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Abstract

We study a class of Markovian optimal stochastic control problems in which the controlled

process Zν is constrained to satisfy an a.s. constraint Zν(T ) ∈ G ⊂ Rd+1 P − a.s. at some

final time T > 0. When the set is of the form G := {(x, y) ∈ Rd × R : g(x, y) ≥ 0}, with g

non-decreasing in y, we provide a Hamilton-Jacobi-Bellman characterization of the associated

value function. It gives rise to a state constraint problem where the constraint can be ex-

pressed in terms of an auxiliary value function w which characterizes the set D := {(t, Zν(t)) ∈
[0, T ] × Rd+1 : Zν(T ) ∈ G a.s. for some ν}. Contrary to standard state constraint problems,

the domain D is not given a-priori and we do not need to impose conditions on its boundary.

It is naturally incorporated in the auxiliary value function w which is itself a viscosity solu-

tion of a non-linear parabolic PDE. Applying ideas recently developed in Bouchard, Elie and

Touzi (2008), our general result also allows to consider optimal control problems with moment

constraints of the form E [g(Zν(T ))] ≥ 0 or P [g(Zν(T )) ≥ 0] ≥ p.

Key words: Optimal control, State constraint problems, Stochastic target problem, discontinuous

viscosity solutions.
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1 Introduction

The aim of this paper is to study stochastic control problems under stochastic target constraint of

the form

V (t, z) := sup
{

E
[

f(Zν
t,z(T ))

]

, ν ∈ U s.t. g(Zν
t,z(T )) ≥ 0 P − a.s.

}

(1.1)

where the controlled process Zν
t,z is the strong solution of a stochastic differential equation,

Zν
t,z(s) = z +

∫ s

t

µZ(Zν
t,z(r), νr)dr +

∫ s

t

σZ(Zν
t,z(r), νr)dWr , t ≤ s ≤ T ,

for some d-dimensional Brownian motion W , and the set of controls U is the collection of U -valued

square integrable progressively measurable processes (for the filtration generated by W ), for some

closed set U ⊂ Rd.

Such problems naturally appear in economics where a controller tries to maximize (or minimize)

a criteria under some a.s. constraint on the final output. It is typically the case in finance or

insurance where a manager tries to maximize the utility (or minimize the expected value of a loss

function) of the terminal value of his portfolio under some strong no-bankruptcy type condition,

see e.g. [16], [7] and the references therein. See also the example of application in Section 4 below.

From the mathematical point of view, (1.1) can be seen as a state constraint problem. However,

it is at first glance somehow “non-standard” because the a.s. constraint is imposed only at t = T

and not on [0, T ] as usual, compare with [9], [13], [14], [17] and [18].

Our first observation is that it can actually be converted into a “classical” state constraint problem:

V (t, z) = sup
{

E
[

f(Zν
t,z(T ))

]

, ν ∈ U s.t. Zν
t,z(s) ∈ D P − a.s. for all t ≤ s ≤ T

}

(1.2)

where

D :=
{

(t, z) ∈ [0, T ] × Rd+1 : g(Zν
t,z(T )) ≥ 0 P − a.s. for some ν ∈ U

}

is the corresponding viability domain, in the terminology of [1]. This is indeed an immediate

consequence of the so-called geometric dynamic programming principle introduced by Soner and

Touzi [21] and [22] in the context of stochastic target problems:

g(Zν
t,z(T )) ≥ 0 P − a.s. ⇐⇒ (s, Zν

t,z(s)) ∈ D P − a.s. for all t ≤ s ≤ T .

There exists a huge literature on state constraint problems. For deterministic control problems,

Soner [20] first derived the Bellman equation under the appropriate form in order to characterize

the value function as the unique viscosity solution. The main issue is to deal with the boundary

of the domain. One of the important contribution of [20] is to show that the value function is the

unique viscosity solution of the Bellman equation which is a subsolution “up to the boundary”.

Hence, loosely speaking, Soner exhibited a boundary condition ensuring the uniqueness of the

viscosity solution. A rather complete study for first order equations can be found in [9]. See
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also [13]. For stochastic control problems, the study of viscosity solutions with such boundary

condition was initiated in [18] where the volatility is the identity matrix. The results of [18] have

been generalized since then, see for instance [17, 2, 14].

The main difference with standard state constraint problems is that, in this paper, the set D is not

given a-priori but is defined implicitly by a stochastic target problem. We should also emphasize

the fact that we focus here on the derivation of the PDEs and not on the study of the PDEs in

themselves (comparison, existence of regular solutions, etc...). The last point, which is obviously

very important, is left for further research.

In this paper, we shall restrict to the case where (x, y) ∈ Rd × R 7→ g(x, y) is non-decreasing in

y, and Zν
t,z is of the form (Xν

t,x, Y
ν
t,x,y), where (Xν

t,x, Y
ν
t,x,y) takes values in Rd × R and follows the

dynamics

Xν
t,x(s) = x+

∫ s

t

µX(Xν
t,x(r), νr)dr +

∫ s

t

σX(Xν
t,x(r), νr)dWr

Y ν
t,x,y(s) = y +

∫ s

t

µY (Zν
t,x,y(r), νr)dr +

∫ s

t

σY (Zν
t,x,y(r), νr)

⊤dWr . (1.3)

In this case, the set {y ∈ R : (t, x, y) ∈ D} is a half-space, for fixed (t, x). This allows to

characterize the (closure of the) set D in terms of the auxiliary value function

w(t, x) := inf{y ∈ R : (t, x, y) ∈ D} .

Assuming that the inf is always achieved in the definition of w, (1.2) can then be written equiva-

lently as

V (t, x, y) = sup
{

E
[

f(Zν
t,x,y(T ))

]

, ν ∈ U s.t. Y ν
t,x,y(s) ≥ w(s,Xν

t,x(s)) P − a.s. for all t ≤ s ≤ T
}

.

We should immediately observe that more general situations could be discussed by following the

approach of [21] which consists in replacing w by w̄(t, z) := 1−1(t,z)∈D, and working with w̄ instead

of w.

As usual in state constraints problems, the constraint is not binding until one reaches the boundary.

We actually show that V solves (in the discontinuous viscosity sense) the usual Hamilton-Jacobi-

Bellman equation

− sup
u∈U

Lu
ZV = 0 where Lu

ZV := ∂tV + 〈µZ(·, u), DV 〉 +
1

2
Tr
[

σZσ
⊤
Z (·, u)D2V

]

, (1.4)

in the interior of the domain D with the appropriate boundary condition at t = T

V (T−, ·) = f . (1.5)

On the other hand, assuming for a while that w is smooth (and that the inf is always achieved

in its definition), any admissible control ν should be such that dY ν
t,x,y(s) ≥ dw(s,Xν

t,x(s)) when
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(s,Xν
t,x(s), Y ν

t,x,y(s)) ∈ ∂ZD := {(t, x, y) ∈ [0, T )×Rd ×R : y = w(t, x)}, in order to avoid to cross

the boundary of D. Applying Itô’s Lemma to w, this shows that νs should satisfy:

σY (Zν
t,x,y(s), νs) = σX(Xν

t,x(s), νs)
⊤Dw(s,Xν

t,x(s)) and µY (Zν
t,x,y(s), νs) ≥ Lνs

Xw(s,Xν
t,x(s))

where Lu
X denotes the Dynkin operator of X for the control u. This formally shows that V solves

the constrained Hamilton-Jacobi-Bellman equation

− sup
u∈U(t,x,y)

Lu
ZV = 0 where U(·) := {u ∈ U : σY (·, u) = σX(·, u)⊤Dw ,µY (·, u) − Lu

Xw ≥ 0} , (1.6)

on the boundary ∂ZD, where, by Soner and Touzi [22] and Bouchard, Elie and Touzi [5], the

auxiliary value function w is a (discontinuous viscosity) solution of

sup
u∈U, σY (·,u)=σX(·,u)⊤Dw

(µY (·, w, u) − Lu
Xw) = 0 , g(·, w(T−, ·)) = 0 . (1.7)

This implies that no a-priori assumption has to be imposed on the boundary on D and the

coefficients µZ and σZ in order to ensure that Zν
t,z can actually be reflected on the boundary. It is

automatically incorporated in the auxiliary value function through its PDE characterization (1.7).

This is also a main difference with the literature on state constraints where either strong conditions

are imposed on the boundary, so as to insure that the constrained process can be reflected, or, the

solution explodes on the boundary, see the above quoted papers.

From the numerical point of view, the characterization (1.7) also allows to compute the value

function V by first solving (1.7) to compute w and then using w to solve (1.4)-(1.5)-(1.6).

The main difficulties come from the following points:

1. The stochastic control problem (1.1) being non-standard, we first need to establish a dynamic

programming principle for optimal control under stochastic constraints. This is done by appealing

to the geometric dynamic principle of Soner and Touzi [21].

2. The auxiliary value function w is in general not smooth. To give a sense to (1.6), we therefore

need to consider a weak formulation which relies on test functions for w. This essentially amounts

to consider proximal normal vector at the singular points of ∂D, see [10].

3. The set U in which the controls take their values is a-priori not compact, which makes the

equations (1.4) and (1.6) discontinuous. As usual, this is overcome by considering the lower- and

upper-semicontinuous envelopes of the corresponding operators, see [11].

We should also note that, in classical state constraint problems, the subsolution property on the

spacial boundary is usually not fully specified, see the above quoted papers. One can typically only

show that the PDE (1.4) propagates up to the boundary. In the case where w is continuous, we

actually prove that V is a subsolution of the constraint Hamilton-Jacobi-Bellman equation (1.6)

on ∂ZD. Under additional assumptions on the coefficients and w, this allows to provide a PDE

characterization for V(t, x) := V (t, x, w(t, x)) and allows to replace the boundary condition (1.6)

by a simple Dirichlet condition V (t, x, y) = V(t, x) on {y = w(t, x)}. This simplifies the numerical
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resolution of the problem: first solve (1.7) to compute w and therefore D, then solve the PDE

associated to V, finally solve the Hamilton-Jacobi-Bellman equation (1.4) in D with the boundary

conditions (1.5) at t = T and V (t, x, y) = V(t, x) on ∂ZD.

Many extensions of this work could be considered. First, jumps could be introduced without much

difficulties, see [4] and [19] for stochastic target problems with jumps. One could also consider

more stringent conditions of the form g(Zν
t,z(s)) ≥ 0 P − a.s. for all t ≤ s ≤ T by applying the

American version of the geometric dynamic programming of [6], or moments constraints of the

form E
[

g(Zν
t,z(T ))

]

≥ 0 P − a.s. or P
[

g(Zν
t,z(T )) ≥ 0

]

≥ p by following the ideas introduced in [5].

Such extension are rather immediate and will be discussed in Section 5 below.

The rest of the paper is organized as follows. The problem and its link with standard state

constraints problems are presented in Section 2. Section 3 contains our main results. The possible

immediate extensions and an example of application are discussed in Section 5 and Section 4. The

proofs are collected in Section 6. Finally, the Appendix contains the proof of a version of the

geometric dynamic programming principle we shall use in this paper.

Notations: For any κ ∈ N, we shall use the following notations. Any element of Rκ is viewed

as a column vector. The Euclidean norm of a vector or a matrix is denoted by | · |, ⊤ stands for

transposition, and 〈·, ·〉 denotes the natural scalar product. We denote by Mκ (resp. Sκ), the set of

κ-dimensional (resp. symmetric) square matrices. Given a smooth function ϕ : (t, x) ∈ R+×Rκ 7→
ϕ(t, x) ∈ R, we denote by ∂tϕ its derivative with respect to its first variable, and by Dϕ and D2ϕ

its Jacobian and Hessian matrix with respect to the second one. For a set O ⊂ Rκ, int(O) denotes

its interior, cl(O) its closure and ∂O its boundary. If B = [s, t]×O for s ≤ t and O ⊂ Rκ, we write

∂pB := ([s, t) × ∂O) ∪ ({t} × cl(O)) for its parabolic boundary. Given r > 0 and x ∈ Rκ, Br(x)

denotes the open ball of radius r and center x. In the following, the variable z ∈ Rd+1 will often

be understood as a couple (x, y) ∈ Rd × R.

