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Abstract—The modeling of plant behavior is often essential 
in the design, performance analysis or diagnosis of Discrete 
Event Systems (DES). Yet this task remains a difficult one for 
which little research has been devoted. In this paper, we 
propose a technique for building behavioral models specific to 
large-scale plants, in order to perform a formal verification of 
the controller by means of "model-checking". In this aim, we 
have opted to use a modular approach with an appropriate 
class of automata. To obtain the overall plant model, parallel 
evolutions of the elementary automata are to be coordinated by 
a sequencer that ensures consistency of these evolutions.  

I. INTRODUCTION 
he behavior of a reactive Discrete Event System (DES) 
stems from the interaction between a controller and a 

plant (Fig. 1). Just the given expected overall DES behavior 
(i.e. behavior of the {controller + plant} closed-loop system, 
which in most cases is only informally described in the 
functional specifications) is insufficient therefore for the 
control engineer to design controller behavior if the event 
plant behavior is not known (or postulated). The automation 
paradigm set forth in [1] expresses this very aspect: 

Process dynamics (Known) ∧ Control rules (Unknown) 
⊃ Goals (Known) (1) 

Although this paradigm had been proposed in a context 
other than DES, it still serves as a reference for a 
considerable body of methodological work in this field 
(e.g. [2]). In particular, it provides an entirely appropriate 
formulation for expressing the basis of controller synthesis 
(as regards the "supervisory control theory" introduced by 
Ramadge and Whonam [3]). This approach is in effect 
aimed at determining the most permissive control laws (the 
so-called Unknown Control rules), which satisfy the 
imposed specifications (Known Goals), with plant behavior 
being either known or postulated (Known Process 
dynamics). According to this approach, the relevance of the 
plant model is determinant for the synthesis of an optimal 
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controller. The difficulties encountered in deriving a plant 
model adapted to this theory have been discussed in [4]. 

Equation (1) provides an expression for not only the 
synthesis, but also the set of interactions between plant and 
controllers during other phases of the DES life cycle: 

– during the analysis phase, which entails ensuring (by 
either simulation or a formal "model-based" 
verification [5]) that the interaction between a controller 
model and a plant model encompasses the expected 
overall DES behavior; 

– during the operation phase, in which model-based 
diagnosis techniques consist of identifying whether the 
observed DES behavior, resulting from the actual 
interaction between plant and controller, corresponds to 
a faulty behavior anticipated by the diagnoser, given that 
the diagnoser has itself been synthesized from a plant 
model / controller model couple [6]. 

 
The construction of a good plant behavior model is thus 

vital to DES design, analysis and operation; yet 
paradoxically, only very little research has been devoted to 
this specific topic. In this paper, we propose a modular and 
systematic approach for building dependable and realistic 
plant models. Our scope incorporates the objective of 
introducing verification by means of a model-based model-
checking, i.e. through exploring the state space reachable by 
a controller model coupled to a plant model. This work is 
structured as follows: Section II will review the 
contributions and limitations offered by the research we feel 
the most pertinent in terms of the behavioral modeling of 
plants. We will establish the need for an approach dedicated 
to plant model-building, to be presented in Section III and 
then applied to treat a significant example. 

