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ABSTRACT

In this paper, we introduce a novel way to represent an image
sequence, which naturally exhibits the temporal persistence of the
textures. Standardized representations have been thoroughly opti-
mized, and getting significant improvements has become more and
more difficult. As an alternative, Analysis-Synthesis (AS) coders
have focused on the use of texture within a video coder. We in-
troduce here a new AS representation of image sequences that re-
mains close to the classic block-based representation. By tracking
textures throughout the sequence, we propose to reconstruct it from
a set of moving textures which we call motion tubes. A new mo-
tion model is then proposed, which allows for motion field con-
tinuities and discontinuities, by hybridizing Block Matching and a
low-computational mesh-based representation. Finally, we propose
a bi-predictional framework for motion tubes management.

Index Terms— Image sequences, motion tube, texture tracking,
hybrid motion model

1. INTRODUCTION

Block-based representations have ruled the video coding world for
a while. Standardized schemes, such as MPEG-x and H.264/AVC,
use motion-compensated blocks to predict a frame from previously
processed frames. Despite its efficiency, this model has been thor-
oughly optimized and getting significant improvements has become
more and more difficult. Besides, the continuities of the motion field
on the blocks boundaries cannot be represented by such a model, and
the temporal persistence of the textures cannot be fully exploited.
To overcome those issues, some Analysis / Synthesis (AS)
schemes have been proposed: textures are analysed, then image
sequences are synthesized from the analysed textures. In [1], mo-
tion field continuities are handled by the use of triangular motion-
adaptive meshes. However, meshes are not able to efficiently rep-
resent the motion field discontinuities, nor able to handle texture
occlusions and disocclusions. Besides, it also suffers from the com-
putational complexity of the compensation of meshes. Some other
techniques propose the use of texture synthesis. Whilst they are not
naturally fit to video coding, requiring strong constraints on textures
to be efficient, a few have yet been adapted to video coding [2, 3].
In parallel, other works such as Motion Threads, then Barbell
lifting, by defining motion threads along blocks [4] or pixels [5],
showed how much important it is to catch the temporal persistence
of textures in an image sequence. As for region based coders [6, 7],
they aim at tracking given areas of the image sequence throughout
a Group Of Picture (GOP), maximizing the use of a given textural
information. However, they suffer from the complexity of regions
representation and coding. Above all, it is a difficult task to provide
an efficient and generic way to segment the regions to be tracked.

This paper proposes an AS representation of an image sequence
naturally exhibiting the temporal persistence of both textures and
motion, while handling textures occlusions and disocclusions. Our
representation employs motion tubes as a basic structure. These have
already been proposed to assess the quality of an image sequence [8];
yet they were not re-used over several successive frames and would
simply aim at robustifying the motion field and improving the tem-
poral consistency of the classification. The proposed motion model
hybridizes motion-adaptive meshes with standard block-based repre-
sentation, which allows for motion continuities and discontinuities,
while limiting the complexity of the warping operation.

Section 2 will introduce the concept of motion tubes; section
3 will study their motion, and will propose a new motion model.
Section 4 will bring about the management process of motion tubes.
Finally, conclusions and perspectives will be given in section 5.

2. TOWARDS THE NOTION OF MOTION TUBE

While looking at a sequence of natural images, one can see that a tex-
ture is to be found in many successive frames, whether it has been
translated, resized, rotated or warped (see fig. 1). Few are the rep-
resentations that naturally exhibit this temporal persistence, none of
which benefiting from the ease of the block-based representation.
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Fig. 1. A motion tube: temporal persistence of a given texture

As a preliminary step towards a coding scheme based on the use
of such moving textures, this article proposes to track blocks of tex-
tures over a period of time, until these textures disappear. An image
sequence is then represented by the set of all moving textures that
fully reconstruct the sequence. Rather than using a frame as a basic
element of an image sequence, a motion tube, structure embedding
textural information along with its tracking data, will be used. It
aims at modelling a spatio-temporal portion of the sequence.



Let T be a motion tube. It starts at an instant ¢, and ends at an
instant t.: it has its own lifespan. In figure 1, the tube on the ball is
created at t; = to and destroyed at t. = t2. T is characterized by its
texture information, which can be refined at any instant, to cope with
resolution losses and illumination changes. In this preliminary work,
we assume that both previous phenomenons won’t happen ; they
will be later studied. A motion tube aims at maximizing the re-use
factor of a given texture throughout an image sequence, optimizing
its temporal persistence.

