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Summary. We are interested in the genealogical structure of alleles for a Bienaymé-Galton-Watson

branching process with neutral mutations (infinite alleles model), in the situation where the initial

population is large and the mutation rate small. We shall establish that for an appropriate regime, the

process of the sizes of the allelic sub-families converges in distribution to a certain continuous state
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1 Introduction

Poisson point processes are a cornerstone of at least two fundamental contributions of Profes-
sor Kiyoshi Itô to Probability Theory, namely the Lévy-Itô decomposition of Lévy processes
(Chapter 1 in [8]) and Itô’s excursion theory [9]. The law of rare events, which stresses that
Poisson variables arise as limiting distributions for the number of successes in a large number
of independent trials where each trial has the same small probability of success, explains their
prominent role amongst stochastic processes. For instance, Lévy processes can be viewed as
weak limits of rescaled random walks and their jumps correspond to rare large steps of the
latter. Informally, the law of rare events thus suggests the Poissonian structure of the jumps of
Lévy processes, and this is indeed the core of the Lévy-Itô decomposition. A related but more
delicate heuristic also applies to Itô’s description of the excursions of Markov processes, as in
discrete time, the succession of the excursions of a Markov chain away from a recurrent point
forms an i.i.d. sequence of paths.
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In this paper, we shall point out the relevance of this paradigm to study a question moti-
vated by genetics. Recall that Bienaymé-Galton-Watson branching processes [1, 7, 10] model
a population in which at every generation each individual begets according to a fixed offspring
distribution and independently of the other individuals, and then dies. Imagine that neutral
mutations may happen, so that a child can be either a clone of its parent or a mutant, and the
reproduction laws of clones and of mutants are identical. We shall further suppose that each
time a mutation occurs, it produces a mutant with a genetic type (allele) which has never been
observed before; this setting has been referred to as the infinite alleles model by Kimura and
Crow .

The allelic partition consists in decomposing the entire population into sub-families of in-
dividuals carrying the same allele. One important issue in the study of random population
models with mutations (cf. the celebrated sampling formula of Ewens [5] for the Wright-Fisher
model) concerns statistics of this allelic partition: what is the probability of observing allelic
clusters of certain sizes, how to describe the random genealogical structure connecting these
clusters to each other, ... Our main concern here will be to investigate asymptotics when the
size of the population is large (typically because the number of ancestors is large) and muta-
tions rare. We shall see that, under some mild conditions and for an appropriate regime, a
non-degenerate limit exists and is conveniently described in terms of a certain continuous state
branching process in discrete time [11]. It is well-known that continuous state branching pro-
cesses bear close connexions to certain infinitely divisible distributions; in particular we shall
provide a representation of the limiting allelic partitions in terms of Poisson point measures
appearing in the Lévy-Itô decomposition of the jumps of an underlying Lévy process.

Let us give a rough idea of the orders of magnitude of the quantities involved. We shall
consider a fixed reproduction law with unit mean and finite variance, and let the Galton-
Watson process start from n ancestors having all the same genetic type. It is well-known that
if n generations represent one unit of time and if we rescale the population at each generation
by a factor 1/n, then the rescaled Galton-Watson process converges in distribution as n tends
to infinity to a Feller diffusion. We also suppose that neutral mutations affect each child with
probability 1/n. The scaling between population sizes, generations and mutation rates should
not come as a surprise since it is precisely the regime of interest for other standard population
models, such as the Wright-Fisher model and Kingman coalescent [13]. Recall that such a
critical Galton-Watson process becomes extinct after roughly n generations, and that the total
population is of order n2. So there are only a few mutations at each generation and thus about
n different alleles; furthermore the largest allelic sub-families have size of order n2.

Our main result can be described as follows. We use the universal tree U, that is the set
of finite sequences of integers (including the empty sequence ∅ that serves as the root of U)
to record the genealogy of alleles, and define the tree of alleles as a random process A on U,
such that the values at vertices are given by the sizes of the corresponding allelic sub-families,
with the convention that sizes are ranked in the decreasing order on each sibling. We consider
a fixed reproduction law which is critical and has finite variance, and for every integer n,
a Galton-Watson process with this reproduction law, started from n ancestors and in which
mutations occur at random with rate 1/n. We write A(n) for the process on U that describes
the corresponding tree of alleles. Then as n tends to infinity, the rescaled tree of alleles n−2A(n)

converges in the sense of finite dimensional distributions towards a process A on U with values
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in (0,∞). The latter describes the genealogy of a continuous state branching process in discrete
time with an inverse Gaussian reproduction law. We stress that its law only depends on the
variance of the offspring distribution of the Galton-Watson process, and hence may be viewed
as a universal tree of alleles.

The plan of this paper is as follows. In Section 2, we first present the general setting, stressing
the role of the general branching property for the study of Galton-Watson processes with neutral
mutations. Then we compute explicitly reproduction laws related to allelic sub-families and
point at a connexion with certain downward-skip-free random walks. Such questions have been
addressed from a different point of view in [2] to which the present work can be viewed as a
complement and a sequel. Section 3 provides some background on continuous state branching
processes and convergence of rescaled Galton-Watson processes. The main asymptotic results,
namely Proposition 2 and Theorem 1 are stated and then proved in Section 4.

2 Galton-Watson processes with neutral mutations

2.1 Basic definitions and branching properties

In a Galton-Watson process with neutral mutations, every individual reproduces according to
the same distribution and independently of the other individuals, no matter whether it is a
mutant or a clone. Of course, a clone child of a mutant bears the same allele as its parent.
Recall also that we are working in the infinite alleles setting, i.e. the same genetic type cannot
be recovered from a cycle of mutations. Our basic data are hence provided by a pair of non-
negative integer-valued random variables

ξ = (ξ(c), ξ(m))

which describes the number of clone-children and the number of mutant-children of a typical
individual. In this paper, we shall mainly be interested in a special situation which appears
commonly as a model in population genetics, namely where mutations affect each child ac-
cording to a fixed probability and independently of the other children (in other words, the
conditional distribution of ξ(m) given ξ(c) +ξ(m) = ℓ is binomial with parameter (ℓ, p)). However
the first steps of the analysis can be carried on without difficulties using the general framework.
We assume throughout this work that

E(ξ(c)) ≤ 1 ,

i.e. the process of clones is critical or sub-critical 1; and we further implicitly exclude the
degenerate cases when ξ(c) ≡ 0, or ξ(m) ≡ 0. For every integer a ≥ 1, we denote by Pa the law
of a Galton-Watson process with neutral mutations, started from a ancestors having the same
genetic type and with reproduction law given by that of ξ = (ξ(c), ξ(m)).