II. THE PLANT MODEL IN DES AUTOMATION 

A.  DES synthesis 
The automated design of DES control laws offers a problem 
that has been challenging the scientific community for quite 
some time. Following a number of valuable contributions in 
this field (references [7] and [8] merit recognition), 
Ramadge and Wonham's supervisory control theory [3] 
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sparked keen interest in DES synthesis. Fifteen years after 
this fundamental work, the gap between the large number of 
theoretical contributions and the few successful industrial 
implementations still stands out [9]. Application of the 
supervisory control theory remains a wide open problem that 
has mobilized the scientific community of DES over the past 
decade ([10], [11], [12]). Several reasons underlie the 
difficulties encountered in applying this theory. From a more 
general standpoint, the size of models handled constitutes a 
key difficulty. Using decentralized, modular or hierarchical 
control structures or performing modeling with formalisms 
other than finite-state machines, such as Petri nets, provides 
for an attractive alternative. We feel however, in conjunction 
with [4], that another primary difficulty lies in the plant 
modeling set-up. Two reasons have led us to this assertion. 
First of all, the synthesis of a controller requires building a 
highly-detailed plant model whose events translate state 
changes in both the information delivered by sensors and the 
orders given to preactuators. The R&W synthesis method is 
based on language theory and then implies the use of a class 
of automaton poorly adapted to plant behavior modeling at 
this level of abstraction [13]. 

Moreover, the complexity of industrial systems 
necessitates the use of modular approaches for constructing 
the overall plant model [14]. To carry this step out once the 
elementary component automata have been established, the 
model of the entire plant is most often derived by means of 
composition, which leads to generating a model that 
contains many surplus states and transitions devoid of 
physical meaning. 

B. DES verification 
Formal verification techniques using model-

checking [15] have been employed in the area of DES 
automation for the past twelve years. As part of a 
dependable controller design approach, the target 
verification system may comprise [16] either the controller 
on its own, assumed to be placed in an open-loop on the 
plant (non model-based verification) or the {controller + 
plant} set interacting within a closed-loop (model-based 
verification). 

The formalisms and abstraction levels used to build a 
plant model for model-based verification purposes are quite 
diverse. They may consist of simple algebraic constraints for 
translating partial or local behavior, which are primarily 
intended to reduce the combinatorial explosion of the state 
space reachable by the controller [17]. On the other hand, 
they may consist of highly-detailed state models designed to 
improve the quality of proofs relative to safety 
properties [18]. The modular construction techniques 
applied to this plant model, as well as their inherent 
disadvantages, often turn out to be the same as those for the 
synthesis (see section II.A). 

C. DES diagnosis 
In our opinion, the topic of DES diagnosis has yielded 

the most significant recent contributions to plant modeling. 

Setting up a diagnoser actually presumes the preexistence of 
a plant model (that includes faulty behavior) with sufficient 
enough detail for the diagnosis to be pertinent. Nearly all 
techniques for plant behavior modeling therefore entail 
building a knowledge model in the form of digraphs, Binary 
Decision Diagrams or, more frequently, in the form of finite-
state machines ([19], [20], [21]). For this purpose, 
behavioral models of elementary system components and 
their interactions have to be designed. Behavior of the full 
system is then most often obtained by composing the various 
component automata. As is the case with controller 
synthesis, this solution is difficult to put into practice for 
large-sized systems. Furthermore, an expert approach is 
necessary in order to remove the surplus states and 
transitions from the composition-generated automaton [6], 
which as opposed to the synthesis must not remain within 
the plant model. 

D. Assessment 
A plant model is mandatory in order to accomplish the 

majority of DES life cycle phases: synthesis, verification, 
diagnosis. Nonetheless, this model must be built using a 
formalism that relies upon a point of view and a level of 
abstraction compatible with its ultimate use. Under all 
circumstances, only modular approaches are compatible 
with the complexity of industrial DES. Alternatives to 
automata synchronous or asynchronous products must 
however be identified so as to avoid generating surplus 
states and transitions devoid of physical meaning. 

We will now present our approach for the modular 
construction of plant models in the aim of performing a 
model-based controller verification. 

III. CONSTRUCTION OF A PLANT MODEL IN THE AIM OF 
CONTROLLER VERIFICATION 

A. The controller verification procedure 
In most model-based model-checking approaches [5], 

[16], [17], the verified model results from the composition 
of three models: the user program model, the control unit 
execution model, and the plant model. 

