
HAL Id: hal-00373340
https://hal.science/hal-00373340

Submitted on 3 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying Properties of a Language with Regular
Expressions

François Trouilleux

To cite this version:
François Trouilleux. Specifying Properties of a Language with Regular Expressions. Recent Advances
in Natural Language Processing, 2007, Bulgaria. pp.1. �hal-00373340�

https://hal.science/hal-00373340
https://hal.archives-ouvertes.fr

Specifying Properties of a Language with Regular Expressions

François Trouilleux
Laboratoire de recherche sur le langage

Université Blaise-Pascal
29, boulevard Gergovia

63037 Clermont-Ferrand cedex
trouilleux@lrl.univ-bpclermont.fr

Abstract
This article presents a translation of the Prop-
erty formalism of [2] into the XFST regular ex-
pression formalism [6]. Besides offering at no
cost a platform to use Properties in natural lan-
guage processing, this operation allows us to clar-
ify the interpretation of the Property formalism,
which may be interpreted as strictly limited ei-
ther to regular languages or to context-free lan-
guages, depending on the definition of the ob-
jects Properties apply to.

Keywords

Properties, Regular expressions, Phrase structure grammars,

Constraints, Xerox Finite-State Tool (XFST)

1 Introduction

In 1999, Gabriel G. Bès proposed a new formalism
for the description of natural language syntax, called
“Properties” [2], of which Blache afterwards proposed
a variant, called “Property Grammar” [3]. The pur-
pose of this paper is to offer a new point of view on
this formalism, through its translation into a regular
expression formalism, that of the Xerox Finite-State
Tool [6]. This translation, developed in section 2, sup-
ports both theoretical and practical considerations:
section 3 points out the specificity of the property
formalism with respect to classical phrase structure
grammars, and section 4 clarifies its interpretation in
terms of regular or context-free language specification.
Practical use of our translation scheme and relevance
of the Property formalism are then discussed in sec-
tion 5.

2 Properties as regular expres-
sions

This section introduces a translation of Properties into
regular expressions (2.1), followed by a discussion of
some limitations of this translation (2.2).

2.1 A translation scheme

Properties are formulas of the form pred(id, ...),
where pred is a predicate corresponding to the name
of the Property, id is the name of the language (or

category) the Property applies to, and ... marks the
place of one or several other arguments of the Property
predicate pred (cf. [2]). These arguments are always
symbols which refer to a category.

[2] specifies nine types of properties. Figure 1
presents the definition of six of them: amod, uniq,
oblig, exig, exclu and precede, together with their
translation into XFST regular expressions (below the
dotted line) 1. Limitations of our translation scheme,
including the non-translation of some Properties, are
discussed in the next section.

Full definition of the operators used in the regu-
lar expressions may be found in [1], as well as on the
XRCE web site 2. In short, | denotes union, & in-
tersection, < precedence, + iteration (Kleene plus), $
containment, $? containment of at most one, and ~
complement.

In figure 1, we use letters as arguments of the Prop-
erty predicates. These letters are to be interpreted as
category names, i.e. as denoting regular languages.
However, to keep the description short, we use expres-
sions such as “an a” to mean “a string of category a”
or “a string from language a”.

All Properties are presented as applying to a lan-
guage called id. On the regular expression side, this
language is defined as the result of the intersection of
all the languages denoted by the Properties. Consider-
ing the Properties defined in figure 1, one would then
have to write as a final definition:

define id [AMOD & UNIQ & OBLIG

& EXIG & EXCLU & PRECEDE];

2.2 Limitations

In our translation scheme, we made a number of sim-
plifications on the original definitions of [2], which we
briefly justify here.

For space reasons, we do not present the transla-
tion of some parts of the formalism, i.e. variants for
the oblig, exig, exclu and precede Property types, the
exigac Property type, through which one will specify
agreement constraints, and the fact that one category

1 In XFST, the schema of a define command is define variable
regular-expression ; the effect is to “invoke the compiler on
the regular expression, create a network, and assign that net-
work to the indicated variable. Once defined in this way, the
variable [. . .] can be used in subsequent regular expressions.”
[1, p. 85]

