be the local system of free A-modules attached to ρA and
V∨
A = HomA(VA, A) be the local system associated to tρ−1. We define:

P (A) = Im
[
H1(X,VA) ⊗A H

0(Z,V∨
A) → H1(Z,C) ⊗C A

]

P (A) is an A-submodule of the free A-module H1(Z,C) ⊗C A.
Let σ in M∗∗ be a non-isolated point. In subsection 2.3, we recalled the

construction and basic properties of Tσ ⊂ R(π1(X,x), G) a formal local sub-
scheme which gives rise to a hull of the deformation functor of σ. In follows
from [GolMi90], that this formal subscheme is actually the formal neigborhood
of σ in an analytic germ T anσ ⊂ R(π1(X,x), G). If we decompose the reduced
germ of T anσ into the union T an,redσ = ∪iT

an,i of its analytic irreductibile com-
ponents, then we will denote by T i the formal neighborhood of σ in T an,i. The
irreducible components of an analytic germ being in one to one correspondance
with the irreducible components of the associated formal germ, it follows that
T redσ = ∪iT

i is still the irreducible decomposition of the reduced formal local
subscheme underlying Tσ. Note that T i is an integral formal subscheme of Tσ
and so its ideal Pi is a minimal prime of ÔTσ .

Lemma 4.9 The weight and Hodge filtrations on ÔTσ induce on Pi ⊂ ÔTσ a
sub-MHS structure.

Proof: First observe that the minimal associated primes of the graded ring
Grm

•

ÔTσ are graded ideals and also split subMHS of the split MHS onGrm
•

ÔTσ

since the ResC|RC∗-action defining the Hodge decomposition is compatible with
the ring structure.

By construction, there is a ring isomorphism ÔTσ → Grm
•

ÔTσ . This ring
isomorphism takes minimal associated primes to minimal associated primes.
Hence, Grm

•

Pi is a sub Hodge Structure of Grm
•

ÔTσ .
There is no canonical choice for this isomorphism but it can be chosen in

such a way that it respects the weight and Hodge filtrations - but not the three
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filtrations. This implies that the trace of the Hodge filtration of Grm
•

ÔTσ on

Grm
•

Pi is the filtration induced by the trace of the Hodge filtration of ÔTσ on
Pi. The anti Hodge filtration satisfies a similar statement.

These two facts imply that Pi ⊂ ÔTσ is a sub-MHS structure. �

Hence the complete local algebra ÔT i carries a C-MHS and ρ bOT i
: π1(X,x) →

G(ÔT i) is the monodromy of the local system D(Vσ) ⊗ bOTσ
ÔT i . Thanks to

lemma 2.12 and lemma 4.9, this local system underlies a C-VMHS whose weight
filtration corresponds to the powers of the maximal ideal in ÔT i .

By, construction the tautological representation ρO
Tan,i : π1(X,x) → G(OTan,i)

is a holomorphic family of representations parametrized by a reduced germ of
complex space.

If there is a proper closed analytic subset Zi ⊂ T an,i such that ∀p ∈ T an,i−Zi

the representation ρO
Tan,i (p) is a reductive representation, then the inclusion

f∗π1(Z, z) ⊂ HM implies that the restriction of ρOT an,i (p) to π1(Z, z) is trivial

for p 6∈ Zi. Hence the restriction of ρO
T an,i and ρ bOT i

to π1(Z, z) are trivial as

well.
If not, then for each irreducible component M ′ ⊂ M containing σ, take a

component R′ via σ of the preimage π−1(M ′) ∈ R(π1(X,x), G) which dom-
inates M ′. Let (R′)red ⊂ R′ be its maximal reduced subscheme. Consider
the semisimplification of the representation attached to the generic point of
the subscheme (R′)red ⊂ R(π1(X,x), G). It is conjugate to a Zariski dense
representation with values in with values in some G′ ⊂ G, where G′ is reduc-
tive over Q. But Im(MB(X,G′) → MB(X,G)) is a closed acqc set and so
M ′ ⊂ Im(MB(X,G′) → MB(X,G)). So without a loss of generality we may
replace G by G′ and also replace T anσ by an analytic Goldman-Millson slice
through σ in R(π1(X,x), G