2 The optimal control problem under stochastic target constraint

2.1 Problem formulation

Let T > 0 be the finite time horizon and let Ω denote the space of Rd-valued continuous functions

(ωt)t≤T on [0, T ], d ≥ 1, endowed with the Wiener measure P. We denote by W the coordinate

mapping, i.e. (W (ω)t)t≤T = (ωt)t≤T for ω ∈ Ω, so that W is a d-dimensional Brownian motion

on the canonical filtered probability space (Ω,F ,P,F) where F is the Borel tribe of Ω and F =

{Ft, 0 ≤ t ≤ T} is the P−augmentation of the right-continuous filtration generated by W .

Let U be the collection of progressively measurable processes ν in L2([0, T ] × Ω), with values in a

given closed subset U of Rd.

For t ∈ [0, T ], z = (x, y) ∈ Rd × R and ν ∈ U , the controlled process Zν
t,z := (Xν

t,x, Y
ν
t,x,y) is defined

as the Rd × R-valued unique strong solution of the stochastic differential equation (1.3) where

(µX , σX) : (x, u) ∈ Rd × U 7→ Rd × Md and (µY , σY ) : (z, u) ∈ Rd × R × U 7→ R × Rd are assumed
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to be Lipschitz continuous. Note that this implies that supt≤s≤T |Zν
t,z| is bounded in L2(Ω), for

any ν ∈ U .

For later use, it is convenient to consider µZ : Rd+1 × U −→ Rd+1 and σZ : Rd+1 × U −→ Md+1,d

defined, for z = (x, y) ∈ Rd+1, as

µZ(z, u) :=

(

µX(x, u)

µY (z, u)

)

σZ(z, u) :=

[

σX(x, u)

σY (z, u)⊤

]

.

The aim of this paper is to provide a PDE characterization of the value function of the optimal

control problem under stochastic target constraint

(t, z) 7→ sup
{

E
[

f(Zν
t,z(T ))

]

, ν ∈ U s.t. g(Zν
t,z(T )) ≥ 0 P − a.s.

}

,

which means that we restrict ourselves to controls satisfying the stochastic target constraints

g(Zν
t,z(T )) ≥ 0 P − a.s.

In order to give a sense to the above expression, we shall assume all over this paper that f, g :

Rd+1 → R are two locally bounded Borel-measurable maps, and that f has quadratic growth,

which ensures that the above expectation is well defined for any ν ∈ U .

For technical reasons related to the proof of the dynamic programming principle (see Section 6.1

and the Appendix below), we need to restrict ourselves at time t to the subset U t of controls defined

as follows

U t := {ν ∈ U : ν independent of Ft}.

Our problem is thus formulated as

V (t, z) := sup
ν∈Ut,z

J(t, z; ν) (2.1)

where

J(t, z; ν) := E
[

f(Zν
t,z(T ))

]

for ν ∈ U
Ut,z :=

{

ν ∈ U t : g(Zν
t,z(T )) ≥ 0 P − a.s.

}

.

For sake of simplicity, we shall only consider the case where, for every fixed x,

y 7−→ g(x, y) is non-decreasing and right-continuous. (2.2)

Remark 2.1. It follows from Assumption (2.2) that Ut,x,y ⊃ Ut,x,y′ for y ≥ y′.

Remark 2.2. We have imposed above strong Lipschitz continuity assumptions and integrability

conditions on the coefficients and the set of controls in order to avoid additional technical difficul-

ties. It will be clear from the proofs that these conditions can be relaxed in particular situations

whenever the quantities introduced below are well defined.
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2.2 Dynamic programming for stochastic targets problem and interpretation

as a state constraint problem

Note that the above problem is well-posed only on the domain

D :=
{

(t, z) ∈ [0, T ] × Rd+1 : Ut,z 6= ∅
}

,

and that, at least formally, the control problem (2.1) is equivalent to the state constraint problem

sup
{

E
[

f(Zν
t,z(T ))

]

, ν ∈ U s.t. Zν
t,z(s) ∈ D P − a.s. ∀ t ≤ s ≤ T

}

.

This can be made rigorous by appealing to the geometric dynamic programming principle of Soner

and Touzi [21].

Theorem 2.1. For any (t, z) ∈ [0, T ) × Rd+1 and ν ∈ U t, we have

∃ν̃ ∈ Ut,z s.t. ν = ν̃ on [t, θ) ⇐⇒ (θ, Zν
t,z(θ)) ∈ D P − a.s.

for all [t, T ]-valued stopping time θ.

The proof of this result is provided in [21] when the set of controls is the whole set U instead of

U t. We explain in the Appendix how to modify their arguments in our framework.

This result can be reformulated in terms of the auxiliary value function w defined as follows

w(t, x) := inf {y ∈ R : (t, x, y) ∈ D} , (2.3)

which, by Remark 2.1, characterizes (the closure of) D.

Corollary 2.1. For any (t, x, y) ∈ [0, T ) × Rd × R, ν ∈ U t and [t, T ]-valued stopping time θ, we

have:

1. If Y ν
t,x,y(θ) > w

(

θ,Xν
t,x(θ)

)

P − a.s., then there exists a control ν̃ ∈ Ut,x,y such that ν = ν̃ on

[t, θ).

2. If there exists ν̃ ∈ Ut,x,y such that ν = ν̃ on [t, θ), then Y ν
t,x,y(θ) ≥ w

(

θ,Xν
t,x(θ)

)

P − a.s.

Note that the later result allows us to provide a PDE characterization of the auxiliary value

function, see (1.7). A rigorous version is reported in Theorem 3.2 below under strong smoothness

assumptions. The non-smooth case is studied in [22] when U is bounded and in [5] when U is not

bounded, and we refer to these papers for the exact formulation in more general situations.

From now on, we shall work under the following

Standing assumption: w is continuous on [0, T ) × Rd and admits a continuous extension ŵ on

[0, T ] × Rd such that g(·, ŵ(T, ·)) ≥ 0 on Rd.

In the following, we shall write w(T, ·) for ŵ(T, ·) for ease of notations.
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Note that the previous assumption implies that cl(D) can be written as intp(D) ∪ ∂pD with

{

intp(D) =
{

(t, x, y) ∈ [0, T ) × Rd+1 : y > w(t, x)
}

∂pD = ∂ZD ∪ ∂TD
(2.4)

where

∂ZD := ∂D ∩ ([0, T ) × Rd+1) =
{

(t, x, y) ∈ [0, T ) × Rd+1 : y = w(t, x)
}

∂TD := ∂D ∩ ({T} × Rd+1) =
{

(t, x, y) ∈ {T} × Rd+1 : y ≥ w(t, x)
}

.
(2.5)

3 Viscosity characterization of the value function

Before stating our main result, let us start with a formal discussion.

3.1 Formal discussion

In the interior of the domain. First, it follows from Theorem 2.1 that the constraint is not

binding in the interior of the domain. We can thus expect V to be a viscosity solution on intp(D)

of the usual Hamilton-Jacobi-Bellman equation

−∂tϕ(t, z) +H(z,Dϕ(t, z), D2ϕ(t, z)) = 0 ,

where, for (z, q, A) ∈ Rd+1 × Rd+1 × Sd+1,

{

H(z, q, A) := infu∈U H
u(z, q, A) ,

Hu(z, q, A) := −〈µZ(z, u), q〉 − 1
2Tr

[

(σZσ
⊤
Z )(z, u)A

]

.
(3.1)

However, since U may not be bounded, the above operator is not necessarily continuous and we

shall have to relax it and consider its lower- and upper-semicontinuous envelopes H∗ and H∗ on

Rd × R × Rd+1 × Sd+1.

On the time boundary. From the definition of V , one could also expect that V∗(T, z) ≥ f∗(z)

and V ∗(T, z) ≤ f∗(z). This will indeed be satisfied and the proof is actually standard. The only

difficulty comes from the fact that U may be unbounded.

On the spacial boundary. We now discuss the boundary condition on ∂ZD. First note that

Theorem 2.1 implies that the process Zν
t,z should never cross the boundary ∂ZD whenever ν ∈ Ut,z.

In view of (2.5), this implies that at the limit, when y → w(t, x), the process Y ν
t,x,y − w(·, Xν

t,x)

should have a non-negative drift and a zero volatility. This means that, at a formal level, the

control ν should satisfy

σY (x, y, νt) − σX(x, νt)
⊤Dw(t, x) = 0 ,

µY (x, y, νt) − Lνt

Xw(t, x) ≥ 0

8



where Lu
X denotes the Dynkin operator of X; precisely, for a smooth function ϕ ∈ C1,2,

Lu
Xϕ(t, x) := ∂tϕ(t, x) + 〈µX(x, u), Dϕ(t, x)〉 +

1

2
Tr
[

(σXσ
⊤
X)(x, u)D2ϕ(t, x)

]

.

Hence, V should satisfy on ∂ZD the following equation

−∂tϕ(t, z) +Hint(z,Dϕ(t, z), D2ϕ(t, z)) = 0 ,

where

Hint(t, x, y, q, A) = inf
u∈Uint(t,x,y,w)

Hu(x, y, q, A)

and

Uint(t, x, y, w) = {u ∈ U : σY (x, y, u) − σX(x, u)⊤Dw(t, x) = 0, µY (x, y, u) − Lu
Xw(t, x) ≥ 0}

corresponds to controls driving the process inside the domain. Remark that Hint ≥ H since

Uint ⊂ U .

Since w may not be smooth, we need to use the notion of test functions to give a precise meaning

to the above expression. We therefore introduce the set W∗(t, x) defined as follows

W∗(t, x) = {φ ∈ C1,2([0, T ] × Rd) s.t. (w − φ) < (w − φ)(t, x) = 0 in a neighborhood of (t, x)}.

The set W∗(t, x) is defined analogously:

W∗(t, x) = {φ ∈ C1,2([0, T ] × Rd) s.t. (w − φ) > (w − φ)(t, x) = 0 in a neighborhood of (t, x)}.

Our operators are then defined as follows:

0. Relaxation. As in [5], we first need to relax the constraints in Uint. For δ > 0, γ ∈ R and a

smooth function φ, we therefore define

Nu(x, y, q) := σY (x, y, u) − σX(x, u)⊤q ,

Nδ(x, y, q) := {u ∈ U : |Nu(x, y, q)| ≤ δ}
Uδ,γ(t, x, y, φ) := {u ∈ Nδ(x, y,Dφ(t, x)) : µY (x, y, u) − Lu

Xφ(t, x) ≥ γ}

and

F φ
δ,γ(t, z, q, A) := inf

u∈Uδ,γ(t,z,φ)

{

−〈µZ(z, u), q〉 − Tr
[

(σZσ
⊤
Z )(z, u)A

]}

with the convention inf ∅ = ∞. The set Uδ,γ(·, φ) and the operator F φ
δ,γ will correspond to the

relaxed versions of Uint and Hint associated to a test function φ for w.

Remark 3.1. Remark that the fact that Uδ,γ(t, z, φ) ⊂ U implies in particular that, for all

(t, z, q, A), we have

F φ
δ,γ(t, z, q, A) ≥ H(z, q, A) (3.2)

for any smooth function φ.
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1. Supersolution. We first relax the supersolution property by classically considering the upper

semi-relaxed limit F φ∗ of the family of functions (F φ
δ,γ)δ,γ . We recall that it is defined as follows

F φ∗(t, z, q, A) := lim sup
(t′, z′, q′, A′) → (t, z, q, A)

(δ′, γ′) → 0

F φ
δ′,γ′(t

′, z′, q′, A′) ,

for φ ∈ W∗(t, x) and (t, z, q, A) ∈ [0, T ] × Rd × Rd+1 × Sd+1.