Let €2, be the support of T in the image I; at time instant ¢, ts <
t <t.. Tisa2D 4+t volume whose sections are {Q|ts <t < te}.
A set of warping operators W = {wy, ¢, |ti, t; € [ts, te] } are pro-
vided with T, such that:

Q.

J

= Wt; —t; () (1

Warping operators can be composed, and:

Wiy, —t; O Wty—t), = We;—t; (2)

Finally, a motion tube is coded by its temporal information (s,

te), its textural information, its texture updates, and its warping op-
erators w; —t; -

A sequence will then be represented by a set of motion tubes.

Let £; = {T;},i € [1, N] be aset of NV tubes that exist at instant ¢.

L, can be updated according to any received control data: update of

the motion information of a tube, removal of an existing tube from

L, or addition of a new tube to the set. Once £ has been updated,

1, is then synthesized by rendering all the tubes from £, such that:

N
Iy = UR(Thwtmf—»t) 3
i=1

where 1, is the reconstruction of I;, and tres the time instant
when T; has been initialized. R(T) operator aims at rendering T us-
ing appropriate ponderations. | J operator will combine all the tubes
from £, and might also reconstruct some of the unpredicted areas.

In figure 2, a sequence is reconstructed using 5 motion tubes. At
to, 4 tubes are initialized. Due to the motion field continuity, they are
kept connected until ¢;. Later, the motion field discontinuities force
them to be set apart. At t2, the first motion tube is terminated due
to its poor prediction. Back at 1, a fifth tube needs to be added due
to the apparition of an unpredicted area. Finally, complex motions
appear at t3: tubes 2 and 4 are warped to fit the motion field.

to

Fig. 2. An image sequence partially reconstructed by a few motion tubes

Motion tubes, by their nature, can benefit from the temporal per-
sistence of moving textures: their tracking is simplified. In particu-
lar, the motion estimation of a tube, at a given instant, can be guided

by its trajectory at previous or next instants. It will tend to reduce
the discrepancies of the motion field, and the motion coding cost. It
will also maximize the tube’s lifespan, due to an enhanced tracking,
thus minimizing the amount of textural information to be sent.

Furthermore, motion tubes can start and end at any time instant,
hence fit appropriately the instants of apparition and disappearance
of the tracked textures. An example of temporal management of the
tubes is considered in section 4.

Motion tubes offer a very flexible way to represent a sequence,
and allow for numerous possibilities. One can mention the possi-
bility of multiple description: several families of tubes are used to
represent a sequence. Scalability is also naturally handled by this
representation. Spatial and quality scalabilities will be handled by
several tubes of different sizes, resolutions or qualities, predicting
the same area. Section 4 will illustrate the temporal scalability.

However, several obstacles are encountered while synthesizing
a frame. As in Barbell Lifting [5], there will be unconnected and
multi-connected areas. Some areas will be unpredicted, while some
others will be predicted by more than one tube. The rendering oper-
ator R(T) will have to handle overlapping tubes; while | J operator
will have to handle uncovered areas.

Finally, motion tubes can be either dependent or independent
from each other, i.e. connected or disconnected. Disconnections will
ensure the representation of ruptures within the motion field, while
connections will keep its continuities. Section 3 proposes a motion
model which combines a connected and a disconnected model.

3. ESTIMATION OF THE TRAJECTORY OF A TUBE

The proposed technique will estimate a tube’s motion, sucessively
from ¢, to t.. We now focus on the motion estimation between two
consecutive instants, a problem which has been deeply studied: nu-
merous warping models have been proposed. Classic Block Match-
ing Algorithms (BMA) have been widely reproached their block-
ing artefacts, and would often require the use of a deblocking filter
[9]. The Overlapped Block Matching Compensation (OBMC) [10]
came as a solution, by using overlapping blocks, though it could not
model with precision motion field ruptures, nor motion field com-
plex warpings. Besides previous disconnected motion models, Con-
trol Grid Interpolation (CGI) [11] has also been proposed, as a con-
nected model, but can only model a continuous motion field. Finally,
hybrid models (Switched CGI and Switched OBMC [12]) were pro-
posed to benefit from advantages of the different representations.