′). With this new definition, the restriction of ρ bOT i

to π1(Z, z) is trivial too and the corresponding local system on Z is the constant

local system Vσ ⊗C ÔT i .
In particular, we have a canonical isomorphism of VMHS V∨

bOi
T /m

k
|Z ≃

V∨
σ |Z ⊗C Ô

i
T /m

k. It now follows that, for all k ∈ N:

P (ÔT i/mk) = Im(H1(X,V bOi
T /m

k)⊗CH
0(Z,V∨

σ )
H bOi

T
/m

k

→ H1(Z,C)⊗C ÔT i/mk).

Hk := H bOT i/mk preserves the natural Mixed Hodge structures.

Proposition 4.10 Pk := P (ÔT i/mk) ⊂ P1 ⊗ ÔT i/mk ⊂ PM (Z/X) ⊗ ÔT i/mk.

Proof: If k = 1 this is trivial: by construction, P1 ⊂ PM (Z/X). We now
argue by induction and assume that the result holds for k′ < k.

The representation ρk = ρ bOi
T /m

k underlies a variation of complex mixed

Hodge structure Mk on X . The weight filtration is given by the powers of
m. Since ρk is trivial on π1(Z) then its restriction to Z is the trivial VMHS

H ⊗C Ô
i
T /m

k where H is some Hodge structure of weight zero (with a possibly
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non trivial Hodge vector) and, on ÔT i/mk, the weight filtration is described by
the powers of m.

Pk = Im

[
H1(X,Mk ⊗C H)

Hk
//H1(Z,C) ⊗C ÔT i/mk

]
.

The weights of Mk are 0, . . . ,−k + 1. Consider the following diagram of
MHS, in which the rows are exact:

H1(X,W−k+1Mk ⊗C H) //

��

H1(X,Mk ⊗C H) //

��

H1(X,Mk−1 ⊗C H)

��

H1(Z) ⊗ mk−1/mk // H1(Z) ⊗ ÔT i/mk // H1(Z) ⊗ ÔT i/mk−1

Remember we assume Z to be smooth. The weights of the MHS in the first
row are 2 −m, in the second 2 −m, ..., 1, in the third one 3 −m, ..., 1. Hence
the second line is just the canonical exact sequence

W2−k

[
H1(Z) ⊗ ÔT i/mk

]
//H1(Z) ⊗ ÔT i/mk //GrW3−k

[
H1(Z) ⊗ ÔT i/mk

]
.

The main observation is now that, by strictness, we have:

W2−kPk = Im
[
H1 (X,W−k+1 (Mk ⊗C H)) //H1(Z) ⊗ ÔT i/mk

]
.

From this it follows that W2−kPk ∈ P1 ⊗ mk−1/mk. By induction, Pk−1 ⊂

H1(Z)⊗ ÔT i/mk−1 ⊂ P1 ⊗ ÔT i/mk−1. But Pk (respectively Pk−1) is the image
of the map in the third column (resp. the second). It follows that Pk ⊂ P1 ⊗

ÔT i/mk.
�

4.5 Proof of theorem 4.4 if M = MB(X, G)

It follows from proposition 4.10 that:

P (OTan,i) ⊂ PM (Z/X) ⊗OTan,i .

It follows that for all p in the complex analytic germ T an,i we have:

PVρ(p)
(Z/X) ⊂ PM (Z/X).

Since there is a complex analytic neighborhood U of σ in M such that every
point of U has a (semisimple) representative in T an,i, it follows that for every
V ∈ U we have PV(Z/X) ⊂ PM (Z/X).
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Now let S be the finite set from Lemma 4.8. Suppose V ∈ S with an asso-
ciated Higgs bundle (E, θ), and let (Vt)t∈C∗ be the local systems corresponding
to the Higgs bundle (E, tθ). For a small enough t we have:

PVt(Z/X) ⊂ PM (Z/X)

Fix t small enough and non zero. It follows that dim(
∑

V∈S̄ PVt(Z/X)) ≤
dimPM (Z/X).