Note that, when w ∈ C1,2, φ ∈ W∗(t, x) implies that ∂tw(t, x) ≤ ∂tφ(t, x), Dw(t, x) = Dφ(t, x)

and D2w(t, x) ≤ D2φ(t, x), which leads to Uδ,γ(·, φ) ⊂ Uδ,γ(·, w) and therefore

if w ∈ C1,2 , then ∀φ ∈ W∗(t, x), Fφ
δ,γ(t, z, q, A) ≥ Fw

δ,γ(t, z, q, A) . (3.3)

Also note that

F φ∗(t, z, q, A) := lim sup
(t′, z′, q′, A′) → (t, z, q, A)

γ′ ↓ 0

F φ
0,γ′(t

′, z′, q′, A′) , (3.4)

since U0,γ′ ⊂ Uδ,γ for δ ≥ 0 and γ ≤ γ′. Moreover, it follows from (3.2) that F φ∗ is the upper-

semicontinuous envelope of

H̄φ(t, z, q, A) :=

{

H∗(z, q, A) if (t, z) ∈ intp(D)

F φ∗(t, z, q, A) if (t, z) ∈ ∂pD

on ∂pD which is consistent with Definition 7.4 in [11].

2. Subsolution. In order to relax the subsolution property, we consider the lower relaxed semi-limit

F φ
∗ of (F φ

δ,γ)δ,γ . We recall that

F φ
∗ (t, z, q, A) := lim inf

(t′, z′, q′, A′) → (t, z, q, A)

(δ′, γ′) → 0

F φ
δ′,γ′(t

′, z′, q′, A′) , (3.5)

for φ ∈ W∗(t, x) and (t, z, q, A) ∈ [0, T ] × Rd × Rd+1 × Sd+1.

As above, we can note that, when w ∈ C1,2, φ ∈ W∗(t, x) implies that ∂tw(t, x) ≥ ∂tφ(t, x),

Dw(t, x) = Dφ(t, x) and D2w(t, x) ≥ D2φ(t, x), which leads to

if w ∈ C1,2 , then ∀φ ∈ W∗(t, x), Fφ
δ,γ(t, z, q, A) ≤ Fw

δ,γ(t, z, q, A) . (3.6)

However, (3.2) implies that F φ
∗ ≥ H∗. Hence,

Hφ(z, q, A) :=

{

H∗(z, q, A) if (t, z) ∈ intp(D)

F φ
∗ (t, z, q, A) if (t, z) ∈ ∂pD

may not be lower-semicontinuous. Since, according to [11], the subsolution property has to be

stated in terms of the lower-semicontinuous envelope Hφ
∗ of Hφ, we can not a-priori state the

boundary condition in terms of F φ
∗ . This will be possible only under additional assumptions on

the coefficients; see Proposition 3.1 below.

In order to alleviate notations, we shall simply write below F φ∗ϕ(t, z) for F φ∗(t, z,Dϕ(t, z), D2ϕ(t, z)),

and similarly for F φ
∗ ϕ(t, z), H∗ϕ(t, z), H∗ϕ(t, z), H̄φϕ(t, z), Hφϕ(t, z) and Hφ

∗ϕ(t, z).
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Finally, since the value function V may not be smooth, we can only provide a PDE characterization

in the discontinuous viscosity sense. We therefore introduce its semicontinuous envelopes: ∀(t, z) ∈
cl(D),

V∗(t, z) := lim inf
(t′,z′)∈intp(D)→(t,z)

V (t′, z′) , V ∗(t, z) := lim sup
(t′,z′)∈intp(D)→(t,z)

V (t′, z′) .

3.2 Main results

We shall appeal to the following weak version of continuity assumption on N0 made in [5] (it will be

strengthened when discussing the subsolution property on the boundary, see (ii) of Assumption 3.3

below).

Assumption 3.1. (Continuity of N0(x, y, q)) Let ψ be Lipschitz continuous function on [0, T ]×
Rd and let O be some open subset of [0, T ] × Rd+1 such that N0(x, y, ψ(t, x)) 6= ∅ for all (t, x, y) ∈
O. Then, for every ε > 0, (t0, x0, y0) ∈ O and u0 ∈ N0(x0, y0, ψ(t0, x0)), there exists an open

neighborhood O′ of (t0, x0, y0) and a locally Lipschitz continuous map û defined on O′ such that

|û(t0, x0, y0) − u0| ≤ ε and û(t, x, y) ∈ N0(x, y, ψ(t, x)) on O′.

Remark 3.2. As we shall see in the statement of the following theorem (and as it will be clear

from its proof), Assumption 3.1 is only required to get the supersolution property on ∂ZD.

We can now state the main result of this section.

Theorem 3.1 (PDE characterization of the value function). The following holds:

1. If Assumption 3.1 holds, then the function V∗ is a viscosity supersolution on cl(D) of

(−∂tϕ+H∗ϕ) (t, x, y) ≥ 0 if (t, x, y) ∈ intp(D)

∀φ ∈ W∗(t, x) ,
(

−∂tϕ+ F φ∗ϕ
)

(t, x, y) ≥ 0 if (t, x, y) ∈ ∂ZD

}

(3.7)

ϕ(T, x, y) ≥ f∗(x, y) if (t, x, y) ∈ ∂TD,

y > w(T, x) , H∗ϕ(T, x, y) <∞ .

}

(3.8)

2. The function V ∗ is a viscosity subsolution on cl(D) of

(−∂tϕ+H∗ϕ) (t, x, y) ≤ 0 if (t, x, y) ∈ intp(D) ∪ ∂ZD (3.9)

ϕ(T, x, y) ≤ f∗(x, y) if (t, x, y) ∈ ∂TD and H∗ϕ(T, x, y) > −∞ . (3.10)

The proof will be provided in Section 6 below.

Remark 3.3. Note that the above theorem does not provide the boundary condition for V∗ on the

corner {(T, x, y) : y = w(T, x)}. However, particular cases can be studied in more details. For

instance, if U is bounded, one easily checks, by using the Lipschitz continuity of µZ and σZ , that

Zνn
tn,zn

(T ) → z0 in L4(Ω) for any sequence (tn, zn, νn)n ∈ D × U such that νn ∈ Utn,zn for all n

and (tn, zn) → (T, z0). Since, by definition, V (tn, zn) ≥ E
[

f(Zνn
tn,zn

(T ))
]

, the quadratic growth

assumption on f implies lim infn→∞ V (tn, zn) ≥ f∗(z0). A more general result will be stated in

Proposition 3.2 when w is smooth.
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To conclude this section, we now provide an equivalence result between subsolutions of −∂tϕ +

H∗ϕ = 0 and subsolutions of −∂tϕ + F φ
∗ ϕ = 0 for any φ ∈ W∗, under the following additional

assumption:

Assumption 3.2. One of the following holds:

• Either U is bounded

• or |σY (x, y, u)| → +∞ as |u| → +∞ and

lim sup
|u|→∞, u∈U

|µY (x, y, u)| + |µX(x, u)| + |σX(x, u)|2
|σY (x, y, u)|2 = 0 for all (x, y) ∈ Rd+1 (3.11)

and the convergence is local uniform with respect to (x, y).

Remark 3.4. Note that the above assumption implies that Nδ(x, y, q) is compact for all (x, y, q) ∈
Rd+1 × Rd.

Remark 3.5. This condition will be satisfied in the example of application of Section 4.

Proposition 3.1. Let Assumption 3.2 hold. Let v be a upper-semicontinuous function. Assume

that for all smooth function ϕ and (t, x, y) ∈ ∂ZD such that (t, x, y) is a strict maximum point on

cl(D) of v − ϕ, we have

−∂tϕ(t, x, y) +H∗ϕ(t, x, y) ≤ 0 .

Then, for all smooth function ϕ and (t, x, y) ∈ ∂ZD such that (t, x, y) is a strict maximum point

on cl(D) of v − ϕ and all φ ∈ W∗(t, x), we have

−∂tϕ(t, x, y) + F φ
∗ ϕ(t, x, y) ≤ 0 .

The proof will be provided in Section 6.3 below.

This allows to rewrite the spacial boundary condition for V ∗ in terms of the more natural con-

strained operator F φ
∗ instead of H∗.

Corollary 3.1 (Boundary conditions in the classical sense). Let Assumption 3.2 hold. Then, V ∗

is a viscosity subsolution on cl(D) of

(−∂tϕ+H∗ϕ) (t, x, y) ≤ 0 if (t, x, y) ∈ intp(D)

∀φ ∈ W∗(t, x),
(

−∂tϕ+ F φ
∗ ϕ
)

(t, x, y) ≤ 0 if (t, x, y) ∈ ∂ZD . (3.12)

3.3 Dirichlet boundary condition when w is smooth

Recall that the boundary ∂ZD corresponds to the point (t, x, y) such that y = w(t, x). It is therefore

tempting to rewrite the boundary condition on ∂ZD for V as V (t, x, y) = V(t, x) := V (t, x, w(t, x)),

and try to obtain a PDE characterization for V by performing a simple change of variables.

In this section, we shall assume that w is smooth and that N0(z, p) admits a unique argument

which is continuous in (z, p). This assumption is made precise as follows:
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Assumption 3.3. (i) The map w is C1,2([0, T ) × Rd).

(ii) There exists a locally Lipschitz map ǔ : Rd+1 × Rd → R such that

N0(z, p) 6= ∅ ⇒ N0(z, p) = {ǔ(z, p)} .

Remark 3.6. Note that Assumption 3.1 is a consequence of Assumption 3.3

Under the above assumption, it follows from [5] and [22] that w is a strong solution of (3.13) below.

Theorem 3.2 ([5] and [22]). Let Assumption 3.3 hold. Then, N0(·, w,Dw) 6= ∅ on [0, T )×Rd and

w satisfies

0 = min
{

µY (·, w, û) − Lû
Xw , 1û∈int(U)

}

on [0, T ) × Rd , (3.13)

where

û := ǔ(·, w,Dw) .

Moreover, for all x ∈ Rd and smooth function φ such that x reaches a local minimum of w(T, ·)−φ,
the set N0(x,w(T, x), Dφ(x)) is non-empty.

Remark 3.7. Theorem 3.2 is proved in [5] and [22] when the set of controls is U in place of U t,

as a consequence of the geometric dynamic programming principle of Soner and Touzi [21]. Even

if the formulation is slightly different here, the proofs of the above papers can be entirely reproduced

for U t in place of U by appealing to the version of geometric dynamic programming principle stated

in Theorem 2.1 and Corollary 2.1 above.

Also observe that the first assertion in Assumption 3.3 combined with the discussion of Section 3.1

(see (3.3) and (3.6)) implies that the boundary condition on ∂ZD can be simplified and written

in terms of Fw
δ,γ . Using this simplification and computing the derivatives of V in terms of the

derivatives of V and w, we deduce from Theorem 3.1, Corollary 3.1 and Theorem 3.2 that, at least

at a formal level, V is a solution of (3.14)-(3.15) below.

To be more precise, the viscosity solution property will be stated in terms of

V∗(t, x) := V∗(t, x, w(t, x)) and V∗(t, x) := V ∗(t, x, w(t, x)) ,

for (t, x) ∈ [0, T ] × Rd. Since w is continuous, V∗ (resp. V∗) is lower-semicontinuous (resp. upper-

semicontinuous).

Our proof of the subsolution property will also require the following additional technical assump-

tion:

Assumption 3.4. The condition (3.11) holds. Moreover, for all sequence (tn, xn)n in [0, T ) × Rd

such that (tn, xn) → (t0, x0) ∈ [0, T ) × Rd such that û(t0, x0) ∈ int(U), we have

lim inf
n→∞

inf
u∈U

[

n (Lu
Xw(tn, xn) − µY (xn, w(tn, xn), u)) + n2|Nu(xn, w(tn, xn), Dw(tn, xn))|2

]

> −∞ .
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We can now state the main result of this section.