The basic branching property states that for every fixed generation, conditionally on the
number of individuals at that generation, the descents of those individuals are given by inde-
pendent copies of the initial process, independently of the preceding generations. It is natural

1 Note that this is weaker than assuming that E(ξ(c) + ξ(m)) ≤ 1 which was required in [2].
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to expect that this branching property should hold more generally for certain stopping rules,
and that this is indeed the case will play an important role in our analysis. For the sake of
simplicity, we shall now present such an extension in a rather informal way, referring to Chauvin
[3] for technical details.

The genealogy of each ancestor is conveniently described by a planar rooted tree, with edges
connecting parents to children. More precisely, this requires an additional ordering of the
children of each individual, and in this direction we may decide to rank siblings uniformly at
random. A line is defined as a family of edges such that every branch from the root (i.e. the
ancestor) contains at most one edge in that family. For instance, the edges between parents
at generation k ∈ Z+ and children at generation k + 1 form a line. A stopping line should be
thought of as a random line such that for every edge in the tree, the event that this edge is part
of the line only depends on the marks found on the path from the root to that edge. Recall that
every edge of the tree corresponds to a pair of individuals (parent,child), and denote by Cτ the
subset of children in the family of edges of some stopping line τ . By removing the edges of τ , we
disconnect the genealogical tree into sub-trees whose roots are formed on the one hand by the
ancestor, and on the other hand by the individuals in Cτ . The general branching property then
states that conditionally on Cτ , the sub-trees rooted at the individuals in Cτ are independent
copies of the initial genealogical tree, and also independent of the initial tree pruned along τ .

We now take into account mutations by assigning marks to the edges between parents and
their mutant children. Since we are interested by the genealogy of alleles (or equivalently, of
mutants), it is convenient to say that an individual has the k-th type if its genotype has been
affected by k mutations, that is if its ancestral line comprises exactly k marks. Plainly, the
family τ(k) of edges connecting a parent of the (k − 1)-th type to a mutant child is a stopping
line, and the set Cτ(k) coincides with that of the mutants of the k-th type. We denote by Tk

the total population of individuals of the k-th type and by Mk the total number of mutants of
k-th type, agreeing that mutants of the 0-th type are the ancestors (so M0 = a, Pa-a.s.). The
general branching property should make the following statement obvious; we refer the reader
to e.g. Chapter Ten in Taib [15] for a rigorous argument.

Lemma 1 Under Pa,
(Mk, k ∈ Z+)

is a standard Galton-Watson process with reproduction law P1(M1 ∈ ·). More generally,

((Tk, Mk+1), k ∈ Z+)

is a Markov chain with transition probabilities

Pa(Tk = n′, Mk+1 = m′ | Tk−1 = n, Mk = m) = Pm(T0 = n′, M1 = m′) .

Remark. We stress the fact that the chain (Tk, k ∈ Z+) of the sizes of sub-populations
with given types is not Markov; nonetheless it can be viewed as a hidden Markov chain. In
this direction, we also point out that ((Tk, Mk), k ∈ Z+) is Markovian, since the transition
probabilities of the chain ((Tk, Mk+1), k ∈ Z+) only depend on the second coordinate. Indeed,
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by a straightforward application of the general branching property, one gets (assuming implicitly
that the events on which we condition have positive probability)

Pa(Tk+1 = n′, Mk+1 = m′ | Mk = m, Tk = n)

= Pm′(T0 = n′)
Pa(Tk = n, Mk+1 = m′ | Mk = m)

Pa(Tk = n | Mk = m)

=
Pm′(T0 = n′)

Pm(T0 = n)
Pm(T0 = n, M1 = m′) .

Next, observe that in an infinite alleles model, the genealogy of individuals naturally induces
a genealogy for the alleles in that population. Indeed, we may identify alleles and mutants,
which enables us to use the set of new mutants plus a root corresponding to the ancestors of
the population (recall that we assume that all the ancestors have the same genetic type) as the
set of vertices. We draw an edge between the root and mutants of the 1st type, and for every
k ≥ 1 we also draw an edge between a mutant of the k-th type and a mutant of the (k+1)-type
if and only if the path connecting these individuals in the genealogical tree does not contains
other mutants. Hence the set of alleles has a natural structure of rooted tree. Note that for
k ≥ 1, Mk corresponds to the number of vertices at the k-th level 2 in the tree of alleles.

Our main goal in this paper is to establish asymptotic features on the genealogy of allelic
sub-families, and in this direction, it will be convenient to view the latter as random processes
indexed by the universal tree. More precisely, introduce the set of finite sequences of positive
integers

U :=
⋃

k∈Z+

Nk ,

where N = {1, 2, . . .} and N0 = {∅}. Let us briefly recall some standard notation in this setting:
if u = (u1, . . . , uk) is vertex at level k ≥ 0 in U, then the children of u are uj := (u1, . . . , uk, j)
for j ∈ N. We also denote by |u| the level of the vertex u, with the convention that the root
has level 0, i.e. |∅| = 0. We now take advantage of the natural tree structure of U to record
the genealogy of allelic sub-families together with their sizes.

Given a Galton-Watson process with neutral mutations, we construct recursively a process
A = (Au : u ∈ U) as follows. First, A∅ = T0 is the size of the sub-population without mutation.
Next, recall that M1 denotes the number of mutants of the first type. We enumerate the M1

allelic sub-populations of the first type in the decreasing order of their sizes, with the convention
that in the case of ties, sub-populations of the same size are ranked uniformly at random. We
denote by Aj the size of the j-th allelic sub-populations of the first type, agreeing that Aj = 0
if j > M1. We then complete the construction at all levels by iteration in an obvious way.
Specifically, if Au = 0 for some u ∈ U, then Auj = 0 for all j ∈ N. Otherwise, we enumerate
in the decreasing order of their sizes the allelic sub-populations of type |u| + 1 which descend
from the allelic sub-family indexed by the vertex u, and then Auj is the size of this j-th sub-
family (as before, in the case of ties, sub-families are ordered uniformly at random, and empty
sub-families have size 0). See Figure 1 for an example. We call the process A = (Au : u ∈ U)
the tree of alleles.

2For the sake of clarity we shall keep the name generation for the distance to the root of individuals in the
genealogical tree, and use the name level when dealing with the structure of alleles.
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Figure 1: Genealogical tree with mutations (left) and tree of alleles (right). The symbols
•,♠,♥, ♦,♣,© represent the different alleles. The labels on the tree of alleles are the sizes
of the corresponding allelic sub-families; sub-families with zero size (i.e. which are empty) are
omitted.