Consider:

PDolVt
= Im

[
H1
Dol(X,Vt) ⊗H0

Dol(Z,V
∗
t )

Id⊗tr
//H1
Dol(Z)

]
.

Using Simpson’s Dolbeault isomorphism we have:

dim


∑

V∈S̄

PDolVt
(Z/X)


 ≤ dimPM (Z/X).

Recall there is a natural isomorphism s(t) : H•
Dol(−,V) → H•

Dol(−,Vt).
Let (E, θ) be a polystable Higgs bundle representing V. Then H•

Dol(X,V) :=
H•(X, (E ⊗ Ω•

X , θ)). We can construct an quasi-isomorphism (E ⊗ Ω•
X , θ) →

(E ⊗ Ω•
X , t.θ) by the formula:

E
θ

//

��

E ⊗ Ω1
X

θ∧
//

t

��

E ⊗ Ω2
X

θ∧
//

t2

��

. . .

E
tθ

//E ⊗ Ω1
X

tθ∧
//E ⊗ Ω1

X
tθ∧

// . . .

Since (E, tθ) is the polystable Higgs bundle representing Vt this quasi iso-
morphism defines indeed an isomorphism s(t) : H•

Dol(−,V) → H•
Dol(−,Vt).

In case (E, θ) is kept fixed by C∗ which means that there is an isomorphism
ψ(t) : (E, θ) → (E, tθ), a(t) = ψ(t)−1 ◦ s(t) is an automorphism of H1

Dol(X,V)
which comes from an action of C∗. Here (E, θ) is not kept fixed by C∗ but its
restriction to Z is. This gives a diagram:

H1
Dol(X,V) //

s(t)

��

H1
Dol(Z,V)

a(t)

��

H1
Dol(X,Vt)

// H1
Dol(Z,V)

By functoriality and the definition of PDolVt
(Z/X), we get a commutative

diagram:

PDolV (Z/X) //

s̃(t)

��

H1
Dol(Z)

a(t)

��

PDolVt
(Z/X) // H1

Dol(Z)

25



and s̃(t) is an isomorphism.
Hence dim(

∑
V∈S̄ P

Dol
V (Z/X)) ≤ dimPM (Z/X). Since, by Simpson’s Dol-

beault isomorphism, the l.h.s is dimPM (Z/X) the theorem is proved.

5 Construction of the Shafarevich morphism

5.1 Preliminary considerations

5.1.1 Pure weight one rational subspaces of H1(Z)

Let Z be a complex projective variety.
The possibly non zero Hodge numbers of Deligne’s Mixed Hodge structure

[Del71-75] on the first cohomology group H1(Z,Z) of the connected projective
variety Z are h0,0, h0,1, h1,0.

In particular, we have an extension of Q-MHS of a pure weight one HS by a
pure weight zero HS:

0 →W0(H
1(Z,Q)) → H1(Z,Q) → GrW1 (H1(Z,Q)) → 0. (1)

Let Zsn → Z be the seminormalisation of Z (see [Kol96] Chap. I Defi-
nition 7.2.1, p. 84 and the original references therein) H1(Z) → H1(Zsn) is
an isomorphism of MHS since Zsn(C) → Z(C) is an homeomorphism [Kol96]
I.(7.2.1.1).

Let A be a pure weight one Q-HS. There is an abelian variety (well defined
up to isogeny) such that H1(A,Q) = A.

Lemma 5.1 Let φ̃ : A → H1(Z,Q) be a morphism of MHS. Then there exists

a rational number d 6= 0 and a morphism ψ : Zsn → A such that dφ̃ = H1(ψ).

We may as well assume Z is seminormal. Assume moreover that Z is a
curve. Consider more generally φ : A → GrW1 H1(Z) a morphism Q-HS of pure
weight one.

Pulling back the extension (1) by the morphism φ defines a extension of
Q-MHS

0 →W0(H
1(Z,Q)) → A′ → A → 0. (2)

Proof: Let ν : Zν → Z be the normalisation of Z. Thanks to [Del71-75]
lemme 10.3.1. the extension (1) is isomorphic to

0 →W0 → H1(Z)
ν∗

−→ H1(Zν) → 0.

