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Abstract. We investigate the behavior of the deformations of a thin shell, whose thickness δ tends to zero,

through a decomposition technique of these deformations. The terms of the decomposition of a deformation

v are estimated in terms of the L2-norm of the distance from ∇v to SO(3). This permits in particular to

derive accurate nonlinear Korn’s inequalities for shells (or plates). Then we use this decomposition technique

and estimates to justify a nonlinear bending model for elastic shells for an elastic energy of order δ3.

1. Introduction

The concern of this paper is twofold. We first give a decomposition technique for the deformation of a

shell which allows to established a nonlinear Korn type inequality for shells. In a second part of the paper,

we use such a decomposition to derive a nonlinear elastic shell model.

In the first part, we introduce two decompositions of an admissible deformation of a shell (i.e. which is

H1 with respect to the variables and is fixed on a part of the lateral boundary) which take into account the

fact that the thickness 2δ of such a domain is small. This decomposition technique has been developed in the

framework of linearized elasticity for thin structures in [17], [18], [19] and for thin curved rods in nonlinear

elasticity in [5]. As far as large deformations are concerned these decompositions are obtained through

using the ”Rigidity Theorem” proved in [14] by Friesecke, James and Müller together with the geometrical

precision of this result given in [5]. Let us consider a shell with mid-surface S and thickness 2δ. The two

decompositions of a deformation v defined on this shell are of the type

v = V + s3Rn + v.

In the above expression, the fields V and R are defined on S, s3 is the variable in the direction n which is a

unit vector field normal to S and v is a field still defined on the 3D shell. Let us emphasize that the terms

of the decompositions V, R and v have at least the same regularity than v and satisfy the corresponding

boundary conditions. Loosely speaking, the two first terms of the decompositions reflect the mean of the

deformation over the thickness and the rotations of the fibers of the shell in the direction n. For the

above decomposition, it worth noting that the fields V, R and v are estimated in terms of the ”energy”

||dist(∇xv, SO(3))||L2(S×]−δ,δ[) and the thickness of the shell.

In the first decomposition, the field R satisfies

||dist(R, SO(3))||L2(S) ≤
C

δ1/2
||dist(∇xv, SO(3))||L2(S×]−δ,δ[)
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which shows that the field R is close to a rotation field for small energies.

In the second decomposition, for which we assume from the beginning that ||dist(∇xv, SO(3))||L2 ≤
C(S)δ3/2 where C(S) is a geometrical constant, the field R is valued in SO(3).

For thin structures, the usual technique in order to rescale the applied forces to obtain a certain level

of energy is to established nonlinear Korn’s type inequalities. Using Poincaré inequality as done in [16] ( see

also [10] and Subsection 4.1 of the present paper) leads in the case of a shell to the following inequality

||v − Id||(L2(S×]−δ,δ[))3 + ||∇xv − I3||(L2(S×]−δ,δ[))9 ≤ C(δ1/2 + ||dist(∇xv, SO(3))||L2(S×]−δ,δ[)).

The first important consequence of the decomposition technique together with its estimates is the

following nonlinear Korn’s inequality for shells

||v − Id||(L2(S×]−δ,δ[))3 + ||∇xv − I3||(L2(S×]−δ,δ[))9 ≤ C

δ
||dist(∇xv, SO(3))||L2(S×]−δ,δ[)

Indeed the two inequalities identify for energies of order δ3/2 which is the first interesting critical case. For

smaller levels of energy, the second estimate is more relevant. We also establish the following estimate for

the linear part of the strain tensor

∥∥∇xv+(∇xv)
T−2I3

∥∥
(L2(S×]−δ,δ[))9

≤ C||dist(∇xv, SO(3))||L2(S×]−δ,δ[)

{
1+

1

δ5/2
||dist(∇xv, SO(3))||L2(S×]−δ,δ[)

}

which shows that ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) ∼ δ5/2 is another critical case. For such level of energy,

our Korn’s inequality for shells turns out to appear as an important tool. We have established and used the

analogue of these inequalities for rods in [5].

In the present paper we focus on the case where ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) ∼ δ3/2 which is the

highest level of energy which can be analyzed through our technique. The lower level of energies will be

studied in a forthcoming paper.

For ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) ∼ δ3/2, we deduce the expression of the limit of the Green-St

Venant’s strain tensor from the decompositions, the associated estimates and a standard rescaling and the

result is the same using the two decompositions.

In the second part of the paper, we strongly use the results of the first part in order to derive limit 2D

shells models. As a general reference on elasticity theory we refer to [6] and we start from a total energy∫
Ŵ (∇v) −

∫
f · v where Ŵ is the local elastic energy. We assume that

Ŵ (∇v) =

{
W

(
(∇v)T∇v − I3

)
if det(∇v) > 0,

+∞ if det(∇v) ≤ 0.

The assumptions on the function W are similar to those adopted in [14]. We assume that W is continuous

from S3 (the space of symmetric 3 × 3 matrices) into R and that

∃c > 0 such that ∀E ∈ S3 W (E) ≥ c|||E|||2,
∀ε > 0, ∃θ > 0, such that ∀E ∈ S3 |||E||| ≤ θ =⇒ |W (E) −Q(E)| ≤ ε|||E|||2,

where Q is a positive quadratic form. Recall that Ŵ (∇v) ≥ c(dist(∇v, SO(3))2.

Using the nonlinear Korn’s inequality for shells mentioned above, we are in a position to scale the

applied forces f in order to obtain a given order of total energy (with respect to δ) . Then we deduce the
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order of the quantity ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) with respect to the scaling of the forces in the general

case. In the following, we choose the applied forces so that ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) ∼ δ3/2.

At last we derive the ”limit” energy as δ goes to 0 using a Γ-limit procedure on sequences of fields

Vδ, Rδ and vδ. Through a possible elimination of v in the Γ-limit energy, we finally obtain a minimization

problem for the mean deformation V and the rotation R under a constraint between ∇V et R.

As general references on the theory of nonlinear elasticity, we refer to [1], [6] and [22] and to the extensive

bibliographies of these works. For the justification of plates or shell models in nonlinear elasticity we refer to

[7], [8], [9], [11], [12], [15], [19], [21], [23], [24]. A general introduction of Γ-convergence can be found in [13].

The rigidity theorem and its applications to thin structures using Γ-convergence arguments are developed in

[14], [15], [20], [21]. The decomposition of the deformations in thin structures is introduced in [17], [18] and

a few applications to the junctions of multi-structures and homogenization are given in [2], [3], [4].

The paper is organized as follows. Section 2 is devoted to describe the geometry of the shell and to give

a few notations. In Section 3 we introduce the two decompositions of the deformations of a thin shell and

we derive the estimates on the terms of these decompositions. We precise the boundary conditions on the

deformation and we establish a nonlinear Korn’s inequality for shells in Section 4. Section 5 is concerned with

a standard rescaling. We derive the limit of the Green-St Venant strain tensor of a sequence of deformations

such that ||dist(∇xvδ, SO(3))||L2(S×]−δ,δ[) ∼ δ3/2 in Section 6. In Section 7 we consider nonlinear elastic

shells and we use the results of the proceeding sections to scale the applied forces in order to obtain a priori

estimates on the deformation. In Section 8 is devoted to derive the Γ-limit for energies of order δ3/2. At last

two appendices contain a few technical results on the interpolation of rotations and an algebraic elimination

for quadratic forms.

2. The geometry and notations.

Let us introduce a few notations and definitions concerning the geometry of the shell (see [17] for a

detailed presentation).

Let ω be a bounded domain in R
2 with lipschitzian boundary and let φ be an injective mapping from

ω into R
3 of class C2. We denote S the surface φ(ω). We assume that the two vectors

∂φ

∂s1
(s1, s2) and

∂φ

∂s2
(s1, s2) are linearly independent at each point (s1, s2) ∈ ω.

We set

(2.1) t1 =
∂φ

∂s1
, t2 =

∂φ

∂s2
, n =

t1 ∧ t2∥∥t1 ∧ t2

∥∥
2

.

The vectors t1 and t2 are tangential vectors to the surface S and the vector n is a unit normal vector to this

surface. The reference fiber of the shell is the segment ] − δ, δ[. We set

Ωδ = ω×] − δ, δ[.

Now we consider the mapping Φ : ω × R −→ R
3 defined by

(2.2) Φ : (s1, s2, s3) 7−→ x = φ(s1, s2) + s3n(s1, s2).

There exists δ0 ∈ (0, 1] depending only on S, such that the restriction of Φ to the compact set Ωδ0 =

ω× [−δ0, δ0] is a C1− diffeomorphism of that set onto its range (see e.g. [8]). Hence, there exist two constants

c0 > 0 and c1 ≥ c0, which depend only on φ, such that

∀δ ∈ (0, δ0], ∀s ∈ Ωδ0
, c0 ≤ |||∇sΦ(s))||| ≤ c1, and for x = Φ(s) c0 ≤ |||∇xΦ−1(x))||| ≤ c1.
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Definition 2.1. For δ ∈ (0, δ0], the shell Qδ is defined as follows:

Qδ = Φ(Ωδ).

The mid-surface of the shell is S. The lateral boundary of the shell is Γδ = Φ(∂ω×]−δ, δ[). The fibers of the

shell are the segments Φ
(
{(s1, s2)}×] − δ, δ[

)
, (s1, s2) ∈ ω. We respectively denote by x and s the running

points of Qδ and of Ωδ. A function v defined on Qδ can be also considered as a function defined on Ωδ that

we will also denote by v. As far as the gradients of v are concerned we have ∇xv and ∇sv = ∇xv.∇Φ and

e.g. for a.e. x = Φ(s)

c|||∇xv(x)||| ≤ |||∇sv(s)||| ≤ C|||∇xv(x)|||,

where the constants are strictly positive and do not depend on δ.

Since we will need to extend a deformation defined over the shell Qδ, we also assume the following.

For any η > 0, let us first denote the open set

ωη =
{
(s1, s2) ∈ R

2 | dist
(
(s1, s2), ω

)
< η

}
.

We assume that there exist η0 > 0 and an extension of the mapping φ (still denoted φ) belonging to
(
C2(ωη0

)
)3

which remains injective and such that the vectors
∂φ

∂s1
(s1, s2) and

∂φ

∂s2
(s1, s2) are linearly independent at

each point (s1, s2) ∈ ωη0
. The function Φ (introduced above) is now defined on ωη0

× [−δ0, δ0] and we still

assume that it is a C1− diffeomorphism of that set onto its range. Then there exist four constants c
′

0, c
′

1, c
′

and C
′

such that

(2.3)

{
∀s ∈ ωη0

× [−δ0, δ0], c
′

0 ≤ |||∇sΦ(s)||| ≤ c
′

1, and for x = Φ(s) c
′

0 ≤ |||∇xΦ−1(x)||| ≤ c
′

1

c
′ |||∇xv(x)||| ≤ |||∇sv(s)||| ≤ C

′ |||∇xv(x)|||, for a.e. x = Φ(s).

At the end we denote by Id the identity map of R
3.

3. Decompositions of a deformation.

In this Section, we recall the theorem of rigidity established in [14] (Theorem 3.1 of Section 3.1). In

Subsection 3.2 we recall that any deformation can be extended in a neighborhood of the lateral boundary

of the shell with the same level of ”energy”. Then we apply Theorem 3.1 to a covering of the shell. In

Subsections 3.4 and 3.5, we introduce the two decompositions of a deformation and we established estimates

on these decompositions in term of ||dist(∇xv, SO(3))||L2 .

3.1. Theorem of rigidity.

We equip the vector space R
n×n of n× n matrices with the Frobenius norm defined by

A =
(
aij

)
1≤i,j≤n

, |||A||| =

√√√√
n∑

i=1

n∑

j=1

|aij |2.

We just recall the following theorem established in [14] in the version given in [5].

Theorem 3.1. Let Ω be an open set of R
n contained in the ball B

(
O;R

)
and star-shaped with respect to the

ball B
(
O;R1

)
(0 < R1 ≤ R). For any v ∈

(
H1(Ω)

)n
, there exist R ∈ SO(n) and a ∈ R

n such that

(3.1)

{
||∇xv − R||(L2(Ω))n×n ≤ C||dist(∇xv;SO(n))||L2(Ω),

||v − a − Rx||(L2(Ω))n ≤ CR||dist
(
∇xv;SO(n)

)
||L2(Ω),
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where the constant C depends only on n and
R

R1
.

3.2. Extension of a deformation and splitting of the shell.

In order to make easier the decomposition of a deformation as the sum of an elementary deformation

given via an approximate field of rotations (see Subsection 3.4) or a field of rotations (see Subsection 3.5)

and a residual one, we must extend any deformation belonging to
(
H1(Qδ)

)3
in a neighborhood of the lateral

boundary Γδ of the shell. To this end we will use Lemma 3.2 below. The proof of this lemma is identical to

the one of Lemma 3.2 of [17] upon replacing the strain semi-norm of a displacement field by the norm of the

distance between the gradient of a deformation v and S0(3).

