
HAL Id: hal-00373168
https://hal.science/hal-00373168

Submitted on 3 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic approach to build plant models for DES
verification purposes

José J.B. Machado, Bruno Denis, Jean-Jacques Lesage

To cite this version:
José J.B. Machado, Bruno Denis, Jean-Jacques Lesage. A generic approach to build plant models for
DES verification purposes. 8th International Workshop on Discrete Event Systems, WODES’06, Jul
2006, Ann Arbor, Michigan, United States. pp.407-412. �hal-00373168�

https://hal.science/hal-00373168
https://hal.archives-ouvertes.fr

Abstract—The modeling of plant behavior is often essential
in the design, performance analysis or diagnosis of Discrete
Event Systems (DES). Yet this task remains a difficult one for
which little research has been devoted. In this paper, we
propose a technique for building behavioral models specific to
large-scale plants, in order to perform a formal verification of
the controller by means of "model-checking". In this aim, we
have opted to use a modular approach with an appropriate
class of automata. To obtain the overall plant model, parallel
evolutions of the elementary automata are to be coordinated by
a sequencer that ensures consistency of these evolutions.

I. INTRODUCTION
he behavior of a reactive Discrete Event System (DES)
stems from the interaction between a controller and a

plant (Fig. 1). Just the given expected overall DES behavior
(i.e. behavior of the {controller + plant} closed-loop system,
which in most cases is only informally described in the
functional specifications) is insufficient therefore for the
control engineer to design controller behavior if the event
plant behavior is not known (or postulated). The automation
paradigm set forth in [1] expresses this very aspect:

Process dynamics (Known) ∧ Control rules (Unknown)
⊃ Goals (Known) (1)

Although this paradigm had been proposed in a context
other than DES, it still serves as a reference for a
considerable body of methodological work in this field
(e.g. [2]). In particular, it provides an entirely appropriate
formulation for expressing the basis of controller synthesis
(as regards the "supervisory control theory" introduced by
Ramadge and Whonam [3]). This approach is in effect
aimed at determining the most permissive control laws (the
so-called Unknown Control rules), which satisfy the
imposed specifications (Known Goals), with plant behavior
being either known or postulated (Known Process
dynamics). According to this approach, the relevance of the
plant model is determinant for the synthesis of an optimal

Manuscript received January 23, 2006.
J. Machado is with the Department of Mechanical Engineering,

University of Minho, Azurém Campus, 4800-058 Guimarães PORTUGAL.
B. Denis is with the University Research Laboratory in Automated

Production, École Normale Supérieure de Cachan, 61 av. du Président
Wilson, 94235 Cachan FRANCE (corresponding author, phone:
+33 1 47 40 24 13; fax: +33 1 47 40 22 20; e-mail: bruno.denis@lurpa.ens-
cachan.fr).

J.-J. Lesage is with the University Research Laboratory in Automated
Production, École Normale Supérieure de Cachan, 61 av. du Président
Wilson, 94235 Cachan FRANCE (e-mail: jean-jacques.lesage@lurpa.ens-
cachan.fr).

controller. The difficulties encountered in deriving a plant
model adapted to this theory have been discussed in [4].

Equation (1) provides an expression for not only the
synthesis, but also the set of interactions between plant and
controllers during other phases of the DES life cycle:

– during the analysis phase, which entails ensuring (by
either simulation or a formal "model-based"
verification [5]) that the interaction between a controller
model and a plant model encompasses the expected
overall DES behavior;

– during the operation phase, in which model-based
diagnosis techniques consist of identifying whether the
observed DES behavior, resulting from the actual
interaction between plant and controller, corresponds to
a faulty behavior anticipated by the diagnoser, given that
the diagnoser has itself been synthesized from a plant
model / controller model couple [6].

The construction of a good plant behavior model is thus

vital to DES design, analysis and operation; yet
paradoxically, only very little research has been devoted to
this specific topic. In this paper, we propose a modular and
systematic approach for building dependable and realistic
plant models. Our scope incorporates the objective of
introducing verification by means of a model-based model-
checking, i.e. through exploring the state space reachable by
a controller model coupled to a plant model. This work is
structured as follows: Section II will review the
contributions and limitations offered by the research we feel
the most pertinent in terms of the behavioral modeling of
plants. We will establish the need for an approach dedicated
to plant model-building, to be presented in Section III and
then applied to treat a significant example.