Let γ : [0, 1] → Z be a loop which is based at a singular point, meets the
singular locus of Z at finitely many points and is smooth outside these points.
The preimage of γ in Zν γ is a finite union γ1, . . . , γn of paths possibly lying
in several connected components of Zν . This defines a linear form

∫
γ

: ω 7→
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∑
i

∫
γi
ω on H0(Zν ,Ω1) and, upon composition with φ, a linear form φ∗

∫
γ

on

A1,0.
It follows from [Car87] theorem (1.13) -see also the enlightening example

(1.17) - that (2) is split if and only if for every γ as above φ∗
∫
γ

is a rational

multiple of a period of A, i.e. lies in the image of H1(A,Q).

The datum φ̃ gives actually such a splitting and the Abel-Jacobi construc-
tion gives a continuous mapping Z → A with the required property which is
holomorphic when pulled back to Zν . Since Z is seminormal this continuous
mapping actually underlies a morphism.

The general case readily follows from the curve case. Assume first Z is
irreducible. Let λ : Zν → Z be the normalisation of Z. Then we can construct
a morphism ψν : Zν → A and an integer d such that dH1(λ) ◦ φ̃ = H1(ψ) .
This morphism is locally constant on the fibers of λ : Zν → Z. On the other
hand we can always find a connected curve C passing through each connected
component of a given positive dimensionnal fiber F of λ. Consider Csn → C
the seminormalization of C. This is a homeomorphism which identifies H1(C)
and H1(Csn) with their respective Mixed Hodge structures. The morphism
ψν |C : Csn → A is isogenous to the one predicted by lemma 5.1 applied to C
and the resulting φ̃C : A → H1(C). Let C′ be the image of C in Z. Since φ̃C
factors through H1(C′) it follows that ψν |C is constant on the finite fiber of
Csn → C′. Hence ψν assume the same value on all connected components of
F . Hence it descends to morphism ψ : Z → A since Z is seminormal.

In general, Z has m irreducible components, there are m − 1 constants of
integration to take care of and a connected curve in Z meeting every connected
component of the smooth locus do the bookkeeping. �

5.1.2 Period mappings for C-VMHS

R-MHS have period domains and R-VMHS period mappings generalizing those
constructed by Griffiths for R-VHS, [Usu83], see also [Car87] 3.

Recall that X is a complex projective manifold and let (X,V,F•, S) be a R-
VHS of weight zero and letM be the real Zariski closure of its monodromy group
computed at some basepoint x ⊂ X . Let U ⊂ M be the isotropy group of the
Hodge filtration on Vx. Then the period domain of V is the complex manifold
D(V) := M/U . It is endowed with a certain horizontal distribution which can
be described in terms of the Hodge structure on the Lie algebra m of M . It
is actually the actually the period domain attached to the Hodge semisimple
group Mad. Furthermore D(V) is a moduli space of Hodge structures on M ,
see [GriSch69] for more details.

Let (X,V,W•,F
•, (Sk)k∈Z) be a R-VMHS. Again we have a period domain

MD(V) for this variation and a holomorpic fibration of period domains ψ :
MD(V) →

∏
kD(GrW

k V) which is compatible to the horizontal distributions.

3Actually, C-VMHS have also period mappings of their own but since this would not give
additional information, we will stick to the usual conventions used in the litterature
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The domain MD(V) is a homogenous space of the form H/U ′, where H is
the subgroup of W0GL(Vx) mapping to

∏
kM(Sk) under the natural surjection

W0GL(Vx) → GL(GrW
0 Vx).

Accordingly there is an equivariant holomorphic horizontal period mapping

φV : X̃univ →MD(V) with a commutative diagram:

X̃univ φV

−→ MD(V)
ց ↓ ψ∏

kD(GrW
k V).

Let M be a R-VMHS of weights -1 , 0 and MD be its period domain. Let
D be product of the the period domains corresponding to the graded parts of
M. The map MD → D is then an affine bundle.