Proposition 3.2. Let Assumption 3.3 hold, and assume that V and w have polynomial growth.

Then, V∗ is a viscosity supersolution on [0, T ] × Rd of














(−Lû
Xϕ)1û∈int(U) = 0 on [0, T ) × Rd

ϕ(T, ·) ≥ f∗(·, w(T, ·)) if lim sup
(t′,x′)→(T,·)

t<T

|û(t′, x′)| <∞ and W∗(T, ·) 6= ∅ . (3.14)

Moreover, if in addition Assumption 3.4 holds, then V∗ is a viscosity subsolution on [0, T ]× Rd of






(−Lû
Xϕ)1û∈int(U) = 0 in [0, T ) × Rd ,

ϕ(T, ·) ≤ f∗(·, w(T, ·)) if W∗(T, ·) 6= ∅ .
(3.15)

See Section 6.4 for the proof.

Remark 3.8. (i) Note that 1û∈int(U) = 1 if U = Rd. Even if U 6= Rd, the PDE simplifies whenever

w solves

µY (·, w, û) − Lû
Xw = 0 on [0, T ) × Rd . (3.16)

It will be clear from the proof of Proposition 3.2 that in this case V∗ is a viscosity supersolution

on [0, T ) × Rd of −Lû
Xϕ = 0 . Similarly, V∗ is a viscosity subsolution of the same equation if

Assumption 3.4 holds without the condition û(t0, x0) ∈ int(U). We refer to [8] for situations

in Mathematical Finance where w is actually a viscosity solution of the above equation, although

U 6= Rd.

(ii) The Assumption 3.4 will be satisfied in our example of application of Section 4. Note that it

also holds in our general framework when µZ and |σX |2 are locally Lipschitz in u, locally uniformly

in the other variables, and

|Nu(x, y, q) −Nu′

(x, y, q)|2 ≥ ρ1(x, y, q, u, u
′)|u− u′|2 − ρ2(x, y, q, u, u

′)

for some locally bounded maps ρ1, ρ2 such that ρ1 > 0 locally uniformly. Indeed, in this case, we

have û(tn, xn) → û(t0, x0) ∈ int(U) and Theorem 3.2 implies that

n (Lu
Xw(tn, xn) − µY (xn, w(tn, xn), u)) + n2|Nu(xn, w(tn, xn), Dw(tn, xn))|2

= n (Lu
Xw(tn, xn) − µY (xn, w(tn, xn), u)) − n

(

Lû(tn,xn)
X w(tn, xn) − µY (xn, w(tn, xn), û(tn, xn))

)

+n2|Nu(xn, w(tn, xn), Dw(tn, xn)) −N û(tn,xn)(xn, w(tn, xn), Dw(tn, xn))|2

≥ −nC1|u− û(tn, xn)| + n2C2|u− û(tn, xn)|2 − C3 ≥ − C2
1

4C2
− C3

for some constant C1, C2, C3 > 0. In view of (i), it also holds without the condition û(t0, x0) ∈
int(U) when w solves (3.16).

(iii) If the map û is locally bounded, then the condition lim sup{|û(t′, x′)|, (t′, x′) → (T, ·), t′ <
T} <∞ holds when x 7→ lim sup{|Dw(t′, x′)|, (t′, x′) → (T, x), t′ < T} is locally bounded.
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Under the above assumptions, we can then replace the boundary condition of Theorem 3.1 and

Corollary 3.1 by a simple Dirichlet condition V (t, x, y) = V(t, x) on ∂ZD, where V can be computed

by solving −Lû
Xϕ = 0 on [0, T ) × Rd with the corresponding terminal condition at t = T .

Obviously, the construction of the associated numerical schemes requires at least comparison results

for the corresponding PDEs which are a-priori highly non-linear and not continuous. We leave

this important point for further research.

4 Example of application in mathematical finance

In order to illustrate our results, we detail in this section an application to the problem of terminal

wealth maximization under a super-replication constraint.

4.1 The optimization problem

Namely, we consider a financial market consisting of a riskless asset, whose price process is nor-

malized to 1 for simplicity, and one risky asset whose dynamics is given by

Xt,x(s) = x+

∫ s

t

Xt,x(u)µ(Xt,x(u))du+

∫ s

t

Xt,x(u)σ(Xt,x(u))dWu,

where x ∈ [0,∞) 7→ (xµ(x), xσ(x)) is Lipschitz continuous and

σ ≥ ε and |µ/σ| ≤ ε−1 for some real constant ε > 0 . (4.1)

The control process ν corresponding to the amount of money invested in the risky asset is valued

in U = R. Under the self-financing condition, the value of the corresponding portfolio Y ν is given

by

Y ν
t,x,y(s) = y +

∫ s

t

νu
dXt,x(u)

Xt,x(u)
= y +

∫ s

t

νuµ(Xt,x(u))du+

∫ s

t

νuσ(Xt,x(u))dWu .

We consider a fund manager whose preferences are given by a C2 increasing strictly concave utility

function U on R+ satisfying the classical Inada conditions:

U ′(0+) = +∞ and U ′(+∞) = 0 . (4.2)

We assume that his objective is to maximize his expected utility of wealth under the constraint that

it performs better than the benchmark (or super-hedge some European option’s payoff) ψ(Xt,x(T )),

with ψ a continuous function with polynomial growth.

The corresponding optimal control problem under stochastic constraint is given by:

V (t, x, y) := sup
ν∈Ut,x,y

E [U(Y νt,x,y(T ))]

with

Ut,x,y :=
{

ν ∈ U t, Y ν
t,x,y(T ) ≥ ψ(Xt,x(T )) P − a.s.

}

.

15



4.2 The PDE characterization

Note that under the condition (4.1), we simply have

Nδ(x, y, q) = {u ∈ R : |uσ(x) − xσ(x)q| ≤ δ} = {xq + δζ/σ(x), |ζ| ≤ 1} . (4.3)

Moreover, the function w is given by

w(t, x) = EQt,x [ψ(Xt,x(T ))] (4.4)

where Qt,x ∼ P is defined by

dQt,x

dP
= exp

(

−1

2

∫ T

t

|λ(Xt,x(s))|2 ds−
∫ T

t

λ(Xt,x(s))dWs

)

with λ := µ/σ ,

see e.g. [15], and is a continuous viscosity solution on [0, T ) × (0,∞) of

0 = −∂tϕ(t, x) − 1

2
x2σ2(x)D2ϕ(t, x)

= sup
u∈N0(x,ϕ(t,x),Dϕ(t,x))

(

uµ(x) − ∂tϕ(t, x) − xµ(x)Dϕ(t, x) − 1

2
x2σ2(x)D2ϕ(t, x)

)

with the terminal condition w(T, ·) = ψ.

Also note that Assumptions 3.1 and 3.2 trivially hold in this context. It then follows that we can

apply Theorem 3.1 and Corollary 3.1.

Moreover, if µ and σ are smooth enough, it follows from standard estimates that w ∈ C1,2([0, T )×
(0,∞)). If ψ is also Lipschitz continuous, then |Dw| is locally bounded and so is (t, x) 7→ û(t, x) =

xDw(t, x), recall (4.3). The conditions of Assumption 3.4 are also satisfied, see (ii) of Remark

3.8. It then follows from Proposition 3.2 that V∗ and V∗ are viscosity super- and subsolutions on

[0, T ) × (0,∞) of

0 = −∂tϕ(t, x) − xµ(x)Dϕ(t, x) − 1

2
x2σ2(x)D2ϕ(t, x) ,

with the terminal condition, assuming that ψ ∈ C2,

ϕ(T, x) = U(ψ(x)) .

Standard comparison results and the Feynman Kac formula thus imply that

V∗(t, x) = V∗(t, x) = E [U(ψ(Xt,x(T )))] =: V(t, x) ,

which provides an “explicit” Dirichlet boundary condition for V on {y = w(t, x)}.

Summing up the above results, we obtain that V∗ is a viscosity supersolution of

−∂tϕ(t, x, y) +H∗ϕ(t, x, y) ≥ 0 if t < T, y > w(t, x)

ϕ(t, x, y) ≥ V(t, x) if t < T, y = w(t, x)

ϕ(T, x, y) ≥ U(y) if y ≥ ψ(x) ,
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and that V ∗ is a viscosity subsolution of

−∂tϕ(t, x, y) +H∗ϕ(t, x, y) ≤ 0 if t < T, y > w(t, x)

ϕ(t, x, y) ≤ V(t, x) if t < T, y = w(t, x)

ϕ(T, x, y) ≤ U(y) if y ≥ ψ(x) ,

where

H(x, y, q, A) := inf
u∈R

(

−µ(x)〈
(

x

u

)

, q〉 − 1

2
σ(x)2Tr

[[

x2 xu

xu u2

]

A

])

.

4.3 Explicit resolution

In order to solve the above PDE explicitly, we proceed as in [5] and introduce the Fenchel-Legendre

dual transform associated to V ∗ with respect to the y variable:

Ṽ ∗(t, x, γ) := sup
y∈[w(t,x),∞)

{V ∗(t, x, y) − yγ} , (t, x, γ) ∈ [0, T ] × (0,∞) × R ,

where we use the usual extension V ∗(t, x, y) = ∞ if y < w(t, x). Note that Ṽ ∗(t, x, γ) = ∞ if γ < 0

since V is clearly non-decreasing in y. The main interest in considering the dual transform of the

value function is to get rid of the non linear terms in the above PDE. By the same arguments as

in Section 4 in [5], we indeed obtain that Ṽ ∗ is an upper-semicontinuous viscosity subsolution of

[0, T ] × (0,∞) × (0,∞) of

−LXϕ+ xσ(x)γλ(x)
∂2

∂x∂γ
ϕ− 1

2
γ2λ(x)2

∂2

∂γ2
ϕ ≤ 0 if t < T,

∂

∂γ
ϕ(t, x, γ) < −w(t, x)

ϕ(T, x, γ) ≤ U(I(γ) ∨ ψ(x)) − γ[I(γ) ∨ ψ(x)] if t = T,
∂

∂γ
ϕ(T, x, γ) ≤ −ψ(x) ,

where I := (U ′)−1 and where we used (4.2) to derive the boundary condition. Let us now define

V̄ (t, x, γ) := E [U [I(Γt,x,γ(T )) ∨ ψ(Xt,x(T ))]] − E [Γt,x,γ(T ) {I(Γt,x,γ(T )) ∨ ψ(Xt,x(T ))}] ,
(4.5)

where Γt,x,γ has the dynamics

Γt,x,γ(s) = γ +

∫ s

t

λ(Xt,x(u))Γt,γ(u)dWu .

One easily checks that V̄ is a continuous viscosity solution of the above PDE satisfying V̄ (T, x, γ) =

γ[I(γ) ∨ ψ(x)] − U(I(γ) ∨ ψ(x)) and, recalling (4.4),

∂

∂γ
V̄ (t, x, γ) = −E [Γt,x,1(T ) {I(Γt,x,γ(T )) ∨ ψ(Xt,x(T ))}] ≤ −EQt,x [ψ(Xt,x(T ))] = −w(t, x) .

We then deduce from standard comparison results, see e.g. [11], that

Ṽ ∗(t, x, γ) ≤ V̄ (t, x, γ) . (4.6)
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This leads to

V ∗(t, x, y) ≤ inf
γ>0

{

V̄ (t, x, γ) + yγ
}

= inf
γ>0

{E [U [I(Γt,x,γ(T )) ∨ ψ(Xt,x(T ))]] − E [Γt,x,γ(T ) {I(Γt,x,γ(T )) ∨ ψ(Xt,x(T ))}] + yγ} .