It is important to observe that the transition probabilities of the chain ((Tk, Mk+1), k ∈ Z+)
in Lemma 1 depend only on the second coordinate, and that the latter alone is a Galton-Watson
process. This suggests that the tree of alleles should enjoy some kind of branching property.
In order to give a formal statement, is convenient to define first the (outer) degree of the tree
of alleles A at some vertex u ∈ U as

du := max{j ≥ 1 : Auj > 0} ,

where we agree that max ∅ = 0. In words, du is the number of allelic sub-populations of type
|u|+1 which descend from the allelic sub-family indexed by the vertex u; in particular d∅ = M1.
We shall also need the following notation. Let γ be a random variable in N2, d ≥ 1 an integer,
and γ(d) = (γ1, . . . , γd) where the γi are independent copies of γ. We then denote by γ(d↓) the
rearrangement of γ(d) in the decreasing order of the first coordinate, with the convention that in
the case of ties, the variables γi with the same first coordinate are ranked uniformly at random.

The characterization of the probabilistic structure of the tree of alleles that we are now ready
to present stems again easily from the general branching property by iteration.

Lemma 2 For every integers a ≥ 1 and k ≥ 0, the tree of alleles fulfills the following properties
under Pa conditionally on ((Av, dv) : |v| ≤ k):
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(i) the families of variables

((Auj, duj) : 1 ≤ j ≤ du) , u vertex at level k such that Au > 0 ,

are independent,

(ii) for each vertex u at level k with Au > 0, the du-tuple ((Auj, duj) : 1 ≤ j ≤ du) is distributed
as (T0, M1)

(du↓) under P1.

Of course Lemma 2 of much more informative than the sole Markovian description of the
chain ((Tk, Mk+1), k ∈ Z+) in Lemma 1 as it retains the information about the genealogy of the
allelic sub-families and not merely the sizes of populations of a given type. In this direction,
observe that

Tk =
∑

|u|=k

Au and Mk+1 =
∑

|u|=k

du .

2.2 Calculation of reproduction laws

We shall now determine the transition probabilities that appear in Lemma 1. Essentially, this
has been achieved recently in [2] using an approach that largely relies on Harris connexion
between downward-skip-free random walks and standard Galton-Watson processes, extended
to encompass the situation where neutral mutations occur. Here, we shall use a different route,
developing calculations that involve generating functions in the case when mutants are supposed
to be sterile.

We denote the law of ξ = (ξ(c), ξ(m)) by π = (πk,ℓ : k, ℓ ∈ Z+), that is

πk,ℓ := P(ξ(c) = k, ξ(m) = ℓ) .

We also introduce the generating function

g(x, y) :=

∞
∑

k,ℓ=0

xkyℓπk,ℓ = E(xξ(c)

yξ(m)

) , x, y ∈ [0, 1] .

As we are interested in the joint distribution of the total number of individuals of the 0-th type
and the number of mutants of the 1-st type, we may imagine a two-type branching process such
that clones reproduce independently of each other according to the same distribution π, while
mutants are sterile, i.e. have no progeny a.s. We write ϕ for the generating function of the
total population of 0-th type and the number of mutants when there is a single ancestor, i.e.

ϕ(x, y) := E1(x
T0yM1) , x, y ∈ [0, 1] ,

so that by the branching property, the generating function of (T0, M1) under Pa is ϕa. The
following result is a slight extension of Theorem 1(ii) of [2] (recall that here we only assume
that E(ξ(c)) ≤ 1 and have an arbitrary number of ancestors, while in [2] we worked with a
single ancestor and assumed that E(ξ(c) + ξ(m)) ≤ 1). It can be viewed as a generalization
of the well-known Dwass formula [4] for the distribution of the total population in standard
Galton-Watson processes.
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Proposition 1 (i) The generating function ϕ is determined by the equation

ϕ(x, y) = xg(ϕ(x, y), y) , x, y ∈ [0, 1].

(ii) The distribution of (T0, M1) is given by

Pa(T0 = n, M1 = ℓ) =
a

n
π∗n

n−a,ℓ , n ≥ a ≥ 1 and ℓ ≥ 0 ,

where π∗n denotes the n-th convolution power of π (i.e. π∗n is the distribution of the sum of n
i.i.d. copies of ξ).

Proof: (i) A standard application of the branching property at the first generation gives

ϕ(x, y) = E1(x
T0yM1)

= x

∞
∑

i,j=0

P(ξ(c) = i, ξ(m) = j)E1(x
T0yM1)iyj

= xg(ϕ(x, y), y) .

This invites us to consider the equation in the variable z ∈ [0, 1]

g(z, y)

z
=

1

x
, (1)

where x, y ∈ (0, 1] are fixed. Our assumptions E(ξ(c)) ≤ 1 and ξ(c) 6≡ 1 imply that g(0, y) > 0,
and hence limz→0+ g(z, y)/z = ∞. On the other hand, the derivative of z → z−1g(z, y) is
z → z−2(z∂zg(z, y) − g(z, y)), and this derivative is strictly negative when z > 0 is sufficiently
small. This ensures that for each fixed y ∈ [0, 1] and x > 0 small enough, the equation (1) has
a unique solution z = ϕ(x, y), and this suffices to determine the law of (T0, M1).

(ii) We shall now derive explicitly the law of (T0, M1) under Pa from its generating function
ϕa using the classical Lagrange inversion formula. For each fixed y ∈ [0, 1], the function
x → g(x, y) is analytic with g(0, y) 6= 0. More precisely, we have

g(x, y) =
∞
∑

k=0

ak(y)xk with ak(y) :=
∞
∑

ℓ=0

yℓπk,ℓ .

According to Lagrange inversion formula (see for instance Section 5.1 in [16]), the a-th power
of the solution to the equation (1) with y ∈ [0, 1] fixed and x > 0 sufficiently small, can be
expressed in the form

ϕa(x, y) =
∞
∑

n=1

a

n
α∗n

n−a xn ,

where α∗n stands for the n-th convolution power of the finite measure α = (ak(y) : k ∈ Z+).
Observe that the generating function of α is x → g(x, y), so that of α∗n is

x → g(x, y)n =
∞
∑

k=0

xk

(

∞
∑

ℓ=0

yℓπ∗n
k,ℓ

)

.
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Hence we have

α∗n
k =

∞
∑

ℓ=0

yℓπ∗n
k,ℓ ,

and we conclude that

ϕa(x, y) =

∞
∑

n=1

∞
∑

ℓ=0

a

n
π∗n

n−a,ℓ xnyℓ ,

which completes the proof of (ii). �

As generating functions easily yield moments of variables, one immediately deduces from
Proposition 1 simple criteria to decide whether the number of mutant children M is critical,
sub-critical, or super-critical, or has a finite second moment.