Lemma 3.2. Let δ be fixed in (0, δ0] such that 3δ ≤ η0 and set

Q′

δ = Φ(ω3δ×] − δ, δ[).

There exists an extension operator Pδ from
(
H1(Qδ)

)3
into

(
H1(Q′

δ)
)3

such that

∀v ∈
(
H1(Qδ)

)3
, Pδ(v) ∈

(
H1(Q′

δ)
)3
, Pδ(v)|Qδ

= v,

||dist
(
∇xPδ(v), SO(3)

)
||L2(Q

′

δ
) ≤ c||dist

(
∇xv, SO(3)

)
||L2(Qδ),

with a constant c which only depends on ∂ω and on the constants appearing in inequalities (2.3).

Let us now precise the extension operator Pδ near a part of the boundary where v = Id.

Let γ0 be an open subset of ∂ω which made of a finite number of connected components (whose closure

are disjoint) and v be a deformation such that v = Id on Γ0,δ = Φ(γ0×] − δ, δ[). Let γ
′

0,δ be the domain

γ
′

0,δ =
{
(s1, s2) ∈ γ0 | dist((s1, s2), E0) > 3δ}

where E0 denotes the extremities of γ0. We set

Q1
δ = Φ

(
{(s1, s2) ∈ (ω3δ \ ω) | dist((s1, s2), γ

′

0,δ) < 3δ}×] − δ, δ[
)
,

Q2
δ = Φ

(
{(s1, s2) ∈ ω3δ | dist((s1, s2), γ0) < 6δ}×] − δ, δ[

)
.

Indeed, up to choosing δ0 small enough, we can assume that Q2
δ has the same number of connected compo-

nents as γ0. The open set Q1
δ is included into Q′

δ \Qδ. According to the construction of Pδ given in [17], we

can extend the deformation v by choosing Pδ(v) = Id in Q1
δ together with the following estimates

(3.2)

{ ||∇xPδ(v) − I3||(L2(Q2
δ
))9 ≤ C||dist(∇xv, SO(3))||L2(Qδ),

||Pδ(v) − Id||(L2(Q2
δ
))3 ≤ Cδ||dist(∇xv, SO(3))||L2(Qδ).

From now we assume that 3δ ≤ η0 and then any deformation v belonging to
(
H1(Qδ)

)3
is extended to

a deformation belonging to
(
H1(Q′

δ)
)3

which we still denote by v.

Now we are in a position to reproduce the technique developed in [17] in order to obtain a covering of

the shell (the reader is referred to Section 3.3 of this paper for further details). Let Nδ be the set of every

(k, l) ∈ Z
2 such that the open set

ωδ,(k,l) =]kδ, (k + 1)δ[×]lδ, (l+)δ[
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is included in ω3δ and let N ′

δ be the set of every (k, l) ∈ Nδ such that

((k + 1)δ, lδ), (kδ, (l + 1)δ), (k + 1)δ, (l + 1)δ) are in Nδ.

We set Ωδ,(k,l) = ωδ,(k,l)×] − δ, δ[.

By construction of the above covering, we have

ω ⊂
⋃

(k,l)∈N
′

δ

ωδ,(k,l).

According to [17], there exist two constants R and R1, which depend on ω and on the constants c
′

0, c
′

1, c
′

and C
′

(see(2.3)), such that for any δ ≤ (0, η0/3] the open set Qδ,(k,l) = Φ(Ωδ,(k,l)) has a diameter less than

Rδ and it is star-shaped with respect to a ball of radius R1δ.

As a convention and from now on, we will say that a constant C which depends only upon ∂ω and on

the constants c
′

0, c
′

1, c
′

and C
′

depends on the mid-surface S and we write C(S).

Since the ratio
Rδ

R1δ
of each part Qδ,(k,l) does not depend on δ, Theorem 3.1 gives a constant C(S). Let

v be a deformation in (H1(Qδ))
3 extended to a deformation belonging to (H1(Q′

δ))
3. Applying Theorem 3.1

upon each part Qδ,(k,l) for (k, l) ∈ Nδ, there exist Rδ,(k,l) ∈ SO(3) and aδ,(k,l) ∈ R
3 such that

(3.3)

{ ||∇xv − Rδ,(k,l)||(L2(Qδ,(k,l)))3×3 ≤ C(S)||dist(∇xv;SO(3))||L2(Qδ,(k,l))

||v − aδ,(k,l) − Rδ,(k,l)

(
x− φ(kδ, lδ)

)
||(L2(Qδ,(k,l)))3 ≤ C(S)R(S)δ||dist

(
∇xv;SO(3)

)
||L2(Qδ,(k,l)).

For any (k, l) ∈ Nδ such that (k + 1, l) ∈ Nδ, the open set Q′

δ,(k,l) = Φ(](k + 1/2)δ, (k + 3/2)δ[×]lδ, (l +

1)δ[×]− δ, δ[) also have a diameter less than R(S)δ and it is also star-shaped with respect to a ball of radius

R1(S)δ (see Section 3.3 in [17]). We apply again Theorem 2.1 in the domain Q′

δ,(k,l). This gives a rotation

R
′

δ,(k,l). In the domain Q′

δ,(k,l) ∩ Qδ,(k,l) we eliminate ∇xv in order to evaluate |||Rδ,(k,l) − R
′

δ,(k,l)|||. Then

we evaluate |||Rδ,(k+1,l) − R
′

δ,(k,l)|||. Finally it leads to

(3.4) |||Rδ,(k+1,l) − Rδ,(k,l)||| ≤
C(S)

δ3/2

{
‖dist(∇xv;SO(3))‖L2(Qδ,(k,l)) + ||dist(∇xv;SO(3))||L2(Qδ,(k+1,l))

}
.

In the same way, we prove that for any (k, l) ∈ Nδ such that (k, l + 1) ∈ Nδ we have

(3.5) |||Rδ,(k,l+1) − Rδ,(k,l)||| ≤
C(S)

δ3/2

{
‖dist(∇xv;SO(3))‖L2(Qδ,(k,l)) + ||dist(∇xv;SO(3))||L2(Qδ,(k,l+1)

}

3.3. First decomposition of a deformation

In this section any deformation v ∈
(
H1(Qδ)

)3
of the shell Qδ is decomposed as

(3.6) v(s) = V(s1, s2) + s3Ra(s1, s2)n(s1, s2) + va(s), s ∈ Ωδ,

where V belongs to
(
H1(ω)

)3
, Ra belongs to

(
H1(ω)

)3×3
and va belongs to

(
H1(Qδ)

)3
. The map V is

the mean value of v over the fibers while the second term s3Ra(s1, s2)n(s1, s2) is an approximation of

the rotation of the fiber (of the shell) which contains the point φ(s1, s2). The sum of the two first terms

V(s1, s2) + s3Ra(s1, s2)n(s1, s2) is called the elementary deformation of first type of the shell.
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The matrix Ra is defined as theQ1 interpolate at the vertices of the cell ωδ,(k,l) =]kδ, (k+1)δ[×]lδ, (l+1)δ[

of the four elements Rδ,(k,l), Rδ,(k+1,l), Rδ,(k,l+1) and Rδ,(k+1,l+1) belonging to SO(3) (see the previous

subsection). We can always define paths in SO(3) from Rδ,(k,l) to Rδ,(k+1,l), Rδ,(k,l) to Rδ,(k,l+1), Rδ,(k+1,l)

to Rδ,(k+1,l+1) and Rδ,(k,l+1) to Rδ,(k+1,l+1). That gives continuous maps from the edges of the domain ωδ,(k,l)

into SO(3). If it is possible to extend these maps in order to obtain a continuous function from ωδ,(k,l) into

SO(3), then it means that the loop passing trough Rδ,(k,l), Rδ,(k+1,l), Rδ,(k+1,l+1) and Rδ,(k,l+1) is homotopic

to the constant loop equal to Rδ,(k,l). But the fundamental group π1

(
SO(3),Rδ,(k,l)

)
is isomorphic to Z2

(the group of odd and even integers), hence the extension does not always exist. That is the reason why we

use here a Q1 interpolate in order to define an approximate field of rotations Ra. In the next subsection we

show that if the matrices Rδ,(k+1,l), Rδ,(k+1,l+1) and Rδ,(k,l+1) are in a neighborhood of Rδ,(k,l) then this

extension exists and we give in Theorem 3.4 a simple condition to do so.

Theorem 3.3. Let v ∈
(
H1(Qδ)

)3
, there exist an elementary deformation (of first type) V + s3Ran and a

deformation va satisfying (3.6) and such that

(3.7)





||va||(L2(Ωδ))3 ≤ Cδ||dist(∇xv, SO(3))||L2(Qδ)

||∇sva||(L2(Ωδ))9 ≤ C||dist(∇xv, SO(3))||L2(Qδ)
∥∥∥
∂Ra

∂sα

∥∥∥
(L2(ω))9

≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

∥∥∥
∂V
∂sα

− Ratα

∥∥∥
(L2(ω))3

≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

∥∥∇xv − Ra

∥∥
(L2(Ωδ))9

≤ C||dist(∇xv, SO(3))||L2(Qδ)

||dist(Ra, SO(3))||L2(ω) ≤
C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

where the constant C does not depend on δ.

Proof. The field V is defined by

(3.8) V(s1, s2) =
1

2δ

∫ δ

−δ

v(s1, s2, s3)ds3, a.e. in ω.

Then we define the field Ra as following

∀(k, l) ∈ Nδ, Ra(kδ, lδ) = Rδ,(k,l)

and for any (s1, s2) ∈ ωδ,(k,l), Ra(s1, s2) is the Q1 interpolate of the values of Ra at the vertices of the cell

ωδ,(k,l).

Finally we define the field va by

va(s) = v(s) − V(s1, s2) − s3Ra(s1, s2)n(s1, s2) a.e. in Ωδ.

From (3.4) and (3.5) we get the third estimate in (3.7). By definition of Ra we obtain

(3.9)
∑

(k,l)∈N
′

δ

‖Ra − Rδ,(k,l)‖2
(L2(ωδ,(k,l)))9

≤ C

δ
||dist(∇xv;SO(3))||2L2(Qδ).

Taking the mean value of v on the fibers and using definition (3.8) of V it leads

(3.10)
∑

(k,l)∈N
′

δ

||V − aδ,(k,l) − Rδ,(k,l)

(
φ− φ(kδ, lδ)

)
||2(L2(ωδ,(k,l)))3

≤ Cδ||dist(∇xv, SO(3))||2L2(Qδ).
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From (3.3), (3.9), (3.10) and the definition of va we get the first estimate in (3.7).

We compute the derivatives of the deformation v to get

(3.11)
∂v

∂s1
= ∇xv

(
t1 + s3

∂n

∂s1

)
,

∂v

∂s2
= ∇xv

(
t2 + s3

∂n

∂s2

)
,

∂v

∂s3
= ∇xv n.

We consider the restrictions of these derivatives to Ωδ,(k,l). Then, from (3.3) and (3.9) we have

(3.12)
∥∥∥
∂v

∂sα
− Ra

(
tα + s3

∂n

∂sα

)∥∥∥
2

(L2(Ωδ))3
+

∥∥∥
∂v

∂s3
− Ran

∥∥∥
2

(L2(Ωδ))3
≤ C ||dist(∇xv, SO(3))||2L2(Qδ).

By taking the mean value of
∂v

∂sα
− Ra

(
tα + s3

∂n

∂sα

)
on the fibers we obtain the fourth inequality in (3.7).

Observe now that

(3.13)
∂va

∂sα
=

∂v

∂sα
− ∂V
∂sα

− s3Ra
∂n

∂sα
− s3

∂Ra

∂sα
n,

∂va

∂s3
=

∂v

∂s3
− Ran.

Then, from (3.12) and the third and fourth inequalities in (3.7) we obtain the second estimate in (3.7). The

fifth inequality in (3.7) is an immediate consequence of (3.3) and (3.9). The last estimate of (3.7) is due to

(3.4), (3.5) and to the very definition of the field Ra.

Since the matrices Rδ,(k,l) belong to SO(3), the function Ra is uniformly bounded and satisfies

||Ra||(L∞(ω))9 ≤
√

3.

