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ON SPINOR VARIETIES AND THEIR SECANTS

L. MANIVEL

Abstract. We study the secant variety of the spinor variety, focusing on its equations
of degree three and four. We show that in type Dn, cubic equations exist if and only if
n ≥ 9. In general the ideal has generators in degrees at least three and four. Finally we
observe that the other Freudenthal varieties exhibit strikingly similar behaviors.

1. Introduction

This paper grew out from a striking observation in a preprint version of [14], following
which the spinor variety of type D7 was the unique compact Hermitian symmetric space
whose secant variety (with respect to its minimal equivariant embedding) has no cubic
equation.

Among the most familiar Hermitian symmetric spaces, the Scorza varieties, which pa-
rametrize matrices (possibly symmetric or skew-symmetric) of rank one (up to scalar),
have extremely well-behaved secant varieties: the k-th secant σk(X) of a Scorza variety X
parametrizes matrices of rank at most k+1, and its ideal is generated by explicit equations
of degree k + 2 (minors and their generalizations). In particular the first secant variety
σ(X) is cut-out by cubics, and it was tempting to think that σ(X), for many equivari-
antly embedded rational homogeneous spaces, or at least for the simplest ones, should
have many cubic equations. Moreover, writing down such equations explicitly would be a
step towards a generalized theory of minors.

The class of Hermitian symmetric spaces (possibly enlarged to the so-called cominuscule
varieties) being particularly well-behaved, it was tempting to try to understand better the
observation of [14] about the spinor variety of type D7. Our first aim was to understand,
for a spinor variety S of type Dn, the cubic equations of σ(S). The answer to this problem
is essentially given by Theorem 2, where we provide the decomposition into irreducibles
of the symmetric cube of a half-spin representation, combined with Theorem 3. Our
conclusion is that there are no cubic equations for the secant variety exactly in types D7

and D8. In type D9 there exists a family a cubic equations parametrized by the other
half-spin representation.

On the other hand quartic equations exist already in type D7 (in type D6 and lower,
the secant variety is the whole ambient space). Theorem 4 allows a partial understanding
of quartic equations of σ(S). In particular, in any type Dn, with n ≥ 7, there exist quartic
equations which cannot be derived from cubic ones.

Finally, in the last sections we put our results in a broader perspective. The point is that
spinor varieties are only one class among the so-called Freudenthal varieties, which also
include Lagrangian Grassmannians, and Grassmannians of middle-dimensional subspaces
of an even dimensional vector space. It turns out that at least with respect to their
cubic and quartic equations, Freudenthal varieties exhibit a strikingly uniform behavior.
It would be interesting to understand better these similarities and their limits.

Acknowledgments. I thank J.M. Landsberg, G. Ottaviani and J. Weyman for useful dis-
cussions.
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2 L. MANIVEL

2. Spinor varieties and Pfaffians

It was already observed by Chevalley that an open subset of the spinor variety can be
parametrized by Pfaffians; more precisely, by the complete set of sub-Pfaffians of a generic
skew-symmetric matrix. An interesting consequence is that the equations of the spinor
variety provide polynomial relations between these sub-Pfaffians. Such relations have
been known from the very beginning of Pfaffian theory, the most famous one being the
rule analogous to the line or column expansion of determinants. Many other such relations
have been found, including Tanner’s relations, and its relatively recent generalization by
Wenzel ([4], see also [10] for a short proof).

The link with spinor varieties has the following immediate consequences. First, since
the ideal of the spinor variety is generated in degree two by Kostant’s theorem, it follows
that all the algebraic relations between sub-Pfaffians are generated by quadratic relations.
Second, these quadratic relations can be completely explicited, using the full set of qua-
dratic equations for the spinor variety obtained by Chevalley. Since these equations are
more convenient to express in terms of Clifford algebras, we will begin with a brief review
of the tools involved. Our basic reference is [3].

2.1. Clifford algebras and spin representations. Let V be a vector space of dimension
2n, endowed with a non degenerate quadratic form q. Suppose that V = E ⊕ F splits as
the direct sum of two maximal isotropic vector spaces, of dimension n. For any v ∈ V , we
can define two natural operators on the exterior algebra ∧E. One is the exterior product
o(v) by v; the other one is the inner product i(v) defined by the contraction with v through
the quadratic form; both are graded operators, of respective degree +1 and −1.

Let ψ(v) = o(v) + i(v). An easy computation shows that the map ψ : V → End(∧V )
extends to the Clifford algebra Cl(V ), the quotient of the tensor algebra of V by the
relations

v ⊗ w + w ⊗ v = 2q(v,w)1.

Applying to 1 ∈ ∧0V , one obtains a vector space isomorphism

θ : Cl(V ) ≃ ∧V

which is compatible with the action of V on both sides. In particular the inverse isomor-
phism sends v∧w ∈ ∧2V to vw−q(v,w)1 ∈ Cl(V ). Note that ∧2V is naturally isomorphic
to so(V ) and that the resulting map so(V ) → Cl(V ) is a morphism of Lie algebras, once
the associative algebra Cl(V ) has been endowed with its natural Lie algebra structure.

Let f ∈ Cl(V ) be the product of the vectors in some basis of F (f is well defined up
to a non zero scalar). Then Cl(V )f is a left ideal of Cl(V ) isomorphic, as a vector space,
to ∧E (this is because Cl(V ) ≃ Cl(E) ⊗ Cl(F ) and Cl(F )f = 〈f〉). This makes of ∧E a
Cl(V )-module, with an action of v = e+ f ∈ V = E ⊕ F defined by o(e) + 2i(f) (beware
to the factor 2 here !).

The spin group Spin(V ) is defined as a subgroup of the group of invertible elements
in the Clifford algebra. In particular any Cl(V )-module is also a Spin(V )-module. As a
Spin(V )-module, ∧E splits as the direct sum of the two half-spin representations ∧oddE
and ∧evenE, both of dimension 2n−1, that we will also denote ∆+ and ∆−. A priori these
two representations cannot be distinguished. Our convention will be the following: if ǫ(n)
is the parity of n, then we let

∆+ = ∧ǫ(n)E.

This will have the advantage that the pure spinor defined by E will belong to the projec-
tivization of ∆+.
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2.2. Pure spinors. The variety of maximal isotropic subspaces of V has two connected
components S+ and S−, which are (non canonically) isomorphic. Their linear spans in
the Plücker embedding are in direct sum: there is a splitting

∧nV = ∧nV+ ⊕ ∧nV−

into spaces of the same dimension, and S± = G(n, 2n)∩P(∧nV±) are linear sections of the
usual Grassmannian. But the minimal embeddings of S+ and S− are embeddings in the
projectivized half-spin representations: S+ is the Spin(V )-orbit, in the projectivization of
∆+, of the line ∧topE = 〈e1 ∧ · · · ∧ en〉, where e1, . . . , en is a basis of E. The embedded
varieties

S+ ⊂ P∆+ and S− ⊂ P∆−

are called the varieties of even and odd pure spinors, respectively.
Two maximal isotropic subspaces of V are in the same spinor variety if and only if the

dimension of their intersection has the same parity as n. In particular E and F belong to
the same family if and only if n is even.