II. THE PLANT MODEL IN DES AUTOMATION

A. DES synthesis
The automated design of DES control laws offers a problem
that has been challenging the scientific community for quite
some time. Following a number of valuable contributions in
this field (references [7] and [8] merit recognition),
Ramadge and Wonham's supervisory control theory [3]

A generic approach to build plant models
for DES verification purposes

J. Machado, B. Denis, and J.-J. Lesage

T

information
control

instructions

Controller

Plant

Fig. 1. A generic closed-loop DES

denis
Zone de texte
8th International Workshop on Discrete Event Systems, WODES'06, Ann Arbor, Michigan, (USA), pp 407-412, July 2006

sparked keen interest in DES synthesis. Fifteen years after
this fundamental work, the gap between the large number of
theoretical contributions and the few successful industrial
implementations still stands out [9]. Application of the
supervisory control theory remains a wide open problem that
has mobilized the scientific community of DES over the past
decade ([10], [11], [12]). Several reasons underlie the
difficulties encountered in applying this theory. From a more
general standpoint, the size of models handled constitutes a
key difficulty. Using decentralized, modular or hierarchical
control structures or performing modeling with formalisms
other than finite-state machines, such as Petri nets, provides
for an attractive alternative. We feel however, in conjunction
with [4], that another primary difficulty lies in the plant
modeling set-up. Two reasons have led us to this assertion.
First of all, the synthesis of a controller requires building a
highly-detailed plant model whose events translate state
changes in both the information delivered by sensors and the
orders given to preactuators. The R&W synthesis method is
based on language theory and then implies the use of a class
of automaton poorly adapted to plant behavior modeling at
this level of abstraction [13].

Moreover, the complexity of industrial systems
necessitates the use of modular approaches for constructing
the overall plant model [14]. To carry this step out once the
elementary component automata have been established, the
model of the entire plant is most often derived by means of
composition, which leads to generating a model that
contains many surplus states and transitions devoid of
physical meaning.

B. DES verification
Formal verification techniques using model-

checking [15] have been employed in the area of DES
automation for the past twelve years. As part of a
dependable controller design approach, the target
verification system may comprise [16] either the controller
on its own, assumed to be placed in an open-loop on the
plant (non model-based verification) or the {controller +
plant} set interacting within a closed-loop (model-based
verification).

The formalisms and abstraction levels used to build a
plant model for model-based verification purposes are quite
diverse. They may consist of simple algebraic constraints for
translating partial or local behavior, which are primarily
intended to reduce the combinatorial explosion of the state
space reachable by the controller [17]. On the other hand,
they may consist of highly-detailed state models designed to
improve the quality of proofs relative to safety
properties [18]. The modular construction techniques
applied to this plant model, as well as their inherent
disadvantages, often turn out to be the same as those for the
synthesis (see section II.A).

C. DES diagnosis
In our opinion, the topic of DES diagnosis has yielded

the most significant recent contributions to plant modeling.

Setting up a diagnoser actually presumes the preexistence of
a plant model (that includes faulty behavior) with sufficient
enough detail for the diagnosis to be pertinent. Nearly all
techniques for plant behavior modeling therefore entail
building a knowledge model in the form of digraphs, Binary
Decision Diagrams or, more frequently, in the form of finite-
state machines ([19], [20], [21]). For this purpose,
behavioral models of elementary system components and
their interactions have to be designed. Behavior of the full
system is then most often obtained by composing the various
component automata. As is the case with controller
synthesis, this solution is difficult to put into practice for
large-sized systems. Furthermore, an expert approach is
necessary in order to remove the surplus states and
transitions from the composition-generated automaton [6],
which as opposed to the synthesis must not remain within
the plant model.

D. Assessment
A plant model is mandatory in order to accomplish the

majority of DES life cycle phases: synthesis, verification,
diagnosis. Nonetheless, this model must be built using a
formalism that relies upon a point of view and a level of
abstraction compatible with its ultimate use. Under all
circumstances, only modular approaches are compatible
with the complexity of industrial DES. Alternatives to
automata synchronous or asynchronous products must
however be identified so as to avoid generating surplus
states and transitions devoid of physical meaning.