Let (k, l) be in Nδ. By a straightforward computation, for any (s1, s2) ∈ ωδ,(k,l) we obtain

|||Ra(s1, s2)R
T
a (s1, s2) − I3||| ≤ C

{
|||Rδ,(k,l) − Rδ,(k+1,l)||| + |||Rδ,(k,l) − Rδ,(k,l+1)|||

+|||Rδ,(k,l+1) − Rδ,(k+1,l+1)||| + |||Rδ,(k+1,l) − Rδ,(k+1,l+1)|||
}

|det
(
Ra(s1, s2)

)
− 1| ≤ C

{
|||Rδ,(k,l) − Rδ,(k+1,l)||| + |||Rδ,(k,l) − Rδ,(k,l+1)|||

+|||Rδ,(k,l+1) − Rδ,(k+1,l+1)||| + |||Rδ,(k+1,l) − Rδ,(k+1,l+1)|||,
}

where C is an absolute constant. Hence, from (3.4) and (3.5) we deduce

(3.14)





||RaR
T
a − I3||(L2(ω))9 ≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ),

||det(Ra) − 1||L2(ω) ≤
C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ).

Notice that the function RaR
T
a belongs to

(
H1(ω)

)3×3
and satisfies

(3.15)
∥∥∥
∂RaR

T
a

∂sα

∥∥∥
(L2(ω))9

≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ).

3.4. Second decomposition of a deformation.

In this section any deformation v ∈
(
H1(Qδ)

)3
of the shell Qδ is decomposed as

(3.16) v(s) = V(s1, s2) + s3R(s1, s2)n(s1, s2) + v(s), s ∈ Ωδ,
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where V belongs to
(
H1(ω)

)3
, R belongs to

(
H1(ω)

)3×3
and satisfies for a.e. (s1, s2) ∈ ω: R(s1, s2) ∈ SO(3)

and v belongs to
(
H1(Qδ)

)3
. The first term V is always the mean value of v over the fibers. Now, the second

one s3R(s1, s2)n(s1, s2) describes the rotation of the fiber (of the shell) which contains the point φ(s1, s2).

The sum of the two first terms V(s1, s2)+s3R(s1, s2)n(s1, s2) is called the elementary deformation of second

type of the shell.

Theorem 3.4. There exists a constant C(S) (which depends only on the mid-surface S) such that for any

v ∈
(
H1(Qδ)

)3
verifying

(3.17) ||dist(∇xv, SO(3))||L2(Qδ) ≤ C(S)δ3/2

then there exist an elementary deformation of second type V + s3Rn and a deformation v satisfying (3.16)

and such that

(3.18)





||v||(L2(Ωδ))3 ≤ Cδ||dist(∇xv, SO(3))||L2(Qδ)

||∇sv||(L2(Ωδ))9 ≤ C||dist(∇xv, SO(3))||L2(Qδ)
∥∥∥
∂R

∂sα

∥∥∥
(L2(ω))9

≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

∥∥∥
∂V
∂sα

− Rtα

∥∥∥
(L2(ω))3

≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

∥∥∇xv − R
∥∥

(L2(Ωδ))9
≤ C||dist(∇xv, SO(3))||L2(Qδ)

where the constant C does not depend on δ.

Proof. In this proof let us denote by C1(S) the constant appearing in estimates (3.4) and (3.5). If we

assume that

(3.19)

√
2C1(S)

δ3/2
‖dist(∇xv;SO(3))‖L2(Qδ) ≤

1

2
.

then, for each (k, l) ∈ N ′

δ we have using (3.4) and (3.5)

|||Rδ,(k+1,l) − Rδ,(k,l)||| ≤
1

2
, |||Rδ,(k,l+1) − Rδ,(k,l)||| ≤

1

2
.

Thanks to Lemma A.2 in Appendix A there exists a function R ∈
(
W 1,∞(ω)

)3×3
such that for any (s1, s2) ∈ ω

the matrix R(s1, s2) belongs to SO(3) and such that

∀(k, l) ∈ Nδ, R(kδ, lδ) = Rδ,(k,l).

From (3.4), (3.5) and Lemma A.2 we obtain the estimates (3.18) of the derivatives of R. Due to the corollary

of Lemma A.2 we have

(3.20) ||R − Ra||(L2(ω))9 ≤ C

δ1/2
||dist

(
∇xv;SO(3)

)
||L2(Qδ).

All remainder estimates in (3.18) are consequences of (3.7) and (3.20).
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4. Two nonlinear Korn’s inequalities for shells

In this Section, we first precise the boundary conditions on the deformations and in Subsection 4.1, we

deduce the first estimates on v and ∇v. Then we show that the elementary deformations of the decom-

positions can be imposed on the same boundary than v. The main result of Subsection 4.2 is the Korn’s

inequality for shells given.

Indeed these conditions depend on the boundary condition on the field v. We discuss essentially the

usual case of a clamped condition on the part of the lateral boundary of Qδ. Let γ0 as in Subsection 3.2,

and recall that

Γ0,δ = Φ(γ0×] − δ, δ[).

We assume that

v(x) = x on Γ0,δ.

Due to the definition (3.3) of V, we first have

(4.1) V = φ on γ0.

4.1. First H1- Estimates

Using the boundary condition (4.1), estimates (3.7) or (3.18) and the fact that ||Ra||(L∞(ω))3×3 ≤
√

3 and

||R||(L∞(ω))3×3 ≤
√

3, it leads to

(4.2)
∥∥V

∥∥
(H1(ω))3

≤ C
(
1 +

1

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

)
.

With the help of the decompositions (3.6) or (3.16), estimates (3.7) or (3.18) and (4.2) we deduce that

||v||(L2(Qδ))3 +
1

δ
||v − V||(L2(Qδ))3 + ||∇xv||(L2(Qδ))9 ≤ C

(
δ1/2 + ||dist(∇xv, SO(3))||L2(Qδ)

)
.

The above inequality leads to the following first ”nonlinear Korn’s inequality for shells”:

(4.3) ||v − Id||(L2(Qδ))3 + ||∇xv − I3||(L2(Qδ))9 ≤ C
(
δ1/2 + ||dist(∇xv, SO(3))||L2(Qδ)

)

together with

||(v − Id) − (V − φ)||(L2(Qδ))3 ≤ Cδ
(
δ1/2 + ||dist(∇xv, SO(3))||L2(Qδ)

)
.

Let us notice that inequality (4.3) can be obtained without using the decompositions of the deformation.

Indeed,we first have

|||∇v(x)||| ≤ dist(∇v(x), SO(3)) +
√

3, for a.e. x

so that by integration

||∇xv||(L2(Qδ))9 ≤ C
(
δ1/2 + ||dist(∇xv, SO(3))||L2(Qδ)

)
.

Poincaré inequality then leads to (4.3). This is the technique used to derive estimates in [16].
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4.2. Further H1- Estimates

In this subsection, we derive a boundary condition on Ra and R on γ0 using the extension given in

Subsection 3.2. We prove the following lemma:

Lemma 4.1. In Theorem 3.3 (respectively in Theorem 3.4), we can choose Ra (resp. R) such that

Ra = I3 on γ0, (resp. R = I3 on γ0),

without modifications in the estimates of these theorems.

Proof. Recall that γ
′

0,δ, Q1
δ and Q2

δ are defined in subsection 3.2. We also set

Q3
δ = Φ

(
{(s1, s2) ∈ ω3δ | dist((s1, s2), γ0) < 3δ}×] − δ, δ[

)

Let us consider the following function

ρδ(s1, s2) = inf
{
1, sup

(
0,

1

3δ
dist((s1, s2), γ0) − 1

)}
, (s1, s2) ∈ R

2.

This function belongs to W 1,∞(R2) and it is equal to 1 if dist((s1, s2), γ0) > 6δ and to 0 if dist((s1, s2), γ0) <

3δ. Let vδ be the deformation defined by

vδ(s) = φ(s1, s2) + s3n(s1, s2) + ρδ(s1, s2)
(
v(s) − φ(s1, s2) − s3n(s1, s2)

)
for a.e. s ∈ ω3δ×] − δ, δ[.

By definition of vδ, we have

vδ = v in Q′

δ \ Q2
δ , vδ = Id in Q3

δ .

which gives with (3.2)

(4.4)

{ ||∇xv −∇xvδ||(L2(Q
′

δ
))9 ≤ C||dist(∇xv, SO(3))||L2(Qδ),

||v − vδ||(L2(Q
′

δ
))3 ≤ Cδ||dist(∇xv, SO(3))||L2(Qδ).

Hence

(4.5)

{
||dist(∇xvδ, SO(3))||L2(Q

′

δ
) ≤ ||∇xv −∇xvδ||(L2(Q

′

δ
))9 + ||dist(∇xv, SO(3))||L2(Q

′

δ
)

≤ C||dist(∇xv, SO(3))||L2(Qδ)

where the constant does not depend on δ.

Since vδ = Id in Q2
δ , the Ra’s and the R’s given by application of Theorem 3.3 or 3.4 to the deformation

vδ are both equal to I3 over γ0. Estimate(3.7) and (3.18) of these theorem together with (4.4)-(4.5) show

that Theorems 3.3 and 3.4 hold true for v with Ra = I3 and R = I3 on γ0.

The next theorem gives a second nonlinear Korn’s inequalities, which is an improvement of (4.3) for

energies of order smaller than δ3/2 and an estimate on v − V which permit to precise the scaling of the

applied forces in Section 7.

Theorem 4.2. (A second nonlinear Korn’s inequality for shells) There exists a constant C which does not

depend upon δ such that for all v ∈
(
H1(Qδ)

)3
such that v = Id on Γ0,δ

11



(4.6) ||v − Id||(L2(Qδ))3 + ||∇xv − I3||(L2(Qδ))9 ≤ C

δ
||dist(∇xv, SO(3))||L2(Qδ),

and

(4.7) ||(v − Id) − (V − φ)||(L2(Qδ))3 ≤ C||dist(∇xv, SO(3))||L2(Qδ),

where V is given by (3.8).

Proof. From the decomposition (3.6), Theorem 3.3 and the boundary condition on Ra given by Lemma 4.1,

the use of Poincaré’s inequality gives

(4.8)





||Ra − I3||(H1(ω))9 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

∥∥∥
∂V
∂sα

− tα

∥∥∥
(L2(ω))3

≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

Using the fact that tα =
∂φ

∂sα
and the boundary condition (4.1) on V, it leads to

||V − φ||(L2(ω))3 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ

.

Using again the decomposition (3.6) and Theorem 3.3, the above estimate implies that v − Id satisfies the

nonlinear Korn’s inequality (4.6). At last the decomposition (3.6), which implies that (v − Id) − (V − φ) =

(Ra − I3)s3n + va, the first estimate in (3.7) and (4.8) permit to obtain (4.7).

Let us compare the two Korn’s inequalities (4.3) and (4.6). Indeed they are equivalent for energies of

order δ3/2. For energies order smaller than δ3/2, (4.6) is better (4.3) which is then more relevant in general

for thin structures.

The decomposition technique given in Section 3 also allows to estimate the linearized strain tensor of

an admissible deformation. This is the object of the lemma below.

Lemma 4.3 There exists a constant C which does not depend upon δ such that for all v ∈
(
H1(Qδ)

)3
such

that v = Id on Γ0,δ

(4.9)
∥∥∇xv + (∇xv)

T − 2I3

∥∥
(L2(Qδ))9

≤ C||dist(∇xv, SO(3))||L2(Qδ)

{
1 +

1

δ5/2
||dist(∇xv, SO(3))||L2(Qδ)

}
.

Proof. In view of the decomposition (3.6) and Theorem 3.3 we have

(4.10)
∥∥∇xv + (∇xv)

T − 2I3

∥∥
(L2(Ωδ))9

≤ C||dist(∇xv, SO(3))||L2(Qδ) + Cδ1/2
∥∥Ra + RT

a − 2I3
∥∥

(L2(ω))9
.

Due to the equalities

Ra + RT
a − 2I3 = RaRaR

T
a + RT

a − 2RaR
T
a + Ra(I3 − RaR

T
a ) + 2(RaR

T
a − I3)

= (Ra − I3)
2RT

a + Ra(I3 − RaR
T
a ) + 2(RaR

T
a − I3)

and to the first estimate in (3.14), it follows that

(4.11) ||Ra + RT
a − 2I3||(L2(ω))9 ≤ C||(Ra − I3)

2||(L2(ω))9 +
C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ).
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Since ||(Ra − I3)
2||(L2(ω))9 ≤ C||Ra − I3||2(L4(ω))9 and the fact that the space

(
H1(ω)

)3×3
is continuously

imbedded in
(
L4(ω)

)3×3
, we deduce that

(4.12) ||(Ra − I3)
2||(L2(ω))9 ≤ C

δ3
||dist(∇xv, SO(3))||2L2(Qδ).

From (4.10) , (4.11) and the previous estimate we finally get (4.9).

Remark 4.4. In view of (3.7) and since the field Ra belongs to (L∞(ω))3×3, the function (Ra − I3)
2

belongs to
(
H1(ω)

)3×3
with

∥∥∥
∂(Ra − I3)

2

∂sα

∥∥∥
(L2(ω))9

≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ).