The following lemma can be extracted from [Car87, p. 200].

Lemma 5.2 MD → D is a holomorphic vector bundle.
The fiber V (H−1, H0) of MD → D at (H−1, H0) is canonically isomorphic

to Hom(H0, H−1)C/F
0 where Hom(H0, H−1) is endowed of its natural Hodge

structure of weight −1.

Consider f : Z → X a morphism such that f∗GriM is a VHS with trivial
monodromy. Let PM =

∑
i Pf∗GriM(Z/X) ⊂ H1(Z), then we have the following

lemma:

Lemma 5.3 There is a commutative diagram

Z̃univ → (P 1,0
M )∗

ց ↓ gM

V (H−1, H0)

where gM is linear and injective and, when Z is smooth, the horizontal map is
given by integration of closed holomorphic forms.

Proof: The proof is straightforward and is left to the reader. The case when
V = C is standard and the general case follows by the same reasoning. �

5.2 Proof of Theorem 1

5.2.1 Notations

In what follows, M = MB(X,G) where G is a reductive group defined over Q.

Lemma 5.4 There exists an object M1 of T MVHS
M (1) such that for every f :

Z → X for which π1(Z) → ΓM is trivial, we have that PM1 = PM (Z/X) and
that gM1 is injective

Proof: Take
M1 :=

∑

σ∈S

(
D1(Vσ) + D1(Vσ)

)
,
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where S ⊂ T VHS
M is the finite set constructed in lemma 4.8, and D1(Vσ) is the

C-VMHS from Definition 2.11. �

Let X̃k
M be the covering space of X defined as X̃univ/H̃k

M . This covering is
Galois with Galois group ΓkM .

Consider the local systems that belong to the finite set S in T VHS
M from

lemma 4.8. Without loss of generality we may assume that they underly real
VHS of weight zero. Every ρ in S underlies a Zariski dense representation
π1(X) → Gρ where Gρ is a real Lie group of Hodge type. Let ρS : π1(X) →
GS =

∏
ρ∈S Gρ be the direct sum representation.

5.2.2 Construction of the Shafarevich morphism in case k = 1

In this paragraph, we assume that k = 1. Choose a finite dimensionnal real
representation as in lemma 5.4 of G1

S(R) such that the associated local system
W(1) underlies a graded polarizable real variation of mixed Hodge structure
with the finite weight filtration: 0 = W−2 ⊂ W−1 ⊂ W0 = W(1).

Associated with W(1), we have a holomorphic Griffiths’ transversal period

mapping q1S : X̃univ → D1
S where D1

S is is the corresponding period domain for
MHS. The period domain D1

S has a holomorphic fibration π : D1
S → DS which

makes it an affine fibration over the period domain DS . The composition π ◦ q1S
is the period mapping for the associated graded object of T VHS

M .

The map q1S factors through a holomorphic horizontal map Q1
MX̃

1
M → D1

S .

Consider the holomorphic map qS : X̃1
M

Q1
M×ShM
−→ D1

S × ShM (X).

Lemma 5.5 Every connected component of a fiber of q is compact.

Proof: Such a component Φ is contained in the lift of some fiber Z of
X → ShM (X). Replacing Z by an etale cover, we may assume ρ(π1(Z)) = {e}
whenever the conjugacy class of the reductive representation ρ is in M .

Hence Φ is a connected component of a fiber of the map q′ defined as qS

restricted to Z̃1
M = Z̃univ/ ker(π1(Z) → Γ̃1

M ).
Now π ◦ q′ is the constant map and Φ is a connected component of a fiber

of an holomorphic map ψ : Z̃1
M → V where V is a complex vector space which

is a fiber of π.
Apply lemma 5.1 to X = Z and A = PM (Z/X). The rationality hypothesis

is fulfilled thanks to Theorem 4.4. We find a map to an abelian variety Zsn → A
and using P 1,0

M (Z/X)∗ → A the universal covering space of A a proper holo-

morphic map ψ′ : Z̃1
M

sn
→ P 1,0

M (Z/X)∗.
Our claim follows from the fact that we have a commutatative diagram:

Z̃1
M

sn ψ
−→ P 1,0

M (Z/X)∗

s ↓ i ↓

Z̃1
M

ψ
−→ V

Where s is the seminormalisation and i an injective linear map.
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Next, recall the following classical result:

Lemma 5.6 ([Car], vol 2, pp. 797-811) Let X,S be two complex spaces and
f : X → S a morphism. Assume a connected component F of a fiber of f is
compact. Then, F has a neighbourhood V such that g(V ) is a local analytic
subvariety of S and V → g(V ) is proper.