We will now present our approach for the modular
construction of plant models in the aim of performing a
model-based controller verification.

III. CONSTRUCTION OF A PLANT MODEL IN THE AIM OF
CONTROLLER VERIFICATION

A. The controller verification procedure
In most model-based model-checking approaches [5],

[16], [17], the verified model results from the composition
of three models: the user program model, the control unit
execution model, and the plant model.

For complex systems, the plant model must be derived
from a library of generic models instanced and composed.
Major contributions for modular plant modeling using
standard “blocks” can be founded in [22], that defined
Condition/Event Systems, or in [23] that defined Net
Condition/Event Systems. However, our purpose is
verification using model-checking, so we have chosen to use
a “ready-to-check” and powerful class of automaton.

B. Selected class of automaton
We have selected an automaton class stemming from the

one described in [21] for the UPPAAL model-checker and
have elected to retain the same notations.

Automaton A is thus a triplet 〈N, n0, E〉, where:
- N is a finite set of states;
- n0∈N is the initial state;

- E⊆N×τ×Σ×N is the set of transitions, with τ being
the set of Boolean expressions defined on the set of
logic variables V, and Σ a partition of the set of
assignments on V.

An automaton network {A1,…,An} is a set of automata
whose Boolean expressions τ, associated with the
transitions, are defined on the same set of logic variables V.
Within an automaton network, the evolutions are
asynchronous and based on variable sharing. This implies
that at each point in time, a single transition of a single
automaton may be fired. Throughout the remainder of this
paper, the syntax of Boolean expressions τ will replicate the
syntax from C programming language ("&&" for the AND
operator, "||" for the OR operator and "!" for the NO
operator). In the discussion of the ensuing example, clocks
and hand-shake synchronizations will not be employed.

C. Case study
The system chosen for this case study lies in the well-

known category of "pick-and-place" systems (Fig. 2); its
function is to take parts, fed by gravity into three feed
chutes, for placement in a single unloading chute. Sensors
pp1, pp2 and pp3 indicate the presence of a part in one of
the feed chutes, while sensor pp0 signals the presence of a
part in the unloading chute. The device that enables picking
and placing a part is composed of a group of three
pneumatic cylinders plus a vacuum suction cup system. The
vertical cylinder (VC) places the suction cup in contact with
a part. Longitudinal cylinders L1C and L2C are arranged in
series to allow positioning the vertical cylinder VC in front
of the four chutes (L2C stroke is twice as long as than L1C
stroke). The four positions reached are thereby detected by
position sensors s0, s1, s2 and s3. The depression in the
suction cup is obtained by virtue of a venturi and detected
by a vacuum sensor.

D. Construction of the plant-model
The plant model is built using generic models extracted

from a library and then supplemented, if necessary, by
adding in specific behavioral components. APi will denote
herein those automata that describe the behavior of the
elementary plant components. Figure 3 illustrates the
modularity of this approach and displays the result of
generic model instantiation for the L1C, L2C two-cylinder
subset and sensor s2.

The behavior of each of the double-acting cylinders L1C

and L2C with its 5/2-way double solenoid valve is built by
instancing a single generic automaton. Automaton network
{AP1, AP2, AP6} models the behavior of this plant subset. Let
us examine L1C automaton. It is composed of four states: P5
models the inward rod position, P6 models that the rod
moves outwards, P7 models the outward rod position, P8
models that the rod moves inwards. In the states P6 and P8
the rod moves, and its movement will stop without order
from controller. For that, a timer is associated to the
transitions P6-P7 and P8-P5 to model the duration of the
stroke deployment.

The transition 〈P5, g, a, P6〉, which will also be denoted
65 , PP ag⎯→⎯ , features a guard "g" equal to "L1CGO

&& !L1CGI" and an action "a" equal to "V_P5:= 0". This
transition may be fired when the guard is true, i.e. when both
solenoid L1CGO (L1C Go Out) is activated and solenoid
L1CGI (LIC Go In) is not activated. Its completion causes
the variable V_P5 to be reset. This transition thus allows
modeling the start of the cylinder deployment once the
L1CGO order has been issued.

The transition 76 ,_3&&1! PP timeoutTCGIL ⎯⎯⎯⎯⎯⎯⎯ →⎯ − models the
end of the cylinder deployment movement by testing for the
completion of the timer (T3_timeout), which represents the
deployment duration. ATj is the notation used for automata
describing the logic abstraction of timers. Following the
instancing phase, an expert needs to intervene to coordinate
the automata from a functional standpoint. As an illustration,

L1CGO L1CGI L2CGO L2CGI

S2

S2

L2CL1C AP1 AP2

AP6

L1CGO L1CGI L2CGO L2CGI

S2

S2

L2CL1C AP1 AP2

AP6

Fig. 3. Pant model obtained after the instantiation of generic automata
from the library.

Fig. 2. Schematic view of the studied system

the sensor s2 automaton must be coordinated with the
automata of cylinders L1C and L2C in order to determine
whether or not cylinder VC lies above the second feed
chute. The transition guards of automaton AP6 must therefore
be able to test the activation of states AP1 and AP2. This
feature is obtained using shared logic variables added to
network automaton states. To avoid encumbering Fig. 3,
only those variables necessary for modeling the activity of
states P5 and P11 have been represented (i.e. V_P5
and V_P11). Automaton AP6 moves from state P17 to P18 as
cylinder L1C is retracted (V_P5 equals 1) and as cylinder
L2C is deployed (V_P11 equals 1). The action associated
with this transition (s2:=1) indicates that the logic value
emitted by the sensor is thereby set at 1. The shared logic
variables included in order to mark each state are generated
automatically according to the procedure described by
algorithm 1.

E. Plant model coordination

Such a modular approach, that is necessary for complex
systems modeling, requires examining closely the behavior
of the assembled modules. Indeed, a plant evolution,
following a controller order emission, results in a succession
of evolutions of the state of the modules whose propagation
must be coordinated (it is the role of the Plant Sequencer
which is described in the following section). Only the stable
states of an automata network, reached at the end of the
controller order propagation, represent a relevant state of the
plant. An example of such a succession of evolutions is
given bellow.

Let us starting from the situation {P8, P11, P17} Figure 3
(cylinder L1C retracted and cylinder L2C deployed). The
arrival of cylinder L1C at the end of its stroke (T4_timeout
true) leads the system into situation {P5, P11, P17}. In this
case, cylinder VC is positioned opposite chute 2, while
sensor s2 is still emitting opposite information (s2 = 0). This
unstable state will be leaved since the variable V_P5
becomes true. The final stable situation is {P5, P11, P18}. It
is the relevant situation that corresponds to a real plant
configuration.

In short, in each module a stable state can be leaved:

either because a new controller order appears or because a
no null duration action of the plant is completed (such as for
example the end of the L1C rod inward move which is
modeled using the timeout of timer T4). The succession of
unstable states before reaching a stable one is due to the
firing of transitions (as P17 P18) sensitive to the change of
state of other modules.

In order to manage this search of stability we have added
to the plant model an automatically-generated automaton,
called "plant sequencer" (denoted APS), which also permits
to identify that all consequences of a variation in controller
orders have been fully propagated. In a same manner, it is
necessary to manage interactions between the controller
model and the plant model evolutions. To do that, we have
added a “general sequencer” (denoted AGS), no more
detailed in this paper.

Figure 4 presents the whole model for this case study and
is structured as follows:

The plant sequencer automaton is composed of four

states:
- PIR (Plant Inputs Reading) during the activity of

which the orders emitted by the controller are taken
into account and held;

- PTR (Plant TReatment) that allows the plant model
evolution until reaching a stable state;

- POU (Plant Outputs Updating) during the activity of
which the change of sensor values are transmitted to
the controller;

- when PTE (Plant TEst) is active, the state of the plant
model corresponds to the real configuration of the
plant. The verification can be performed.

To ensure coordination with APS, automata APi must be
enhanced such that:

- when APS fires transition PIR PTR, all automata APi
must asynchronously fire one and only one transition;

- once all automata APi have fired a transition, APS fires
either PTR PTR if at least one APi has change of
state or PTR POU otherwise (Fig. 5).

This automaton enhancement is entirely automated in
compliance with the procedure described in algorithm 2.

The overall DES model also includes a general
sequencer AGS that ensures the evolution alternatively of the
controller model and plant model. The properties to be
verified are assessed solely at the end of each completed
evolution of one of the two models.

F. Discussion
The framework of this paper does not provide ample

space to present the entire model-checking process of the
case study. The key general features of the verification
process adopted, condensed into just a few words, are as

Algorithm 1. Addition of a logical variable for each state of each APi
automaton and action update. These variables become state marking.

for each A in {AP1,…,APn} do
 for each n in N of A do
 V := V ∪ { V_n }
 for each 〈ns, g, a, nd〉 in E of A do
 if n = ns then
 a := a ∪ { V_n := 0 }
 end if
 if n = nd then
 a := a ∪ { V_n := 1 }
 end if
 end for
 end for
end for

{AGS, ACS, ACP, APS, AP1,…, AP12, AT1,…, AT13}

 Controller model Plant model
General sequencer

follow:
- NuSMV has been chosen as model-checker due to its

performance for timeless verification;
- the computer which perform the verification hosts a

CPU P4 at 2.54GHz and 2GB RAM ;
- a set of 42 liveness and safety properties are to be

proved.
Obtained from two experiments focusing on the same

properties but checking two different automaton networks,
the results underline the advantage of our approach.

- experiment 1 (pure automata product approach, without
plant sequencer neither general sequencer). The checked
model is the network {ACS, ACP, AP1,…, AP12, AT1,…,
AT13}. The APi automata do not have been enhanced as
shown Fig 3. The NuSMV input code is 788 lines long
(without comments neither empty lines). After 3h30min
of computation, model-checker use 3.2GB memory and
make the computer swap heavily. No answer can be
obtained. The too great number of surplus states, due to
automaton product, avoid the checker to complete proves.
- experiment 2 (our automata coordination approach with

plant sequencer and general sequencer). The checked model
is the network {AGS, ACS, ACP, APS, AP1,…, AP12, AT1,…,
AT13}. The APi automata have been enhanced by applying the
algorithm 2. The NuSMV input code is 1372 lines long. All
properties have been successfully proved within 8h10min.

To evaluate consequences of surplus states generated by
the automata product on the verification process we check
the following property "when VC is in front of chute 2 then

sensor s2 always detect it".
- experiment 1 with automata product approach the

property becomes in Computation Tree Logic
□((V_P5 ∧ V_P11) → s2) and it is checked as false;

- experiment 2 with automata coordination approach, to
prevent that the checking occurs for unstable states, the
property becomes □((V_PTE ∧ V_P5 ∧ V_P11) → s2) where
V_PTE is true when the plant model has reached a stable
state. This property is checked as true.

Contrary results for the proof of the same property in
these two experiments were expected. Indeed, in experiment
1 the model-checker declares the property false because it

Algorithm 2. Addition of further information into guards and addition
of new transitions to take into account the coordination with plant
sequencer automaton (APS).

V := V ∪ { CPS }
for each A in {AP1,…,APn} do
 V := V ∪ { TD_A }
 for each 〈ns, g, a, nd〉 in E of A do
 if ns ≠ nd then
 g := g && V_PTR && !TD_A
 a := a ∪ { TD_A:= 1 } ∪ { CPS := 1 }
 end if
 end for
 for each n in N of A do
 a := { TD_A:= 1 }, g := 0
 for each 〈ns1, g1, a1, nd1〉 in E of A do
 if ns1 = n then
 g := g || g1
 end if
 end for
 g := !g && V_PTR && !TD_A
 E:= E ∪ { 〈n, g, a, n〉}
 end for
end for

Plant_seq

Venturi

pp3 (sensor)pp2 (sensor)

T6 (timer)
T5 (timer)

s1 (sensor)
s0 (sensor)

s3 (sensor)
s2 (sensor)

General_seq

Controller_prog

Controller_seq

pp1 (sensor)

T11 (timer)
T7 (timer)

T9 (timer)

T4 (timer)
T3 (timer)

T2 (timer)

VC (cylinder) with vcu and vcd sensors
L2C (cylinder)

L1C (cylinder)

T13 (timer)AT9

pp0 (sensor)

T1 (timer)

composition

user program
model

environmental
model

system model

control unit
execution model

Zone A
ACP

ACS

APS

AGS

AT7 T8 (timer) AT8

AP9

AP1

AP2

AP3

AP6

AP7

AP4

AP5

AP8

AP10 AP11 AP12

AT11 AT13
T12 (timer)AT12T10 (timer)AT10

AT1

AT2
AT3

AT4
AT6

AT6

Plant_seqPlant_seq

Venturi

pp3 (sensor)pp2 (sensor)