2 www.xrce.xerox.com/competencies/content-analysis/

fsCompiler/home.en.html

amod(id, [a, b, ..., z]) specifies that in a string of language id, one may only use words of
category a, b, . . . , or z.
. .
define AMOD [a | b | ... | z]+ ;

uniq(id, [a, b, ..., z]) specifies that a string of language id may contain at most one a, at
most one b, . . . , and at most one z.
. .
define UNIQ [$?a & $?b & ... & $?z] ;

oblig(id, [a, b, ..., z]) specifies that a string of language id must contain one a, or one b,
. . . , or one z.
. .
define OBLIG [$a | $b | ... | $z] ;

exig(id, [a, b, c, ..., z]) specifies that in a string of language id, the presence of an a
requires the presence of a b, or a c, . . . , or a z.
. .
define EXIG [~$a | [$a & $[b | c | ... | z]]] ;

exclu(id, [a, b, c, ..., z]) specifies that in a string of language id, the presence of an a
forbids the presence of a b, of a c, . . . , and of a z.
. .
define EXCLU [~$a | [$a & ~$[b | c | ... | z]]] ;

precede(id, [a, [b, c, ..., z]]) specifies that, in a string of language id, if an a occurs with
a b, or a c, . . . , or a z, it must precede the b, c, . . . , or z.
. .
define PRECEDE [a < [b | c | ... | z]];

Fig. 1: Translation table from Properties to XFST regular expressions.

may be characterized as the nucleus of the defined
strings. The absence of a translation for these features
does not affect the discussion developed below.

More intersting is the fact that two characteristics
of the formalism had to be set aside, because they were
impossible to express by regular expressions:

1. The original definition of the amod Property also
specifies that for each category, there exists at
least one string which contains a word from that
category (i.e. all the categories are used at least
once). This is a condition on the whole set of
strings, not on the strings themselves, and cannot
be expressed by regular expressions.

2. The original formalism includes a fleche Property
type, which specifies relations between the words
composing a valid string and cannot be translated
by regular expressions. However, it must be noted
it has a special status, compared to other Proper-
ties, as it allows the expression of statements over
the strings defined by the other Properties, but
not to modify this set of strings by addition or
subtraction.

2.3 An example

The regular expressions in figure 2 illustrate the defi-
nition of a language with Properties written as XFST
regular expressions. The first nine lines define nine
categories. The word forms considered in that exam-
ple appear between quotes: is, do, does, sing, sings,

singing. The words appearing next to a define com-
mand (e.g. BE) are category names. The language
defined is VC (for “verb chunks”); it contains eight
strings: {do sing, do not sing, does sing, does not sing,
is singing, is not singing, sing, sings} 3.

3 Specificity of the Property
formalism

Compared with more classical approaches, Properties
offer a different perspective. We here compare this for-
malism with classical phrase structure grammars and
with Koskenniemi’s Finite-State Intersection Gram-
mar (FSIG) [8].

3.1 Properties vs. phrase grammars

Like a regular expression or any phrase structure
grammar, a set of Properties may be viewed as spec-
ifying a language. The novelty, when one compares
Properties to classical phrase structure grammars, is
that Properties systematically make use of intersec-
tion (as shown by the definitions of id at the end of
section 2.1, and of VC in figure 2), and do not explic-
itly use concatenation (as shown by the absence of an
explicit concatenation operator in the regular expres-
sions of figure 1).

3 With whitespaces added between the terminal symbols for
readability.

define BE ["is"];
define DO ["do" | "does"];
define Aux [BE | DO];
define VInf ["sing"];
define V3Pr ["sings"];
define VIng ["singing"];
define VBase [VInf | V3Pr];
define V [VBase | VIng];
define Neg ["not"];

define AMOD [V | Aux | Neg]+;
define OBL [$V];
define UNIQ [$?V & $?Aux & $?Neg];
define RE1 [~$Neg | [$Neg & $Aux]];
define RE2 [~$VIng | [$VIng & $BE]];
define RE3 [~$DO | [$DO & $VInf]];
define EX1 [~$V3Pr | [$V3Pr & ~$DO]];
define EX2 [~$VBase | [$VBase & ~$BE]];
define PR1 [Aux < [Neg | V]];
define PR2 [Neg < V];

define VC [AMOD & OBL & UNIQ & RE1 & RE2
& RE3 & EX1 & EX2 & PR1 & PR2];

Fig. 2: Definition of a small example language.