Corollary 1 (i) Suppose that the mean number of clone children is sub-critical, i.e. E(ξ(c)) < 1.
Then

Ea(M1) = a
E(ξ(m))

1 − E(ξ(c))
= E(ξ(m))Ea(T0) ,

and in particular

E1(M1)







< 1
= 1
> 1

⇐⇒ E(ξ(c) + ξ(m))







< 1
= 1
> 1

Further
E1(M

2
1 ) < ∞ ⇐⇒ E((ξ(c) + ξ(m))2) < ∞ .

(ii) If E(ξ(c)) = 1, then E1(M1) = ∞.

Proof: Recall that the first moment of an integer-valued variable is given by the left-derivative
at 1 of its generating function. We get from Proposition 1(i)

∂ϕ

∂y
(1, y) =

∂ϕ

∂y
(1, y)

∂g

∂x
(ϕ(1, y), y) +

∂g

∂y
(1, y) .

Since ϕ(1, 1) = 1, this identity forces

∂ϕ

∂y
(1, 1) = E1(M1) = ∞

when
∂g

∂x
(1, 1) = E(ξ(c)) = 1

(recall that E(ξ(m)) > 0 by assumption), whereas it entails

E1(M1) =
E(ξ(m))

1 − E(ξ(c))

whenever E(ξ(c)) < 1.

Observe further that the process of the number of clone children is a branching process with
offspring distribution given by the law of ξ(c). In particular, in the sub-critical case E(ξ(c)) < 1,
the total population of clones has a finite expectation given by Ea(T0) = a/(1 − E(ξ(c))). The
first equivalence in (i) follows readily. Similar calculations involving the second derivative of
generating functions yield the second equivalence in (i). �
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2.3 Construction from a random walk

The starting point of this section is the observation that the transition probabilities of the
Markov chain ((Tk, Mk+1) : k ∈ Z+) have a simple interpretation in terms of random walks. In

this direction, let us first introduce some notation. We consider a sequence (ξn = (ξ
(c)
n , ξ

(m)
n ) :

n ∈ N) of i.i.d. variables with law π, and then the random walk started from a ≥ 1 and with
steps ξ(c) − 1,

S(c)
n := a + ξ

(c)
1 + · · · + ξ(c)

n − n , n ∈ Z+ .

It is convenient to use the (slightly abusive) notation Pa for the law of (S
(c)
n : n ∈ Z+). We also

define the first hitting times

ς(j) := inf{n ∈ Z+ : S(c)
n = −j} , j ∈ Z+ ,

and

Σ(j) :=

ς(j)
∑

i=1

ξ
(m)
i .

We stress that our basic assumption E(ξ(c)) ≤ 1 ensures that the random walk S(c) does not
drift to +∞, and hence the passage times ς(j) are finite a.s. The first identity in next lemma can
be viewed as a two-dimensional extension of the well-known result of Otter and Dwass (see e.g.
Section 6.2 in [14]) which relates the distribution of the total population in a Galton-Watson
process to that of the first hitting time of 0 of a random walk.

Lemma 3 The pairs of random variables

(ς(0), Σ(0)) and (T0, M1)

have the same distribution under Pa. Further, the shifted sequence (ξς(0)+j : j ∈ N) consists of
i.i.d. variables with law π and is independent of (ς(0), Σ(0)).

Proof: Introduce for a = 1 the generating function

ϕ̃(x, y) := E1(x
ς(0)yΣ(0)) , x, y ∈ [0, 1] .

Because (Sn : n ∈ Z+) is a downwards skip free random walk, an application of the strong
Markov property at its first downward passage times shows readily that for an arbitrary integer
a ≥ 1

Ea(x
ς(0)yΣ(0)) = ϕ̃(x, y)a , x, y ∈ [0, 1] .

Now we return to the case a = 1; by conditioning on the first step of the random walk, we
get the obvious identity

ϕ̃(x, y) = E1(x
ς(0)yΣ(0))

= x

∞
∑

k,ℓ=0

ϕ̃(x, y)kyℓπk,ℓ

= xg(ϕ̃(x, y), y) ,
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where g denotes the generating function of ξ = (ξ(c), ξ(m)). Thus ϕ̃ solves the equation of
Proposition 1(i), which establishes our first claim. As the hitting time ς(0) is a stopping time,
an application of the strong Markov property then yields the second assertion. �

Next, set T̃0 := ς(0), M̃1 := Σ(0) and define for every k ∈ N by an implicit recurrence

T̃0 + · · · + T̃k = ς(M̃1 + · · ·+ M̃k)

and
M̃1 + · · ·+ M̃k+1 = Σ(T̃0 + · · ·+ T̃k) = Σ(ς(M̃1 + · · ·+ M̃k)) .

Figure 2 below depicts these quantities.
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∗ ∗

∗

∗

ς(0) ς(1) ς(2) ς(3) ς(4) ς(5)

−2 -� T̃1

−4 -� T̃2

−5 -� T̃3

Figure 2: The graph of the random walk S(c); the ∗ represent the non-zero values of the
variables ξ(m). Here M̃1 = 2, M̃2 = 2, M̃3 = 1 and M̃4 = 0.

Corollary 2 For every a ≥ 1, the chains ((Tk, Mk+1) : k ∈ Z+) and ((T̃k, M̃k+1) : k ∈ Z+)
have the same distribution under Pa.

Proof: It is immediately checked by induction that each τk := T̃0+· · ·+T̃k is a stopping time in
the natural filtration (G(n))n∈N generated by the i.i.d. sequence (ξn : n ∈ N), and that Mk+1 is
G(τk)-measurable. By an application of the strong Markov property, we get that ((T̃k, M̃k+1) :
k ∈ Z+) is a homogeneous Markov chain. More precisely, the conditional distribution of
(T̃k, M̃k+1) given T̃k−1 = t and M̃k = m is that of (ς(0), Σ(0)) under Pm. Combining these
observation with Lemmas 1 and 3 completes the proof. �
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More generally, we can apply Lemma 3 to construct from the i.i.d. variables ξn a random
process A′ indexed by U with the same distribution as tree of alleles A, by making use of the
characterization of the law of the latter in Lemma 2. To start with, the process A′ fulfills the
following two requirements. First, if A′

u = 0 for some u ∈ U, then A′
uj = 0 for all j ∈ N.