For complex systems, the plant model must be derived 
from a library of generic models instanced and composed. 
Major contributions for modular plant modeling using 
standard “blocks” can be founded in [22], that defined 
Condition/Event Systems, or in [23] that defined Net 
Condition/Event Systems. However, our purpose is 
verification using model-checking, so we have chosen to use 
a “ready-to-check” and powerful class of automaton. 

B. Selected class of automaton 
We have selected an automaton class stemming from the 

one described in [21] for the UPPAAL model-checker and 
have elected to retain the same notations. 

Automaton A is thus a triplet 〈N, n0, E〉, where: 
- N is a finite set of states; 
- n0∈N is the initial state; 



 
 

 

- E⊆N×τ×Σ×N is the set of transitions, with τ being 
the set of Boolean expressions defined on the set of 
logic variables V, and Σ a partition of the set of 
assignments on V. 

An automaton network {A1,…,An} is a set of automata 
whose Boolean expressions τ, associated with the 
transitions, are defined on the same set of logic variables V. 
Within an automaton network, the evolutions are 
asynchronous and based on variable sharing. This implies 
that at each point in time, a single transition of a single 
automaton may be fired. Throughout the remainder of this 
paper, the syntax of Boolean expressions τ will replicate the 
syntax from C programming language ("&&" for the AND 
operator, "||" for the OR operator and "!" for the NO 
operator). In the discussion of the ensuing example, clocks 
and hand-shake synchronizations will not be employed. 

C. Case study 
The system chosen for this case study lies in the well-

known category of "pick-and-place" systems (Fig. 2); its 
function is to take parts, fed by gravity into three feed 
chutes, for placement in a single unloading chute. Sensors 
pp1, pp2 and pp3 indicate the presence of a part in one of 
the feed chutes, while sensor pp0 signals the presence of a 
part in the unloading chute. The device that enables picking 
and placing a part is composed of a group of three 
pneumatic cylinders plus a vacuum suction cup system. The 
vertical cylinder (VC) places the suction cup in contact with 
a part. Longitudinal cylinders L1C and L2C are arranged in 
series to allow positioning the vertical cylinder VC in front 
of the four chutes (L2C stroke is twice as long as than L1C 
stroke). The four positions reached are thereby detected by 
position sensors s0, s1, s2 and s3. The depression in the 
suction cup is obtained by virtue of a venturi and detected 
by a vacuum sensor. 

 

D. Construction of the plant-model 
The plant model is built using generic models extracted 

from a library and then supplemented, if necessary, by 
adding in specific behavioral components. APi will denote 
herein those automata that describe the behavior of the 
elementary plant components. Figure 3 illustrates the 
modularity of this approach and displays the result of 
generic model instantiation for the L1C, L2C two-cylinder 
subset and sensor s2. 

 
The behavior of each of the double-acting cylinders L1C 

and L2C with its 5/2-way double solenoid valve is built by 
instancing a single generic automaton. Automaton network 
{AP1, AP2, AP6} models the behavior of this plant subset. Let 
us examine L1C automaton. It is composed of four states: P5 
models the inward rod position, P6 models that the rod 
moves outwards, P7 models the outward rod position, P8 
models that the rod moves inwards. In the states P6 and P8 
the rod moves, and its movement will stop without order 
from controller. For that, a timer is associated to the 
transitions P6-P7 and P8-P5 to model the duration of the 
stroke deployment. 

The transition 〈P5, g, a, P6〉, which will also be denoted 
65 , PP ag⎯→⎯ , features a guard "g" equal to "L1CGO 

&& !L1CGI" and an action "a" equal to "V_P5:= 0". This 
transition may be fired when the guard is true, i.e. when both 
solenoid L1CGO (L1C Go Out) is activated and solenoid 
L1CGI (LIC Go In) is not activated. Its completion causes 
the variable V_P5 to be reset. This transition thus allows 
modeling the start of the cylinder deployment once the 
L1CGO order has been issued. 