In contrast, phrase structure grammars favour union
and concatenation. Typically, in a phrase structure
grammar, for a given non terminal symbol A, one may
have n rules with A on the left-hand side, which will be
interpreted as stating that this symbol is to be rewrit-
ten as specified by rule 1, or rule 2, . . . or rule n. In
other words, the A language is the result of the union
of the right-hand side specifications, where concatena-
tion is the primary operation. As an example of this
preferred use of union and concatenation, one would
remark that the language VC of figure 2 would also, in a
more classical manner, be defined by the following reg-
ular expression, i.e. as the union of three languages 4:

define VC [VBase | BE (Neg) VIng
| DO (Neg) VInf];

As this definition is more compact than that of fig-
ure 2, one might wonder what could be the advantage
of using Properties. The advantage lies in the greater
modularity of linguistic descriptions Properties offer.
As noted by [10], Properties can be viewed as “a sys-
tematization of the decomposition of information initi-
ated by the GPSG ID/LP formalism: the information
expressed by the ID rules in GPSG are expressed by
the conjunction of the amod, uniq, oblig, exig and exclu
properties”. The consequence of this decomposition is
that it will be easier to adjust linguistic descriptions
to what is seen as variations within a data set (e.g. re-
gional variations of a given language, or spelling errors
in a written corpus) 5.

3.2 Properties vs. FSIG

Properties contrast with classical phrase structure
grammars in that they favor intersection, but [7] al-

4 Not counting the use of union in the category definitions,
which we assume to be that of the first nine lines of figure 2.

5 Section 5.2 gives hints at how such adjustments could be im-
plemented.

amod(S, [a, b, S])
uniq(S, [a, b, S])
oblig(S, [a])
exig(S, [a, b])
precede(S, [a, [b, S]])
precede(S, [S, [b]])

Fig. 3: Definition of the a
n
b
n language.

ready described a parsing system based on constraints
“implemented as finite-state machines” and where
“the grammar as a whole is logically an intersection of
all constraints”. The result of our translation is con-
ceptually identical to that framework, but the Prop-
erty formalism, however, does differ from its predeces-
sor.

In practice, the preferred rule format in the gram-
mar described in [8] is EXP => LC RC, which specify
that any occurrence of EXP must be surrounded by the
given contexts LC and RC (all three parts of the rule
being regular expressions). This kind of rules, like
phrase grammar rules, in effect favours concatenation
and union as the primary operations, as contexts are
often specified as a disjunction of admissible strings.

In addition to this type of rules, the rule formal-
ism of [8] gives the linguist the possibility to specify
definitions of the form

name(param1, ..., paramn) = regex;

which could be used to define not only Properties, in
the same manner as we did in figure 1 6, but also any
new predicate. The formalism of [8] allows one to use
the full power of regular expressions, while Properties,
in contrast, form a closed set of predefined constraint
schemata.

4 Expressive power of the Prop-
erty formalism

If it is possible, as we have shown, to translate Prop-
erties into regular expressions, then one must come
to the conclusion that the expressive power of Proper-
ties is limited to the specification of regular languages.
However, [3] gives an example of Properties specifying
the context-free language anbn, an example which is
reproduced on figure 3. There is here an apparent
contradiction, which deserves consideration.

We first examine the interpretation of Properties
as specifying CF languages, and then discuss our
stricter interpretation, in which they specify regular
languages.

4.1 Properties specifying context-free
languages

The understanding of Properties as specifying context-
free or regular languages lies in the meaning one as-
signs to the symbols used as the arguments of the
Properties. In our interpretation of Properties as

6 Indeed, [8] give as an example definition the statement
UNIQUE(FINV).

equivalent to regular expressions, the symbols used as
arguments of the properties are variables which are de-
fined non recursively. Properties apply to the strings
of the language, strings of terminal symbols. In the
interpretation of [3], the symbols used as arguments
of properties may be either terminal symbols or re-
cursively defined non terminal symbols (e.g. symbol S
in figure 3). Properties do not apply directly to the
strings of the language, but to the strings of immedi-
ate constituants of a category. The description pre-
supposes a phrase structure tree, and the Properties
apply to levels in this tree.

The anbn language example illustrates adequately
this orientation: it is possible to say that the string
aabb satisfies all the properties of figure 3 because the
description implies the tree in figure 4, and the prop-
erties are about the immediate constituants of each S

constituant, not about the string aabb itself (in which
case, quite trivially, the property uniq(a, b, S)
would not be satisfied, since the string contains several
as and several bs).

a

a b

S b

S

Fig. 4: Analysis tree for the string aabb.

[5] state that, in “Property Grammar”, “parse trees
are no longer necessary”. [4] claims that “Property
Grammar is a non-generative theory in the sense that
no structure has to be build, only constraints are used
both to represent linguistic information and to de-
scribe inputs.” As our analysis of the anbn example
shows, if Properties are to be interpreted as possibly
applying to recursively defined non terminal symbols
(as indeed they are in the cited articles), these state-
ments are wrong.

4.2 Properties vs. regular expressions

Coming back to the interpretation of Properties of fig-
ure 1, one may question whether the Property formal-
ism has the same expressive power as regular expres-
sions. The answer is no.

Assuming categories defined using only the union
operator (as in figure 1), the expressive power of Prop-
erties (understood as in figure 1) is strictly smaller
than that of XFST regular expressions. For instance,
it is impossible to define with Properties the language
denoted by the regular expression [a (a)], i.e. the
set {a, aa}. As a rule, one cannot precisely control
with Properties how many words of the same category
are allowed in a string (e.g. say “one or two as”).
One can only state that such words may or must ap-
pear (with the amod and oblig Properties, and that
there may only be one such word (with the uniq Prop-
erty). The exig Property cannot help in that matter
as a Property such as exig(id, [a, a]) would be
trivially satisfied.

4.3 (Dis)advantages of the two inter-
pretations

At this point, we are left with two interpretations of
one formalism. Choosing one rather than the other
would presumably depend on one’s objectives and on
the (dis)advantages of regular expressions vs. context-
free grammars. As is well known, natural language
has been shown to be non regular, but it has also
been shown that some aspects of natural language syn-
tax could be described by finite-state methods (e.g.
chunks).

Appropriateness of Properties to such and such ob-
jectives (e.g. chunking vs. deep parsing) will be
demonstrated by the development of effective linguis-
tic descriptions. However, we would venture that the
use of an underlying tree representation might suffer
from two drawbacks: (1) interpretation of the Prop-
erties would sometimes be counter-intuitive (as when
one reads that the string aabb satisfies the Property
that there is only one a), and (2) it might make the
Property formalism less relevant, as the tree tends to
reduce the length of the strings Properties apply to.
For instance, if one would work with binary branch-
ing trees, one might question whether Properties are
not too sophisticated a system to describe two word
strings.

5 Practical application of the
translation scheme

Our translation of Properties into XFST regular ex-
pressions helped us to clarify the understanding of the
Property formalim, but it also offers at no cost a plat-
form to actually put Properties in practice, as one can
use all the functionalities of the Xerox software. We
here evoke some possible uses, which will be presented
with the following definition as a reference:

define L [P1 & P2 & ... & Pn] ;

We will say that this formula defines the language L
as well as the automaton L.

5.1 Analysis and generation

The most straightforward use of XFST will be to com-
pile the automaton L and use it either to test whether a
string belongs to the L language, or to generate strings
of L, possibly all the strings of L if it is finite. In this
latter case, XFST provides the “pattern generator” of
[2, §5] and this shows that Properties may indeed be
used for generation.

5.2 Multiple automata from a single
set of Properties

[3] claims that Properties challenge generativity in
that rather than parsing only grammatical sentences,
one can take any input sentence and produce the lists
of Properties it satisfies or not. This may be imple-
mented within XFST by defining one automaton for
each Property and analysing strings with each of these
automata in turn. More generally, given a set P of

Properties defining L(P), any subset P ′ of P can be
used to define a language L(P ′) of which L(P) will be
a subset. L(P ′) can be viewed as a language resulting
from the relaxation of some constraints on L(P) (i.e.
the subtraction of some Properties), a language which
in effect contains sentences which would be judged ill-
formed with respect to L(P).

Properties offer modularity and an easy way to de-
fine from a single base set multiple languages included
in each other. This quality, however, does not ques-
tion the fact that the Property formalism in itself fully
belongs to the generative grammar paradigm.

5.3 Testing the relevance of Properties

Another application of XFST is that it makes it pos-
sible to verify that in a set of Properties defining a
language L, each Property is relevant to the definition
of L. Given the definition of L above, the following
XFST command sequence tests the relevance of any
Property Pi:

regex L ; Put the L network on the stack.
regex L - Pi ; Put the L - Pi network on the

stack.
test equivalent Test whether the top two net-

works on the stack are equiva-
lent.

A Property Pi is relevant to the definition of a lan-
guage L iff L - Pi is not equivalent to L.

Note that this relevance testing procedure makes use
of the subtraction operator. Unlike context-free lan-
guages, regular languages are closed under subtrac-
tion, as well as under intersection. We may then view
this procedure as another advantage of our XFST in-
terpretation of Properties.

5.4 Exploring the relevance of the
Property formalism

Ultimately, the relevance of Properties will be demon-
strated (or not) by effective descriptions of natural lan-
guages. Looking at our translation of Properties into
regular expressions, one might wonder what would be
the point of using Properties rather than regular ex-
pressions?

The weaker expressive power of Properties (cf. sec-
tion 4.2) actually suggests a nice experimentation pro-
gram: how far can we go into the description of natu-
ral languages with Properties understood as in figure
1? The objective would be to determine what, within
finite-state expressivity, is needed or not to describe
such and such aspect of a language, to find the appro-
priate position between a system using the full power
of regular expressions and a system strictly limited to
a specific set of constraint schemata.

Properties put constraints on the linguist’s expres-
sion, but it might be to their benefit. [9] introduced
a translation system from natural language to XFST
regular expressions. This author, pointing out that
the same thing could be said in a messy way as well
as in a structured way, concluded his demonstration
by advocating the importance of structured program-
ming. We believe Properties are a good way to struc-
ture linguistic descriptions. Especially if, rather than

the sometimes cumbersome notation of regular expres-
sion Properties in figure 1, one considers the possibility
of an interface to this notation.

6 Conclusion

We presented a translation of the Properties of [2] into
regular expressions, a translation which we consider an
indirect implementation of this formalism. To us, this
indirectness is an advantage, because

• it helped to clarify the interpretation of the Prop-
erty formalism,

• it provides at no cost a tool to actually analyse
and generate strings defined by a set of Proper-
ties, as well as a tool to test the relevance of each
Property,

• as it integrates Properties into a system with
greater expressive power, it opens space to test
the limits of the Property formalism on linguistic
data.

With respect to the interpretation of Properties, our
comparison shows to what extent they depart from
classical phrase structure grammars, favouring the def-
inition of a language by the intersection of sets rather
than union, but also to what extent they do belong to
this paradigm. In particular, as any set of Properties
may indeed be translated into an equivalent regular or
context-free grammar, they can be assigned the same
interpretation as such grammars, i.e. they are expres-
sions which denote languages.

References
[1] K. R. Beesley and L. Karttunen. Finite Stale Morphology.

CSLI Studies in Computational Linguistics, 2003.

[2] G. G. Bès. La phrase verbale noyau en français. Recherches
sur le français parlé, 15:273–358, 1999.

[3] P. Blache. Les Grammaires de propriétés. Hermès Science
Publications, 2001.

[4] P. Blache. Property grammars: A fully constraint-based the-
ory. In Constraint Solving and Language Processing. 2005.

[5] V. Dahl and P. Blache. Directly executable constraint based
grammars. In Proc. Journées Francophones de Programma-
tion en Logique avec Contraintes, Angers, France, June 2004.

[6] L. Karttunen, T. Gaál, and A. Kempe. Xerox Finite-State
Tool. The Document Company - Xerox, 1997.

[7] K. Koskenniemi. Finite-state parsing and disambiguation. In
H. Karlgren, editor, Proceedings of COLING-90, Helsinki,
1990.

[8] K. Koskenniemi, P. Tapanainen, and A. Voutilainen. Compil-
ing and using finite-state syntactic rules. In Proceedings of
COLING-92, Nantes, 1992.

[9] A. Ranta. A multilingual natural-language interface to regular
expressions. In L. Karttunen and K. Oflazer, editors, Proceed-
ings of the International Workshop on Finite State Methods
in Natural Language Processing, pages 79–90, Bilkent Univer-
sity, Ankara, 1998.

[10] F. Trouilleux. Note de lecture sur Philippe Blache, Les Gram-
maires de propriétés, Hermès Science Publications. TAL,
44(2):256–259, 2003.