This paper proposes a competitive motion estimator, which opti-
mizes the use of connected and disconnected motion models. Our es-
timator takes after SOBMC: it handles BMA and a modified OBMC,
which we call Local Adaptive OBMC (LAOBMC). Moreover, the
ability to connect or disconnect neighbouring tubes simulates the
control points of a SCGI model: along with the LAOBMC, our
model tends to behave like a SCGI.

Let’s now focus on the proposed OBMC mode. Iy, , is split into
2d x 2d overlapping blocks; each of these being half-overlain by its
neighbours (see fig. 3(a)). Instead of considering the whole OBMC
block, our approach considers its 4 quadrants independently. I, ,
is thus split into d X d blocks, each of these being an OBMC quarter-
block overlain by the quadrants of 4 OBMC blocks. A motion tube
is then initialized on each of these d x d blocks. This will simplify
the hybridization of the different motion models.

Let T;,; be a tube whose block coordinates are (i, §) in Iy, . Its

support Qi’fe s at instant ¢,y is a square block. At each instant, a mo-
tion vector from the set ©% (t) = {1‘)@” (), T (1), T (1), T )}



is assigned to each of its corners (see fig. 3(b)). Let’s now con-
sider motion estimation at instant ¢ + 1, assuming that the motion of
neighbouring tubes T; ;_1, T;—1,; and T;_1,;_1 has already been
estimated at £+ 1. T; ; will inherit its motion vectors from its respec-
tive neighbours T; — 1i-1, T;—1,;and T; j_1, such that 7, 'ut T(t+1) =
Ugrl’f‘l(t + 1), 7t +1) =5 Y+ 1) and G (t+ 1) =
#2371t + 1). This will connect neighbouring tubes, each block
vertex becoming similar to a CGI control point.
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Fig. 3. Our quadrant-based approach to OBMC

vbr I(t + 1), is then spatially or temporally predicted, which
leaves to the estimation process the search of an optimal vb’J (t+1).
Compensation is finally done by translating a ponderated version of
Q” in the 4 locations defined by the motion vectors:

iil = U Wi * t~u ( mf) 4

where wy are approprlate OBM ponderating windows and

T € @M (t + 1). ty is the translation operator of vector @. Con-

tnbutlons for a given pixel are first added up, then normalized. Only
one single vector per block needs to be transmitted: @’ .

Yet, OBMC cannot catch up with complex warpings. We now
introduce the LAOMBC, which tends to simulate a CGI model, and
handles such motions. Whenever the 4 motion vectors of the current
d x d block are too much different from each other, the block is split
into four g X % sub-blocks. The motion vectors of the newly cre-
ated vertices are derived from the 4 original vectors. The sub-blocks
should now undergo a much simpler warping. If not, the above op-
eration is iterated on the sub-blocks whose motion vectors are still
too much different from each other. Finally, following (4), each sub-
block is motion-compensated in a similar manner. Figure 4 shows
the compensation of T;_; using the classic OBMC representation and

the proposed LAOBMC mode. Q” is represented by the empty

thick blocks, while Qtfc e is given by the translated grey blocks.
Despite its interesting features, LAOBMC cannot model the rup-
tures of a motion field. Hence, a switched model is designed, which
hybridizes the previously described LAOBMC model with a classic
BMA model. Motion discontinuities are handled by the BMA; the
LAOBMC reduces blocking artefacts in motion-continuous areas.
Furthermore, the connected / disconnected property of our model
acts like the SCGI control points: it can be shown that, for little mo-
tion, OBM and CGI are alike. Moreover, the absence of warping op-
erations makes our model less complex than the standard CGI. Table
1 presents both average PSNRs of reconstructed areas and recon-
struction percentages obtained for different sequences and different
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(a) OBMC mode (b) LAOBMC mode

Fig. 4. The two OBM motion modes and their extensions

modes. At reference instant ¢,y = to, Io is split into 8 x 8 blocks;
a tube is then initialized on each of these blocks and tracked through
a 16 frames GOP. Results are then averaged over the GOP.