Hence, with Lemma 4.1, ||(Ra − I3)
2||(L2(ω))9 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ) which gives together with

(4.10)-(4.11)

∥∥∇xv + (∇xv)
T − 2I3

∥∥
(L2(Qδ))9

≤ C

δ
||dist(∇xv, SO(3))||L2(Qδ).

Notice that the above estimate is worse than (4.9) at least as soon as the energy is smaller than δ1/2.

Let us emphasize that in view of estimates (3.7)-(3.18), (4.3) and (4.9) one can distinguish two critical

cases for the behavior of the quantity ||dist(∇xv, SO(3))||L2(Qδ) (which will be a bound from below of the

elastic energy)

||dist(∇xv, SO(3))||L2(Qδ) =

{
O(δ3/2),

O(δ5/2).

Estimates (4.2)-(4.3) show that the behavior ||dist(∇xv, SO(3))||L2(Qδ) ∼ O(δ1/2) also corresponds to an

interesting case, but the estimates (3.7) and (4.8) show that the decompositions given in Theorems 3.3 and

3.4 are not relevant in this case which, as a consequence, must be analyzed by a different approach.

In the following we will describe the asymptotic behavior of a sequence of deformations vδ which satisfies

||dist(∇xvδ, SO(3))||L2(Qδ) ∼ O(δ3/2).

5. Rescaling Ωδ

As usual when dealing with a thin shell, we rescale Ωδ using the operator

(Πδw)(s1, s2, S3) = w(s1, s2, s3) for any s ∈ Ωδ

defined for e.g. w ∈ L2(Ωδ) for which (Πδw) ∈ L2(Ω). The estimates (3.7) on va transposed over Ω lead to

(5.1)





||Πδva||(L2(Ω))3 ≤ Cδ1/2||dist(∇xv, SO(3))||L2(Qδ)

||∂Πva

∂s1
||(L2(Ω))3 ≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

||∂Πva

∂s2
||(L2(Ω))3 ≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ)

||∂Πva

∂S3
||(L2(Ω))3 ≤ Cδ1/2||dist(∇xv, SO(3))||L2(Qδ),
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and estimates (4.8) on v − Id give

(5.2)





||Πδ(v − Id)||(L2(Ω))3 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

||∂Πδ(v − Id)

∂s1
||(L2(Ω))3 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

||∂Πδ(v − Id)

∂s2
||(L2(Ω))3 ≤ C

δ3/2
||dist(∇xv, SO(3))||L2(Qδ)

||∂Πδ(v − Id)

∂S3
||(L2(Ω))3 ≤ C

δ1/2
||dist(∇xv, SO(3))||L2(Qδ).

6. Limit behavior of the deformation for ||dist(∇xv, SO(3))||L2(Qδ) ∼ δ3/2

Let us consider a sequence of deformations vδ of
(
H1(Qδ)

)3
such that

(6.1) ||dist(∇xvδ, SO(3))||L2(Qδ) ≤ Cδ3/2.

For fixed δ > 0, the deformation vδ is decomposed as in Theorem 3.3 and the terms of this decomposition

are denoted by Vδ, Ra,δ and va,δ. If moreover the hypothesis (3.17) holds true for the sequence vδ, then vδ

can be alternatively decomposed through (3.16) in terms of Vδ, Rδ and vδ so that the estimates (3.18) of

Theorem 3.5 are satisfied uniformly in δ.

In what follows we investigate the behavior of the sequences Vδ, Ra,δ and va,δ. Indeed due to (3.20) all

the result of this section can be easily transposed in terms of the sequence Rδ and the details are left to the

reader.

The estimates (3.7), (5.1) and (5.2) lead to the following lemma.

Lemma 6.1. There exists a subsequence still indexed by δ such that

(6.2)





Vδ −→ V strongly in
(
H1(ω)

)3
,

Ra,δ ⇀ R weakly in
(
H1(ω)

)3×3
and strongly in

(
L2(ω)

)3×3
,

1

δ2
Πδva,δ ⇀ v weakly in

(
L2(ω;H1(−1, 1))

)3
,

1

δ

(∂Vδ

∂sα
− Ra,δtα

)
⇀ Zα weakly in

(
L2(ω)

)3
,

1

δ

(
RT

a,δRa,δ − I3

)
⇀ 0 weakly in

(
L2(ω)

)3×3
,

where R belongs SO(3) for a.e. (s1, s2) ∈ ω. We also have V ∈
(
H2(ω)

)3
and

(6.3)
∂V
∂sα

= Rtα.

The boundaries conditions

(6.4) V = φ, R = I3 on γ0,

hold true. Moreover, we have

(6.5)

{
Πδvδ −→ V strongly in

(
H1(Ω)

)3
,

Πδ(∇xvδ) −→ R strongly in
(
L2(Ω)

)9
.
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Proof. The convergences (6.2) are direct consequences of Theorem 3.3 and estimate (4.8) excepted for

what concerns the last convergence which will be established below. The compact imbedding of
(
H1(ω)

)3×3

in
(
L4(ω)

)3×3
and the first convergence in (6.2) permit to obtain

(6.6)

{
Ra,δ −→ R strongly in

(
L4(ω)

)3×3
,

det(Ra,δ) −→ det(R) strongly in L4/3(ω).

These convergences and estimates (3.14) prove that for a.e. (s1, s2) ∈ ω: R(s1, s2) ∈ SO(3). The relation

(6.3) and (6.4) and the convergences (6.5) are immediate consequences of Theorem 3.3 and of the above

results. We now turn to the proof of the last convergence in (6.2). We first set

R̃a,δ(s1, s2) = Ra,δ

(
δ
[s1
δ

]
, δ

[s2
δ

])
a.e. in ω.

From (3.4), (3.5) and (6.1) we have

(6.7) ||Ra,δ − R̃a,δ||(L2(ω))3×3 ≤ Cδ.

From (6.6) and the above estimate, we deduce that

(6.8) R̃a,δ −→ R strongly in (L2(ω)
)3×3

.

Now we derive the weak limit of the sequence
1

δ
(Ra,δ−R̃a,δ). Let Φ be in C∞

0 (Ω)3×3 and set Mδ(Φ)(s1, s2) =
∫

]0,1[2
Φ

(
δ
[s1
δ

]
+ z1δ, δ

[s2
δ

]
+ z2δ

)
dz1dz2 for a.e. (s1, s2) in ω. We recall that (see [3])

1

δ

(
Φ −Mδ(Φ)

)
⇀ 0 weakly in (L2(ω)

)3×3

Mδ(Φ) −→ Φ strongly in (L2(ω)
)3×3

We write

∫

ω

1

δ
(Ra,δ − R̃a,δ)Φ =

∫

ω

Ra,δ
1

δ

(
Φ −Mδ(Φ)

)
+

∫

ω

1

δ
(Ra,δ − R̃a,δ)Mδ(Φ)

=

∫

ω

Ra,δ
1

δ

(
Φ −Mδ(Φ)

)
+

1

2

∫

ω

(∂Ra,δ

∂s1
+
∂Ra,δ

∂s2

)
Mδ(Φ) +Kδ

where |Kδ| ≤ Cδ||∇Ra,δ||(L2(ω))3×3 ||∇Φ||(L2(ω))3×3 . In view of the properties of Mδ(Φ) recalled above, of

(6.2) and (6;4), we deduce from the above equality that

1

δ
(Ra,δ − R̃a,δ) ⇀

1

2

(∂R
∂s1

+
∂R

∂s2

)
weakly in (L2(ω)

)3×3
.

Now in order to prove the last convergence of (6.2), we write

1

δ

(
RT

a,δRa,δ − I3

)
=

1

δ

(
R̃T

a,δ(Ra,δ − R̃a,δ) + (Ra,δ − R̃a,δ)
T R̃a,δ + (Ra,δ − R̃a,δ)

T (Ra,δ − R̃a,δ)
)

and we use estimates (3.14) and (6.7), the strong convergence (6.8) and the above weak convergence.
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The following Corollary gives the limit of the Green-St Venant strain tensor of the sequence vδ.

Corollary 6.2. For the same subsequence as in Lemma 6.1 we have

(6.9)
1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
⇀ (t1 | t2 |n)−T E(t1 | t2 |n)−1 weakly in (L1(Ω))9,

where the symmetric matrix E is equal to

(6.10)




S3
∂R

∂s1
n · Rt1 + Z1 · Rt1 S3

∂R

∂s1
n · Rt2 +

1

2

{
Z2 · Rt1 + Z1 · Rt2

} 1

2

∂v

∂S3
· Rt1 +

1

2
Z1 · Rn

∗ S3
∂R

∂s2
n · Rt2 + Z2 · Rt2

1

2

∂v

∂S3
· Rt2 +

1

2
Z2 · Rn

∗ ∗ ∂v

∂S3
· Rn




and where (t1 | t2 |n) denotes the 3 × 3 matrix with first column t1, second column t2 and third column n

and where (t1 | t2 |n)−T =
(
(t1 | t2 |n)−1

)T
.

Proof. First from estimate (3.7), equalities (3.13) and the convergences in Lemma 6.1, we obtain

1

δ

(
Πδ(∇xvδ) − Ra,δ

)
tα ⇀ S3

∂R

∂sα
n + Zα weakly in

(
L2(Ω)

)3
,

1

δ

(
Πδ(∇xvδ) − Ra,δ

)
n ⇀

∂v

∂S3
weakly in

(
L2(Ω)

)3
.

Then thanks to the identity

1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
=

1

2δ
Πδ

(
(∇xvδ − Ra,δ)

T (∇xvδ − Ra,δ)
)

+
1

2δ
RT

a,δΠδ(∇xvδ − Ra,δ)

+
1

2δ
Πδ(∇xvδ − Ra,δ)

T Ra,δ +
1

2δ

(
RT

a,δRa,δ − I3

) ,

and again to estimate (3.7) and Lemma 6.1 we deduce that

(6.11)





1

δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
⇀(t1 | t2 |n)−T

(
S3
∂R

∂s1
n + Z1 |S3

∂R

∂s2
n + Z2 |

∂v

∂S3

)T

R

+RT
(
S3
∂R

∂s1
n + Z1 |S3

∂R

∂s2
n + Z2 |

∂v

∂S3

)
(t1 | t2 |n)−1

weakly in (L1(Ω))9.

Now remark that

(6.12)
∂R

∂s1
n · Rt2 =

∂R

∂s2
n · Rt1.

Indeed, deriving the relation RT R = I3 with respect to sα shows that RT ∂R

∂sα
+
∂RT

∂sα
R = 0. Hence, there

exists an antisymmetric matrix Aα ∈ L2(ω; R3×3) such that
∂R

∂sα
= RAα. Since there exists also a field aα

belonging to
(
L2(ω)

)3
such that

∀x ∈ R
3, Aα x = aα ∧ x.

Now we derive the equality
∂V
∂sα

= Rtα with respect to sβ and we obtain

∂2V
∂sα∂sβ

=
∂R

∂sβ
tα + R

∂tα

∂sβ
= RAβ tα + R

∂2φ

∂sα∂sβ
.

16



It implies that A1t2 = A2t1 from which (6.12) follows. Taking into account the definition of the matrix E,

convergence (6.11) and the equality (6.12) show that (6.9) holds true.

Remark 6.3. There exists a constant C such that

∥∥∥
∂R

∂s1

∥∥∥
(L2(ω))9

+
∥∥∥
∂R

∂sα

∥∥∥
(L2(ω))9

≤ C
(∥∥∥
∂R

∂s1
n · Rt1

∥∥∥
L2(ω)

+
∥∥∥
∂R

∂s2
n · Rt2

∥∥∥
L2(ω)

+
∥∥∥
∂R

∂s1
n · Rt2

∥∥∥
L2(ω)

)
.

With the same notation as in the proof of Corollary 6.2, we have

∥∥∥
∂R

∂sα

∥∥∥
2

(L2(ω))9
=

∥∥Aα

∥∥2

(L2(ω))9
= 2||aα||2(L2(ω))3 .

Recalling that a1 ∧ t2 = a2 ∧ t1, we obtain aα · n = 0 and then

∥∥∥
∂R

∂sα
n

∥∥∥
2

(L2(ω))3
= ||aα ∧ n||2(L2(ω))3 = ||aα||2(L2(ω))3 =

1

2

∥∥∥
∂R

∂sα

∥∥∥
2

(L2(ω))9
.