The transition 76 ,_3&&1! PP timeoutTCGIL ⎯⎯⎯⎯⎯⎯⎯ →⎯ −  models the 
end of the cylinder deployment movement by testing for the 
completion of the timer (T3_timeout), which represents the 
deployment duration. ATj is the notation used for automata 
describing the logic abstraction of timers. Following the 
instancing phase, an expert needs to intervene to coordinate 
the automata from a functional standpoint. As an illustration, 

L1CGO L1CGI L2CGO L2CGI
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S2

L2CL1C AP1 AP2
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Fig. 3.  Pant model obtained after the instantiation of generic automata 
from the library.

 
Fig. 2.  Schematic view of the studied system 



 
 

 

the sensor s2 automaton must be coordinated with the 
automata of cylinders L1C and L2C in order to determine 
whether or not cylinder VC lies above the second feed 
chute. The transition guards of automaton AP6 must therefore 
be able to test the activation of states AP1 and AP2. This 
feature is obtained using shared logic variables added to 
network automaton states. To avoid encumbering Fig. 3, 
only those variables necessary for modeling the activity of 
states P5 and P11 have been represented (i.e. V_P5 
and V_P11). Automaton AP6 moves from state P17 to P18 as 
cylinder L1C is retracted (V_P5 equals 1) and as cylinder 
L2C is deployed (V_P11 equals 1). The action associated 
with this transition (s2:=1) indicates that the logic value 
emitted by the sensor is thereby set at 1. The shared logic 
variables included in order to mark each state are generated 
automatically according to the procedure described by 
algorithm 1. 

 
E. Plant model coordination 

Such a modular approach, that is necessary for complex 
systems modeling, requires examining closely the behavior 
of the assembled modules. Indeed, a plant evolution, 
following a controller order emission, results in a succession 
of evolutions of the state of the modules whose propagation 
must be coordinated (it is the role of the Plant Sequencer 
which is described in the following section). Only the stable 
states of an automata network, reached at the end of the 
controller order propagation, represent a relevant state of the 
plant. An example of such a succession of evolutions is 
given bellow. 

Let us starting from the situation {P8, P11, P17} Figure 3 
(cylinder L1C retracted and cylinder L2C deployed). The 
arrival of cylinder L1C at the end of its stroke (T4_timeout 
true) leads the system into situation {P5, P11, P17}. In this 
case, cylinder VC is positioned opposite chute 2, while 
sensor s2 is still emitting opposite information (s2 = 0). This 
unstable state will be leaved since the variable V_P5 
becomes true. The final stable situation is {P5, P11, P18}. It 
is the relevant situation that corresponds to a real plant 
configuration. 

In short, in each module a stable state can be leaved: 

either because a new controller order appears or because a 
no null duration action of the plant is completed (such as for 
example the end of the L1C rod inward move which is 
modeled using the timeout of timer T4). The succession of 
unstable states before reaching a stable one is due to the 
firing of transitions (as P17 P18) sensitive to the change of 
state of other modules. 

In order to manage this search of stability we have added 
to the plant model an automatically-generated automaton, 
called "plant sequencer" (denoted APS), which also permits 
to identify that all consequences of a variation in controller 
orders have been fully propagated. In a same manner, it is 
necessary to manage interactions between the controller 
model and the plant model evolutions. To do that, we have 
added a “general sequencer” (denoted AGS), no more 
detailed in this paper. 

Figure 4 presents the whole model for this case study and 
is structured as follows: 

 
The plant sequencer automaton is composed of four 

states: 
- PIR (Plant Inputs Reading) during the activity of 

which the orders emitted by the controller are taken 
into account and held; 

- PTR (Plant TReatment) that allows the plant model 
evolution until reaching a stable state; 

- POU (Plant Outputs Updating) during the activity of 
which the change of sensor values are transmitted to 
the controller; 

- when PTE (Plant TEst) is active, the state of the plant 
model corresponds to the real configuration of the 
plant. The verification can be performed. 