Second, for every vertex u ∈ U such that A′
u > 0, the (outer) degree of A′ at u,

d′
u := #{j ∈ N : A′

uj > 0} ,

is a finite number and A′
uj > 0 if and only if j ≤ d′

u. We set A′
∅

= ς(0) and d′
∅

= Σ(0). Next,
consider the increments

λ(j) := ς(j) − ς(j − 1) and δ(j) = Σ(j) − Σ(j − 1)) , j ≥ 1 ,

For vertices at the first level, ((A′
j, d

′
j) : 1 ≤ j ≤ d′

∅
) is given by the rearrangement of the

sequence ((λ(j), δ(j)) : 1 ≤ j ≤ d′
∅
) in the decreasing order the first coordinate λ(j) (with the

usual convention in case of ties). We may then continue with vertices of the next levels by an
iteration which should be obvious (but which would also be quite intricate to state explicitly).
Figure 3 below may help visualizing the construction.
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ς(0)

λ(2) λ(1)

λ(4)λ(3)

λ(5)

Figure 3: Tree of alleles constructed from the random walk S(c) and the variables ξ(m) of
Figure 2. The labels on the vertices are the lengths of the excursions of S(c) above its current
minimum, they correspond to the sizes of the allelic sub-families (again sub-families with size
0 are omitted).
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3 Background on continuous state branching processes

Before describing our main limit results for trees of alleles, we need to develop some basic
material about limits of rescaled Galton-Watson processes. The Lévy-Itô decomposition of
subordinators plays a crucial role for the representation of the genealogical structure of the
continuous state limits.

We start with the classical convergence to Feller diffusions [6, 11], i.e. the solutions (X(x, t), t ≥
0) to stochastic differential equations of the type

X(x, t) = x +

∫ t

0

σ
√

X(x, s)dBs + b

∫ t

0

X(x, s)ds , t ≥ 0 , (2)

where x ≥ 0 is the initial value, b ∈ R and σ2 > 0 are parameters, and (Bt : t ≥ 0) denotes a

standard Brownian motion. For every n ∈ N, consider a Galton-Watson process (Z
(n)
k : k ∈ Z+)

which starts from Z
(n)
0 = a(n) ancestors and has reproduction law ρ(n), where ρ(n) is some

probability measure on Z+ and a(n) a positive integer. Write

m(ρ(n)) :=
∞
∑

i=0

iρ
(n)
i and var(ρ(n)) :=

∞
∑

i=0

(i − m(ρ(n)))2ρ
(n)
i

for the first moment and the variance of ρ(n). In the situation where

a(n) ∼ nx , m(ρ(n)) − 1 ∼ bn−1 and var(ρ(n)) ∼ σ2 as n → ∞ (3)

for some x ∈ (0,∞), b ∈ R and σ2 > 0, it is well known that

(n−1Z
(n)
⌊nt⌋ : t ≥ 0) =⇒ (X(x, t) : t ≥ 0) (4)

where the notation ⇒ refers to convergence in distribution as n → ∞ and X(x, t) is the Feller
diffusion specified by (2).

We next turn our attention to the simpler situation where one only rescales the number of
individuals and uses the generations as a discrete time parameter. For the sake of clarity, we
shall deal with a framework that is slightly less general than it could be. We denote the tail
distribution of ρ(n) by ρ̄(n)(y) := ρ(n)((y,∞)) for y > 0 and now assume that

lim
n→∞

n−1a(n) = x and lim
n→∞

nρ̄(n)(ny) = ν̄(y) in L1
loc([0,∞), dy) , (5)

where ν̄ is some locally integrable non-increasing function on [0,∞) with ν̄(∞) = 0. We may
thus think of ν̄ as the tail of a Radon measure ν on (0,∞) with

∫

(1 ∧ y)ν(dy) < ∞; ν will be
often referred to as a Lévy measure. Our assumptions ensure that

n−1Z
(n)
1 =⇒ Z1 , (6)

where Z1 is a random variable with values in [0,∞) which is infinitely divisible. Indeed, we
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have for any q > 0

E(exp(−qn−1Z
(n)
1 )) =

(

1 −

∫

[0,∞)

(1 − e−qy/n)ρn(dy)

)a(n)

=

(

1 −
q

n

∫ ∞

0

e−qy/nρ̄n(y)dy

)a(n)

=

(

1 − q

∫ ∞

0

e−qyρ̄n(ny)dy

)a(n)

,

and (5) ensures that the latter quantity converges as n → ∞ towards the Laplace transform of
an infinitely divisible variable

E(exp(−qZ1)) = exp(−xκ(q)) ,

where the cumulant κ is given by the Lévy-Khintchine formula

κ(q) =

∫

(0,∞)

(1 − e−qy)ν(dy) . (7)

We underline the fact that the drift coefficient is 0; this will play an important role in the
sequel. An application of the Markov property now shows that more generally

(n−1Z
(n)
k : k ∈ Z+) =⇒ (Zk : k ∈ Z+) (8)

where (Zk : k ∈ Z+) is a Markov chain with values in R+, started from Z0 = x and whose
transition probabilities are characterized as follows: for every k ∈ Z+ and q, y ≥ 0,

E(e−qZk+1 | Zk = y) = exp(−yκ(q)) .

One refers to the limiting chain Z as a (discrete time) continuous state branching process, in
short CSBP, with reproduction measure ν and started from x.

It is interesting to recast the preceding convergence in the framework of the law of rare events.
In this direction, recall that the Lévy-Itô decomposition of the infinitely divisible variable Z1

reads

Z1 =

∞
∑

i=1

ai , (9)

where a1 ≥ a2 ≥ . . . are the atoms ranked in the decreasing order of a Poisson random measure
on (0,∞) with intensity xν, with the convention that atoms are repeated according to their
multiplicity and that when the Poisson random measure is finite (which occurs if and only
if ν((0,∞)) < ∞), then ai = 0 whenever the index i exceeds the total mass of the Poisson

measure. Consider for every n ∈ N a family (ξ
(n)
i : 1 ≤ i ≤ a(n)) of i.i.d. variables with law ρ(n);

we should think of ξ
(n)
i as the number of children of the i-th ancestor in the Galton-Watson

process Z(n). Denote by a
(n)
1 ≥ a

(n)
2 ≥ . . . ≥ a

(n)
a(n) the decreasing reordering of the rescaled
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variables (n−1ξ
(n)
i : 1 ≤ i ≤ a(n)). In the regime (5), the law of rare events for null arrays (e.g.