7. Nonlinear elastic shells

In this section we consider a shell made of an elastic material. Its thickness 2δ is fixed and belongs to

]0, 2δ0]. The local energy W : S3 −→ R
+ is a continuous function of symmetric matrices which satisfies

the following assumptions which are similar to those adopted in [14], [15] and [16] (the reader is also referred

to [6] for general introduction to elasticity)

∃c > 0 such that ∀E ∈ S3 W (E) ≥ c|||E|||2,(7.1)

∀ε > 0, ∃θ > 0, such that ∀E ∈ S3 |||E||| ≤ θ =⇒ |W (E) −Q(E)| ≤ ε|||E|||2,(7.2)

where Q is a positive quadratic form defined on the set of 3×3 symmetric matrices. Remark that Q satisfies

(7.1) with the same constant c. From (7.2) and the continuity of W we deduce that

(7.3) ∀C0 > 0, ∃C1 > 0, such that ∀E ∈ S3 |||E||| ≤ C0 =⇒ |W (E)| ≤ C1|||E|||.

Still following [6], for any 3 × 3 matrix F , we set

(7.4) Ŵ (F ) =




W

(1

2
(FTF − I3)

)
if det(F ) > 0

+ ∞ if det(F ) ≤ 0.

Remark that due to (7.1), (7.4) and to the inequality |||FTF − I3||| ≥ dist(F, SO(3)) if det(F ) > 0, we

have

(7.5) Ŵ (F ) ≥ c

4
dist(F, SO(3))2

for any matrix F .

Remark 7.1. As a classical example of a local elastic energy satisfying the above assumptions, we mention

the following St Venant-Kirchhoff’s law (see [6], [12]) for which

Ŵ (F ) =





λ

8

(
tr(FTF − I3)

)2
+
µ

4
tr

(
(FTF − I3)

2
)

if det(F ) > 0

+ ∞ if det(F ) ≤ 0.
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In order to take into account the boundary condition on the admissible deformations we introduce the

space

(7.6) Uδ =
{
v ∈ (H1(Qδ))

3 | v = Id on Γ0,δ

}
.

Now we assume that the shell is submitted to applied volume forces fδ ∈ (L2(Ωδ))
3 and we define the

total energy J(v) over Uδ by

(7.7) J(v) =

∫

Qδ

Ŵ (∇xv)(x)dx−
∫

Qδ

fδ(x) · v(x)dx.

To introduce the scaling on fδ, let us consider f in (L2(ω))3 and g in (L2(Ω))3 such that

(7.8)

∫ 1

−1

g(s1, s2, S3)dS3 = 0 for a.e. (s1, s2) ∈ ω.

Let κ ≥ 1 and assume that the force fδ is given for x = Φ(s) by

(7.9) fδ(x) = δκf(s1, s2) + δκ−1g
(
s1, s2,

s3
δ

)
for a.e. x ∈ Qδ.

The fact remains that to find a minimizer or to find a deformation that approaches the minimizer of J(v)

or of J(v) − J(Id) is the same. Let v be in Uδ, thanks to (2.3), (4.6), (4.7), (7.8) and (7.9), we obtain

(7.10)
∣∣∣
∫

Qδ

fδ(x) · (v − Id)(x)dx
∣∣∣ ≤ Cδκ−1/2(||f(L2(ω))3 + ||g||(L2(Ω))3)||dist(∇xv, SO(3))||L2(Qδ).

In general, a minimizer of J does not exist on Uδ. In what follows, we will investigate the behavior of

the functional
1

δ2κ−1

(
J(v) − J(Id)

)
using Γ-convergence (see Remark 7.2 for a few arguments which justify

the study of this quantity). Hence, we consider a deformation v of Uδ such that

(7.11)
1

δ2κ−1

(
J(v) − J(Id)

)
≤ C1

where C1 does not depend on δ and v. Using (7.5) and (7.10) we obtain

C||dist(∇xv, SO(3))||2L2(Qδ) − Cδκ−1/2(||f(L2(ω))3 + ||g||(L2(Ω))3)||dist(∇xv, SO(3))||L2(Qδ) ≤ C1δ
2κ−1.

Hence, we have

(7.12) ||dist(∇xv, SO(3))||L2(Qδ) ≤ Cδκ−1/2

where the constant C depends on the sum ||f ||(L2(ω))3 + ||g||(L2(Ω))3 and of C1.

In the spirit of what follows the proof of Theorem 4.1, let us notice that if one uses (4.3) to estimate

the contribution of the forces in the energy, one obtains

||dist(∇xv, SO(3))||L2(Qδ) ≤ Cδ(1+κ)/2.

Indeed, the above estimate is the same as (7.12) for forces of order δ2, which is, as far as we know, a critical

case above which no asymptotic studies were achieved. For smaller forces, estimate (7.12) is much better
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and this shows that for smaller energies our technique of decomposition which lead to the second Korn’s

inequality given in Theorem 4.1 is more relevant in order to justify the limit models for κ > 2.

From the assumption (7.9) on the applied forces and the estimate (7.12), the results of Sections 3 and

4 permit to obtain estimates of V, Ra, va and ∇xv−Ra with respect to δ. Still for the deformation v ∈ Uδ

satisfying (7.11), we have using (7.4) and (7.5)

c

4
||(∇xv)

T∇xv − I3||2(L2(Qδ))3×3 ≤ J(v) − J(Id) +

∫

Qδ

fδ · (v − Id)

≤ C1δ
2κ−1 + Cδκ−1/2(||f ||(L2(ω))3 + ||g||(L2(Ω))3)||dist(∇xv, SO(3))||L2(Qδ).

Due to (7.12) we obtain the following estimate of the Green-St Venant’s tensor:

(7.13)
∥∥1

2

{
(∇xv)

T∇xv − I3

}∥∥
(L2(Qδ))3×3 ≤ Cδκ−1/2.

We first deduce from the above inequality that v ∈ (W 1,4(Qδ))
3 and moreover since κ ≥ 1

(7.14) ||∇xv||(L4(Qδ))3×3 ≤ Cδ
1
4 .

Furthermore, there exists two strictly positive constants c and C which does not depend on δ such that for

any v ∈ Uδ satisfying (7.11) we have

(7.15) −cδ2κ−1 ≤ J(v) − J(Id) ≤ Cδ2κ−1.

We set

(7.16) mδ,κ = inf
v∈Uδ

(
J(v) − J(Id)

)
.

As a consequence of the inequality in (7.15) we have

(7.17) −c ≤ mδ,κ

δ2κ−1
≤ 0.

We denote

(7.18) mκ = lim
δ→0

mδ,κ

δ2κ−1
.

Remark 7.2. Under assumption (7.8) and (7.9) on the forces, the quantity J(Id) is of order δκ+1. Hence

if κ > 2 then due to (7.15) the infimum of J(v) is of order δκ+1. As a consequence for κ > 2, the relevant

quantity which describes the limit behavior is
J(vδ) − J(Id)

δ2κ−1
. For κ = 2, J(Id) and the infimum of J(v) have

the same order δ3 and we derive the Γ- limit of the energy
J(vδ)

δ3
.

8. Limit model in the case κ = 2

In this section we derive the Γ-limit of the functional
J(vδ)

δ3
which corresponds to the case κ = 2. We

begin with the lim-inf condition.

Let
(
vδ

)
0<δ≤δ0

be a sequence of deformations belonging to Uδ and such that

(8.1) lim
δ→0

J(vδ)

δ3
< +∞.
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Upon extracting a subsequence (still indexed by δ) we can assume that the sequence (vδ) satisfies the

condition (7.11) (recall that J(Id) is of order δ3). From the estimates of the previous section we obtain

(8.2)





||dist(∇xvδ, SO(3))||L2(Qδ) ≤ Cδ3/2,
∥∥1

2

{
∇xv

T
δ ∇xvδ − I3

}∥∥
(L2(Qδ))3×3 ≤ Cδ3/2,

||∇xvδ||(L4(Qδ))3×3 ≤ Cδ1/4

For any fixed δ ∈ (0, δ0], the deformation vδ is decomposed following (3.6) in such a way that Theorem 3.3

is satisfied. There exists a subsequence still indexed by δ such that (see Section 7)

(8.3)





Vδ −→ V strongly in
(
H1(ω)

)3

Ra,δ ⇀ R weakly in
(
H1(ω)

)3×3
,

1

δ

(∂Vδ

∂sα
− Ra,δtα

)
⇀ Zα weakly in

(
L2(ω)

)3
,

1

δ2
Πδva,δ ⇀ v weakly in

(
L2(ω;H1(−1, 1))

)3

where R(s1, s2) belongs to SO(3) for a.e. (s1, s2) ∈ ω, V ∈
(
H2(ω)

)3
together with

(8.4) V = φ, R = I3, on γ0, and
∂V
∂sα

= Rtα.

Furthermore, we also have (see (6.5), (6.9) and estimate (8.2))

(8.5)





Πδvδ −→ V strongly in
(
H1(Ω)

)3
,

Πδ(∇xvδ) −→ R strongly in
(
L2(Ω)

)3×3
.

1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
⇀ (t1 | t2 |n)−T E(t1 | t2 |n)−1 weakly in (L2(Ω))9,

where

E =




S3
∂R

∂s1
n · Rt1 + Z1 · Rt1 S3

∂R

∂s1
n · Rt2 +

1

2

{
Z2 · Rt1 + Z1 · Rt2

} 1

2

∂v

∂S3
· Rt1 +

1

2
Z1 · Rn

∗ S3
∂R

∂s2
n · Rt2 + Z2 · Rt2

1

2

∂v

∂S3
· Rt2 +

1

2
Z2 · Rn

∗ ∗ ∂v

∂S3
· Rn




Remark that, due to the decomposition (3.6), the convergences (8.3) and (8.5) imply that

(8.6)
Πδ(vδ − Vδ)

δ
−→ S3(R − I3)n strongly in

(
L2(Ω)

)3
.

Now, recall that

(8.7)





J(vδ)

δ3
=

∫

Ω

1

δ2
W

(1

2
Πδ

(
(∇xvδ)

T∇xvδ − I3

))
|Πδ det(∇Φ)|

−
∫

Ω

f · Πδvδ|Πδ det(∇Φ)| −
∫

Ω

g · Πδvδ

δ
|Πδ det(∇Φ)|
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In order to pass to the lim-inf in (8.7) we first recall that that det(∇Φ) = det(t1|t2|n)+s3 det
( ∂n
∂s1

|t2 | n
)
+

s3 det
(
t1|

∂n

∂s2
| n

)
+ s23 det

( ∂n
∂s1

| ∂n
∂s2

| n
)

so that indeed Πδ det(∇Φ) strongly converges to det(t1|t2|n) in

L∞(Ω) as δ tends to 0.

We now consider the first term of the right hand side. Let ε > 0 be fixed. Due to (7.2), there exists

θ > 0 such that

(8.8) ∀E ∈ S3, |||E||| ≤ θ, W (E) ≥ Q(E) − ε|||E|||2.

We now use a similar argument given in [5]. Let us denote by χθ
δ the characteristic function of the set

Aθ
δ = {s ∈ Ω; |||Πδ

(
(∇xvδ)

T∇xvδ − I3

)
(s)||| ≥ θ}. Due to (8.2), we have

(8.9) meas(Aθ
δ) ≤ C

δ2

θ2
.

Using the positive character of W , (8.2) and (8.8) give

∫

Ω

1

δ2
Ŵ

(
Πδ(∇xvδ)

)
|Πδ det(∇Φ)| ≥

∫

Ω

1

δ2
W

(1

2
Πδ

(
(∇xvδ)

T∇xvδ − I3

))
(1 − χθ

δ)Πδ det(∇Φ)

≥
∫

Ω

Q
( 1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
(1 − χθ

δ)
)
Πδ det(∇Φ) − Cε

In view of (8.9), the function χθ
δ converges a.e. to 0 as δ tends to 0 while the weak limit of

1

2δ
Πδ

(
(∇xvδ)

T∇xvδ−
I3

)
(1−χθ

δ) is given by (8.5). As a consequence and also using the convergence of Πδ det(∇Φ) obtained above,

we have

lim
δ→0

∫

Ω

1

δ2
Ŵ

(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≥

∫

Ω

Q
(
(t1 | t2 |n)−T E(t1 | t2 |n)−1

)
det(t1|t2|n) − Cε.

As ε is arbitrary, this gives

(8.10) lim
δ→0

∫

Ω

1

δ2
Ŵ

(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≥

∫

Ω

Q
(
(t1 | t2 |n)−T E(t1 | t2 |n)−1

)
det(t1|t2|n).

Using the convergences (8.5) and (8.6), it follows that

lim
δ→0

( ∫

Ω

f · Πδ(vδ)Πδ det(∇Φ) +

∫

Ω

g · Πδ(vδ)

δ
Πδ det(∇Φ)

)
= L(V,R)

where L is defined by

(8.11)





L(V,R) =

∫

ω

(
2f det(t1|t2|n) +

∫ 1

−1

g(., ., S3)S3

[
det

( ∂n
∂s1

|t2 | n
)

+ det
(
t1|

∂n

∂s2
| n

)]
dS3

)
· V

+

∫

ω

( ∫ 1

−1

g(., ., S3)S3dS3

)
· Rn det(t1|t2|n).

From (8.7), (8.10) and the above limit, we conclude that

(8.12) lim
δ→0

J(vδ)

δ3
≥

∫

Ω

Q
(
(t1 | t2 |n)−T E(t1 | t2 |n)−1

)
det(t1|t2|n) − L(V,R).

21



In order to bound from below the right hand side of (8.12), we first write

E =




S3
∂R

∂s1
n · Rt1 + Z11 S3

∂R

∂s1
n · Rt2 + Z12

1

2

∂v

∂S3
· Rt1

∗ S3
∂R

∂s2
n · Rt2 + Z22

1

2

∂v

∂S3
· Rt2

∗ ∗ ∂v

∂S3
· Rn




where v is defined by

v · Rtα = v · Rtα + S3Zα · Rn v · Rn = v · Rn

and where

Zαβ =
1

2

{
Zα · Rtβ + Zβ · Rtα

}
.

Now for almost any fixed (s1, s2) in ω, we apply Lemma B.1 of the appendix to the quadratic form

∫ 1

−1

Q
(
(t1 | t2 |n)−T E(t1 | t2 |n)−1

)
det(t1|t2|n)dS3 =

∫ 1

−1

A




S3a1 + b1

S3a2 + b2

S3a3 + b3

c1(S3)
c2(S3)
c3(S3)




·




S3a1 + b1

S3a2 + b2

S3a3 + b3

c1(S3)
c2(S3)
c3(S3)



dS3

where A is a symmetric positive definite constant 6 × 6 matrix

A =




A1

... A2

· · · · · ·
AT

2

... A3




and where a =
(∂R
∂s1

n · Rt1,
∂R

∂s1
n · Rt2,

∂R

∂s2
n · Rt2

)
, b =

(
Z11,Z12,Z22

)
and c =

(1

2

∂v

∂S3
· Rt1,

1

2

∂v

∂S3
·

Rt2,
∂v

∂S3
· Rn

)
. Then, if we define the function w ∈ (L2(ω;H1(−1, 1)))3 by

(8.13) w = v + S3A
−1
3 AT

2 (Z11e1 + Z12e2 + Z22e3)

we have

∫

Ω

Q
(
(t1 | t2 |n)−T E(t1 | t2 |n)−1

)
det(t1|t2|n) ≥

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
det(t1|t2|n)

where

(8.14) Ê =




S3
∂R

∂s1
n · Rt1 S3

∂R

∂s1
n · Rt2

1

2

∂w

∂S3
· Rt1

∗ S3
∂R

∂s2
n · Rt2

1

2

∂w

∂S3
· Rt2

∗ ∗ ∂w

∂S3
· Rn




Moreover since w is defined up to a function of (s1, s2), we can assume that

∫ 1

−1

w(s1, s2, S3)dS3 = 0 for

almost any (s1, s2) in ω.
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Let Unlin be the set

Unlin =
{(

V ′

,R
′

, w
′) ∈ (H2(ω))3 × (H1(ω))3×3 × (L2(ω;H1((−1, 1))))3 |

V ′

= φ, R
′

= I3, on γ0,

∫ 1

−1

w
′

(s1, s2, S3)dS3 = 0 for a.e. (s1, s2) ∈ ω,

R
′

(s1, s2) ∈ SO(3) for a.e. (s1, s2) ∈ ω,
∂V ′

∂sα
= R

′

tα

}
.

The set Unlin is closed in the product space. For any
(
V ′

,R
′

, v
′) ∈ Unlin, we denote by JNL the following

limit energy

(8.15) JNL

(
V ′

,R
′

, w
′)

=

∫

Ω

Q
(
(t1 | t2 |n)−T Ê

′

(t1 | t2 |n)−1
)

det(t1|t2|n) − L(V ′

,R
′

)

where

(8.16) Ê
′

=




S3
∂R

′

∂s1
n · R′

t1 S3
∂R

′

∂s1
n · R′

t2
1

2

∂w
′

∂S3
· R′

t1

∗ S3
∂R

′

∂s2
n · R′

t2
1

2

∂w
′

∂S3
· R′

t2

∗ ∗ ∂w
′

∂S3
· R′

n




Indeed notice that in Unlin and JNL, the matrix R
′

could be eliminated using the relation
∂V ′

∂sα
= R

′

tα

and the fact that R
′ ∈ SO(3). Doing such a elimination would lead to an intricate expression of the strain

tensor Ê
′

and this is why we prefer to work with the two fields V ′

and R
′

and to keep the constraint in the

definition of Unlin.

From (8.12)-(8.15) we deduce that

(8.17) JNL

(
V,R, w

)
≤ lim

δ→0

J(vδ)

δ3
,

which gives the lim-inf condition in the definition of the Γ- convergence.

In order to obtain the lim-sup condition for the Γ-limit, we first prove the following Lemma.

Lemma 8.1. Let
(
V,R, w

)
be in Unlin, there exists a sequence

((
Vδ,Rδ, wδ

))

δ>0
of (W 2,∞(ω))3 ×

(W 1,∞(ω))3×3 × (W 1,∞(Ω))3 such that

(8.18) Vδ = φ, Rδ = I3 on γ0, wδ = 0, on γ0×] − 1, 1[,

with

(8.19)





Vδ −→ V strongly in (H2(ω))3

Rδ −→ R strongly in (H1(ω))3×3

1

δ
(Rδ − R) −→ 0 strongly in (L2(ω))3×3

1

δ

(∂Vδ

∂sα
− Rδtα

)
−→ 0 strongly in (L2(ω))3

wδ −→ w strongly in (L2(ω;H1((−1, 1)))3,

δ
∂wδ

∂sα
−→ 0 strongly in (L2(Ω))3,
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and moreover

(8.20)





||dist
(
Rδ, SO(3)

)
||L∞(ω) ≤

1

8
,

∥∥∥
∂Vδ

∂sα
− Rδtα

∥∥∥
(L∞(ω))3

≤ 1

8
,

||Rδ||2(W 1,∞(ω))3×3 + ||wδ||2((W 1,∞(Ω))3 ≤ 1

(4c
′

1δ)
2
.

The constant c
′

1 is given by (2.3).

Proof. For h > 0 small enough, consider a C∞
0 (R2)-function ψh such that 0 ≤ ψh ≤ 1

{
ψh(s1, s2) = 1 if dist

(
(s1, s2), γ0

)
≤ h

ψh(s1, s2) = 0 if dist
(
(s1, s2), γ0

)
≥ 2h.

Indeed we can assume that

(8.21) ||ψh||W 1,∞(R
2) ≤

C

h
, ||ψh||W 2,∞(R

2) ≤
C

h2
.

Since ω is bounded with a Lipschitz boundary, we first extend the fields V and Rn = Rn into two fields of

(H2(R2))3 and (H1(R2))3 (and we use the same notations for these extentions). We define the 3× 3 matrix

field R
′ ∈ (H1(R2))3×3 by the formula

(8.22) R
′

=
( ∂V
∂s1

| ∂V
∂s2

|Rn

)(
t1|t2|n

)−1

.

By construction we have
∂V
∂sα

= R
′

tα in R
2 and R

′

= R in ω. At least, we introduce below the approxima-

tions Vh and Rh of V and R as restrictions to ω of the following fields defined into R
2:

(8.23)





V ′

h(s1, s2) =
1

9πh2

∫

B(0,3h)

V(s1 + t1, s2 + t2)dt1dt2,

R
′

h(s1, s2) =
1

9πh2

∫

B(0,3h)

R
′

(s1 + t1, s2 + t2)dt1dt2,

a.e. (s1, s2) ∈ R
2

and

(8.24) Vh = φψh + V ′

h(1 − ψh), Rh = I3ψh + R
′

h(1 − ψh), in ω.

Notice that we have

(8.25)
V ′

h ∈ (W 2,∞(R2))3, R
′

h ∈ (W 1,∞(R2))3×3,

Vh ∈ (W 2,∞(ω))3, Rh ∈ (W 1,∞(ω))3×3, Vh = φ, Rh = I3 on γ0.

Due to the definition (8.22) of R
′

and in view of (8.23) we have

(8.26)

{
V ′

h −→ V strongly in (H2(R2))3,

R
′

h −→ R
′

strongly in (H1(R2))3×3
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and thus using estimates (8.21)

(8.27)

{
Vh −→ V strongly in (H2(ω))3,

Rh −→ R strongly in (H1(ω))3×3

Moreover using again (8.23) and the fact that R
′ − Rh strongly converges to 0 in (H1(R2))3×3 we deduce

that
1

h

(
R

′

h − R
′

) −→ 0 strongly in (L2(R2))3×3

and then together with (8.21), (8.22), (8.24) and (8.27) we get

1

h

(
Rh − R

)
−→ 0 strongly in (L2(ω))3×3,

1

h

(∂Vh

∂sα
− Rhtα

)
−→ 0 strongly in (L2(ω))3.

We now turn to the estimate of the distance between Rh(s1, s2) and SO(3) for a.e. (s1, s2) ∈ ω. We apply

the Poincaré-Wirtinger’s inequality to the function (u1, u2) 7−→ R
′

(u1, u2) in the ball B((s1, s2), 3h). We

obtain ∫

B((s1,s2),3h)

|||R′

(u1, u2) − R
′

h(s1, s2)|||2du1du2 ≤ Ch2||∇R
′ ||2(L2(B((s1,s2),3h)))3

where C is the Poincaré-Wirtinger’s constant for a ball. Since the open set ω is boundy with a Lipschitz

boundary, there exists a positive constant c(ω), which depends only on ω, such that

|
(
B((s1, s2), 3h) \B((s1, s2), 2h)

)
∩ ω| ≥ c(ω)h2.

Setting mh(s1, s2) the essential infimum of the function (u1, u2) 7→ |||R(u1, u2) − R
′

h(s1, s2)||| into the set(
B((s1, s2), 3h) \B((s1, s2), 2h)

)
∩ ω, we then obtain

c(ω)h2mh(s1, s2)
2 ≤ Ch2||∇R

′ ||2(L2(B((s1,s2),3h)))3

Hence, thanks to the strong convergence of R
′

h given by (8.26), the above inequality shows that there exists

h
′

0 which does not depend on (s1, s2) ∈ ω such that for any h ≤ h
′

0

dist(R
′

h(s1, s2), SO(3)) ≤ 1/8 for any (s1, s2) ∈ ω.

Now,

• in the case dist
(
(s1, s2), γ0

)
> 2h, (s1, s2) ∈ ω, by definition of Rh and thanks to the above inequality

we have dist(Rh(s1, s2), SO(3)) ≤ 1/8,

• in the case dist
(
(s1, s2), γ0

)
< h, (s1, s2) ∈ ω, by definition of Rh we have Rh(s1, s2) = I3 and then

dist(Rh(s1, s2), SO(3)) = 0,

• in the case h ≤ dist
(
(s1, s2), γ0

)
≤ 2h, (s1, s2) ∈ ω, due to the fact that R

′

= I3 onto γ0, firstly we

have

||R′ − I3||2(L2(ω6h,γ0
))3×3 ≤ Ch2||∇R

′ ||2(L2(ω6h,γ0
))3×3

where ωkh,γ0
= {(s1, s2) ∈ R

2 | dist
(
(s1, s2), γ0

)
≤ kh}, k ∈ N

∗. Hence

||R′

h − I3||2(L2(ω3h,γ0
))3×3 ≤ Ch2||∇R

′ ||2(L2(ω6h,γ0
))3×3 .
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The constants depend only on ∂ω.

Secondly, we set Mh the maximum of the function (u1, u2) 7→ |||I3 − R
′

h(u1, u2)||| into the closed set{
(u1, u2) ∈ ω | h ≤ dist

(
(u1, u2), γ0

)
≤ 2h

}
, and let (s1, s2) be in this closed subset of ω such that

Mh = |||I3 − R
′

h(s1, s2)|||.

Applying the Poincaré-Wirtinger’s inequality in the ball B
(
(s1, s2), 4h

)
we deduce that

∀(s
′

1, s
′

2) ∈ B
(
(s1, s2), h

)
, |||R′

h(s
′

1, s
′

2) − R
′

h(s1, s2)||| ≤ C||∇R
′ ||(L2(B((s1,s2),4h)))3 .

The constant depends only on the Poincaré-Wirtinger’s constant for a ball.

If Mh is larger than C||∇R
′ ||(L2(B((s1,s2),4h)))3 we have

πh2
(
Mh − C||∇R

′ ||(L2(B((s1,s2),4h)))3
)2 ≤ ||R′

h − I3|||2(L2(B((s1,s2),h)))3

≤||R′

h − I3||2(L2(ω3h,γ0
))3×3 ≤ Ch2||∇R

′ ||2(L2(ω6h,γ0
))3×3

then, in all the cases we obtain

Mh ≤ C||∇R
′ ||(L2(ω6h,γ0

))3×3 .

The constant does not depend on h and R
′

. The above inequalities show that there exists h
′′

0 such that for

any h ≤ h
′′

0

|||R′

h(s1, s2)−I3||| ≤ C||∇R
′ ||(L2(ω6h,γ0

))3×3 ≤ 1/8 for any (s1, s2) ∈ ω such that h ≤ dist
(
(s1, s2), γ0

)
≤ 2h.

By definition of Rh, that gives |||Rh(s1, s2) − I3||| ≤ 1/8.

Finally, for any h ≤ max(h
′

0, h
′′

0 ) and for any (s1, s2) ∈ ω we have

dist(Rh(s1, s2), SO(3)) ≤ 1/8.

Using (8.22) and (8.23) we obtain (recall that
∥∥ ·

∥∥
2

is the euclidian norm in R
3)

∀(s1, s2) ∈ ω,
∥∥∥
∂V ′

h

∂sα
(s1, s2)−R

′

h(s1, s2)tα(s1, s2)
∥∥∥

2
≤ Ch||φ||(W 2,∞(ω))3+C

(
||V||(H2(ω3h))3+||R′ ||(H1(ω3h))3×3

)

where ω3h = {(s1, s2) ∈ R
2 | dist

(
(s1, s2), ∂ω

)
≤ 3h}.

We have

∂Vh

∂sα
− Rhtα = (1 − ψh)

(∂V ′

h

∂sα
− R

′

htα

)
+
∂ψh

∂sα

(
φ− V ′

h

)
.

Thanks to the above inequality, (8.21) and again the estimate of |||R′

h − I3||| in the edge strip h ≤
dist

(
(s1, s2), γ0

)
≤ 2h we obtain for all (s1, s2) ∈ ω

∥∥∥
∂Vh

∂sα
(s1, s2) − Rh(s1, s2)tα(s1, s2)

∥∥∥
2

≤C
(
h||φ||(W 2,∞(ω))3 + ||V||(H2(ω3h))3 + ||R′ ||(H1(ω3h))3×3 + ||φ− V||(H2(ω5h,γ0

))3×3

)
.
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The same argument as above imply that there exists h0 ≤ max(h
′

0, h
′′

0 ) such that for any 0 < h ≤ h0 and for

any (s1, s2) ∈ ω we have

(8.28)
∥∥∥
∂Vh

∂sα
(s1, s2) − Rh(s1, s2)tα(s1, s2)

∥∥∥
2
≤ 1

8
.

From (8.21), (8.22), (8.23) and (8.24) there exists a positive constant C which does not depend on h such

that

(8.29) ||Rh||(W 1,∞(ω))3×3 ≤ C

h

{
||V||(H2(ω))3 + ||R||(H1(ω))3×3

}
.

Now we can choose h in term of δ. We set

h = κδ, δ ∈ (0, δ0]

and we fixed κ in order to have h ≤ h0 and to obtain the right hand side in (8.29) less than
1

4
√

2c
′

1δ
( c

′

1 is

given by (2.3)). It is well-known that there exists a sequence
(
wδ

)
δ∈(0,δ0]

satisfying (8.20), the convergences

in (8.18) and the estimate

||wδ||(W 1,∞(Ω))3 ≤ 1

4
√

2c
′

1δ
.

Let us now consider an arbitrary element
(
V,R, w

)
of Unlin and the corresponding sequences

((
Vδ,Rδ, wδ

))

δ>0
given by Lemma 8.1. The deformation vδ is then defined by

(8.30) vδ(s) = Vδ(s1, s2) + s3Rδ(s1, s2)n(s1, s2) + δ2wδ

(
s1, s2,

s3
δ

)
, for s ∈ Ωδ.

Step 1. Estimate on ||Πδ

(
∇xvδ − Rδ

)
||L∞(Ω))3×3 and ||dist

(
∇xvδ, SO(3)

)
||L∞(ω).

Using (3.11) and (8.30), we first have

(8.31)





(∇xvδ − Rδ)tα =
∂Vδ

∂sα
− Rδtα + s3

∂Rδ

∂sα
n + δ2

∂wδ

∂sα
− (∇xvδ − Rδ)s3

∂n

∂sα

(∇xvδ − Rδ)n = δ
∂wδ

∂S3
.

We first estimate the L∞-norm of Πδ(∇xvδ − Rδ). We have

(8.32)

Πδ(∇xvδ − Rδ) · Πδ(∇sΦ)

=
(∂Vδ

∂s1
− Rδt1 + S3δ

∂Rδ

∂sα
n + δ2

∂wδ

∂sα
| ∂Vδ

∂s2
− Rδt2 + S3δ

∂Rδ

∂sα
n + δ2

∂wδ

∂sα
| δ ∂wδ

∂S3

)
.

Thanks to (2.3), (8.20) and (8.28) we obtain

(8.33) ||Πδ

(
∇xvδ − Rδ

)
||(L∞(Ω))3×3 ≤ 1

4
.

From (8.20) and (8.33) we deduce that there exists a positive constant C0 such that

(8.34) ||Πδ

(
(∇xvδ)

T∇xvδ − I3

)
||(L∞(Ω))3×3 ≤ C0.
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In view of (8.18) and (8.33) we deduce that

||dist
(
∇xvδ, SO(3)

)
||L∞(ω) ≤

1

2

and then we obtain

(8.35) for a.e. s ∈ Ωδ det
(
∇xvδ(s)

)
> 0.

Step 2. Strong limit of
1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
.

Tanks to the convergences of Lemma 8.1, (8.20) and (8.32) we have

(8.36) ||Πδ

(
∇xvδ − Rδ

)
||(L2(Ω))3×3 ≤ Cδ.

We write the identity (∇xvδ)
T∇xvδ − I3 = (∇xvδ − Rδ)

T Rδ + RT
δ (∇xvδ − Rδ) + (∇xvδ − Rδ)

T (∇xvδ −
Rδ) + (Rδ − R)T Rδ + RT (Rδ − R). Due to (8.20), (8.33) and (8.36) we have

(8.37) ||Πδ

(
(∇xvδ)

T∇xvδ − I3

)
||(L2(Ω))3×3 ≤ Cδ.

In view of (8.18), (8.20), (8.31) we deduce that

(8.38)





1

δ
Πδ

(
(∇xvδ − R)tα

)
−→ S3

∂R

∂sα
n strongly in (L2(Ω))3

1

δ
Πδ

(
(∇xvδ − R)n

)
−→ ∂w

∂S3
n strongly in (L2(Ω))3

Now thanks (8.33) and the strong convergences (8.38) we obtain

1√
δ
Πδ(∇xvδ − R) −→ 0 strongly in (L4(Ω))3

and then using the above identity, we get

(8.39)
1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
−→ (t1|t2|n)−T Ê(t1|t2|n)−1 strongly in (L2(Ω))3×3,

where Ê is given by (8.14).

Step 3. The lim
δ→0

J(vδ)

δ3
.

Let ε be a fixed positive constant and let θ given by (7.2). We denote χθ
δ the characteristic function of

the set Aθ
δ = {s ∈ Ω; |||Πδ

(
(∇xvδ)

T∇xvδ − I3

)
(s)||| ≥ θ}. Due to (8.37), we have

(8.40) meas(Aθ
δ) ≤ C

δ2

θ2

and from (8.35) we have det
(
∇xvδ(s)

)
> 0 for a. e. s ∈ Ωδ. Due to (7.2), (7.4) and (8.39) we deduce that

lim
δ→0

∫

Ω

1

δ2
(1 − χθ

δ) Ŵ
(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≤

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
det(t1|t2|n)

+ ε

∫

Ω

|||(t1 | t2 |n)−T Ê(t1 | t2 |n)−1|||2 det(t1|t2|n)
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where Ê is given by (8.14). Thanks to (7.3), (7.4), (8.37), the strong convergence (8.39) and the weak

convergence
1

δ
χθ

δ ⇀ 0 in L2(Ω) we obtain

lim
δ→0

∫

Ω

1

δ2
χθ

δ Ŵ
(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≤ C1 lim

δ→0

∫

Ω

1

δ
χθ

δ |||
1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
|||Πδ det(∇Φ) = 0

Hence for any ε > 0 we get

lim
δ→0

∫

Ω

1

δ2
Ŵ

(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≤

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
det(t1|t2|n)

+ ε

∫

Ω

|||(t1 | t2 |n)−T Ê(t1 | t2 |n)−1|||2 det(t1|t2|n)

Finally

(8.41) lim
δ→0

∫

Ω

1

δ2
Ŵ

(
Πδ(∇xvδ)

)
Πδ det(∇Φ) ≤

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
det(t1|t2|n).

As far as the contribution of the applied forces is concerned, proceeding as in the proof of the lim-inf condition

and using the convergences (8.18) gives

(8.42) lim
δ→0

( ∫

Ω

f · Πδ(vδ)Πδ det(∇Φ) +

∫

Ω

g · Πδ(vδ)

δ
Πδ det(∇Φ)

)
= L(V,R).

From (8.41) and (8.42), we conclude that

lim
δ→0

J(vδ)

δ3
≤

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
det(t1|t2|n) − L(V,R) = JNL

(
V,R, w

)
.

The following theorem summarizes the above results.

Theorem 8.2. The functional JNL is the Γ-limit of
J(.)

δ3
in the following sense:

• consider any sequence of deformations
(
vδ

)
0<δ≤δ0

belonging to Uδ and satisfying

lim
δ→0

J(vδ)

δ3
< +∞

and let
(
Vδ,Ra,δ, va,δ

)
be the terms of the decomposition of vδ given by Theorem 3.3. Then there exists(

V,R, w
)
∈ Unlin such that (up to a subsequence )

Vδ −→ V strongly in
(
H1(ω)

)3
,

Ra,δ ⇀ R weakly in
(
H1(ω)

)3×3
,

1

δ

(∂Vδ

∂sα
− Ra,δtα

)
⇀ Zα weakly in

(
L2(ω)

)3
,

1

δ2
Πδva,δ ⇀ v weakly in

(
L2(ω;H1(−1, 1))

)3

where w is defined by (8.13) as a function depending of R, Zα and v. We have

JNL

(
V,R, w

)
≤ lim

δ→0

J(vδ)

δ3
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• for any
(
V,R, w

)
∈ Unlin there exists a sequence

(
vδ

)
0<δ≤δ0

belonging to Uδ such that

lim
δ→0

J(vδ)

δ3
≤ JNL

(
V,R, w

)
.

Moreover, there exists
(
V0,R0, w0

)
∈ Unlin such that

(8.43) m
′

2 = lim
δ→0

( 1

δ3
inf

v∈Uδ

J(v)
)

= JNL

(
V0,R0, w0

)
= min

(V,R,w)∈Unlin

JNL

(
V,R, w

)
.

The next theorem shows that the variable w can be eliminated in the minimization problem (8.43).

Theorem 8.3. Let (V0,R0) be given by Theorem 8.2. The minimum m2 of the functional JNL over Unlin

satisfies the following minimization problem:

(8.44) m
′

2 = FNL

(
V0,R0

)
= min

(V,R)∈Vnlin

FNL

(
V,R

)
,

where

Vnlin =
{(

V,R
)
∈ (H2(ω))3 × (H1(ω))3×3 | V = φ, R = I3 on γ0,

R(s1, s2) ∈ SO(3) for a.e. (s1, s2) ∈ ω,
∂V
∂sα

= Rtα

}
,

and

FNL

(
V,R

)
=

∫

ω

aαβα′β′

( ∂R
∂sα

n · Rtβ

)( ∂R
∂s′α

n · Rtβ′

)
det(t1|t2|n) − L(V,R)

where aαβα′β′ are constants which depend only of the quadratic form Q and the vectors (t1, t2,n).

Proof of Theorem 8.3. In order to eliminate w, we fix
(
V,R

)
∈ Vnlin and we minimize the functional

JNL

(
V,R, ·

)
over the space

W =
{
w ∈ (L2(ω;H1(−1, 1)))3 |

∫ 1

−1

w(s1, s2, S3)dS3 = 0 for a.e. (s1, s2) ∈ ω
}
.

We first write

∫

Ω

Q
(
(t1 | t2 |n)−T Ê(t1 | t2 |n)−1

)
|det(t1|t2|n)| =

∫

Ω



Q̂1

... Q̂2

. . . . . .

Q̂T
2

... Q̂3







Ê11

Ê12

Ê22

Ê13

Ê23

Ê33




·




Ê11

Ê12

Ê22

Ê13

Ê23

Ê33




det(t1|t2|n)

where Q̂1, Q̂2 and Q̂3 are matrices belonging to (L∞(ω))3×3 moreover Q̂1 and Q̂3 are symmetric. They

depend of the coefficients of the quadratic form Q and the vectors (t1, t2,n) and they satisfy



Q̂1(s1, s2)

... Q̂2(s1, s2)
. . . . . .

Q̂T
2 (s1, s2)

... Q̂3(s1, s2)







ξ11
ξ12
ξ22
ξ13
ξ23
ξ33




·




ξ11
ξ12
ξ22
ξ13
ξ23
ξ33




≥ c0|ξ|2 for any ξ =




ξ11
ξ12
ξ22
ξ13
ξ23
ξ33




∈ R
6 and for a.e. (s1, s2) ∈ ω
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where c0 is a positive constant.

Through solving simple variational problems (see [18]), we find that the minimum of the functional

JNL

(
V,R, ·

)
over the space W is obtained with

(8.45)




1

2
w(., ., S3) · Rt1

1

2
w(., ., S3) · Rt2

w(., ., S3) · Rn


 = −

(
S2

3 − 1

3

)
Q̂−1

3 Q̂T
2




∂R

∂s1
n · Rt1

∂R

∂s1
n · Rt2

∂R

∂s2
n · Rt2




Replacing




1

2
w(., ., S3) · Rt1

1

2
w(., ., S3) · Rt2

w(., ., S3) · Rn


 by its value given above we obtain

min
w∈W

JNL

(
V,R, w

)
= FNL

(
V,R

)

=
2

3

∫

ω

(
Q̂1 − Q̂2Q̂

−1
3 Q̂T

2

)




∂R

∂s1
n · Rt1

∂R

∂s1
n · Rt2

∂R

∂s2
n · Rt2




·




∂R

∂s1
n · Rt1

∂R

∂s1
n · Rt2

∂R

∂s2
n · Rt2




det(t1|t2|n) − L(V,R).

The symmetric matrix Q̂1 − Q̂2Q̂
−1
3 Q̂T

2 belongs to (L∞(ω))3×3 and moreover it satisfies

(
Q̂1 − Q̂2Q̂

−1
3 Q̂T

2

)


ξ11
ξ12
ξ22


 ·



ξ11
ξ12
ξ22


 ≥ c0|ξ|2 for any ξ =



ξ11
ξ12
ξ22


 ∈ R

3 and for a.e. (s1, s2) ∈ ω.

9. A few remarks.

1. In the case of a St-Venant-Kirchhoff material, the above analysis and a classical energy argument

show that if
(
vδ

)
0<δ≤δ0

is a sequence such that

m
′

2 = lim
δ→0

J(vδ)

δ3
,

then there exists a subsequence and (V0,R0) ∈ Vnlin, which is a solution of Problem (8.44), such that the

sequence of the Green-St Venant’s deformation tensors satisfies

1

2δ
Πδ

(
(∇xvδ)

T∇xvδ − I3

)
−→ (t1 | t2 |n)−T Ê0(t1 | t2 |n)−T strongly in (L2(Ω))3×3,

where Ê0 is defined in (8.14) with w0 given by (8.45) (replacing R by R0).

2. Let us give the explicit expression of the limit energy FNL in the case where S is a developable

surface such that the parametrization φ is locally isometric

∀(s1, s2) ∈ ω ||tα(s1, s2)||2 = 1 t1(s1, s2) · t2(s1, s2) = 0.
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We consider a St Venant-Kirchhoff’s law for which we have

Ŵ (F ) =





λ

8

(
tr(FTF − I3)

)2
+
µ

4
tr

(
(FTF − I3)

2
)

if det(F ) > 0

+ ∞ if det(F ) ≤ 0,

so that Q = W . For any
(
V,R, w

)
∈ Unlin, the expression (8.15) gives

JNL

(
V,R, w

)
=

∫

Ω

[λ
2

(
tr(Ê)

)2
+ µ tr

(
(Ê)2

)]
− L(V,R)

where Ê is defined by (8.16). It follows that the elimination of w in Theorem 8.2 is identical to that of

standard linear elasticity (see [19]) hence we have

w(., ., S3) = − λ

λ+ 2µ

(
S2

3 − 1

3

)(∂R
∂s1

n · Rt1 +
∂R

∂s2
n · Rt2

)
Rn

and then

FNL

(
V,R

)
=

2E

3(1 − ν2)

∫

ω

[
(1 − ν)

2∑

α,β=1

( ∂R
∂sα

n · Rtβ

)2

+ ν
(∂R
∂s1

n · Rt1 +
∂R

∂s2
n · Rt2

)2]
− L(V,R).

3. It is well known that the constraint
∂V
∂s1

= Rt1 and
∂V
∂s2

= Rt2 together the boundary conditions are

strong limitations on the possible deformation for the limit 2d shell. Actually for a plate or as soon as S is a

developable surface, the configuration after deformation must also be a developable surface. In the general

case, it is an open problem to know if the set Vnlin contains other deformations than identity mapping or

very special isometries (as for example symetries).

Appendix A

In this section the vector space R
n×n of all matrices with n rows and n is equipped with the Frobenius

norm. We set

Y =]0, 1[2, B3 =
{
x ∈ R

3 ; ||x‖2 ≤ 1
}
, S3 =

{
x ∈ R

3 ; ||x‖2 = 1
}
.

We denote Ra,θ the rotation with axis directed by the vector a ∈ S3 and with angle of rotation about this

axis θ ∈ R,

(A.1) ∀x ∈ R
3, Ra,θ(x) = cos(θ)x + (1 − cos(θ)) < x,a > a + sin(θ)a ∧ x.

Let R0 and R1 be two matrices in SO(3). Matrix R0 represent the rotation Ra0,θ0
and matrix R1

represent the rotation Ra1,θ1
. The linear transformation in R

3

x 7−→ 2
(
sin(θ1)a1 − sin(θ0)a0

)
∧ x

has for matrix R1 − R0 − (R1 − R0)
T and we have

∥∥ sin(θ1)a1 − sin(θ0)a0

∥∥
2

=
1

2
√

2
|||R1 − R0 − (R1 − R0)

T ||| ≤ 1√
2
|||R1 − R0|||.
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To any matrix R in SO(3) we associate the vector b = sin(θ)a where R is the matrix of the rotation Ra,θ.

This map is continuous from SO(3) into B3 and from the above inequality, we obtain

∥∥b
∥∥

2
≤ 1√

2
|||R − I3|||.

If cos(θ) 6= −1, using the vector b we can write the rotation Ra,θ as

(A.2) ∀x ∈ R
3, Ra,θ(x) = cos(θ)x +

1

1 + cos(θ)
< x,b > b + b ∧ x.

Let R0 and R1 be two matrices in SO(3) such that

|||R0 − R1||| < 2
√

2.

Now we define a path f from R0 to R1:

• if R1 = R0 we choose the constant function f(t) = R0, t ∈ [0, 1],

• if R1 6= R0, we set R2 = R−1
0 R1, there exists a unique pair (a2, θ2) ∈ S3×]0, π[ such that the matrix

R2 represent the rotation with axis directed by the vector a2 and with the angle θ2. We consider the rotations

field Ra(t),θ(t) given by formula (A.1) where

a(t) = a2, θ(t) = tθ2, t ∈ [0, 1]

and we define f(t) as the matrix of the rotation R0 ◦ Ra(t),θ(t) where R0 is the rotation with matrix R0.

Lemma A.1. The path f belongs to W 1,∞(0, 1;SO(3)) and satisfies

(A.3)





f(0) = R0, f(1) = R1,
∥∥∥
df

dt

∥∥∥
(L∞(0,1))9

≤ π

2
|||R1 − R0||||,

|||R0 − f(t)||| ≤ |||R0 − R1|||.

Proof One has ∥∥∥
df

dt

∥∥∥
(L∞(0,1))9

=
√

2θ2 ≤ π

2
|||R2 − I3||| =

π

2
|||R1 − R0|||.

Moreover

|||R0 − f(t)||| = |||I3 − R−1
0 f(t)||| = 2

√
2 sin

(θ2t
2

)
≤ 2

√
2 sin

(θ2
2

)
= |||I3 − R2||| = |||R0 − R1||||.

Lemma A.2. Let R00, R01, R10 and R11 be four matrices belonging to SO(3) and satisfying

(A.4) |||R10 − R00||| ≤
1

2
, |||R01 − R00||| ≤

1

2
, |||R11 − R01||| ≤

1

2
, |||R11 − R10||| ≤

1

2
.

There exists a function R ∈W 1,∞(Y ;SO(3)) such that

(A.5)

{
R(0, 0) = R00, R(0, 1) = R01, R(1, 0) = R10, R(1, 1) = R11,

||∇R||(L∞(Y ))9 ≤ C
{
|||R10 − R00|||| + |||R01 − R00|||| + |||R11 − R01|||| + |||R11 − R10||||

}
.
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and where the functions x1 −→ R(x1, 0), x1 −→ R(x1, 1), x2 −→ R(0, x2) and x2 −→ R(1, x2) are paths

given by Lemma A.1.

Proof. We denote

f00,01 the path from R00 to R01,

f01,11 the path from R01 to R11,

f00,10 the path from R00 to R10 and

f01,11 the path from R01 to R11 given by Lemma A.

From Lemma A.1, we have

∀t ∈ [0, 1],

{
|||f00,01(t) − R00||| ≤ 1, |||f01,11(t) − R00||| ≤ 1,

|||f00,10(t) − R00||| ≤ 1, |||f01,11(t) − R00||| ≤ 1.

For any t ∈ [0, 1],

to matrix R−1
00 f00,01(t) we associate the vector b00,01(t),

to matrix R−1
00 f01,11(t) we associate the vector b01,11(t),

to matrix R−1
00 f00,10(t) we associate the vector b00,10(t) and

to matrix R−1
00 f01,11(t) we associate the vector b01,11(t).

Let b be the vectors field defined by

b(x1, x2) =





b00,10(0)
(

= b00,01(0)
)

if (x1, x2) = (0, 0),
x1

x1 + x2
b00,10(x2) +

x2

x1 + x2
b00,01(x1) if 0 < x1 + x2 ≤ 1

1 − x1

2 − x1 − x2
b10,11(x2) +

1 − x2

2 − x1 − x2
b01,11(x1) if 1 ≤ x1 + x2 < 2

b01,11(1)
(

= b10,11(1)
)

if (x1, x2) = (1, 1).

This function belongs to
(
W 1,∞(Y )

)3
and satisfies

∀(x1, x2) ∈ Y , ‖b(x1, x2)‖2 ≤ 1√
2
.

Now we introduce the rotations field R(x1, x2) given by formula (A.2) where b(x1, x2) is defined above and

where

θ(x1, x2) = arccos
√

1− < b(x1, x2),b(x1, x2) >, (x1, x2) ∈ Y .

Let R(x1, x2) be the matrix of the rotation R00 ◦ R(x1, x2) where R00 is the rotation with matrix R00. It

is easy to check that R satisfies the conditions (A.5).

Corollary of Lemma A.2. Let Ra be the Q1 interpolate of the matrices R00, R01, R10 and R11. There

exists a strictly positive constant C such that

||R − Ra||(L2(Y )9 ≤ C
{
|||R10 − R00|||| + |||R11 − R01|||| + |||R01 − R00|||| + |||R11 − R10||||

}
.

Appendix B
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Lemma B.1. Let Qm be the positive definite quadratic form defined on the space R
3 × R

3 ×
(
L2(−1, 1)

)3

by

∀(a,b, c) ∈ R
3 × R

3 ×
(
L2(−1, 1)

)3
, Qm(a,b, c) =

∫ 1

−1

A




S3a1 + b1

S3a2 + b2

S3a3 + b3

c1(S3)
c2(S3)
c3(S3)




·




S3a1 + b1

S3a2 + b2

S3a3 + b3

c1(S3)
c2(S3)
c3(S3)



dS3

where A is a symmetric positive definite constant 6× 6 matrix. For any (a,b, c) ∈ R
3 × R

3 ×
(
L2(−1, 1)

)3
,

there exists d in R3 which depends only on b and A such that

Qm(a,b, c) ≥ Qm(a, 0, c − d).

Proof. We write

A =




A1

... A2

· · · · · ·
AT

2

... A3




where A1 and A3 are symmetric positive definite 3 × 3 matrices. We set

d = −A−1
3 AT

2 b.

By a straightforward calculation and using the fact that

∫ 1

−1

S3dS3 = 0, we obtain

Qm(a,b, c) = Qm(a, 0, c − d) + Qm(0,b,d).

The positivity of Q then gives the result.
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