To ensure coordination with APS, automata APi must be 
enhanced such that: 

- when APS fires transition PIR PTR, all automata APi 
must asynchronously fire one and only one transition; 

- once all automata APi have fired a transition, APS fires 
either PTR PTR if at least one APi has change of 
state or PTR POU otherwise (Fig. 5). 

This automaton enhancement is entirely automated in 
compliance with the procedure described in algorithm 2. 

The overall DES model also includes a general 
sequencer AGS that ensures the evolution alternatively of the 
controller model and plant model. The properties to be 
verified are assessed solely at the end of each completed 
evolution of one of the two models. 

F. Discussion 
The framework of this paper does not provide ample 

space to present the entire model-checking process of the 
case study. The key general features of the verification 
process adopted, condensed into just a few words, are as 

Algorithm 1.  Addition of a logical variable for each state of each APi 
automaton and action update. These variables become state marking. 

for each A in {AP1,…,APn} do 
 for each n in N of A do 
  V := V ∪ { V_n } 
  for each 〈ns, g, a, nd〉 in E of A do 
   if n = ns then 
    a := a ∪ { V_n := 0 } 
   end if 
   if n = nd then 
    a := a ∪ { V_n := 1 } 
   end if 
  end for 
 end for 
end for 
 

 

{AGS,   ACS, ACP,   APS, AP1,…, AP12, AT1,…, AT13} 
 

         Controller model                   Plant model 
General sequencer 



 
 

 

follow: 
- NuSMV has been chosen as model-checker due to its 

performance for timeless verification; 
- the computer which perform the verification hosts a 

CPU P4 at 2.54GHz and 2GB RAM ; 
- a set of 42 liveness and safety properties are to be 

proved. 
Obtained from two experiments focusing on the same 

properties but checking two different automaton networks, 
the results underline the advantage of our approach. 

- experiment 1 (pure automata product approach, without 
plant sequencer neither general sequencer). The checked 
model is the network {ACS, ACP, AP1,…, AP12, AT1,…, 
AT13}. The APi automata do not have been enhanced as 
shown Fig 3. The NuSMV input code is 788 lines long 
(without comments neither empty lines). After 3h30min 
of computation, model-checker use 3.2GB memory and 
make the computer swap heavily. No answer can be 
obtained. The too great number of surplus states, due to 
automaton product, avoid the checker to complete proves. 
- experiment 2 (our automata coordination approach with 

plant sequencer and general sequencer). The checked model 
is the network {AGS, ACS, ACP, APS, AP1,…, AP12, AT1,…, 
AT13}. The APi automata have been enhanced by applying the 
algorithm 2. The NuSMV input code is 1372 lines long. All 
properties have been successfully proved within 8h10min. 

To evaluate consequences of surplus states generated by 
the automata product on the verification process we check 
the following property "when VC is in front of chute 2 then 

sensor s2 always detect it". 
- experiment 1 with automata product approach the 

property becomes in Computation Tree Logic 
□((V_P5 ∧ V_P11) → s2) and it is checked as false; 

- experiment 2 with automata coordination approach, to 
prevent that the checking occurs for unstable states, the 
property becomes □((V_PTE ∧ V_P5 ∧ V_P11) → s2) where 
V_PTE is true when the plant model has reached a stable 
state. This property is checked as true. 

Contrary results for the proof of the same property in 
these two experiments were expected. Indeed, in experiment 
1 the model-checker declares the property false because it 

Algorithm 2.  Addition of further information into guards and addition 
of new transitions to take into account the coordination with plant 
sequencer automaton (APS). 