Theorem 14.18 in [12]) ensures that

(a
(n)
1 , a

(n)
2 , . . . , a

(n)
a(n)) =⇒ (a1, a2, . . .) , (10)

in the sense of finite dimensional distributions. Note also that (6) can be re-written in this
setting as

a(n)
∑

i=1

a
(n)
i =⇒

∑

i∈N

ai ;

however the latter does not follow from (10).

This invites us to describe the convergence of rescaled Galton-Watson processes to (discrete
time) CSBP from another point of view that takes into account the genealogy, and not merely
the total sizes of populations at given generations. In this direction, we use a representation
of the latter as random processes indexed by the universal tree U. For simplicity, suppose for
a while that the Lévy measure ν is infinite, so a Poisson random measure with intensity cν
with c > 0 has infinitely many atoms a.s. Recall from the Lévy-Itô decomposition (9) that
almost all the individuals at the first generation in a CSBP descend from only countably many
ancestors (we stress again that we are dealing with cumulants κ with no drift component),
and plainly the same feature holds for the subsequent generations. Roughly speaking, vertices
u ∈ U at level |u| = k ≥ 1 represent the sizes of the sub-populations at generation k in the
CSBP which descent from the same parent at generation k−1. We construct a random process
(Zu : u ∈ U) related to the CSBP Z, where Zuj is the size of the j-th largest sub-population
at generation |u|+ 1 which descents from a parent in the sub-population represented by u. We
stress the process Z is by definition non-increasing on each sibling, i.e. the map j → Zuj is
non-increasing on N for every u ∈ U. More precisely, conditionally on Zu = z, the Lévy-Itô
decomposition (9) suggests that (Zuj : j ∈ N) should be given by the sequence of the atoms of
a Poisson random measure on (0,∞) with intensity zν, where atoms are repeated according to
their multiplicity and ranked in the decreasing order. We make the construction formal in the
following definition.

Definition 1 Fix x > 0 and ν a measure on (0,∞) with
∫

(1 ∧ y)ν(dy) < ∞. A tree-indexed
CSBP with reproduction measure ν and initial population of size x is a process (Zu : u ∈ U) with
values in R+ and indexed by the universal tree, whose distribution is characterized by induction
on the levels as follows:

(i) Z∅ = x a.s.;

(ii) for every k ∈ Z+, conditionally on (Zv : v ∈ U, |v| ≤ k), the sequences (Zuj)j∈N for the
vertices u ∈ U at generation |u| = k are independent, and each sequence (Zuj)j∈N is distributed
as the family of the atoms of a Poisson random measure on (0,∞) with intensity Zuν, where
atoms are repeated according to their multiplicity, ranked in the decreasing order, and completed
by an infinite sequence of 0 if the Poisson measure is finite.

It should be plain that if Z is a tree-indexed CSBP with reproduction measure ν and initial

population of size x, then
(

∑

|u|=k Zu : k ∈ Z+

)

is a CSBP with reproduction measure ν started
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from x. We also point out that for every integer n, we can represent similarly the genealogy
for the Galton-Watson process Z(n) as a process Z(n) indexed by the universal tree U, and one
can check that under the regime (5), the following extension of (8) holds:

n−1Z(n) =⇒ Z

in the sense of finite dimensional distributions. This should be viewed as a variation of the law
of rare events (10); the easy proof is left to the interested reader.

We now conclude this section by underlying the connexion between discrete time CSBP and
subordinators (i.e. Lévy processes with values in R+). Consider a subordinator τ = (τt : t ≥ 0)
with no drift and Lévy measure ν. Its cumulant κ is given by the Lévy-Khintchine formula (7)
and we have

E(e−qτt) = exp(−tκ(q)) , for all q, t ≥ 0 .

Fix x > 0 and define a sequence (ζk : k ∈ Z+) by implicit iteration as follows:

ζ0 = x , ζ1 = τx , ζ1 + ζ2 = τx+ζ1 , . . . , ζ1 + · · ·+ ζk+1 = τx+ζ1+···+ζk
.

Observe by an easy induction that the random times x+ ζ1 + · · ·+ ζk are stopping times in the
natural filtration of τ , so that the strong Markov property can be applied. It is then immediate
to check that (ζk : k ∈ Z+) is a CSBP with reproduction measure ν and initial population of
size x.

More generally, the tree-indexed CSBP Z can be constructed from the subordinator τ by
making full use of the Lévy-Itô decomposition. Specifically, we know from the latter that the
Stieltjes measure dτ on the random interval

Ik := (x + ζ1 + · · ·+ ζk−1, x + ζ1 + · · ·+ ζk]

is purely atomic, and conditionally on |Ik|, the sequence of the atomic masses has the same
distribution as the family of the atoms in a Poisson point measure on (0,∞) with intensity
|Ik|ν. These atoms should be viewed as the sizes of sub-families at level k, so it remains to
identify the siblings and rank atoms corresponding to a same sibling in the decreasing order.
This is straightforward for the first levels but becomes increasingly intricate for larger levels.
Specifically, we let Z∅ = x and declare that (Zj : j ∈ N) is given by the sequence of the jumps
of τ on (0, x] ranked in the decreasing order. Next (Z1j : j ∈ N) corresponds to the ranked
sequence of the jumps of τ on the interval (x, x + τZ1 ], (Z2j : j ∈ N) to those on the interval
(x + τZ1 , x + τZ1+Z2 ] and so on. The algorithm may be thought of as a variant of the breadth
first search in which each sibling is ordered according to the size of its progeny.

4 Asymptotic for rare mutations

This section contains our main results on limits of trees of alleles; we shall first present and
discuss the general framework, then state the results, and finally prove the latter.
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4.1 Framework and main results

We consider a fixed probability measure π(+) on Z+ which serves as reproduction law for a
standard Galton-Watson process denoted by Z(+). We assume that Z(+) is critical, i.e.

∞
∑

i=0

iπ
(+)
i = 1 ,

and has a finite variance
∞
∑

i=0

(i − 1)2π
(+)
i = σ2 < ∞ .

Further, we suppose that mutations affect each child according to a fixed probability p ∈ (0, 1)
and independently of the other children. That is to say that the probability measure π on
Z+ × Z+ which gives the law of the number of clone children and the number of mutant
children of a typical individual is given by

πk,ℓ = π
(+)
k+ℓ

(

k + ℓ
k

)

(1 − p)kpℓ .