Motion Foreman Mobile Crew
model PSNR Rec. % PSNR Rec. % PSNR Rec. %
BM 30.6dB 82.8 26.4dB 93.3 329dB 8l1.1
OBM 24.1dB 97.3 22.3dB 98.7 29.1dB 97.8
LAOBM 25.3dB 88.5 19.6 dB 94.2 28.2dB 86.1
BM/OBM 28.3dB 91.5 26.2dB 94.8 32.3dB 89.8
BM/LAOBM 31.4dB 83.6 27.2dB 93.6 33.8dB 78.6

Table 1. Efficiency of the different motion models on different sequences

OBM and LAOBM are poorly efficient when used alone. Their
hybridisation with BM brings significant improvements to the BM
model (increased recontruction percentage). Hybridized LAOBM
significantly improves both PSNRs and visual quality (see fig. 5).

I B - il

LAOBM

BM/LAOBM

Fig. 5. Reconstructions of Foreman’s head and of a spinning texture from
SpinCalendar using the different motion models

4. OPTIMIZATION OF THE RECONSTRUCTION

In this section, we present a general motion tubes framework, where
the bi-prediction of B-fubes aims at maximizing the reconstruction
while minimizing the number of tubes. We saw in section 2 that
our two major issues were the overlapping tubes and the uncovered
areas. Multi-predicted areas introduce redundancies, while unpre-
dicted areas require the use of complementary information.

The proposed scheme takes after the bi-prediction mecha-
nisms of standardized coders, which have proved to be very effi-



cient. Let’s consider the representation of a GOP. A first family
Lo = {T?,i €[1,N x M]} of motion tubes is initialized at to.
Tubes from L are then tracked until the start of the next GOP (t16
in figure 6). Eventually, some areas of /16 are uncovered by the
tubes. A second family of tubes, L1 = {le,z‘ €[1,N x M]}, is
initialized at ¢1¢, then tracked towards to. Most uncovered areas of
the successive images are now predicted by the second family, and:

NxM )
.= | < U R(Tg,wtmﬁt)) (5)
jefo16} \ i=1

Fig. 6. Motion tubes bi-prediction

However, in order to limit tubes overlapping, redundant tubes
are discarded. Remaining unpredicted areas can eventually be recon-
structed by inpainting. Figure 6 illustrates the approach on a GOP of
16 images. This way, textures existing at ¢y will be tracked by Lo,
while textures existing at t1¢ will be tracked by L1¢. Table 2 presents
the PSNRs obtained on the reconstructed regions along with the re-
construction percentages for different sequences and different fami-
lies of tubes (Lo and L16). The hybrid BM/LAOBM motion model
is used. It can be seen that the use of both Lo and L6 significantly
improves the PSNRs and the reconstruction percentages. Figure 7
illustrates their impact on the reconstruction of the 8" frame.

Tubes Foreman Mobile Crew
familie(s) PSNR Rec. % PSNR Rec. % PSNR Rec. %
Lo 31.4dB 83.6 27.2dB 93.6 33.8dB 78.6
L16 30.7dB 83.6 26.7dB 95.6 33.1dB 76.5
Lo + Lis 32.1dB 93.1 28.4dB 99.4 34.7dB 93.1

Table 2. Efficiency of B-tubes on different sequences : masked PSNR and
reconstruction percentage

As further work, the previous principle can be extended to hier-
archical B-tubes: the process is iterated on each reference B-frame of
a hierarchical GOP. A family of tubes Ls = {T5,i € [1, N x M]}
is created at tg, then tracked towards both I instants of reference,
i.e. to and t16. Again, unneeded tubes are discarded. Finally, the
same process is repeated on 4 and I;2, then on Iz, Ig, 110 and [14.
Temporal scalability is handled by this approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new framework for the repre-
sentation of image sequences. By tracking textures throughout the
sequence, motion tubes lead to a flexible model, and offer a compact
representation of the sequence: they naturally exhibit the textures
temporal persistence. Moreover, the proposed motion model allows

Fig. 7. Reconstruction of Ig for different sequences and tubes families

for both motion continuities and discontinuities to be caught and ef-
ficiently represented, maximizing the quality and the reconstruction
percentage. However, the major weaknesses of this representation
are the overlapping tubes and the uncovered textures: these have
been addressed by an efficient management of the tubes based on
traditional bi-prediction mechanisms. Still, the selection mechanism
deciding whether to keep or not a tube is rather delicate, and calls
for further work. Indeed, the need for a way to assess the quality
of a tube is vital for the sake of our representation. Used as a new
coding mode in an existing coding scheme, an efficient way to com-
press sequences can be derived from this representation, along with
an optimized coding of the tubes information.
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