Computing the optimal argument γ̂(t, x, y) in the above expression, recall (4.2), we obtain that

y := EQt,x
[

I(Γt,x,γ̂(t,x,y)(T )) ∨ ψ(Xt,x(T ))
]

, (4.7)

and therefore

V ∗(t, x, y) ≤ V̄ (t, x, γ̂(t, x, y)) + yγ̂(t, x, y) = E
[

U [I(Γt,x,γ̂(t,x,y)(T )) ∨ ψ(Xt,x(T ))]
]

.

Furthermore, (4.7), the martingale representation theorem and (4.1) ensure that we can find some

P − a.s.-square integrable predictable process ν̂, independent of Ft such that

Y ν̂
t,y,x(T ) = I(Γt,γ̂(t,x,y)(T )) ∨ ψ(Xt,x(T )) .

In particular, this implies that Y ν̂
t,y(T ) ≥ ψ(Xt,x(T )) so that ν ∈ Ut,x,y if I(Γt,γ̂(t,x,y)(T )) ∈

L2+ε(Ω,Q) for some ε > 0, recall that ψ has polynomial growth so that ψ(Xt,x(T )) ∈ Lp(Ω,Q) for

any p ≥ 1. Therefore, under the above assumption, the value function is given by

V (t, x, y) = E
[

U [I(Γt,x,γ̂(t,x,y)(T )) ∨ ψ(Xt,x(T ))]
]

(4.8)

with y = EQt,x
[

I(Γt,x,γ̂(t,x,y)(T )) ∨ ψ(Xt,x(T ))
]

.

This is the result obtained in [16] via duality methods in the case of a European guarantee.

Remark 4.1. The condition I(Γt,x,γ̂(t,x,y)(T )) ∈ L2+ε(Ω,Q) is satisfied for many examples of

applications. This is in particular the case for U(r) := rp for 0 < p < 1. In the case where it does

not hold, one needs to relax the set of controls by allowing ν to be only P − a.s.-square integrable.

The proofs of our general results can be easily adapted to this context in this example.

Remark 4.2. We have assumed that ψ ∈ C2. If this is not the case, we can always consider

sequences of smooth functions (ψ̄n)n and (ψ
n
)n such that ψ

n
≤ ψ ≤ ψ̄n and ψ

n
, ψ̄n → ψ pointwise.

Letting V n, V̄n be the value functions associated to ψ
n
, ψ̄n instead of ψ, we clearly have V n ≤ V ≤

V̄n. Letting n→ ∞ and using (4.8) applied to V n, V̄n shows that (4.8) holds for V too.

5 Possible extensions

5.1 Constraints in moment or probability

In this section, we explain how the results of the Section 3 can be adapted to stochastic control

problems under moment constraints of the following form

Ṽ (t, z; p) := sup
ν∈Ũt,z,p

E
[

f(Zν
t,z(T ))

]

, (5.1)
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where

Ũt,z,p :=
{

ν ∈ U t : E
[

g(Zν
t,z(T ))

]

≥ p
}

, p ∈ R . (5.2)

The main idea consists in adding a new controlled process Pα
t,p as done in Bouchard, Touzi and

Elie [5] for stochastic control problem with controlled loss.

Namely, let A denote the set of F−progressively measurable Rd−valued square integrable processes

and denote by At the subset of elements of A which are independent of Ft. To α ∈ At and initial

conditions (t, p) ∈ [0, T ] × R, we associate the controlled process Pα
t,p defined for t ≤ s ≤ T by

Pα
t,p(s) = p+

∫ s

t

α⊤
r dWr (5.3)

and introduce the set Ūt,z,p of controls of the form (ν, α) ∈ U t ×At such that

ḡ(Zν
t,z(T ), Pα

t,p(T )) ≥ 0 P − a.s.

where ḡ(Z,P ) := g(Z) − P .

Lemma 5.1. Fix (t, z, p) ∈ [0, T ] × Rd+1 × R and ν ∈ U t such that g(Zν
t,z(T )) ∈ L2(Ω). Then,

ν ∈ Ũt,z,p if and only if there exists α ∈ At such that (ν, α) ∈ Ūt,z,p.

Proof. Fix ν ∈ Ũt,z,p. Since g(Zν
t,z(T )) ∈ L2(Ω) and is independent of Ft, we can find α ∈ At

such that g(Zν
t,z(T )) = E

[

g(Zν
t,z(T ))

]

− p + Pα
t,p(T ). Since E

[

g(Zν
t,z(T ))

]

≥ p, it follows that

ḡ(Zν
t,Z(T ), Pα

t,p(T )) ≥ 0. The converse assertion follows from the martingale property of Pα
t,p, for

all (ν, α) ∈ Ūt,z,p. ✷

This readily implies that Ṽ = V̄ where

V̄ (t, z, p) := sup
ν∈Ūt,z,p

E
[

f(Zν
t,z(T ))

]

. (5.4)

Proposition 5.1. Fix (t, z, p) ∈ [0, T ] × Rd+1 × R, and assume that g(Zν
t,z(T )) ∈ L2(Ω) for all

ν ∈ U t. Then, Ṽ (t, z; p) = V̄ (t, z, p).

Remark 5.1. (i) If g has linear growth then the condition g(Zν
t,z(T )) ∈ L2(Ω) is satisfied since

the diffusion has Lipschitz continuous coefficients and, by definition of U , ν is square integrable.

(ii) Note that, if U is bounded, then the condition (3.11) holds for the augmented system (Zν
t,z, P

α
t,p)

when looking at Pα
t,p as a new Y component and the former Zν

t,z as a new X component:

lim sup
|(u,α)|→∞, (u,α)∈U×R

{ |µZ(·, u)| + |σZ(·, u)|2
|α|2

}

= lim sup
|α|→∞

sup
u∈U

{ |µZ(·, u)| + |σZ(·, u)|2
|α|2

}

= 0 ,

on Rd+1 locally uniformly.

(iii) Under the integrability condition of Proposition 5.1, the PDE characterization of Section 3

can thus be applied to the value function V̄ = Ṽ .
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One can similarly apply the results of the preceding section to problems with constraint in proba-

bility of the form

V̌ (t, z; p) := sup
ν∈Ǔt,z,p

E
[

f(Zν
t,z(T ))

]

with Ǔt,z,p :=
{

ν ∈ U t : P
[

g(Zν
t,z(T )) ≥ 0

]

≥ p
}

,

by observing that

P
[

g(Zν
t,z(T )) ≥ 0

]

= E

[

1{g(Zν
t,z(T ))≥0}

]

.

In this case, we obtain

V̌ (t, z; p) = sup
{

E
[

f(Zν
t,z(T ))

]

, (ν, α) ∈ U t ×At s.t. 1{g(Zν
t,z(T ))≥0} − Pα

t,p(T ) ≥ 0 P − a.s.
}

.

Remark 5.2. Following [5], we could restrict ourselves to controls α such that Pα
t,p evolves in [0, 1],

which is the natural domain for the p variable. Note that, in any case, one should also discuss

the boundary conditions at p = 0 and p = 1, as in [5]. We leave this non-trivial point to further

research.

5.2 Almost sure constraints on [0, T ]

An important extension consists in considering a.s. constraints on the whole time interval [0, T ]:

V a(t, z) := sup
ν∈Ua

t,z

E
[

f(Zν
t,z(T ))

]

, (5.5)

where

Ua
t,z :=

{

ν ∈ U t : g(Zν
t,z(s)) ≥ 0 ∀ s ∈ [t, T ] P − a.s.

}

. (5.6)

This corresponds to a classical state constraint problem on the spacial domain

O :=
{

z ∈ Rd+1 : g(z) ≥ 0
}

.

This case can be treated exactly as the one considered in the present paper, after replacing D and

w by Da and wa defined by

Da :=
{

(t, z) ∈ [0, T ] × Rd+1 : g(Zν
t,z(s)) ≥ 0 ∀ s ∈ [t, T ] P − a.s. for some ν ∈ U t

}

wa(t, x) := inf {y ∈ R : (t, x, y) ∈ Da} .

This is due to the fact that the geometric dynamic programming principle of Theorem 2.1 and

Corollary 2.1 can be extended to Da and wa, see Bouchard and Nam [6]. Repeating the arguments

of Section 6 then allows to extend to V a the results of Section 3.2 and Section 3.3.

We should note that the PDE characterization of wa has been obtained in Bouchard and Nam [6]

only for a particular situation which arises in finance. However, it would not be difficult to derive

the PDE associated to wa in our more general framework by combining the arguments of [5] and

[6]. We would obtain the same characterization as in [5] but only on the domain g∗(x,w
a∗(t, x)) > 0
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for the subsolution property, and with the additional inequality g∗(x,wa
∗(t, x)) ≥ 0 on the whole

domain, i.e. wa would be a discontinuous viscosity solution of

min

{

sup
u∈N0(·,wa,Dwa)

(µY (·, wa, u) − Lu
Xw

a) , g(·, wa)

}

= 0 in [0, T ) × Rd

g(·, wa(T, ·)) = 0 in Rd .

As already argued in the introduction, it is important to notice that our approach would not

require to impose strong conditions on O and the coefficients in order to ensure that Zν
t,z can

actually be reflected on the boundary of O. The only important assumption is that Da is non

empty. By definition of Da and the geometric dynamic programming principle, this condition will

be automatically satisfied on the boundary of Da ⊂ O.

We think that this approach is more natural for state constraint problems and we hope that it will

open the door to new results in this field. A precise study is left for further research.

6 Proof of the PDE characterizations

6.1 Dynamic programming principle

As usual, we first need to provide a dynamic programming principle for our control problem (2.1).

Theorem 6.1 (Dynamic Programming Principle). Fix (t, z) ∈ intp(D) and let {θν , ν ∈ U} be a

family of stopping times with values in [t, T ]. Then,

V (t, z) ≤ sup
ν∈Ut,z

E
[

f∗(Zν
t,z(θ

ν))1θν=T + V ∗(θν , Zν
t,z(θ

ν))1θν<T

]

,

V (t, z) ≥ sup
ν∈Ut,z

E
[

f∗(Z
ν
t,z(θ

ν))1θν=T + V∗(θ
ν , Zν

t,z(θ
ν))1θν<T

] (6.1)

where V∗ (resp. V ∗) denotes the lower-semicontinuous (resp. upper-semicontinuous) envelope of

V .

Proof. In this proof we denote by ωr := (ωt∧r)t≤T the stopped canonical path, and by Tr(ω) :=

(ωs+r − ωr)s≤T−r the shifted canonical path, r ∈ [0, T ]. For ease of notations, we omit the depen-

dence of θν with ν and simply write θ.

1. We start with the first inequality. To see that it holds, note that, by the flow property, for any

ν ∈ Ut,z:

E
[

f(Zν
t,z(T ))

]

=

∫ ∫

f

(

Z
ν(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Zν
t,z(θ)(ω) (T )(ωθ(ω) + Tθ(ω)(ω̃))

)

dP(ω)dP(ω̃)

=

∫

E

[

J
(

θ(ω), Zν
t,z(θ)(ω); ν(ωθ(ω) + Tθ(ω)(·))

)]

dP(ω)

where ω̃ ∈ Ω 7→ ν(ωθ(ω) + Tθ(ω)(ω̃)) is viewed as a control in Uθ(ω),Zν
t,z(θ)(ω) for fixed ω ∈ Ω. Since

J ≤ V ∗ and J(T, ·) = f , it follows that

E
[

f(Zν
t,z(T ))

]

≤ E
[

V ∗
(

θ, Zν
t,z(θ)

)

1θ<T + f(Zν
t,z(T ))1θ=T

]
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and the result follows from the arbitrariness of ν ∈ Ut,z.