We will use the notation Pp
a for the probability measure under which the Galton-Watson process

Z(+) has a ancestors and the mutation rate is p, and L (·, Pp
a) will then refer to the distribution

of a random variable or a process under Pp
a

We are interested in the situation where the mutation rate p = p(n) is small and the number
of ancestors a = a(n) large when the parameter n goes to infinity. Specifically, we consider the
regime

a(n) ∼ nx and p(n) ∼ cn−1 , (11)

where c, x are some positive constants. Let us start by mentioning some results of convergence
in distribution for Galton-Watson processes in this setting.

First, we know from (4) that the Galton-Watson process Z(+) properly rescaled converges
to a Feller diffusion on R+; specifically

L
(

(n−1Z
(+)
⌊nt⌋ : t ≥ 0), P

p(n)
a(n)

)

=⇒ (X
(+)
t : t ≥ 0) , (12)

where (X
(+)
t : t ≥ 0) solves the SDE (2) for the parameter b = 0. In the same direction, the

marginal law of ξ(c) under Pp(n) has first moment 1 − p(n) and variance close to σ2 when n
is large. Hence, if Z(c) denotes the Galton-Watson process of clones (i.e. we only consider
individuals of the 0-th type), then

L
(

(n−1Z
(c)
⌊nt⌋ : t ≥ 0), P

p(n)
a(n)

)

=⇒ (X
(c)
t : t ≥ 0) as n → ∞, (13)

where (X
(c)
t : t ≥ 0) is another Feller diffusion solution to the SDE (2) for the parameter b = −c.

On the other hand, recall from Lemma 1 and Corollary 1(i) that the process of the number of
mutants of given types (Mk : k ∈ Z+) is a critical Galton-Watson process with finite variance.
In view of the classical limit theorem stated as (4) in Section 3, one might suspect that the
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rescaled process (n−1M⌊nt⌋ : t ≥ 0) could converge to some Feller diffusion. However this is
not the case; indeed an easy calculation shows that the variance of the reproduction law of
M· under Pp(n) is of order n, and thus the requirement (3) fails. Nonetheless one can deduce
from a few lines of calculations based on Proposition 1 that the condition (5) is fulfilled by the

reproduction law of M under P
(n)
a(n), and hence

L
(

(n−1Mk) : k ∈ Z+), P
p(n)
a(n)

)

converges weakly when n → ∞ towards the law of some discrete time CSBP started from a.
We do not give a formal statement as the forthcoming Proposition 2 is a stronger result.

The asymptotics (12) and (13) point to the fact that in the regime (11), the total size of the
population of the Galton-Watson process should be rescaled by a factor n−2, and in particular
the asymptotic behavior of the number T0 =

∑∞
k=0 Z

(c)
k of individuals of 0-th type is given by

L
(

n−2T0, P
p(n)
a(n)

)

=⇒

∫ ∞

0

X
(c)
t dt .

More generally, we have the following joint convergence in distribution for the rescaled process
of the sizes of sub-populations and the number of mutants of a given type.

Proposition 2 In the regime (11), we have

L
(

((n−2Tk, n
−1Mk+1) : k ∈ Z+), P

p(n)
a(n)

)

=⇒ ((Zk+1, cZk+1) : k ∈ Z+)

where (Zk : k ∈ Z+) is a CSBP with reproduction measure

ν(dy) =
c

√

2πσ2y3
exp

(

−
c2y

2σ2

)

dy , y > 0 ,

and initial population of size x/c.

The Lévy-Itô decomposition now suggests that conditionally on n−2Tk ∼ y, the sequence of
the sizes of the sub-populations carrying a same allele of the (k + 1)-type and normalized by
a factor n−2 should converge in distribution to the sequence of the atoms of a Poisson random
measure on R+ with intensity specified in Proposition 2. Recall also that du denotes the outer
degree at the vertex u ∈ U in the tree of alleles, and observe from Lemma 2 that for a Galton-
Watson process with neutral mutations, the process ((Au, du) : u ∈ U) has a simpler Markovian
structure than (Au : u ∈ U) alone. This leads us to our main limit theorem for the tree of
alleles.

Theorem 1 In the regime (11), the rescaled tree of alleles n−2A under P
p(n)
a(n) converges in the

sense of finite dimensional distributions to the tree indexed CSBP (Zu : u ∈ U) with repro-
duction measure ν given in Proposition 2 and random initial population with inverse Gaussian
distribution:

P(Z∅ ∈ dy)

dy
=

x
√

2πσ2y3
exp

(

−
(cy − x)2

2σ2y

)

, y > 0 .
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More precisely, if we also take into account the outer degrees, then we have the joint conver-
gence in the sense of finite dimensional distributions:

L
(

((n−2Au, n
−1du) : u ∈ U), P

p(n)
a(n)

)

=⇒ (Zu, cZu) : u ∈ U) .

4.2 Proofs

Let us first present informally some intuitions for the proofs, which rely on the connexion with
random walks in Section 2.3. Roughly speaking, we shall observe that in the regime (11), the
random walk S(c) suitably rescaled converges to a Brownian motion with negative drift. As
the lengths of the excursions of S(c) above its current minimum correspond to the sizes of sub-
populations with the same allele, this suggests that in the limit, the lengths of the excursions of
a Brownian motion with drift above its current minimum should describe the limit of rescaled
sub-populations. According to Itô’s excursion theory, these lengths can be described in terms
of a Poisson point process. The comparison with the construction of the tree indexed CSBP
presented in Section 3.2 should then make Theorem 1 more intuitive.

The proofs of Proposition 2 and Theorem 1 both rely on the following technical lemma.

Lemma 4 In the regime (11), we have:

(i) Let (τx : x ≥ 0) be a inverse Gaussian subordinator with cumulant

κ(q) = σ−2
(

√

c2 + 2qσ2 − c
)

= c−1

∫ ∞

0

(1 − e−qy)ν(dy) , q ≥ 0 ,

i.e. with zero drift and Lévy measure c−1ν where ν given in Proposition 2. Then

L
(

(n−2T0, n
−1M1), P

p(n)
a(n)

)

=⇒ (τx, cτx) .

(ii) The behavior of the joint tail distribution of T0 and M1 under P
p(n)
1 is given by

lim
n→∞

nP
p(n)
1

(

n−2T0 > t or n−1M1 > m
)

= c−1ν̄(min(t, m/c)) in L1
loc(R+ × R+, dt dm) ,

where ν̄ denotes the tail function of the Lévy measure ν.