If H ⊂ V is any maximal isotropic subspace, its representative in S+ ∪ S− can be
obtained as follows. Let h ∈ Cl(V ) be the product of the vectors of a basis of H. Then
the left ideal Cl(V )f intersects the right ideal hCl(V ) along a line, which can be written
as uHf for a unique line uH ∈ P(∧E). According to the parity of the dimension of H ∩E
one gets in fact a line uH ∈ P(∧±E) = P∆±, representing the point of the spinor variety
defined by H.

Consider for example, for any subset I of {1, . . . , n}, the maximal isotropic space HI

generated by the vectors ei for i ∈ I, and fj for j /∈ I, where f1, . . . , fn is the basis of F
such that q(ei, fj) = δij . Then uHI

is the line generated by eI , the wedge product of the
ei’s, i ∈ I.

Proposition 1. The action of Spin(V ) on S+ is generically 3-transitive (but not 4-
transitive), in the sense that Spin(V ) has an open orbit in S+ × S+ × S+.

Proof. We treat the case where n = 2m is even. Then E and F both belong to S+, as well
as the space G = 〈e2i + f2i−1, e2i−1 − f2i, 1 ≤ i ≤ m〉. The stabilizer of (E,F ) in S+ × S+

is easily seen to be equal to GLn, embedded almost diagonally in SO2n by the morphism
A 7→ (A, tA−1) ∈ GL(E) × GL(F ) ⊂ GL(E ⊕ F ). The additional condition that G be
preserved is then equivalent to the condition that A preserved the symplectic form ω on
E defined by ω(e2i, e2i−1) = 1 and ω(ej , ek) = 0 if j, k is not of the form 2i, 2i − 1. So
the stabilizer of the triple (E,F,G) ∈ S+ × S+ × S+ is a copy of the symplectic group
Spn inside SO2n. In particular the orbit of (E,F,G) inside S+ × S+ × S+ has dimension
dimSO2n − dimSpn = 3dimS+, so it must be dense. �

The smooth varieties S+, S+ ×S+, S+ ×S+ ×S+ are thus smooth compactifications of
the homogeneous spaces SOn, SO2n/GLn and SO2n/Spn, respectively.

We thus recover the fact (which holds for any rational homogeneous variety, equivari-
antly embedded) that the secant variety σ(S+) to the spinor variety is quasi-homogeneous.
However the second secant variety σ2(S+) is not, because the stabilizer Spn of a general
triple in S+ acts trivially on the corresponding lines of ∆+. So a general point of σ2(S+)
can be put, up to the group action, in the form tEuE + tFuF + tGuG, but the triple
(tE , tF , tG) ∈ P

2 cannot be reduced to (1, 1, 1).

For future use we choose the following general points of S+ × S+ and S+ × S+ × S+:

If n = 2m is even, E and F belong to S+, and G defined above as well. Their repre-
sentatives in P∆+ are

uE = e1 ∧ · · · ∧ en, uF = 1, uG = ∧m
i=1(1 + e2i−1 ∧ e2i).
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If n = 2m + 1 is odd, E belongs to S+ but F belongs to S−, so we denote by F ′ the
maximal isotropic subspace generated by f1, . . . , fn−1, en, which belongs to S+. Then

uE = e1 ∧ · · · ∧ en, uF ′ = en.

The sum uE + uF (respectively uE + uF ′) defines a generic point of the secant variety
σ(S+), more precisely a point in the open orbit.

2.3. Pfaffians. Pfaffians appear when one tries to parametrize the spinor variety S+, at
least in a neighborhood of the point defined by E. This is exactly similar to the fact that
minors of a generic matrix are Plücker coordinates of a generic point of the Grassmannian.

For this, we use our preferred basis e1, . . . , en of E. Let u = (uij) be any skew-symmetric
matrix of size n. Then the vectors

ei(u) = ei +
n

∑

j=1

uijfj, 1 ≤ i ≤ n

generate a maximal isotropic subspace E(u) in the same family as E, that is S+. A
straightforward computation yields the following formula for the corresponding pure spinor:

uE(u) =
∑

ℓ(K) even

PfK(u)eKc ,

where the sum is over the sequences K = (k1 · · · kℓ) of integers between 1 and n, of even
length ℓ = ℓ(K), Kc is the complementary subset of integers, and PfK(u) is the Pfaffian
of the submatrix of u obtained by taking lines and columns indexed by K. Since E(u)
is a generic maximal isotropic subspace in the same family as E, this formula provides a
rational parametrization of a dense open subset of the spinor variety S+.

2.4. Equations. Which equations characterize pure spinors? Kostant’s theorem asserts
that, as for any equivariantly embedded rational homogeneous space, the ideal of S+ is
generated in degree two. Moreover, the quadratic equations of S+ can be written down
very explicitly, as follows.

We need to introduce the main anti-automorphism of Cl(V ), which is characterized by
the fact that α(v1 · · · vr) = vr · · · v1 if the space generated by v1, . . . , vr is isotropic. Then,
for any u, v ∈ S+ ⊂ Cl(V ), let

β(u, v) = ufα(v) ∈ Cl(V ) ≃ ∧V,

where the isomorphism between Cl(V ) and ∧V is defined as above. Denote by βk(u, v)
the projection of β(u, v) to ∧kV . Then

(1) βk is non zero if and only if n− k = 2p is even;
(2) then it is symmetric for p even and skew-symmetric for p odd;
(3) βk and β2n−k coincide up to sign;
(4) u ∈ S+ defines a pure spinor if and only if βk(u, u) = 0 for all k smaller than n.

Indeed, in case u represents a pure spinor, that is, a maximal isotropic subspace of V , one
can check that β(u, u) is the product of the vectors in a basis of that space. This implies
that βk(u, u) = 0 for all k 6= n. Conversely, the last assertion is that this property defines
S+, and more precisely, we get the complete space of quadratic equations of S+ – whence
the whole ideal.

A simple computation yields the following formula, which will be of fundamental im-
portance in the sequel. Recall that we denoted by F ′ the maximal isotropic subspace
generated by f1, . . . , fn−1, en.
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Proposition 2. Suppose n is even. Then, up to a non zero constant,

β2k(uE , uF ) =
∑

ℓ(K)=k

eK ∧ fK .

Suppose n is odd. Then, up to a non zero constant,

β2k+1(uE , uF ′) =
∑

ℓ(K)=k

eK ∧ fK ∧ en.

2.5. Pfaffian identities. Applying the previous identities to the generic maximal isotropic
subspace E(u) and the corresponding pure spinor, we shall obtain quadratic identities be-
tween sub-Pfaffians of a generic skew-symmetric matrix. As explained above, we will ob-
tain all the relations of that kind, and every algebraic relation between these sub-Pfaffians
can be deduced from these.

The only computation we need is that of β(eI , eJ ) = ψ(eIfα(eJ)).1. Let f1, . . . , fn be
a basis of F such that q(ei, fj) = δij . We can suppose that f = f1 · · · fn.

Lemma 1. For any I, J , we have

β(eI , eJ) = 2|I∩J |
∑

R⊂I∆J

ǫ(I, J,R)eI∩J ∧ eR ∧ fIc∩Jc ∧ fR,

with ǫ(I, J,R) = ±1. (We denoted I∆J = (I/J) ∪ (J/I) and Ic the complement of I.)

Proof. First we check the following simple formula:

ψ(f)ψ(en . . . e1).1 = ψ(f).en ∧ · · · ∧ e1 =

n
∏

i=1

(1 + fi ∧ ei).

More generally, ψ(fI)ψ(eĪ).1 =
∏

i∈I(1 + fi ∧ ei), if Ī denotes the sequence I in reverse
order.

Then we make the following series of computations, first without taking care of signs:

β(eI , eJ) = ±ψ(eI)ψ(fJc)ψ(fJ ).eJ̄

= ±ψ(eI)ψ(fJc).
∏

j∈J

(1 + fj ∧ ej)

= ±ψ(eI).(fJc ∧
∏

j∈J

(1 + fj ∧ ej))

= ±ψ(eI/J )ψ(eI∩J ).(fJc ∧
∏

j∈J

(1 + fj ∧ ej))

= ±2|I∩J |ψ(eI/J ).(eI∩J ∧ fJc ∧
∏

j∈J/I

(1 + fj ∧ ej))

= ±2|I∩J |ψ(eI/J ).(fI/J ∧ fIc∩Jc ∧ eI∩J ∧
∏

j∈J/I

(1 + fj ∧ ej))

= ±2|I∩J |
∏

i∈I/J

(1 + ei ∧ fi) ∧ fIc∩Jc ∧ eI∩J ∧
∏

j∈J/I

(1 + fj ∧ ej)).

Note that the factor two appear because ψ(ej).(1 + fj ∧ ej) = 2ej . Expanding the two
products, one easily get the result, up to sign.

What is the correct sign in the preceding formula? The first line contributes by the
sign σ(Jc, J), the signature of the permutation that puts the sequence (Jc, J) in increasing
order. Then the fourth line contributes by the sign σ(I/J, I∩J). The sixth line contributes
by the sign σ(I/J, Ic ∩ Jc), and an addition minus one to the power |I ∩ J | × |Jc| because
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of the permutation of the e and f terms. Finally, in the last lines one needs to put I/J in

reverse order, which contributes minus one to the power
(|I/J |

2

)

. �

Putting things together, we obtain our quadratic equations:

Theorem 1. For any disjoint sets of integers R,S, T , with R and T of different sizes, we
have

∑

A∪B=R∪T
A∩B=∅

ǫ(S ∪A,S ∪B,R, T )PfS∪A(u)PfS∪B(u) = 0,

where ǫ(S ∪ A,S ∪ B,R, T ) = ±1. Moreover all the quadratic relations between the sub-
Pfaffians of a generic skew-symmetric matrix are linear combinations of these.

The sign function ǫ(S∪A,S∪B,R, T ) can be written down explicitly but seemingly not
in a pleasant way. These relations are probably known, but we do not know any suitable
reference.

3. Decomposition formulas: Cubics

3.1. Tensor products of fundamental representations. The map β allows to estab-
lish the following decomposition formulas

S2∆± = ∧nV± ⊕
⊕

j>0

∧n−4jV, ∧2∆± =
⊕

j>0

∧n−4j+2V.

Also recall that ∧n−1V is an irreducible but not fundamental module, its highest weight
being ωn+ωn−1. This implies that it appears inside the tensor product of the two half-spin
representations, which decomposes as

∆+ ⊗ ∆− = ∧n−1V ⊕
⊕

j>0

Vωn−2j−1
.

We aim to generalize these formulas to degree three.

Proposition 3. Let i ≤ n− 2; then

∆+ ⊗ ∧iV =
⊕

j≥0

Vωn+ωi−2j
⊕

⊕

j≥0

Vωn−1+ωi−2j−1
,

where the first (resp. second) sum is over the set of non negative integers j such that
i− 2j ≥ 0 (resp. i− 2j + 1 ≥ 0), and we use the convention that ω0 = 0.

Proof. We first produce a non zero equivariant map from ∆+ ⊗∧iV to each Vωn+ωi−2j
or

Vωn−1+ωi−2j−1
, which will imply that the left hand side of the identity contains the right

hand side. Then we prove the equality by checking dimensions.
For the first step, we observe that the action of V on the spin representations induces

equivariant maps ∆±⊗∧2jV → ∆± and ∆±⊗∧2j+1V → ∆∓. Dualizing, we obtain maps
∆± → ∆± ⊗∧2jV and ∆± → ∆∓ ⊗∧2j+1V . Hence the following sequence of equivariant
morphisms,

∆+ ⊗ ∧iV → ∆+ ⊗ ∧2jV ⊗ ∧iV → ∆+ ⊗ ∧i−2jV → Vωn+ωi−2j
,

where the second arrow is a contraction map by the quadratic form, and the last one is a
Cartan product. Similarly, we can define the sequence

∆+ ⊗ ∧iV → ∆− ⊗∧2j+1V ⊗ ∧iV → ∆− ⊗ ∧i−2j−1V → Vωn−1+ωi−2j−1
.

The composed morphisms are non zero and our first claim follows.
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To check that dimensions fit, we first note that Weyl’s dimension formula yields, for
any k ≤ n− 2 (including k = 0)

dimVωn+ωk
= dimVωn−1+ωk

= 2n−1 2n − 2k + 1

2n− k + 1

(

2n

k

)

.

The required equality is thus equivalent to the identity
(

2n

i

)

=

i
∑

k=0

2n− 2k + 1

2n− k + 1

(

2n

k

)

=

i
∑

k=0

(

(

2n

k

)

−

(

2n

k − 1

)

),

which is obvious. �

Proposition 4.

∆+ ⊗ ∧nV+ = V3ωn ⊕
⊕

j>0

Vωn+ωn−2j
,

∆+ ⊗ ∧nV− = Vωn+2ωn−1
⊕

⊕

j>0

Vωn−1+ωn−2j−1
.

Proof. As in the proof of the Proposition above, we first notice that there exist non-zero
equivariant morphisms from the tensor products of the left hand sides of these decompo-
sition formulas, to any irreducible component of their right hand sides.

There remains to check that dimensions fit. Weyl’s dimension formula yields

dimV3ωn =
2n−1

n+ 1

(

2n

n

)

= 2n−1(

(

2n

n

)

−

(

2n

n− 1

)

).

The equality of dimensions is thus equivalent to the identity

1

2

(

2n

n

)

=

(

2n

n

)

−

(

2n

n− 1

)

+

(

2n

n− 2

)

− · · · + (−1)n
(

2n

0

)

,

which follows immediately from the binomial expansion of (1 − 1)2n. �

In a similar way, we can prove the following identity:

Proposition 5.

∆+ ⊗ ∧n−1V = V2ωn+ωn−1
⊕

⊕

j>0

(Vωn+ωn−2j−1
⊕ Vωn−1+ωn−2j

).

Of course we can deduce the corresponding identities for ∆− by simply exchanging ωn

and ωn−1 in the formulas above.

3.2. Decomposing cubics. Now we come to our main result, a decomposition formula
for S3∆+. Since this formula will not be multiplicity free, we cannot proceed as in the
preceding proofs. Instead we will use induction, and we will need some restriction formulas
for certain so2n-modules to so2n−2. We will denote by U the natural so2n−2-module,
the fundamental weights by φ1, . . . , φn−1, and by Uφ the irreducible so2n−2-module with
highest weight φ. Also we will let δ± be the two half-spin representations.

It is well-known that the restrictions of ∆+ and ∆− are both equal to δ+ ⊕ δ−. More
generally,

Resso2n
so2n−2

Vkωn
= Resso2n

so2n−2
Vkωn−1

=
⊕

i+j=k

Uiφn−1+jφn−2
.

To state our next results we will use the following notation: we let

Si = Uφn−1+φi
⊕ Uφn−2+φi

for 0 ≤ i ≤ n− 3,
Sn−2 = U2φn−1+φn−2

⊕ Uφn−1+2φn−2
,

Sn−1 = U3φn−1
⊕ U3φn−2

.
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Lemma 2. One has the following restriction formulas:

Resso2n
so2n−2

Vωn+ωi
= Si ⊕ 2Si−1 ⊕ Si−3, for 0 ≤ i ≤ n− 2,

Resso2n
so2n−2

V2ωn+ωn−1
= Sn−1 ⊕ Sn−2 ⊕ Sn−3.

Proof. Restrict our formulas for tensor products to so2n−2 and use induction. �

We can now prove the main result of this section.

Theorem 2. Let aj, for j ≥ 0, be the coefficients of the power series

∑

j≥0

ajx
j =

1

(1 − x2)(1 − x3)
.

Then the third symmetric power of a half-spin representation decomposes as

S3∆+ = V3ωn ⊕
⊕

j>0

ajVωn+ωn−2j
⊕

⊕

j≥4

aj−4Vωn−1+ωn−2j−1
.

Proof. First observe that S3∆+ is a submodule of S2∆+ ⊗ ∆+. Since the decomposition
of S2∆+ into irreducible components only involves wedge powers of the natural represen-
tation, we easily deduce from the formulas we already proved, that S3∆+ must be a sum
of modules of the form V3ωn (with multiplicity one), and Vωn+ωn−2j

or Vωn−1+ωn−2j−1
, with

j > 0. We can thus let

S3∆+ = V3ωn ⊕
⊕

j>0

an
j Vωn+ωn−2j

⊕
⊕

j>0

bnj Vωn−1+ωn−2j−1
,

for some multiplicities an
j , b

n
j which a priori, can depend on n. We want to compute

these multiplicities inductively, by restricting this formula to so2n−2. A straightforward
computation yields the following relations:

an−1
j + αj = 2an

j + bnj + bnj−1,

bn−1
j−1 + βj−1 = an

j + an
j−1 + 2bnj−1,

where for j ≥ 1, βj (resp. αj) is the number of pairs (k, l) such that k+2l = j and k, l ≥ 0
(resp. k ≥ 0, l ≥ 1). The two equations are valid for j = 1 if we let all the coefficients
with index zero equal to zero. In particular the second one yields an

1 = 0.
Now we can use the two equations alternatively, to compute bnj and an

j by induction on

j. Indeed the first equation gives bnj knowing an
j (and coefficients computed before), and

then the second equation gives an
j+1 knowing an

j and bnj .
But since αj and βj do not depend on n, and neither does an

1 , which can be seen as the
input of the induction, we can conclude that an

j and bnj are all independent of n. So we
denote them simply by aj and bj and we let

a(x) =
∑

j>0

ajx
j, b(x) =

∑

j>0

bjx
j .

Our induction relations above can then be rewritten as

a(x) + (1 + x)b(x) =
x2

(1 − x)(1 − x2)
,

(1 + x)a(x) + xb(x) =
x

(1 − x)(1 − x2)
− x.

Note that the determinant of the matrix of coefficients of a(x) and b(x) equals (1+x)2−x =
1 + x + x2. When we solve these two equations, this explains the appearance of a factor
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(1 − x3) at the denominators of a(x) and b(x). Indeed we easily get

a(x) =
1

(1 − x2)(1 − x3)
− 1, b(x) =

x4

(1 − x2)(1 − x3)
.

The theorem is proved. �

Comparing dimensions, one gets the curious corollary:

Corollary 1. Let cp, for p ≥ 0, be the coefficients of the power series

∑

p≥0

cpx
p =

1 + x9

(1 − x2)(1 − x3)
.

Then for all any integer n ≥ 2, one has the identity

(2n−1 + 1)(2n−2 + 1)

3
=

∑

p≥0

cp

(

(

2n

n− p

)

−

(

2n

n− p− 1

)

)

.

Moreover, cp, p ≥ 0, is the only series with non negative coefficients satisfying this
identity.

4. Cubic equations of the secant variety

Theorem 3. Restrictions of cubics to the secant variety of the spinor variety yields

C[σ(S+)]3 =
⊕

i6=1

V ∨
ωn+ωn−2i

.

Comparing with the full decomposition of S3∆∨
+ given by Theorem 2, we immediately

deduce the decomposition of the space I3(σ(S+)) of cubic equations of the secant variety:

I3(σ(S+)) =
⊕

j≥6

aj−6V
∨
ωn+ωn−2j

⊕
⊕

j≥4

aj−4V
∨
ωn−1+ωn−2j−1

.

(Note that the term aj−6 appears because of the relation a(x) − x2

1−x = x6(a(x) + 1).) In
particular, we deduce:

Corollary 2. The secant variety of the spinor variety of type Dn has non trivial cubic
equations if and only if n ≥ 9.

In type D9 we have

S3∆+ = V3ω9
⊕ Vω9+ω5

⊕ Vω9+ω3
⊕ Vω9+ω1

⊕ Vω8
,

and I3(σ(S+)) = V ∨
ω8
.

We can compare Theorem 3 with Theorem 3.11 in [13], according to which the coordi-
nate ring of the tangent variety τ(S+) is given in degree d by the formula

C[τ(S+)]d =
⊕

2
P

ap≤
P

pap≤d

V ∨
(d−2

P

ap)ωn+
P

apωn−2p
,

the sum being over r-tuples a = (a1, . . . , ar) of non-negative integers, with r = E(n/2)
(and recall the convention that ω0 = 0). (Actually there is a misprint in [13], where the
condition stated on a is not the condition that follows from the proof.) For d = 3 we
deduce the following statement:

Corollary 3. The kernel of the restriction map C[σ(S+)]3 → C[τ(S+)]3 is
⊕

p>3 V
∨
ωn+ωn−2p

.
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Proof of the Theorem. We adopt the following strategy. First, we identify a set of
generators of the vector spaces of equivariant maps G − Hom(S3∆+, Vωn+ωn−2i

) and

G−Hom(S3∆+, Vωn−1+ωn−2i−1
), for each i. Then we evaluate these generators at a general

point of the secant variety and prove that their image has rank one and zero, respectively.

First step. By Theorem 2, we know that the dimension of G − Hom(S3∆+, Vωn+ωn−2i
)

is equal to the number of pairs (a, b) of integers such that 2a + 3b = i. Rather than
constructing an explicit basis, it will be much easier to construct one of G−Hom(S2∆+⊗
∆+, Vωn+ωn−2i

). By restriction to S3∆+ ⊂ S2∆+ ⊗∆+, we will deduce a set of generators

of G−Hom(S3∆+, Vωn+ωn−2i
). Recall the decomposition

S2∆+ = ∧nV+ ⊕
⊕

j>0

∧n−4jV.

By Proposition 3, there exists an equivariant map from ∧n−4jV ⊗∆+ to Vωn+ωn−2i
if and

only if i ≥ 2j. Moreover this map is then unique (up to constant), and can be described
as the following composition:

φi,j : ∧n−4jV ⊗ ∆+ −→ ∧n−2iV ⊗ ∧2i−4jV ⊗ ∆+

−→ ∧n−2iV ⊗ ∆+

−→ Vωn+ωn−2i
.

Here the first arrow is induced by the dual map to the exterior multiplication of exterior
forms; the second one by the action of the Clifford algebra (which is isomorphic to the
exterior algebra) on the half-spin representations; the last one is the projection to the
Cartan component.

The φi,j, where i ≥ 2j, form a basis of G−Hom(S2∆+ ⊗ ∆+, Vωn+ωn−2i
).

Second step. Now we need to evaluate φi,j on a generic point of the secant variety, which
will of course be our favourite point introduced at the very end of 2.2.

We will consider the case were n = 2m is even, the case n odd being similar. Then
uE = e1 · · · en = emax and uF = 1 = e∅. We first evaluate the image ψ2i,2j of emaxe∅ ⊗ e∅
inside ∧n−2iV ⊗ ∆+.

Lemma 3. Up to a non zero constant,

ψ2i,2j =
∑

ℓ(I)=m−i−j
ℓ(J)=2j

eI ∧ fI ∧ fJ ⊗ eJ .

What remains to do is to evaluate the dimension of the subspace of Vωn+ωn−2i
spanned

by the images ψ̄2i,2j of the ψ2i,2j , i ≥ 2j. It turns out that this dimension is equal to one,
because of the following dependence relations.

Lemma 4. For j ≥ 1 and i+ j ≤ m, we have

(−1)m−i−j(2j − 1)ψ̄2i,2j + (m+ i− j + 1)ψ̄2i,2j−2 = 0.

Proof. First observe that the natural maps V ⊗∆± → ∆∓ induce, by transposition, maps
∆± → ∆∓ ⊗ V ∨ ≃ ∆∓ ⊗ V . We can thus define an equivariant morphism

κi : ∧n−2i−1V ⊗ ∆− −→ ∧n−2i−1V ⊗ V ⊗ ∆+ −→ ∧n−2iV ⊗ ∆+.

Observe that the image of this map is contained in (and actually coincides with, but
we will not need that) the kernel of the projection to the Cartan component Vωn+ωn−2i

.

Indeed, it follows from Proposition 3 that the tensor product ∧n−2i−1V ⊗ ∆− does not
contain any copy of Vωn+ωn−2i

.
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Now consider ψ2i+1,2j−1 ∈ ∧n−2i−1V ⊗ ∆−. Its image by κi is

κi(ψ2i+1,2j−1) =
n

∑

k=1

(

∑

ℓ(I)=m−i−j
ℓ(J)=2j−1

ek ∧ eI ∧ fI ∧ fJ ⊗ fk.eJ + fk ∧ eI ∧ fI ∧ fJ ⊗ ek ∧ eJ

)

=

n
∑

k=1

(

∑

k∈J

(−1)ℓ(I)eI∪k ∧ fI∪k ∧ fJ/k ⊗ eJ/k +
∑

k/∈I∪J

eI ∧ fI ∧ fJ∪k ⊗ eJ∪k

)

= (−1)m−i−j(2j − 1)ψ2i,2j−2 + (m+ i− j + 1)ψ2i,2j .

As we have seen the projection of κi(ψ2i+1,2j−1) in Vωn+ωn−2i
must be zero, and this implies

the claim. �

The coefficients in the previous dependence relations are always non zero, so the dimen-
sion of the span of the ψ̄2i,2j is at most one. What remains to check is that it is non zero,
which follows from the next lemma.

Lemma 5. ψ̄2i,0 6= 0.

Proof. Recall that ψ2i,0 =
∑

ℓ(I)=m−i eI ∧ fI ⊗ 1 ∈ ∧n−2iV ⊗ ∆+. We need to prove that

this tensor has a non zero Cartan component. To detect the component on Vωn+ωn−2i
, we

just need to pair ψ2i,0 with a highest weight vector in this representation, that is, a tensor
of the form g1 ∧ · · · ∧ gn−2i ⊗ uG, where G is a maximal isotropic space in the same family
as E, and the vectors g1, . . . , gn−2i belong to G. Generically, the pairing of such a tensor
with ψ2i,0 is clearly non zero: this is obvious for the pairing of 1 with uG in ∆+, which is
the top-degree component of uG; and also for the pairing with g1 ∧ · · · ∧ gn−2i, since such
tensors generate the full ∧n−2iV . �

Now we consider cubics of type Vωn−1+ωn−2i−1
. As before we first identify a basis of

G − Hom(S2∆+ ⊗ ∆+, Vωn−1+ωn−2i−1
), given by the composition φ−i,j of the following

natural maps

φ−i,j : ∧n−4jV ⊗ ∆+ −→ ∧n−2i−1V ⊗ ∧2i−4j+1V ⊗ ∆+

−→ ∧n−2i−1V ⊗ ∆−

−→ Vωn−1+ωn−2i−1
.

Again for n = 2m even, we evaluate φ−i,j at the same point as before, and we get, up to

a non zero constant, the tensor ψ̄2i+1,2j+1. As before, when j varies, the ψ̄2i+1,2j+1 are
modified only by a non zero constant. And this implies that they are all equal to zero,
because

Lemma 6. ψ̄2i+1,1 = 0.

Indeed, the very same computation as that of Lemma 4 shows that ψ2i+1,1 is a non zero
multiple of κi(ψ2i,0), and therefore its projection to Vωn−1+ωn−2i−1

has to vanish. �

5. Decomposition formulas: Quartics

5.1. More formulas for tensor products. First we shall need decomposition formulas
for tensor products of some Cartan powers of spin representations. We use the notation
θi = ǫ1 + · · · + ǫi; this is a fundamental weight ωi when i ≤ n− 2, but θn−1 = ωn−1 + ωn

and θn = 2ωn. We have
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V3ωn ⊗ ∆+ =
⊕

j≥0

Vθn+θn−2j
,

V3ωn ⊗ ∆− =
⊕

j≥0

Vθn+θn−2j−1
,

V2ωn ⊗ V2ωn−1
=

⊕

j,k odd

Vθn−j+θn−k
,

V2ωn ⊗ Vωn−i
=

⊕

j+k≥i
j+k−i even

Vθn−j+θn−k
,

Observe that, as follows from Weyl’s dimension formula, for p ≥ q ≥ 1,

dimVθn+θn−p
= (p+ 1)2

(2n)!(2n + 1)!

(n− p)!(n + p+ 2)!n!(n + 1)!
,

dimVθn−p+θn−q
= (p− q + 1)(p + q + 1)

(2n)!(2n + 2)!

(n − p)!(n+ p+ 2)!(n − q + 1)!(n + q + 1)!
.

We’ll also need formulas for the tensor products of fundamental non spin representa-
tions. These are just wedge products of the vector representations, so one can take their
tensor products as sl2n-modules, and then restrict to so2n-modules using the Littlewood
restriction rules and their generalization by King and Howe-Tan-Willenbring (see [6]). The
result is the following decomposition formula, for p ≥ q:

Vωn−p
⊗ Vωn−q

=
⊕

p−q≤r−s≤p+q≤r+s
p+q−r−s even

Vθn−r+θn−s
⊕ 2

⊕

p+q≤r+s
p+q−r−s even

Vθn−r+θn−s
.

For future use we will need to understand in some detail the spin-equivariant maps
Vωp ⊗ Vωq → Vθr+θs

. Observe that we can define two basic maps

αp−1,q+1
p,q : ΛpV ⊗ ΛqV → Λp−1V ⊗ V ⊗ ΛqV → Λp−1V ⊗ Λq+1V,

αp−1,q−1
p,q : ΛpV ⊗ ΛqV → Λp−1V ⊗ V ⊗ ΛqV → Λp−1V ⊗ Λq−1V.

In the definition of αp−1,q+1
p,q we used the natural map V ⊗ΛqV → Λq+1V defined by the

wedge product, while in the definition of αp−1,q−1
p,q we used the map V ⊗ ΛqV → Λq−1V

induced by the contraction by the quadratic form on V .
A straightforward computation shows that

αp−2,q
p−1,q+1 ◦ α

p−1,q+1
p,q = αp−2,q

p−1,q−1 ◦ α
p−1,q−1
p,q .

By such compositions, we can therefore define unambiguously, maps

αr,s
p,q : ΛpV ⊗ ΛqV → ΛrV ⊗ ΛsV

for p + q − r − s even and |q − s| ≤ p − r. Note that the latter condition is equivalent to
p− q ≥ r − s and p+ q ≥ r + s.
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ΛpV ⊗ ΛqV

AA��������

��
;;

;;
;;

;;

AA��������

��
;;

;;
;;

;;AA��������

��
??

??
??

?

AA��������

��
??

??
??

???�������

��
??

??
??

? ??�������
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::

Λp−kV ⊗ Λq−kV

If we compose such a map αr,s
p,q with the projection to the Cartan component,

ΛpV ⊗ ΛqV → ΛrV ⊗ ΛsV → Vθr+θs
,

we claim that the resulting map βr,s
p,q is non zero. This is also true if s ≥ n, which can occur

if p+ q ≥ n; in this case, since ΛsV ≃ Λ2n−sV , the resulting map βr,s
p,q maps ΛpV ⊗ΛqV to

Vθr+θ2n−s
. We claim that βr,s

p,q and βr,2n−s
p,q are independent, and that this is the explanation

for the multiplicities that are equal to two in the decomposition formula above.

5.2. Branching. Second, we will use restriction formulas for representations of type
Vθi+θj

, first from Dn+1 to Bn, then to Dn (see again [6]). We identify the weight θi + θj,

for i ≤ j, with the partition (2i1j−i), of length j ≤ n+ 1.

(1) To obtain the restriction of Vθi+θj
from Dn+1 to Bn, take the sum of the represen-

tations defined by the partitions

(2i1j−i), (2i−11j−i+1), (2i1j−i−1), (2i−11j−i),

(where only those of length at most n must be kept).
(2) To obtain the restriction of Vθi+θj

from Bn to Dn, make the same operation, except
that if one of the representation obtained is of the form Vθn+θi

= V2ωn+θi
(resp.

V2θn
= V4ωn), one has to add the mirror representation V2ωn−1+θi

(resp. V4ωn−1
).

5.3. Decomposing quartics. From the preceding formulas, and our decomposition for
cubics, we easily deduce the following statement:

Proposition 6. There exists integers eni,j and fn
i such that the decomposition formula for

the fourth symmetric power of a half-spin representation is of the form

S4∆+ =
⊕

0≤i,j≤n

eni,jVθn−i+θn−j
⊕

⊕

0≤i≤n

fn
i V2ωn−1+θn−i

.

Moreover eni,j = 0 if i+ j is odd and fn
i = 0 if i is odd.
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Proof. Only the last assertion needs to be proved. Recall that the weights of the half-spin
representation, after a suitable choice of a maximal torus of Spin(V ), are of the form
1
2(±ǫ1 ± · · · ± ǫn), where the number of minus signs is even. In particular the sum of the
coefficients is n

2 minus some even integer. This implies that if a1ǫ1 + · · · + anǫn is any

weight of S4∆+, then a1 + · · · + an equals 2n mod 2. In particular, if θn−i + θn−j is a
weight of S4∆+, then i+ j must be even. Similarly, if 2ωn−1 + θn−i is a weight of S4∆+,
then i must be even. �

We expect the same phenomena as for cubics, that is:

Conjecture. The integers eni,j and fn
i are independent of n.

We have checked this conjecture up to n = 20 with the help of the program LiE [16].
The coefficients fi = fn

i are all equal to zero in that range, except f16 = f20 = 1. The
first coefficients ei,j = eni,j are given by the following table, where they are displayed in such
a way that the first line gives the coefficients e0,j , and the diagonal gives the coefficients
ei,i.

1 0 0 0 1 0 1 0 2 0 1 0 3 0 2 0 4 0 3 0 5
0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 3 0 4 0

0 0 0 0 1 0 0 0 2 0 1 0 3 0 2 0 5 0 3
0 0 0 0 1 0 1 0 1 0 2 0 3 0 3 0 4 0

1 0 0 0 1 0 1 0 3 0 1 0 4 0 3 0 6
0 0 0 0 1 0 0 0 2 0 2 0 3 0 3 0

1 0 0 0 2 0 1 0 3 0 2 0 5 0 3
0 0 0 0 1 0 1 0 2 0 2 0 4 0

1 0 0 0 2 0 1 0 4 0 2 0 5
1 0 0 0 2 0 1 0 3 0 3 0

1 0 0 0 2 0 1 0 4 0 2
0 0 0 0 2 0 1 0 3 0

2 0 0 0 3 0 2 0 5
1 0 0 0 2 0 1 0

1 0 0 0 3 0 1
1 0 0 0 3 0

2 0 0 0 3
1 0 0 0

2 0 0
1 0

2

We can try to prove this conjecture in the same way as we proved the similar statement
for cubics, that is, by induction on n. So we restrict the above formula for S4∆+ to Dn−1

and deduce an inductive relation for the multiplicities.
To obtain this equation we need a formula for the tensor products of S3∆+ ⊗∆−. One

can check that for p ≥ 2,

Vωn+ωn−p
⊗ ∆+ =

⊕

r≥p≥s
r+s−p even

Vθn−r+θn−s
,

Vωn+ωn−p
⊗ ∆− =

⊕

r≥p≥s
r+s−p odd

Vθn−r+θn−s
.
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One can then write down some inductive relations for the multiplicities eni,j and fn
i ,

which unfortunately are not sufficient to compute them all (contrary to the cubic case),
and a fortiori not sufficient to prove the conjecture: some additional idea is needed.

Admitting the conjecture, we obtain the following recursive relations for the multiplic-
ities:

ei−1,i−1 + ei,i + ei+1,i+1 = E(
i

4
) + δi,0 + δi,odd,(1)

e′0,2i + e1,2i−1 + e1,2i+1 =

(

E( i
2 ) + 1

2

)

,(2)

ei−1,j + ei,j−1 + ei+1,j + ei,j+1 =
∑

i≤2p≤j

ap +
∑

i≤2p+1≤j

bp,(3)

where we have let e′0,j = e0,j +fj. Moreover the third type of equations holds for j > i > 0,

with the caveat that for i = 1, e0,j has to be replaced by e′0,j .
The first series of equations allow to compute the diagonal coefficients ei,i. Their gen-

erating series is

∑

i≥0

ei,ix
i =

1 + x9

(1 − x4)(1 − x6)
.

We conjecture that the generating series of the multiplicities e0,i and fi are

∑

i≥0

e0,ix
i =

1

(1 − x4)(1 − x6)(1 − x8)
,

∑

i≥0

fix
i =

x16

(1 − x4)(1 − x6)(1 − x8)
.

Once the coefficients ei,i, e0,i and fi are known, the recursive relations above allow to
compute all the multiplicities ei,j , and to write down their generating series as an explicit
rational function.

6. Quartic equations of the secant variety

We first make the following easy observation (see [12]): the space I4(σ(S+)) of quartic
equations of the secant variety to the spinor variety, is the orthogonal in S4∆∨

+ to the

subspace of S4∆+ generated by the fourth powers (a + b)4, where a, b are pure spinors
(i.e., belong to the cone over S+). Such a tensor decomposes into homogeneous components
that can be treated separately: the fourth powers a4 generate the Cartan components V4ωn

of S4∆+; the terms a3b generate the image of V3ωn ⊗ Vωn ⊂ S3∆+ ⊗ ∆+ in S4∆+; the
terms a2b2 generate the image of V2ωn ⊗V2ωn (or rather its symmetric part). These tensor
products are known: we have

V3ωn ⊗ Vωn =
⊕

p

Vθn+θn−2p
,

S2V2ωn =
⊕

p−q even

Vθn−2p+θn−2q
.

The only components that appear in both decomposition are V4ωn and the Vθn+θn−2p
’s,

for p an even integer. This implies that

C[σ(S+)]4 ⊂
⊕

p≥q>0
p−q even

V ∨
θn−2p+θn−2q

⊕ 2
⊕

p even

V ∨
θn+θn−2p

⊕
⊕

p odd

V ∨
θn+θn−2p

.
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Theorem 4.

C[σ(S+)]4 =
⊕

p≥q≥1
p−q even

(p,q)6=(1,1)

V ∨
θn−2p+θn−2q

⊕
⊕

p 6=1

V ∨
θn+θn−2p

.

Proof. There are two things to prove. First, that the V ∨
θn+θn−2p

’s, for p even, appear in

C[σ(S+)]4 with multiplicity one. Second, that the V ∨
θn−2p+θn−2q

’s, for p− q even, or q = 0

and p odd, have non zero multiplicity.

For the first assertion, recall that Vθn−2p
is, for p even, a component of S2∆+, with

multiplicity one. Let V =
∑

i vi ⊗ v′i be a generator of the corresponding highest weight
line in S2∆+ ⊂ ∆+ ⊗ ∆+. Denote by u a highest weight vector of ∆+. Then

∑

i

(uvi) ⊗ (uv′i)

is a highest weight vector in S2V2ωn , while
∑

i

(u2vi) ⊗ v′i

is a highest weight vector in V3ωn ⊗ Vωn . Since their images in S4V2ωn are both equal to
∑

i u
2viv

′
i, we deduce that the components Vθn+θn−2p

inside S2V2ωn and inside V3ωn ⊗ Vωn

generate a unique copy of Vθn+θn−2p
inside S4V2ωn . This proves the first claim.

For the second assertion, consider a component Vθn−2p+θn−2q
coming from S2V2ωn , with

p ≥ q. We want to check that the tensors of the form e2f2 in S4V2ωn , for e and f in the
cone over the spinor variety, do generate such a component.

Suppose first that p and q are both even. Consider the map

S2V2ωn →֒ S2Vωn ⊗ S2Vωn

βn−2p⊗βn−2q
−→ Vθn−2p

⊗ Vθn−2q
.

Since βn−2p(e, e) = 0 (at least for p ≥ 1), the tensor e2f2 is mapped by this morphism to

βn−2p(e, f) ⊗ βn−2q(e, f) ∈ Vθn−2p
⊗ Vθn−2q

.

To check that βn−2p(e, f)⊗βn−2q(e, f) has a non zero projection to the Cartan component
Vθn−2p+θn−2q

, we just need to pair it with highest weight vectors of that component (which
is self-dual). Such highest weight vectors are of the form

g1 ∧ · · · ∧ gn−2p ⊗ g1 ∧ · · · ∧ gn−2q,

where the vectors g1, . . . , gn−2q generate an isotropic subspace of V (recall that we have
supposed p ≥ q). So it suffices to check that βn−2p(e, f) pairs non trivially with a generic
tensor g1 ∧ · · · ∧ gn−2p. But this is obvious, since such tensors generate the whole space
Vθn−2p

.

Now suppose that p and q are both odd. Then we cannot use the same morphism as
before, and instead we use the composition

S2V2ωn →֒ S2Vωn ⊗ S2Vωn

βn−2p+2⊗βn−2q−2

−→ Vθn−2p+2
⊗ Vθn−2q−2

−→ Vθn−2p
⊗ Vθn−2q

.

We conclude as in the previous case, except when p = 1 for which we get zero. By
symmetry we can always get the component Vθn−2p+θn−2q

, except in the case where (p, q) =
(1, 1). �

Comparing with the decomposition of S4∆∨
+ we can of course deduce the decomposition

of I4(σ(S+)) into irreducible components. It has the same “odd” part (by this we mean
the same multiplicities on the components of type V2ωn−1+θn−j

), while the multiplicities
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of components Vθn−i+θn−j
in the “even” part are given, for low values of i and j, by the

following table:

0 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 3 0 2 0 4
0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 3 0 4 0

0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 4 0 3
0 0 0 0 1 0 1 0 1 0 2 0 3 0 3 0 4 0

0 0 0 0 0 0 1 0 2 0 1 0 3 0 3 0 5
0 0 0 0 1 0 0 0 2 0 2 0 3 0 3 0

0 0 0 0 1 0 1 0 2 0 2 0 4 0 3
0 0 0 0 1 0 1 0 2 0 2 0 4 0

0 0 0 0 1 0 1 0 3 0 2 0 4
1 0 0 0 2 0 1 0 3 0 3 0

0 0 0 0 1 0 1 0 3 0 2
0 0 0 0 2 0 1 0 3 0

1 0 0 0 2 0 2 0 4
1 0 0 0 2 0 1 0

0 0 0 0 2 0 1
1 0 0 0 3 0

1 0 0 0 2
1 0 0 0

1 0 0
1 0

1

Of course these multiplicities will be independent of n if and only if the conjecture in
section 5.3 is correct.

For example, we get (denoting Sn the spinor variety S+ in type Dn):

I4(S7) = Vω4
, I4(S8) = Vω1+ω5

⊕ V2ω8
,

I4(S9) = Vω2+ω6
⊕ Vω1+2ω9

⊕ Vω8
⊕ Vω6

⊕ Vω4
⊕ Vω0

.

Comparing with Theorem 3.11 in [13], we deduce:

Corollary 4. The kernel of the restriction map C[σ(S+)]4 → C[τ(S+)]4 is equal to
⊕

p≥q≥1
p−q even
p+q>4

V ∨
θn−2p+θn−2q

⊕
⊕

p>4

V ∨
θn+θn−2p

.

We also remark that quartic equations are not always induced by cubic equations.

Proposition 7. There is a component V ∨
ωn−3+ωn−7

inside I4(σ(S+)), of multiplicity one,
consisting in quartic equations which are not induced by cubics – hence generators of
I(σ(S+)).

Proof. The tensor product formulas given in section 5 imply that the tensor product of
Vωn+ωn−2p

or Vωn−1+ωn−2p−1
by ∆+, for p ≥ 4, does not contain any copy of Vωn−3+ωn−7

.
Therefore the tensor product of I3(σ(S+)) by ∆∨

+ cannot contain V ∨
ωn−3+ωn−7

, which implies
our claim. �
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7. Freudenthal varieties

The spinor varieties belong to the family of Freudenthal varieties

LG ⊂ P(∧〈n〉
C

2n), G ⊂ P(∧n
C

2n), S+ ⊂ P(∆+)

which share, especially for n = 3, many remarkable properties [8, 11]. Here we denotedG =
G(n, 2n) the usual Grassmannian, and LG = LG(n, 2n) the Lagrangian Grassmannian, in
their respective Plücker embeddings. Moreover we restrict to the spinor varieties of type
D2n. The varieties LG,G, S+ are then Hermitian symmetric spaces of the same rank n. In
fact they can be considered as models of the same variety over the (complexified) normed
algebras R,C and H. For n = 3 there is even an exceptional Freudenthal variety G over
the Cayley algebra O, which is the unique compact Hermitian symmetric space of type
E7.

Every Freudenthal variety is easily seen to be 3-transitive, and this leads to analogs of
the homogeneous spaces embeddings discussed after Proposition 1:

Spn →֒ LG, Sp2n/GLn →֒ LG× LG, Sp2n/On →֒ LG× LG× LG,

GLn →֒ G, GL2n/GLn ×GLn →֒ G×G, GL2n/GLn →֒ G×G×G,

SOn →֒ S+, SO2n/GLn →֒ S+ × S+, SO2n/Spn →֒ S+ × S+ × S+,

E6 →֒ G, E7/C
∗E6 →֒ G × G, E7/F4 →֒ G × G× G.

Of course this is strongly reminiscent of Freudenthal’s magic square and its higher rank
generalizations [11].

Cubic equations of the secant variety of a Freudenthal variety F ⊂ PVω can be described
uniformly. In fact the decomposition of S3Vω is known, and there are two types of isotypic
components:

(1) Those whose highest weight does not appear among the weights of V2ω ⊗ Vω; as
we have already noticed, the duals of these components must belong to I3(σ(F )).

(2) Those whose highest weight does appear among the weights of V2ω ