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Abstract 

Automatic analysis of tongue movement in large existing 

cineradiographic databases can provide valuable information 

to understood speech production. We describe here a method 

for semi-automatic extraction of articulatory information from 

video observation in order to derive quasi-automatically a 

geometrical parameterization of the vocal tract movements. 

The algorithm starts with a limited manual processing step 

consisting in marking 10 points (12 degrees of freedom) on 

100 chosen key images. The treatment on the whole sequence 

is then automatic thanks to a retro-marking method. At first, 

the whole database is indexed via a similarity measure 

performed with the key images. Then, we associate on the 

original images the geometrical information recovered on the 

key images via this indexing. Different complementary error 

reduction methods are also proposed. Averaging geometrical 

configurations of a neighborhood, temporal filtering and 

spline interpolation allow to reduce the reconstruction error to 

about 10 pixels for a tongue contour of average length of 260 

pixels. 
 

1. Introduction 

The analysis of non visible vocal tract movements is a 

classical problem. Different imaging techniques had been 

proposed : cineradiography, ultrasounds [1], MRI [2],[3], 

electromagnetic midsagittal articulography EMMA [4]. But 

most of these visualization techniques are not suitable for 

large sequence analysis. In all studies (as in [5]), the 

cineradiographic data are exploited after a laborious manual 

step. The quantitative information about the vocal tract 

configuration is extracted by drawing by hand image per 

image. We describe here a semi-automatic method which 

allows the exploitation of a large amount of such data. After a 

limited manual step (training) the geometrical information is 

extracted in the full database. Remarkably, we infer 

geometrical information from video observation without the 

direct use of markers and without a contour extraction 

technique either. 
 

The cineradiographic datatabase [6] we use is composed of 

5673 images (490*480 pixels) recorded at 25 im/sec, from 64 

concatenated video sequences. These 64 sentences are 

pronounced by a single female French speaker. The manual 

processing of this database for extracting the tongue contour is 

known to be difficult because of the very poor contrast and the 

occlusion. We assume that semi-interactive methods, such as 

active contour models [7], of image by image processing 

cannot be applied. In fact, motion and context images must be 

taken into account to extract geometrical features from a given 

image. On the other hand, the time redundancy of the 

movements is high, because vocal tract gestures are pseudo-

periodic. This challenging task is a good support for the 

development of new algorithms for the capture of biological 

movement without the use of markers. The paper is divided in 

2 parts, the presentation of an adaptation of the “retro-

marking” algorithm [8] and the development of improvements 

for reconstruction of the geometrical information, which are 

tested quantitatively. 
 

2. Algorithm 

2.1. Retro-marking 

A new method called “retro-marking” (Fig. 1) is implemented. 

It consists in processing manually, with an interface, a small 

number of key images { }N)(Kn)(KK inii ..1  100),( :1 ∈== =
, 

and then indexing automatically the frames of the full database 

5673)( :1 == = N)(SS Ntt
 according to these key images. The 

100 key images (Ki) are chosen randomly among the whole 

database (1.75% of the database).  
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Figure 1 : Principle of retro-marking technique for 

derivation of geometrical features from DCT 

parameters through a video database 
 

The manual process applied for the key images only aims to 

describe with only a few points (10 points with 12 degrees of 

freedom, d.o.f.) the position of the tongue contour. The 10 

points on the tongue are defined in Figure 2a. Horizontal and 

vertical lines have been set to limit at one the number of d.o.f. 

for 8 of these points. The points 1 and 2 (tongue tip) have 2 

d.o.f. each.  
 

A raw and sometimes irregular figure of the tongue contour is 

obtained by connecting the 10 points. After this manual step of 

marking, we have the XY-coordinates of 10 points for the 100 

(Ki) images, corresponding to a geometrical configuration Gi 



associated to each key image. Let remark that motion and 

adjacent images are also taken into account during this manual 

step, thanks to the use of a slider for showing the context 

sequence. The quality of the final result is constrained by the 

quality of the manual marking, which is carefully performed 

by an expert. 

(a) (b) 

Figure 2 : (a) Out of the tongue tip, the manual 

marks are pointed at the intersect between the 

tongue contour and the horizontal or vertical lines. 

For one point (e.g., 6), once the line has fixed one 

coordinate (Y), the degree of freedom is on the 

other coordinate (X). 

(b) Smaller images used to calculate the DCT 

components for the automatic indexing and selected 

regions for spectral analysis (§2.2.1.) 
 

The main retro-marking step is the automatic indexing of the 

full database S according to the K images. It allows an 

association between the geometrical features and the video 

features. The video features are the 575 (24*24 - 1) lowest 

frequency DCT (Discrete Cosine Transform) components of 

each image. These components have been calculated on 

smaller images (Fig. 2b : 104*99 pixels) resized, centered and 

framed to remove some artifacts (as the piston hidden on the 

bottom left corner). An index i is calculated for each St by 

assigning the index of the nearest key image. The similarity 

measure is the Euclidian distance between the DCT 

components (out of the first one). 
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(1) 

The second step of the retro-marking consists in a geometrical 

marking of the original images (St) by association via the 

index of the geometrical information available for the key 

images only. At this stage, the tongue movements are partly 

reconstructed, but we observe significant jumps.  
 

2.2. Reconstruction of the geometrical information 

across time 

We aim to reduce significantly the baseline reconstruction 

error by restoring continuity. To observe the effect of error 

reduction operators, we introduce some intermediate 

representations, i.e. Principal Component Analysis or PCA. 

Those PCA are applied on video features (DCT components) 

and on geometrical features (marked points coordinates) of 

key images only. The motion reconstruction enhancement 

consists on one hand in reducing the quantization effects by 

temporal filtering of the geometrical features and on the other 

hand in compensating the irregularities of the mapping 

between the 2 representations. 
 

2.2.1.  Temporal smoothing of the geometrical features 

The direct observation of the tongue motion bandwidth (via a 

spectral analysis) has shown that the video components 

frequency is about 3.75 Hz. To be systematic, we have 

observed the Power Spectral Density (PSD) of DCT 

components, on selected pixels and also on the 2 first 

components of the video PCA. The PSD on pixels are 

calculated on selected regions (as in [9]) of the images (Fig. 

2b). This bandwidth observed for the video data is the same 

for the geometrical information. Therefore, a low-pass 

temporal filtering (4th order 0-phase lowpass filter) with a cut-

off frequency at 3.75 Hz is applied on the sequence of 

geometrical features. 

 
Figure 3 : Mean PSD on pixels pooled from the 3 

regions of Fig. 2b for a sequence of 1000 images 

without and with filtering (temporal low-pass filter 

with cut-off frequency at 3.75 Hz) 
 

2.2.2.  Neighborhood averaging 

The observation of trajectories by projection in the 2 principal 

plans of video and geometrical features reveals the irregularity 

of the relationship between video and geometry (Fig. 4 a,b). 

Two consecutive images which are close in the video space 

(Fig. 4a) are not necessarily close in the geometrical space 

(Fig. 4b). The trajectory in the geometrical space generated via 

the indexing shows severe discontinuities we attenuate by 

averaging the geometrical configurations of the 3 neighbors 

taken in the video space (Fig. 4 c,d).  
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Figure 4 : By averaging geometrical configurations 

of 3 neighbors instead of 1 (d), the discontinuities of 

the trajectory in the geometrical space (b) are 

reduced. 

(a), (b) : visualization of trajectories  

(c), (d) : principle of neighborhood averaging 
 

For each image St, we find 3 closer neighbors Ki1, Ki2 and Ki3 

(closer in term of video features thanks to the similarity 

measure applied with 575 DCT components) among the 100 

key images. Figure 4 c,d, the image St and its 3 neighbors are 



projected in the video plane (points I, P1, P2 and P3) and in the 

geometrical plane (points Q1,Q2 and Q3). The 3 vectors of 

geometrical configuration GKi1, GKi2 and GKi3 respectively 

associated to the key images Ki1, Ki2 and Ki3 are averaged to 

generate 
~

tGK . The projection of this new point on the 

principal plane is the point J (Fig. 4d). A supplementary 

weighting takes into account the Euclidian distances d 

calculated in the video space (DCT components) between St 

and Ki1, Ki2 and Ki3. 
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(2) 

This 3-neighbor-indexing method can be followed by the 

temporal smoothing of the resultant series of geometrical 

configurations as well as for the 1-neighbor-indexing. 
 

2.2.3.  Spline interpolation 

The contour connecting the points          is quite irregular, and 

a spline interpolation by a 5-degree polynomial        that fits 

the points of          in a least-squares sense improves the frame 

by frame estimate.  
 

2.2.4.  Practical implementation 

A graphical user interface has been implemented for the 

manual step of marking. The manual processing of 100 key 

images, including 10 points each, lasts at least 2 hours. After 

the manual step, the computation time for applying the method 

for the whole database (5673 images) lasts a few minutes, 

starting from the smaller images. 
 

3. Evaluation 

At first, the result was visually evaluated by displaying the 

superimposition of the geometrical configurations 

(geometrical features defined with the XY-coordinates of 10 

points) in the original video sequence. 
 

3.1. Error measurement 

For having a quantitative error measure, the reference is a set 

of new images marked by the same expert in the same 

conditions, so that the estimates generated from the key 

images can be compared directly with the expert marks. A 

second procedure is proposed, with a comparison of the two 

sequences generated from two different sets. Practically, the 

expert has carried out the manual marking on 200 images, and 

for each simulation, among them, 100 are considered as key 

images { }..N)(K i 1∈ , giving a set (GKi) of marks and the 100 

others { }N)(T j ..1∈  are considered as test images, giving a 

set (GTj) of marks.  
 

We evaluate the reconstruction RMS (root mean square) error 

among the pair of geometrical features, the key one and the 

test one. Edof1 and Etot1 are calculated by comparing on the 

100 test frames only, the marks estimated from the key images 

(as an external reference) with the marks of the corresponding 

test images. Edof2 and Etot2 are calculated by comparing on 

all frames the marks estimated from the 2 different sets of key 

images.  

(Edof1) error d.o.f. by d.o.f. on the 100 test frames (Tj) 

between the marks (GTj) of the test images and the 

marks                 estimated from the key images (Ki) 
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(Edof2) error d.o.f. by d.o.f. on the whole sequence (St) 

between the marks        estimated from the test 

images (Tj) and the marks              estimated from 

the key images (Ki)  
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(Etot1) mean value of the (Edof1) error on the 12 d.o.f., on 

the 100 test frames (Tj) 
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(Etot2) mean value of the (Edof2) error on the 12 d.o.f., on 

the whole sequence (St) 
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The error can also be calculated after spline interpolation. In 

this case, the values of the 12 d.o.f. are derived from the 

interpolated contour.  

For all these measures, the unit is the pixel of the 490*480 

images. 
 

3.2. Simulations 

Thanks to this error measurement, we can tune the main 

parameters and combine optimally the previous methods. 
 

3.2.1.  Number of key images 

Taking 100 key images only is a compromise between the 

reconstruction error rate and the cost of the manual 

processing. The influence of the keys number n on the global 

error rate (Etot1) is shown (Fig. 5) for the model including 

simple indexing and temporal filtering. From 25 to 100 keys, 

the error decreases of 3 pixels, whereas it only decreases of 1 

pixel between 100 and 200 keys. With loglog scales, the 

relationship is linear with slope p = –0.1. This means that to 

reduce the error by 10% only, the number of keys must be 

multiplied by 2.5. For carrying out these simulations, we have 

used an additional set of 100 marked images, as test images, in 

order to keep up to 200 images in our initial set. 

 
Figure 5 : Influence of the keys number on the 

(Etot1) error calculated after 1-neighbor-indexing 

and temporal smoothing. 
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Figure 7 : (a) The result of M5 can be seen on a video which is the superimposition of the geometrical 

estimates in the original video sequence : <http://www.icp.inpg.fr/~bertho/m2p/eur05/video_tongue.wmv> 

(b) M4 error bars (Edof2) superimposed on one key image (image size: 490*480 pixels) 

(c) Error reduction models M1..5 

(d) Cumulative contribution of error reduction models observed with (Etot1) and (Etot2) error evaluation 

3.2.2.  Neighborhood size 

As shown in § 2.2.2, taking 3 neighbors instead of 1 provides 

a great error reduction. We have varied the neighborhood size 

from k=1 to k=10 and measured the global error (Etot1) 

without temporal filtering. Increasing the number of neighbors 

from 1 to 4 significantly decreases the error, but there is no 

supplementary gain for k>4 (Fig. 6). 

 
Figure 6 : Influence of the neighborhood size on the  

error (Etot1) 
 

3.2.3. Cumulative improvement 

Five models M1..5 are built using combinations of the 3 error 

reduction methods (Fig. 7c). By applying those error reduction 

methods we are able to reduce gradually the reconstruction 

error Etot1 by nearly 5 pixels (Fig. 7d). The error Etot2 is more 

optimistic (reduction by 9 pixels) since the 2 sequences are 

processed similarly. This cumulative effect shows that the 3 

methods are complementary. On Figure 7b, the error (Edof2) 

for M4 is shown d.o.f. by d.o.f., in order to attest this is 

uniformly distributed along the tongue contour. 
 

4. Conclusion 

After a limited manual processing step, the “retro-marking” 

treatment is automatic and takes a few minutes. The manual 

step aims at being minimal but the quality of the marking is 

critical to ensure the success of the technique.  

The superimposition of the tongue contour in the original 

video sequence allows observing that we retrieve the tongue 

movement well. Thanks to the quantitative evaluation applied 

on different combinations of error reduction methods, we have 

shown that the best global error Etot1 is evaluated at about 11 

pixels and Etot2 at about 8 pixels, bearing in mind that the 

tongue contour has an average length of 260 pixels. 

 

After extensions of this approach to recover the lips, the 

larynx and the soft palate and then to obtain complete vocal 

tract configurations, the impact of the error will be evaluated 

with speech synthesis tests. Inversion and correlation between 

lips and tongue are other outlooks for future work. 
 

Acknowledgments : We would like to thank Pascal Perrier and 

Rudolph Sock for providing the digital video in the context of the 

CNRS project of valorization of cineradiographic data [6]. 
 

 5. References 

[1] Akgul Y.S., Kambhamettu C. and Stone M., “Extraction and 

tracking of the tongue surface from ultrasound image 

sequences”, Proc. of IEEE Computer Vision Pattern 

Recognition, Santa Barbara, California, June 1998. 
 

[2] Davis E.P., Douglas A.S. and Stone M., “A Continuum 

Mechanics Representation of Tongue Deformation”, Proc. of 

Int. Conf. on Spoken Language Processing - ICSLP’96, 

Philadelphia, USA, Oct. 1996. 
 

[3] Engwall O., “A 3D tongue model based on MRI data”, Proc. 

of Int. Conf. on Spoken Language Processing - ICSLP’00, 

Beijing, China, Oct. 2000. 
 

[4] Hoole P., “On the lingual organization of the German vowel 

system”, J. Acoust. Soc. Amer., Vol. 106, Aug. 1999. 
 

[5] Beautemps D., Badin P. and Bailly G., “Linear degrees of 

freedom in speech production : Analysis of cineradio- and 

labio-film data and articulatory-acoustic modeling”, J. 

Acoust. Soc. Amer., Vol. 109, May 2001. 
 

[6] Wioland F., “Faits de jointure en français. Implications aux 

niveaux articulatoire et acoustique. Incidences sur le plan des 

fonctions linguistiques”, Doctorat d’Etat, IPS, UMB, 

Strasbourg, France, 1985. 
 

[7] Laprie Y. and Berger M.-O., “Extraction of Tongue 

Contours in X-Ray Images with Minimal User Interaction”, 

Proc. of Int. Conf. on Spoken Language Processing - 

ICSLP'96, Philadelphia, USA, Oct. 1996. 
 

[8] Berthommier F., “Characterization and extraction of mouth 

opening parameters available for audiovisual speech 

enhancement”, Proc of Int. Conf. on Acoustics, Speech and 

Signal Processing – ICASSP’04, Montreal, Quebec, Canada, 

May 2004. 
 

[9] De Paula H., Yehia H.C., Shiller D., Jozan G., Munhall K.G. 

and Vatikiotis-Bateson E., “Linking production and 

perception through spatial and temporal filtering of visible 

speech information”, Speech Production : Models, Phonetic 

Processes and Techniques. Harrington & Tabain (eds) 

Psychology Press (to appear), 2005. 

 

 