Proof: One could establish these limits from the explicit expressions in Proposition 1; however
a probabilistic argument based on the construction in Section 2.3 circumvents the somewhat
tedious calculations.

(i) Recall that the fixed reproduction law π(+) has unit mean and variance σ2. For each

n ∈ N, consider a random walk (S
(n)
k : k ∈ Z+) started from S

(n)
0 = a(n) and with step

distribution that of ξ(+) − 1. By Donsker’s invariance principle and Skorohod’s representation,
we may suppose that with probability one

lim
n→∞

n−1S
(n)
⌊n2t⌋ = x + σBt ,
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where (Bt : t ≥ 0) is a standard Brownian motion and the convergence holds uniformly on
every compact time-interval.

For every fixed n, we now decompose each variable ξ
(+)
i as the sum ξ

(+)
i = ξ

(cn)
i + ξ

(mn)
i by

using a Bernoulli sampling; that is conditionally on ξ
(+)
i = ℓ, ξ

(mn)
i has the binomial distribution

with parameter (ℓ, p(n)). Of course, we use independent Bernoulli sampling for the different

indices i, so that the pairs (ξ
(cn)
i , ξ

(mn)
i ) are i.i.d. and have the law of ξ under Pp(n). If we define

S
(mn)
k := ξ

(mn)
1 + · · ·+ ξ

(mn)
k , k ∈ Z+ ,

then E(ξ
(mn)
1 ) = p(n) ∼ c/n and var(ξ

(mn)
1 ) = O(1/n), and it is easy to verify that with

probability one
lim

n→∞
n−1S

(mn)
⌊n2t⌋ = ct ,

uniformly on every compact time-interval. Hence the random walk

S
(cn)
k := a(n) + ξ

(cn)
1 + · · · + ξ

(cn)
k = S

(n)
k − S

(mn)
k

fulfills
lim

n→∞
n−1S

(cn)

⌊n2t⌋ = x + σBt − ct ,

where again the convergence holds a.s., uniformly on every compact time-interval.

Now recall the framework of Section 2.3 and introduce

ς(n)(0) := inf{k ∈ Z+ : S
(cn)
k = 0} and Σ(n)(0) :=

ς(n)(0)
∑

i=1

ξ
(mn)
i = S

(mn)

ς(n)(0)
.

It follows readily from the preceding observations that with probability one

lim
n→∞

n−2ς(n)(0) = τx and lim
n→∞

n−1Σ(n)(0) = cτx

where τ denotes the process of first passage times for a Brownian motion with drift,

τy := inf{t ≥ 0 : ct − σBt > y} , y ≥ 0.

It is well-known that the latter is a subordinator with cumulant κ as given in the statement,
and the first claim is established by an appeal to Lemma 3.

(ii) The branching property shows that the law of (T0, M1) under P
p(n)
a(n) is that of the sum

of a(n) i.i.d. variables distributed as (T0, M1) under P
p(n)
1 . This observation enables to deduce

(ii) from (i) by an argument similar to that we use to establish (6). Indeed, write

µ̄n(t, m) = P
p(n)
1 (T0 > t or M1 > m)

for the bivariate tail distribution of the pair (T0, M1) under P
p(n)
1 . By an elementary calculation,

we have that for every q, r > 0

Ep(n)
an

(

exp
(

−
q

n2
T0 −

r

n
M1

))

=

(

1 − qr

∫ ∞

0

∫ ∞

0

e−qte−rmµ̄n(n2t, nm)dt dm

)an

.
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We know from (i) that this quantity converges as n → ∞ towards

E(exp(−(q + cr)τx)) = exp

(

−x

∫ ∞

0

(1 − e−(q+cr)y)c−1ν(dy)

)

,

so that taking logarithms, we get

lim
n→∞

qran

∫ ∞

0

∫ ∞

0

e−qte−rmµ̄n(n2t, nm)dt dm

= x

∫ ∞

0

(1 − e−(q+cr)y)c−1ν(dy)

= xqr

∫ ∞

0

∫ ∞

0

e−qte−rmc−1ν̄(min(t, m/c))dt dm .

This entails our claim. �

Proposition 2 immediately follows from Lemma 1 and Lemma 4(i), so we turn our attention
to the proof of Theorem 1.

Proof of Theorem 1: Recall that A∅ = T0 and d∅ = M1. On the one hand, we know from
Lemma 4(i) that

L
(

(n−2A∅, n−1d∅), P
p(n)
a(n)

)

=⇒ (τx, cτx) .

On the other hand, Lemma 4(ii) and the law of rare events for null arrays (e.g. Theorem 14.18
in [12]) entails that for any sequence of integers b(n) such that b(n) ∼ bn for some b > 0,

L
(

(n−2T0, n
−1M1)

(b(n)↓), P
p(n)
1

)

=⇒ ((a1, ca1), (a2, ca2), . . .) ,

where the notation γ(d↓) has been defined just before Lemma 2 and (a1, a2, . . .) stands for the
sequence ranked in the decreasing order of the atoms of a Poisson measure on (0,∞) with
intensity bc−1ν.

Denote by Qx the law of a tree-indexed CSBP and initial population distributed as τx and
reproduction measure ν. We now see from Lemma 2 that

L
(

((n−2Au, n
−1du) : |u| ≤ 1), P

p(n)
a(n)

)

=⇒ L (((Au, cAu) : |u| ≤ 1), Qx)

in the sense of finite dimensional convergence. Lemma 2 enables us to iterate the argument to
the subsequent levels of vertices, which establishes our claim. �
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233-236.

[4] Dwass, M. The total progeny in a branching process. J. Appl. Probab. 6 (1969), 682-686.

[5] Ewens, W. J. The sampling theory of selectively neutral alleles, Theoret. Popul. Biol. 3

(1972), 87-112.

[6] Feller, W. Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability, pp. 227-246. Univ. California Press, Berkeley,
Calif., 1951.

[7] Harris, Th. E. The theory of branching process. Springer-Verlag, Berlin, 1963.
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[11] Jǐrina, M. Stochastic branching processes with continuous state space. Czechoslovak Math.
J. 8 (1958), 292-313. Available via http://dml.cz/dmlcz/100304

[12] Kallenberg, O. Foundations of modern probability. Second edition. Probability and its
Applications (New York). Springer-Verlag, New York, 2002.

[13] Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13 (1982), 235-248.

[14] Pitman, J. Combinatorial stochastic processes. École d’été de Probabilités de St-Flour, Lect.
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