2. We now turn to the second inequality. It follows from Lemma A.2 in the Appendix that the set

Γ = {(t, z, ν) ∈ [0, T ]×Rd+1 ×U : ν ∈ Ut,z} is an analytic set. Clearly, J is Borel measurable and

therefore upper-semianalytic. It thus follows from Proposition 7.50 in [3] that, for each ε > 0, we

can find an analytically measurable map ν̂ε such that J(t, z; ν̂ε(t, z)) ≥ V (t, z)−ε and ν̂ε(t, z) ∈ Ut,z

on D. Since analytically measurable maps are also universally measurable, it follows from Lemma

7.27 in [3] that, for any probability measure m on [0, T ] × Rd+1, we can find a Borel measurable

map ν̂ε
m : (t, z) ∈ D 7→ Ut,z such that J(t, z; ν̂ε

m(t, z)) ≥ V (t, z) − ε ≥ V∗(t, z) − ε for m-a.e.

element of D. Let us now fix ν1 ∈ Ut0,z0 for some (t0, z0) ∈ intp(D). Let m be the measure induced

by (θ, Zν1
t0,z0

(θ)) on [0, T ] × Rd+1. By Theorem 2.1, (θ, Zν1
t0,z0

(θ)) ∈ D P − a.s. so that

ν̂ε
m(θ, Zν1

t0,z0
(θ)) ∈ Uθ,Z

ν1
t0,z0

(θ) and J(θ, Zν1
t0,z0

(θ); ν̂ε
m(θ, Zν1

t0,z0
(θ))) ≥ V∗(θ, Z

ν1
t0,z0

(θ)) − ε P − a.s.

Moreover, it follows from Lemma 2.1 of [21] that we can find νε
2 ∈ U such that

νε
21[θ,T ] = ν̂ε

m(θ, Zν1
t0,z0

(θ))1[θ,T ] dt× dP − a.e.

This implies that νε := ν11[t0,θ) + νε
21[θ,T ] ∈ Ut0,z0 and

E

[

f(Z
νε
2

θ,Z
ν1
t0,z0

(θ)
(T )) | (θ, Zν1

t0,z0
(θ))

]

= J(θ, Zν1
t0,z0

(θ); ν̂ε
m(θ, Zν1

t0,z0
(θ))) ≥ V∗(θ, Z

ν1
t0,z0

(θ)) − ε P − a.s.

and therefore

V (t0, z0) ≥ E

[

E

[

f(Z
νε
2

θ,Z
ν1
t0,z0

(θ)
(T )) | (θ, Zν1

t0,z0
(θ))

]]

≥ E
[

V∗(θ, Z
ν1
t0,z0

(θ))1θ<T + f(Zν1
t0,z0

(T ))1θ=T

]

− ε .

The required result then follows from the arbitrariness of ν1 ∈ Ut0,z0 and ε > 0. ✷

6.2 The Hamilton-Jacobi-Bellman equation in the general case

The proof of Theorem 3.1 follows from rather standard arguments based on Theorem 6.1 except

that we have to handle the stochastic target constraint.

6.2.1 Supersolution property for t < T

Proof. [Proof of Eq. (3.7)] Let ϕ be a smooth function such that (t0, z0) ∈ intp(D)∪∂ZD achieves

a strict minimum (equal to 0) of V∗ − ϕ on cl(D). We also consider φ ∈ W∗(t0, x0).

Case 1: We first consider the case where (t0, z0) ∈ intp(D). We argue by contradiction and assume

that

(−∂tϕ+H∗ϕ) (t0, z0) < 0 .

Since the coefficients µZ and σZ are continuous, we can find an open bounded neighborhood B ⊂
intp(D) of (t0, z0) and û ∈ U such that

−Lû
Zϕ ≤ 0 on B . (6.2)
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Let (tn, zn)n be a sequence in B such that V (tn, zn) → V∗(t0, z0) and (tn, zn) → (t0, z0). Denote

Ẑn := Z û
tn,zn

where û is viewed as a constant control in U tn and let θn denote the first exit time of

(s, Ẑn(s))s≥tn from B. Since (θn, Ẑ
n(θn)) ∈ B ⊂ intp(D), it follows from Theorem 2.1 that there

exists a control νn ∈ Utn,zn such that νn = u on [tn, θn). We now set Zn = (Xn, Y n) := Zνn

tn,zn
and

observe that Zn = Ẑn on [tn, θn] by continuity of the paths of both processes. It then follows from

Itô’s Lemma and (6.2) that, for n large enough,

ϕ(tn, zn) ≤ E [ϕ(θn, Z
n(θn))] ≤ E [V∗(θn, Z

n(θn))] − ζ

where

ζ := min
(t,z)∈∂pB

(V∗ − ϕ) > 0 .

Since (ϕ − V )(tn, zn) → (ϕ − V∗)(t0, z0) = 0 as n → ∞, this contradicts Theorem 6.1 for n large

enough.

Case 2: We now turn to the case where (t0, z0) ∈ ∂ZD. As above, we argue by contradiction and

assume that

lim sup
(t,z)→(t0,z0),γ↓0

inf
u∈U0,γ(t,z,φ)

(−Lu
Zϕ(t, z)) < 0 ,

recall (3.4). Note that this implies that N0(t, z,Dφ(t, x)) 6= ∅ for (t, z) in a neighborhood of (t0, z0).

Using Assumption 3.1, we then deduce that there exists an open neighborhood O of (t0, z0) and a

Lipschitz continuous map û on O such that for all (t, z) ∈ O

−Lû(t,z)
Z ϕ(t, z) ≤ 0

µY (z, û(t, z)) − Lû(t,z)
X φ(t, x) > 0

û(t, z) ∈ N0(z,Dφ(t, x))











. (6.3)

Let (tn, zn)n be a sequence in O ∩ intp(D) such that V (tn, zn) → V∗(t0, z0) and (tn, zn) → (t0, z0).

Let Ẑn = (X̂n, Ŷ n) denote the solution of (1.3) for the Markovian control ν̂n associated to û and

initial condition zn at time tn. Clearly, ν̂n ∈ U tn . Let θn denote the first exit time of (s, Ẑn(s))s≥tn

from O. It follows from Itô’s Lemma and the two last inequalities in (6.3) that

Ŷ n(θn) ≥ φ(θn, X̂
n(θn)) + yn − φ(tn, xn) .

Since w − φ achieves a strict maximum at (t0, x0) and (w − φ)(t0, x0) = 0, we can find κ > 0 such

that w − φ ≤ −κ on ∂O. Since, by definition of θn, Ẑn(θn) ∈ ∂O, it follows from the previous

inequality that

Ŷ n(θn) ≥ w(θn, X̂
n(θn)) + κ+ yn − φ(tn, xn) .

Using the fact that yn − φ(tn, xn) → y0 − w(t0, x0) = 0, recall (2.5), we thus deduce that, for n

large enough,

Ŷ n(θn) > w(θn, X̂
n(θn)) .
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In view of Corollary 2.1, we can then find a control νn ∈ Utn,zn such that νn = ν̂n on [tn, θn).

Let us set Zn = (Xn, Y n) := Zνn

tn,zn
and observe that on Zn = Ẑn on [tn, θn] by continuity of the

paths of both processes. We can now appeal to the first inequality in (6.3) to obtain by the same

arguments as in Case 1 above that

V (tn, zn) < E [V∗(θn, Z
n(θn))]

for n large enough. Since νn ∈ Utn,zn , this contradicts Theorem 6.1.

Remark 6.1. The relaxation in (3.4) is used in the above proof to ensure that (6.3) holds on a

neighborhood of (t0, x0). In the case where the function w is smooth and the assumptions of Theorem

3.2 hold, it is not required anymore and we can replace of F φ∗ by Fw
0,0 in the supersolution property

of Theorem 3.1. Indeed, in this case,

−∂tϕ(t0, x0, w(t0, x0)) + Fw
0,0ϕ(t0, x0, w(t0, x0)) < 0

implies that

−Lû(t0,x0)
Z ϕ(t0, x0, w(t0, x0)) < 0

where û(t, x) := ǔ(x,w(t, x), Dw(t, x)) by Assumption 3.3, where, by Theorem 3.2,

µY (x,w(t, x), û(t, x)) − Lû(t,x)
X w(t, x) ≥ 0 and û(t, x) ∈ N0(x,w(t, x), Dw(t, x)) . (6.4)

Since ǔ is Locally Lipschitz, it follows that

−Lû(t,x)
Z ϕ(t, x, y) < 0 (6.5)

on a neighborhood of (t0, x0, y0). Now observe that (6.4), Itô’s Lemma, the fact that yn ≥ w(tn, xn)

and a standard comparison result for SDEs show that

Y ν̂n

tn,xn,yn
≥ w(·, X ν̂n

tn,xn
) on [tn, T ]

were ν̂n is the Markovian control associated to û and initial conditions (tn, xn), i.e. defined by

ν̂n
t = û(t,X ν̂n

tn,xn
(t)) for t ≥ tn. In view of our Standing assumption g(·, w(T, ·)) ≥ 0, this shows

that ν̂n ∈ Utn,xn,yn, recall that g is non-decreasing with respect to its second argument. Using (6.5)

instead of the first inequality in (6.3) then allows to show by the same arguments as in the above

proof that

V (tn, zn) < E [V∗(θn, Z
n(θn))]

for some well chosen stopping time θn and n large enough.
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6.2.2 Subsolution property for t < T

Proof. [Proof of Eq. (3.9)] Let ϕ be a smooth function such that (t0, z0) ∈ intp(D)∪∂ZD achieves

a strict maximum (equal to 0) of V ∗ − ϕ on cl(D). We argue by contradiction and assume that

the subsolution property does not hold at (t0, z0) for ϕ, i.e.

−∂tϕ(t0, z0) +H∗ϕ(t0, z0) > 0 .

Since the coefficients µZ and σZ are continuous, we can then find an open bounded neighborhood

O of the form (t0 − ι, t0 + ι) ×O of (t0, z0) such that O ∩ ∂TD = ∅ and for all u ∈ U

−Lu
Zϕ(t, z) ≥ 0 on O . (6.6)

Let (tn, zn)n be a sequence in O ∩ intp(D) such that V (tn, zn) → V ∗(t0, z0) and (tn, zn) → (t0, z0).

For each n, since (tn, zn) ∈ D, there exists a control νn ∈ Utn,zn . Hence we set Zn := Zνn

tn,zn
and we

let θn denote the first exit time of (s, Zn(s))s≥tn from O∩(intp(D)∪∂ZD). Note that, by definition

of Utn,zn and Theorem 2.1, (s, Zn(s)) ∈ intp(D)∪∂ZD on [tn, T ) and therefore (θn, Z
n(θn)) ∈ ∂pO.

Applying Itô’s Lemma and using (6.6), we then obtain

ϕ(tn, zn) ≥ E [ϕ(θn, Z
n(θn))] ≥ E [V ∗(θn, Z

n(θn))] + ζ

where, since (t0, z0) achieves a strict maximum,

−ζ := max
(t,z)∈∂pO

(V ∗ − ϕ) < 0 .

Since (ϕ − V )(tn, zn) → (ϕ − V ∗)(t0, z0) = 0 as n → ∞, this contradicts Theorem 6.1 for n large

enough.

6.2.3 Terminal condition

The proof of the boundary condition at t = T follows from the preceding arguments and the usual

trick of perturbing the test function by adding a term of the form ±
√
T − t. We only prove the

supersolution property for z0 = (x0, y0) such that y0 > w(T, x0). The subsolution property is

proved similarly by combining the arguments below with the arguments of Section 6.2.2; it turns

out that it is easier to handle.

Proof. [Proof of Eq. (3.8)] Fix z0 := (x0, y0) satisfying y0 > w(T, x0) and ϕ be a smooth

function such that (T, z0) achieves a strict minimum (equal to 0) of V∗ −ϕ on cl(D) and such that

H∗ϕ(T, z0) <∞.