T6 (timer)T6 (timer)
T5 (timer)T5 (timer)

s1 (sensor)s1 (sensor)
s0 (sensor)s0 (sensor)

s3 (sensor)s3 (sensor)
s2 (sensor)s2 (sensor)

General_seq

Controller_progController_prog

Controller_seqController_seq

pp1 (sensor)

T11 (timer)T11 (timer)
T7 (timer)T7 (timer)

T9 (timer)T9 (timer)

T4 (timer)T4 (timer)
T3 (timer)T3 (timer)

T2 (timer)T2 (timer)

VC (cylinder) with vcu and vcd sensorsVC (cylinder) with vcu and vcd sensors
L2C (cylinder)L2C (cylinder)

L1C (cylinder)L1C (cylinder)

T13 (timer)T13 (timer)AT9

pp0 (sensor)

T1 (timer)T1 (timer)

composition

user program
model

environmental
model

system model

control unit
execution model

Zone A

composition

user program
model

environmental
model

system model

control unit
execution model

Zone A
ACP

ACS

APS

AGS

AT7 T8 (timer)T8 (timer) AT8

AP9

AP1

AP2

AP3

AP6

AP7

AP4

AP5

AP8

AP10 AP11 AP12

AT11 AT13
T12 (timer)T12 (timer)AT12T10 (timer)T10 (timer)AT10

AT1

AT2
AT3

AT4
AT6

AT6

Fig. 4. Whole model ready for performing the verification.

identifies an unstable situation in which L1C is in inward
position, L2C is in outward position and the s2 sensor is not
yet set to 1. This no significant situation is avoided using our
coordination approach in experiment2.

IV. CONCLUSION
In this paper, we have considered the problem of building

plant models for large complex DES with the aim of
controller verification. For these systems, a modular
approach of plant model building by assembly of generic
component models is necessary. We showed that this
assembly generates difficulties of controlling the
propagation of the behaviors between modules. In our
opinion, all modular approaches which aim to preserve a
real encapsulation of the component models encounter this
problem independently of the modeling formalism or of the
granularity of the models. We thus proposed a plant
sequencer devoted to coordinate the asynchronous behaviors
of the modules until obtaining a stable situation of the whole
plant model.

REFERENCES
[1] A. Fusaoka, H. Seki, and K. Takahashi, “A description and reasoning

of plant controllers in temporal logic”, in Proc. 8th Int. Joint Conf. on
Artificial Intelligence, Karlsruhe, Germany, 1983, pp. 405-408.

[2] G. Morel, J.-F. Petin, P. Lamboley, “Formal specification for
manufacturing systems automation”, in CDROM Proc. IFAC Int.
Conf. on Information Control Problems in Manufacturing, Vienna,
Austria, September 2001, 6 pages.

[3] P.J. Ramadge, and W.M. Wonham, “The control of discrete event
systems”, IEEE special issue on Discrete Event Dynamic Systems,
vol. 77, n° 1, January 1989, pp. 81-98.

[4] J.-M. Roussel, and A. Giua, “Designing dependable logic controllers
using the supervisory control theory”, in CDROM Preprints 16th IFAC
World Congress, Praha, Czech Republic, July 2005, paper n° 04427, 6
pages.

[5] T. Merkte and T. Menzel, “Methods and tools to the verification of
safety-related control software”, in Proc. IEEE int. conf. on Systems
Man and Cybernetics, Nashville, USA, October 2000, pp. 2455-2457.

[6] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C.
Teneketzis, “Failure diagnosis using discrete-event models”, IEEE
Trans. C S T, vol. 4, n° 2, pp. 105-124, March 1996.

[7] D. Crockett D, A. Desrochers, F. Dicesare, and T. Ward, “Implemen-
tation of a Petri net controller for a machining workstation”, in Proc.

IEEE conf. Robotics and Automation, Raleigh, North Carolina, USA,
April 1987, pp. 1861-1867.