V := V ∪ { CPS } 
for each A in {AP1,…,APn} do 
 V := V ∪ { TD_A }  
 for each 〈ns, g, a, nd〉 in E of A do 
  if ns ≠ nd then 
   g := g && V_PTR && !TD_A 
   a := a ∪ { TD_A:= 1 } ∪ { CPS := 1 } 
  end if 
 end for 
 for each n in N of A do 
  a := { TD_A:= 1 }, g := 0 
  for each 〈ns1, g1, a1, nd1〉 in E of A do 
   if ns1 = n then 
    g := g || g1 
   end if 
  end for 
  g := !g && V_PTR && !TD_A 
  E:= E ∪ { 〈n, g, a, n〉} 
 end for 
end for 
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Fig. 4.  Whole model ready for performing the verification. 



 
 

 

identifies an unstable situation in which L1C is in inward 
position, L2C is in outward position and the s2 sensor is not 
yet set to 1. This no significant situation is avoided using our 
coordination approach in experiment2. 

IV. CONCLUSION 
In this paper, we have considered the problem of building 

plant models for large complex DES with the aim of 
controller verification. For these systems, a modular 
approach of plant model building by assembly of generic 
component models is necessary. We showed that this 
assembly generates difficulties of controlling the 
propagation of the behaviors between modules. In our 
opinion, all modular approaches which aim to preserve a 
real encapsulation of the component models encounter this 
problem independently of the modeling formalism or of the 
granularity of the models. We thus proposed a plant 
sequencer devoted to coordinate the asynchronous behaviors 
of the modules until obtaining a stable situation of the whole 
plant model. 

REFERENCES 
[1] A. Fusaoka, H. Seki, and K. Takahashi, “A description and reasoning 

of plant controllers in temporal logic”, in Proc. 8th Int. Joint Conf. on 
Artificial Intelligence, Karlsruhe, Germany, 1983, pp. 405-408. 

[2] G. Morel, J.-F. Petin, P. Lamboley, “Formal specification for 
manufacturing systems automation”, in CDROM Proc. IFAC Int. 
Conf. on Information Control Problems in Manufacturing, Vienna, 
Austria, September 2001, 6 pages. 

[3] P.J. Ramadge, and W.M. Wonham, “The control of discrete event 
systems”, IEEE special issue on Discrete Event Dynamic Systems, 
vol. 77, n° 1, January 1989, pp. 81-98. 

[4] J.-M. Roussel, and A. Giua, “Designing dependable logic controllers 
using the supervisory control theory”, in CDROM Preprints 16th IFAC 
World Congress, Praha, Czech Republic, July 2005, paper n° 04427, 6 
pages. 

[5] T. Merkte and T. Menzel, “Methods and tools to the verification of 
safety-related control software”, in Proc. IEEE int. conf. on Systems 
Man and Cybernetics, Nashville, USA, October 2000, pp. 2455-2457. 

[6] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. 
Teneketzis,  “Failure diagnosis using discrete-event models”, IEEE 
Trans. C S T, vol. 4, n° 2, pp. 105-124, March 1996. 

[7] D. Crockett D, A. Desrochers, F. Dicesare, and T. Ward, “Implemen-
tation of a Petri net controller for a machining workstation”, in Proc. 

IEEE conf. Robotics and Automation, Raleigh, North Carolina, USA, 
April 1987, pp. 1861-1867. 

[8] M.C. Zhou, F. Dicesare, and D. Rudolph, “Design and Implementa-
tion of a Petri net based supervisor for a flexible manufacturing 
System”, Automatica, vol. 28, n° 6, pp. 1199-1208, 1992. 

[9] M. Fabian and A. Hellgren, “PLC-based implementation of supervi-
sory control for discrete event systems”, in Proc. 37th IEEE Conf. on 
Decision and Control, Tampa, USA, December 1998, pp. 3305-3310. 

[10] S. Balemi, G.J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G.F. 
Franklin, “Supervisory control of a rapid thermal multiprocessor”, 
IEEE Trans. Automatic Control, vol. 38, n° 7, pp.1040-1059, 1993. 

[11] L.E. Holloway, A. Callahan, J. O’Rear, and X. Guan, “Spectool: 
automated synthesis of control code for discrete event controllers”, in 
Proc. 5th Int. Workshop on D E S, Ghent, Aug. 2000, pp. 383-389. 