We argue by contradiction and assume that V∗(T, z0) < f∗(z0). It follows that we can find r, η > 0

such that

ϕ ≤ f∗ − η on ({T} ×Br(z0)) ∩ cl(D) . (6.7)

Let (tn, zn)n be a sequence in intp(D) such that V (tn, zn) → V∗(T, z0) and (tn, zn) → (T, z0).

As usual we modify the test function and introduce ϕ̃ : (t, z) 7→ ϕ(z) − (T − t)
1
2 , so that
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(T, z0) is also a strict minimum point of V∗ − ϕ̃. Since H∗ϕ(T, z0) < ∞ by assumption and

−∂tϕ̃(t, z) = −∂tϕ(t, z) − 1
2(T − t)−

1
2 , where (T − t)−

1
2 → ∞ as t→ T , we can choose r > 0 small

enough and û ∈ U such that

−Lû
Zϕ̃ ≤ 0 on V0 := [T − r, T ) ×Br(z0) . (6.8)

Since w is continuous and y0 > w(T, x0), we can choose r > 0 small enough so that

cl(V0) ⊂ {(t, z) ∈ D : y ≥ w(t, x) + r/2} ⊂ D .

Set Ẑn := Z û
tn,zn

where û is viewed as a constant control in U tn and let θn denote the first exit

time of (s, Ẑn(s))s≥tn from V0. Since (θn, Ẑ
n(θn)) ∈ ∂V0 ⊂ D, it follows from Theorem 2.1 that

there exists a control νn ∈ Utn,zn such that νn = û on [tn, θn). Using (6.8), we then deduce that

ϕ̃(tn, zn) ≤ E [ϕ̃(θn, Z
n(θn))]

where Zn := Zνn

tn,zn
. Since (T, z0) is a strict minimum point for V∗ − ϕ̃ and (V∗ − ϕ̃)(T, z0) = 0,

we can then find ζ > 0 such that V∗ − ζ ≥ ϕ̃ on {(t, z) ∈ ∂V0 : t < T}. Recalling (6.7) and the

previous inequality, it follows that

ϕ̃(tn, zn) ≤ E
[

(f∗(Z
n(θn)) − η)1{θn=T} + (V∗(θn, Z

n(θn)) − ζ)1{θn<T}

]

.

Since νn ∈ Utn,zn and ϕ̃(tn, zn) − V (tn, zn) → 0 as n → ∞, the above inequality contradicts

Theorem 6.1 for n large enough.

6.3 Subsolution property in the continuous boundary case

In this section, we provide the proof of Proposition 3.1. We divide it in several Steps. From now

on, we let ϕ be a smooth function and (t0, z0) ∈ ∂ZD be such that (t0, z0) is a strict local maximum

point of v − ϕ, where v is as in Proposition 3.1. We also fix φ ∈ W∗(t0, x0) where (x0, y0) = z0.

Lemma 6.1. There exists u ∈ N0(z0, Dφ(t0, x0)) such that −Lu
Zϕ(t0, z0) ≤ 0.

Proof. Given η > 0, we define

ϕη(t, z) := ϕ(t, z) + fη(t, z)

where, for z = (x, y) ∈ Rd × R,

fη(t, z) :=
1

η
(y − φ(t, x)) − η(y − φ(t, x))2 .

Observe that y0 = w(t0, x0) = φ(t0, x0) while y ≥ w(t, x) ≥ φ(t, x) on intp(D) ∪ ∂ZD, since

(t0, z0) ∈ ∂ZD and w is continuous on [0, T )×Rd, recall (2.4)-(2.5). Observe also that fη(t, z) ≥ 0

for 0 ≤ y − φ(t, x) ≤ 1
η2 .
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It follows that (t0, z0) is a strict local maximum point of v − ϕη on a neighborhood of (t0, z0) on

which 0 ≤ y − φ(t, x) ≤ 1
η2 . We then deduce from the subsolution property of v that

−∂tϕη(t0, z0) +H∗(z0, Dϕη(t0, z0), D
2ϕη(t0, z0)) ≤ 0 .

For all ε > 0, we can then find (zε, qε, Aε) ∈ cl(D) × Rd+1 × Sd+1 and uη
ε ∈ U such that

∣

∣(zε, qε, Aε) − (z0, Dϕη(t0, z0), D
2ϕη(t0, z0))

∣

∣ ≤ ε (6.9)

and, recalling that y0 = φ(t0, x0),

−∂tϕ(t0, z0) +
1

η
∂tφ(t0, x0) +Hu

η
ε (zε, qε, Aε) ≤ ε . (6.10)

Using (6.9), the definitions of ϕη and Hu, we thus obtain

{

−∂tϕ(t0, z0) − µZ(zε, u
η
ε) ·Dϕ(t0, z0) −

1

2
Tr
[

σZσ
⊤
Z (zε, u

η
ε)D

2ϕ(t0, z0)
]

}

+
1

η
∂tφ(t0, x0)

+Hu
η
ε (zε, Dfη(t0, z0), D

2fη(t0, z0)) ≤ ε(1 + |µZ(zε, u
η
ε)| + |σZ(zε, u

η
ε)|2) . (6.11)

Now straightforward computations show that

Hu
η
ε (zε, Dfη(t0, z0), D

2fη(t0, z0)) = η
(

σY (zε, u
η
ε) − σ⊤X(xε, u

η
ε)Dφ(t0, x0)

)2

+
1

η

(

µX(xε, u
η
ε) ·Dφ(t0, x0) +

1

2
(σXσ

⊤
X)(xε, u

η
ε)D

2φ(t0, x0) − µY (zε, u
η
ε)

)

(6.12)

(recall that y0 = φ(t0, x0)). We now use Assumption 3.2 in order to deduce that (uη
ε)ε∈(0,ε0) is

bounded for ε0 small enough. Indeed, either U is bounded or the right hand side of (6.11) is con-

trolled by the first term of Hu
η
ε (zε, Dfη(t0, z0), D

2fη(t0, z0)). We thus get a converging subsequence

uη
εn → uη

0 with εn → 0. We then deduce from (6.11) and (6.12) the following inequality

− Lu
η
0

Z ϕ(t0, z0) +
1

η
∂tφ(t0, x0) + η

(

σY (z0, u
η
0) − σ⊤X(x0, u

η
0)Dφ(t0, x0)

)2

+
1

η

(

µX(x0, u
η
0) ·Dφ(t0, x0) +

1

2
(σXσ

⊤
X)(x0, u

η
0)D

2φ(t0, x0) − µY (z0, u
η
0)

)

≤ 0 .

We now use Assumption 3.2 and the continuity of the coefficients again to obtain the required

result by sending η → ∞.

Lemma 6.2. For all ui ∈ N0(z0, Dφ(t0, x0)) and γ > 0 there exists uf ∈ N0(z0, Dφ(t0, x0)) such

that

−Luf

Z ϕ(t0, z0) − γ
[

µY (z0, ui) − Lui

Xφ(t0, x0)
]− (

µY (z0, uf ) − Luf

X φ(t0, x0)
)

≤ 0 .

Proof. For γ > 0, define ϕγ(t, z) := ϕ(t, z) + ℓγ(t, z) where, for z = (x, y) ∈ Rd × R,

ℓγ(t, z) := γ
[

µY (z0, ui) − Lui

Xφ(t0, x0)
]−

(y − φ(t, x)) .

Since ℓγ(t, z) ≥ 0 when y ≥ φ(t, x), we conclude that v − ϕγ achieves a strict maximum point of

v − ϕγ on cl(D). We thus can apply Lemma 6.1 to ϕ = ϕγ and get uf ∈ N0(z0, Dφ(t0, x0)) such

that −Luf

Z ϕγ(t0, z0) ≤ 0. Direct computations imply the required result.
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Proof. [Proof of Proposition 3.1] Given η > 0, it follows from Lemmata 6.1 and 6.2 that we can

find a sequence (uη
k)k in N0(z0, Dφ(t0, x0)) such that for all k ≥ 1

−Lu
η
k+1

Z ϕ(t0, z0) − η
[

µY (z0, u
η
k) − Lu

η
k

X φ(t0, x0)
]−
(

µY (z0, u
η
k+1) − Lu

η
k+1

X φ(t0, x0)

)

≤ 0 .

Since N0(z0, Dφ(t0, x0)) is compact under Assumption 3.2 (see Remark 3.4), it follows from the

continuity of the coefficients that, for all η > 0, we can find uη ∈ N0(z0, Dφ(t0, x0)) such that

−Luη

Z ϕ(t0, z0) + η
(

[

µY (z0, uη) − Luη

X φ(t0, x0)
]−
)2

≤ 0 .

Sending η → ∞ and using once again the fact that N0(z0, Dφ(t0, x0)) is compact leads to the

required result.

6.4 Boundary condition when w is smooth

In this section, we prove Proposition 3.2 .

6.4.1 Supersolution property in the domain

We assume that û0 := û(t0, x0) ∈ int(U), recall Theorem 3.2. Let φ be a smooth function and

(t0, x0) ∈ [0, T ) × Rd be a strict minimum point for V∗ − φ such that (V∗ − φ)(t0, x0) = 0. We can

assume without loss of generality that φ has polynomial growth. Set y0 := w(t0, x0) and define ϕn

by ϕn(t, x, y) := φ(t, x)−n(y−w(t, x))−ψ(t, x, y) with ψ(t, x, y) := |x−x0|2p + |y−y0|2p + |t− t0|2,
n ≥ 1, for some p to be chosen later on. Since V and w have polynomial growth, for p ≥ 2 large

enough, V∗ − ϕn admits a local minimum point (tn, zn) on cl(D). We note zn = (xn, yn). Writing

that

(V∗ − φ)(t0, x0) = (V∗ − ϕn)(t0, x0, w(t0, x0))

≥ (V∗ − ϕn)(tn, zn)

= (V∗ − φ)(tn, zn) + n(yn − w(tn, xn)) + ψ(tn, xn, yn)

we deduce from the growth condition on V that, after possibly passing to a subsequence, (tn, xn, yn) →
(t∞, x∞, y∞ := w(t∞, x∞)) for some (t∞, x∞) ∈ [0, T ] × Rd. It follows that

(V∗ − φ)(t0, x0) ≥ lim sup
n→∞

((V∗ − φ)(tn, zn) + n(yn − w(tn, xn)) + ψ(tn, xn, yn))

≥ lim inf
n→∞

(V∗ − φ)(tn, zn) + lim sup
n→∞

(n(yn − w(tn, xn)) + ψ(tn, xn, yn))

≥ (V∗ − φ)(t∞, x∞, w(t∞, x∞)) + lim sup
n→∞

n(yn − w(tn, xn)) + ψ(t∞, x∞, y∞)

≥ (V∗ − φ)(t∞, x∞, w(t∞, x∞)) + lim inf
n→∞

n(yn − w(tn, xn)) + ψ(t∞, x∞, , y∞)

≥ (V∗ − φ)(t∞, x∞) ≥ (V∗ − φ)(t0, x0)

which implies that

(tn, xn, yn, V∗(tn, zn), n(yn − w(tn, xn))) → (t0, x0, y0, φ(t0, x0), 0) . (6.13)

28



In particular, tn < T for n large enough. Moreover, it follows from Theorem 3.2 that N0(xn,

w(tn, xn), Dw(tn, xn)) 6= ∅. Set ûn := û(tn, xn) and note that ûn → û0 ∈ int(U), by Assumption

3.3. It follows that ûn ∈ int(U), for n large enough.

We have two cases:

1. If yn = w(tn, xn), then it follows from Remark 6.1 that

−Lûn

Z ϕn(tn, xn, yn) ≥ 0 . (6.14)

2. If yn > w(tn, xn), then (tn, xn, yn) ∈ intp(D) and it follows Theorem 3.1 that (6.14) holds too.

In both case, we thus have, by replacing ϕn in (6.14),

−Lûn

X φ(tn, xn) + n
(

µY (xn, yn, ûn) − Lûn

X w(tn, xn)
)

+ Lûn

Z ψ(tn, xn, yn) ≥ 0 .