[8] M.C. Zhou, F. Dicesare, and D. Rudolph, “Design and Implementa-
tion of a Petri net based supervisor for a flexible manufacturing
System”, Automatica, vol. 28, n° 6, pp. 1199-1208, 1992.

[9] M. Fabian and A. Hellgren, “PLC-based implementation of supervi-
sory control for discrete event systems”, in Proc. 37th IEEE Conf. on
Decision and Control, Tampa, USA, December 1998, pp. 3305-3310.

[10] S. Balemi, G.J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G.F.
Franklin, “Supervisory control of a rapid thermal multiprocessor”,
IEEE Trans. Automatic Control, vol. 38, n° 7, pp.1040-1059, 1993.

[11] L.E. Holloway, A. Callahan, J. O’Rear, and X. Guan, “Spectool:
automated synthesis of control code for discrete event controllers”, in
Proc. 5th Int. Workshop on D E S, Ghent, Aug. 2000, pp. 383-389.

[12] M.H. De Queiroz and J.E.R. Cury, “Synthesis and implementation of
local modular supervisory control for a manufacturing cell”, in Proc.
6th Int. Workshop on D E S, Zaragoza, Spain, Oct. 2002, pp. 377-382.

[13] A. Philippot, A. Tajer, F. Gellot, and V. Carré-Ménétrier, “On line
synthesis approach based on a structured plant modelling”, in Proc. 7th
Int. Workshop on D E S, Reims, France, Sep. 2004, pp. 397-402.

[14] D. Gouyon, J.-F. Petin, and G. Morel, “Control synthesis for product-
driven automation”, in Proc. 7th Int. Workshop on Discrete Event
Systems, Reims, France, September 2004, pp. 19-24.

[15] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, “Systems and software verification: model-
Checking techniques and tools”, Springer, 1999, 190 pages.

[16] G. Frey and L. Litz, “Formal method in PLC programming”, in
CDROM Proc. IEEE int. conf. on Systems Man and Cybernetics,
Nashville, Tennessee, USA, October 2000, pp. 2431-2436.

[17] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the automatic verification of PLC programs written in
instruction list”, in Proc. IEEE int. conf. on Systems Man and
Cybernetics, Nashville, Tennessee, USA, Oct. 2000, pp. 2449-2454.

[18] J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, J.C. Ferreira da Silva,
“Increasing the efficiency of PLC program verification using a plant
model”, in CDROM Proc.6th Int. Conf. on Industrial Engineering and
Production Management, Porto, Portugal, May 2003, 10 pages.

[19] J. Lunze, J. Schröder, and P. Supavatanakul, “Diagnosis of Discrete-
Event Systems: the method and example”, in Proc. 12th int. workshop
on principles of diagnosis, Sansicario, Italy, Mar. 2001, pp. 111-118.

[20] J. Sztipaovits and A. Mistra, “Diagnosis of Dicrete Event Systems
using ordered binary decision diagram”, in Proc. 7th International
workshop on principles of diagnosis, Val Morin, Canada, 1996.

[21] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms
and Tools,” LNCS 3098, Springer-Verlag, 2004.

[22] R.S.Sreenivas and B.H.Krogh On condition/event systems with
discrete state realizations Discrete Event Dynamic Systems: Theory
and Applications, 2(1):209-236,1991

[23] M. Rausch and H.-M. Hanisch. Net condition/event systems with
multiple condition outputs. Symposium on Emerging Technologies
and Factory Automation, Paris, France, pp 592-600, Oct. 1995.

s2 (sensor) AP6

L1C (cylinder) AP1

Plant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

Transition fired while
at least one APi has

changed of state

TD_L1C (Transition disabling)
variable controlling when L1C
automaton could fire transition Example of loop-back transition

enabling when all state outgoing
transitions are disable

s2 (sensor) AP6

L1C (cylinder) AP1

Plant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

s2 (sensor) AP6s2 (sensor) AP6

L1C (cylinder) AP1L1C (cylinder) AP1

Plant_seq APSPlant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

Transition fired while
at least one APi has

changed of state

TD_L1C (Transition disabling)
variable controlling when L1C
automaton could fire transition Example of loop-back transition

enabling when all state outgoing
transitions are disable

Fig. 5. Coordination between plant sequencer automaton and two plant component automata. Ap1 and Ap6 automata have been enhanced applying
algorithm 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