[12] M.H. De Queiroz and J.E.R. Cury, “Synthesis and implementation of 
local modular supervisory control for a manufacturing cell”, in Proc. 
6th Int. Workshop on D E S, Zaragoza, Spain, Oct. 2002, pp. 377-382. 

[13] A. Philippot, A. Tajer, F. Gellot, and V. Carré-Ménétrier, “On line 
synthesis approach based on a structured plant modelling”, in Proc. 7th 
Int. Workshop on D E S, Reims, France, Sep. 2004, pp. 397-402. 

[14] D. Gouyon, J.-F. Petin, and G. Morel, “Control synthesis for product-
driven automation”, in Proc. 7th Int. Workshop on Discrete Event 
Systems, Reims, France, September 2004, pp. 19-24. 

[15] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, 
and P. Schnoebelen, “Systems and software verification: model-
Checking techniques and tools”, Springer, 1999, 190 pages. 

[16] G. Frey and L. Litz, “Formal method in PLC programming”, in 
CDROM Proc. IEEE int. conf. on Systems Man and Cybernetics, 
Nashville, Tennessee, USA, October 2000, pp. 2431-2436. 

[17] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen, 
“Towards the automatic verification of PLC programs written in 
instruction list”, in Proc. IEEE int. conf. on Systems Man and 
Cybernetics, Nashville, Tennessee, USA, Oct. 2000, pp. 2449-2454. 

[18] J. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, J.C. Ferreira da Silva, 
“Increasing the efficiency of PLC program verification using a plant 
model”, in CDROM Proc.6th Int. Conf. on Industrial Engineering and 
Production Management, Porto, Portugal, May 2003, 10 pages. 

[19] J. Lunze, J. Schröder, and P. Supavatanakul, “Diagnosis of Discrete-
Event Systems: the method and example”, in Proc. 12th int. workshop 
on principles of diagnosis, Sansicario, Italy, Mar. 2001, pp. 111-118. 

[20] J. Sztipaovits and A. Mistra, “Diagnosis of Dicrete Event Systems 
using ordered binary decision diagram”, in Proc. 7th International 
workshop on principles of diagnosis, Val Morin, Canada, 1996. 

[21] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms 
and Tools,” LNCS 3098, Springer-Verlag, 2004. 

[22] R.S.Sreenivas and B.H.Krogh On condition/event systems with 
discrete state realizations Discrete Event Dynamic Systems: Theory 
and Applications, 2(1):209-236,1991 

[23] M. Rausch and H.-M. Hanisch. Net condition/event systems with 
multiple condition outputs. Symposium on Emerging Technologies 
and Factory Automation, Paris, France, pp 592-600, Oct. 1995. 

s2 (sensor)                     AP6

L1C (cylinder)                                                     AP1

Plant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

Transition fired while
at least one APi has

changed of state

TD_L1C (Transition disabling) 
variable controlling when L1C 
automaton could fire transition Example of loop-back transition 

enabling when all state outgoing 
transitions are disable

s2 (sensor)                     AP6

L1C (cylinder)                                                     AP1

Plant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

s2 (sensor)                     AP6s2 (sensor)                     AP6

L1C (cylinder)                                                     AP1L1C (cylinder)                                                     AP1

Plant_seq APSPlant_seq APS

V_P7

V_PTR

CPS

TD_L1C

CPS

V_PTR

TD_s2

V_ST_PLEV

V_PTE

Transition fired while
at least one APi has

changed of state

TD_L1C (Transition disabling) 
variable controlling when L1C 
automaton could fire transition Example of loop-back transition 

enabling when all state outgoing 
transitions are disable

 
Fig. 5.  Coordination between plant sequencer automaton and two plant component automata. Ap1 and Ap6 automata have been enhanced applying 
algorithm 2. 
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