Assume furthermore any connected component of a fiber of f is compact and
X and S are normal. Then, the set S̄ of connected components of a fiber of f
can be endowed with a structure of normal complex space such that the quotient
mapping e : X → S̄ is holomorphic, proper, with connected fibers.

Using this lemma, we construct a surjective proper holomorphic mapping

with connected fibers to a normal complex space r1M : X̃1
M → S̃1

M (X) such
that its fibers are precisely the connected components of the fibers of q. Since
q is Γ1

M -equivariant it folllows that r1M is Γ1
M -equivariant too. Note that Γ1

M

acts on S̃1
M (X) in a proper discontinuous fashion and hence has at most finite

stabilizers.

Lemma 5.7 The fibers of r1M are precisely the maximal connected analytic sub-

varieties of X̃1
M .

Proof: It is enough to show that whenever Z is a connected compact analytic

subvariety of X̃1
M , r1M is constant. Fix such a Z.

The map f : Z → X has the property that the group homomorphism
π1(Z) → Γ1

M induced by π1(f) has finite image. Let Z ′ be a connected étale
cover of Z such that π1(Z

′) → Γ1
M is trivial. Abusing notation, let f : Z ′ → X

be the resulting map. Then, for every representation ρ in M , f∗ρ is trivial and
for every object V of T VHS

M , the restriction map H1(X,V) → H1(Z ′,V) is zero.
This implies, through the proof of lemma 5.5 that q is constant on Z ′ and thus
r1M . �

Remark. In fact it can be shown that S̃1
MX)/Γ1

M is a normal algebraic
variety. This follows from recent work of G. Pearlstein but is not used in the
the main theorem and so we will not discuss it here.

5.2.3 Stein property in the case k = 1

Proposition 5.8 X̃1
M is holomorphically convex and r1M is its Cartan-Remmert

factorisation.

Proof: Consider the natural period mapping S̃M (X) → DS and the affine

bundle VS(X) = S̃M (X) ×DS D1
S → S̃M (X). The previous consideration imply

that S̃1
M (X) → VS(X) is proper and finite to one, hence finite.

Being an affine bundle over a Stein space VS(X) is Stein, hence S̃1
M (X) is

Stein. �
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5.2.4 General case

Theorem 5.9 Let X̃ = X̃univ/Γ be a Galois covering space of X with H̃∞
M ⊂

Γ ⊂ H̃1
M . Then X̃ is holomorphically convex.

Proof: Consider the map q : X̃ → S̃1
M (X).

We claim that every connected component Φ of a fiber of q is compact.
Indeed Φ has to be a connected lift of a projective variety Z ⊂ X which is
mapped to a point in S1

M (X). Replacing Z by an étale cover, we may assume
π1(Z) → Γ1

M is trivial hence Im(π1(Z) → π1(X)) ⊂ Γ by Proposition 3.6. This
implies that Φ is compact.

In particular we may construct its Stein factorization X̃ → S̃ and it follows

from the previous argument that p : S̃ → S̃1
M (X) has the following property:

Lemma 5.10 Every point x ∈ S̃1
M (X) has a neighbourhood U such that p−1(U)

is the disjoint union of open sets V and p|V is a quotient map by a finite group
G.

This certainly implies that S̃ is Stein.
In fact the finite group in question is ker(π1((r

1
M )−1(x)) → Γ/Γ1

M ) and
injects into the real points of a prounipotent proalgebraic group. It is thus a

trivial group hence S̃ → S̃1
M (X) is a topological covering map. �
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