Since µY is Lipschitz continuous, n(yn − w(tn, xn)) → 0 and Lûn

Z ψ(tn, xn, yn) → 0, by (6.13), this

implies that

−Lû0
X φ(t0, x0) + lim inf

n→∞
n
(

µY (xn, w(tn, xn), ûn) − Lûn

X w(tn, xn)
)

≥ 0 .

Since ûn ∈ int(U) for n large enough, Theorem 3.2 implies that µY (xn, w(tn, xn), ûn)−Lûn

X w(tn, xn) =

0 which proves the required result.

6.4.2 Subsolution property in the domain.

Let φ be a smooth function, (t0, x0) ∈ [0, T ) × Rd be a global strict maximum point for V∗ − φ.

Given ε > 0, define for n ≥ 1 the function ϕn by

ϕn(t, x, y) := φ(t, x) + ψ(t, x, y) + εn(y − w(t, x)) + εn2(y − w(t, x))(w(t, x) − y + n−1)

with ψ(t, x, y) := |t − t0|2 + |x − x0|2p + |y − y0|2p. Let (tn, xn, yn)n be a sequence such that, for

each n, (tn, xn, yn) is a maximizer on {(t, x, y) ∈ cl(D) : y − w(t, x) ≤ n−1} of V ∗ − ϕn. Arguing

as in the previous section, one easily checks that, for p ≥ 2 large enough and after possibly passing

to a subsequence,

(tn, xn, n(yn − w(tn, xn))) → (t0, x0, 0) . (6.15)

In particular, we can assume, after possibly passing to a subsequence, that tn < T and yn −
w(tn, xn) < n−1 for all n ≥ 1. It then follows from Corollary 3.1 that, for each n ≥ 1, we can find

un ∈ U such that

n−1 ≥ −Lun

Z ϕn(tn, xn, yn) ,

which, by direct computations, implies

n−1 ≥ −Lun

X φ(tn, xn) − 2εn2
(

n−1 + w(tn, xn) − yn

) (

µY (xn, yn, un) − Lun

X w(tn, xn)
)

+ εn2|Nun(xn, yn, Dw(tn, xn))|2 − Lun

Z ψ(tn, xn, yn) . (6.16)
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Note that (6.15) implies that

n2
(

n−1 + w(tn, xn) − yn

)

= O(n) . (6.17)

Using (3.11) and the previous inequality, we then deduce that the sequence (un)n is bounded and

therefore converges, after possibly passing to a subsequence, to some u0 ∈ U . It also follows that

n|Nun(xn, yn, Dw(tn, xn))|2 is bounded, so that Nu0(x0, w(t0, x0), Dw(t0, x0)) = limnN
un(xn, yn,

Dw(tn, xn)) = 0, which by Assumption 3.3, leads to u0 = û(t0, x0). Moreover, it follows from

(6.15)-(6.16)-(6.17), the Lipschitz continuity of the coefficients and the convergence un → û(t0, x0)

that

α(n) ≥ −Lû(t0,x0)
X φ(t0, x0) + 2εn2

∣

∣n−1 + w(tn, xn) − yn

∣

∣

(

Lun

X w(tn, xn) − µY (xn, w(tn, xn), un)
)

+ εn2|Nun(xn, w(tn, xn), Dw(tn, xn))|2

where α(n) → 0 as n → ∞. In view of Assumption 3.4 and (6.17), taking the limit as n → ∞
leads to

0 ≥ −Lû(t0,x0)
X φ(t0, x0) − εC

for some C > 0, which, by arbitrariness of ε > 0 proves the required result.

6.4.3 Subsolution property on the boundary

Fix x0 ∈ Rd and a smooth function ϕ such that x0 achieves a strict maximum of V∗(T, ·) − ϕ

such that V∗(T, x0) − ϕ(x0) = 0. If W∗(T, x0) 6= ∅, we can find a smooth function φ such that x0

reaches a local minimum of w(T, ·) − φ such that w(T, x0) − φ(x0) = 0. For n ≥ 1, set ϕ̃n(z) :=

ϕ(x) +n(y−φ(x)) +ψ(x, y) +n2(y−φ(x))(φ(x)− y+n−1) where ψ(x, y) := |x−x0|2p + |y− y0|2p

for some p ≥ 2. Arguing as above, we obtain that, for p ≥ 2 large enough, there exists a sequence

of local maximizers (x̃n, ỹn)n of V ∗(T, ·) − ϕ̃n such that

(x̃n, n(ỹn − φ(x̃n)), V ∗(T, x̃n, ỹn)) → (x0, 0,V∗(T, x0)) . (6.18)

For all u ∈ U , we now compute that

−Lu
Zϕ̃n(zn) = −Lu

Xϕ(x̃n) − 2n2
(

n−1 + φ(x̃n) − ỹn

)

(µY (x̃n, ỹn, u) − Lu
Xφ(x̃n))

+ n2|Nu(x̃n, ỹn, Dφ(x̃n)|2 − Lu
Zψ(x̃n, ỹn) .

In view of (3.11), this implies that H∗ϕ̃n(zn) > −∞. It then follows from Theorem 3.1 that

V ∗(T, x̃n, ỹn) ≤ f∗(x̃n, ỹn) for all n. Sending n → ∞ and using (6.18) shows that V∗(T, x0) ≤
f∗(x0, φ(x0)) = f∗(x0, w(T, x0)), which concludes the proof. ✷

6.4.4 Supersolution property on the boundary

Step 1. We first show that for any smooth function ϕ and (T, z0) ∈ [0, T )×Rd ×R, such that y0 =

w(t0, x0), with z0 = (x0, y0), which is a strict minimum point for V∗−ϕ such that (V∗−ϕ)(T, z0) = 0,
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we have

ϕ(T, z0) ≥ f∗(z0) if lim sup
(t′,x′)→(T,x0), t′<T

|û(t′, x′)| <∞ (6.19)

where û := ǔ(·, w,Dw).

We argue by contradiction, and assume that ϕ(T, z0) < f∗(z0). Then, there exists η, r > 0 small

enough so that

ϕ ≤ f∗ − η on {T} ×Br(z0) . (6.20)

Let (tn, zn)n be a sequence in intp(D) such that V (tn, zn) → V∗(T, z0) and (tn, zn) → (T, z0). As

in Section 6.2.3, we modify the test function and introduce ϕ̃ : (t, z) 7→ ϕ(z) − (T − t)
1
2 , so

that (T, z0) is also a strict minimum point of V∗ − ϕ̃. Recalling the right-hand side of (6.19) and

observing that −∂tϕ̃(t, z) = −∂tϕ(t, z) − (T − t)−
1
2 , where (T − t)−

1
2 → ∞ as t → T , we deduce

that we can choose r > 0 small enough such that

−Lû
Zϕ̃ < 0 on V0 := [T − r, T ) ×Br(z0) . (6.21)

In view of Theorem 3.2, w satisfies

µY (·, w, û) − Lû
Xw ≥ 0 on [T − r, T ) × Rd . (6.22)

Set Ẑn := Z ûn

tn,zn
where ûn is the Markovian control associated to û. Since yn ≥ w(tn, xn) a

standard comparison argument combined with (6.22) implies that Y n(T ) ≥ w(T,Xn(T )). Hence,

ûn ∈ Utn,zn . Moreover, (6.21) implies that

ϕ̃(tn, zn) ≤ E

[

ϕ̃(θn, Ẑ
n(θn))

]

,

where θn is the first exit time of (s, Ẑn(s))s≥tn from V0. Since (T, z0) is a strict minimum point for

V∗−ϕ̃ and (V∗−ϕ̃)(T, z0) = 0, we can then find ζ > 0 such that V∗−ζ ≥ ϕ̃ on {(t, z) ∈ ∂V0 : t < T}.
Recalling (6.20) and the previous inequality, it follows that

ϕ̃(tn, xn, yn) ≤ E

[

(f∗(Ẑ
n(θn)) − η)1{θn=T} + (V∗(θn, Ẑ

n(θn)) − ζ)1{θn<T}

]

.

Since νn ∈ Utn,xn,yn and ϕ̃(tn, zn) − V (tn, zn) → 0 as n → ∞, the above inequality contradicts

Theorem 6.1 for n large enough.

Step 2. The proof is concluded by arguing as in Section 6.4.3 above and adapting the test function

as in Section 6.4.1. ✷

Appendix: Dynamic programming for stochastic targets

This Appendix is devoted to the proof of Theorem 2.1, which is essentially known from [21]. The

only difference comes from the definition of the set of controls. Since the above arguments are

almost the same as the one used in [21], we only insist on the differences and refer to this paper

for some auxiliary results. We start with two important lemmata.
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Lemma A.1. The set
{

(t, z, ν) ∈ [0, T ] × Rd+1 × U : ν ∈ U t
}

is closed in [0, T ]×Rd+1×L2([0, T ]×
Ω) and the set Γ :=

{

(t, z, ν) ∈ [0, T ] × Rd × U : ν ∈ Ut,z

}

is a Borel set in [0, T ] × Rd+1 ×
L2([0, T ] × Ω).

Proof. Let (tn, ν
n)n≥1 be a sequence in [0, T ] × U such that νn ∈ U tn for each n, and (tn, ν

n) →
(t, ν) ∈ [0, T ]×L2([0, T ]×Ω) strongly. Let ξ be a continuous adapted bounded process. For n ≥ 1,

we have

E

[
∫ T

0
νn

s ξs∧tnds

]

=

∫ T

0
E [νn

s ] E [ξs∧tn ] ds

since νn is independent on Ftn and ξ·∧tn is Ftn-measurable. Sending n → ∞ and using the

continuity of ξ, we then obtain

E

[
∫ T

0
νsξs∧tds

]

=

∫ T

0
E [νs] E [ξs∧t] ds .

By arbitrariness of ξ, this shows that ν is independent on Ft. On the other hand, it follows exactly

from the same arguments as in the proof of Lemma 3.1 of [21] that {(t, z, ν) ∈ [0, T ]×Rd+1 ×U :

g(Zν
t,z(T )) ≥ 0 P − a.s.} is a Borel set. In view of the previous result, this implies that Γ is the

intersection of two Borel sets. ✷

Lemma A.2. For any probability measure m on (D,BD), there exists a Borel measurable map

φm : (D,BD) → (U ,BU ) such that φm(t, z) ∈ Ut,z for m-a.e. (t, z) ∈ D.

Proof. Appealing to Lemma A.1 above, the proof follows the same arguments as in the proof of

Lemma 3.1 in [21]. ✷

Proof of Theorem 2.1. The first assertion follows from the same argument as in the proof of

Theorem 3.1 in [21] by appealing to Lemma A.2 instead of Lemma 3.1 in [21]. We now prove the

second one. Fix (t, z) ∈ [0, T ) × Rd+1, θ a [t, T ]−valued stopping time, ν ∈ U t and ν̃ ∈ Ut,z such

that ν = ν̃ on [t, θ). Then, the flow property implies that

1 = P

[

g(Z ν̃
θ,Zν

t,z(θ)(T )) ≥ 0
]

=

∫ ∫

1(
g

 

Z
ν̃(ωθ(ω)+Tθ(ω)(ω̃))

θ(ω),Zν
t,z(θ)(ω)

(T )(ωθ(ω)+Tθ(ω)(ω̃))

!

≥0

)dP(ω)dP(ω̃) ,

where we use the notations ωr := (ωt∧r)t≤T and Tr(ω) := (ωs+r −ωr)s≤T−r for r ∈ [0, T ]. Viewing

ω̃ ∈ Ω 7→ ν̃(ωθ(ω) + Tθ(ω)(ω̃)) as a control independent on Fθ(ω) for fixed ω ∈ Ω, this shows that,

for P-a.e. ω ∈ Ω, (θ, Zν
t,z(θ))(ω) ∈ D. ✷
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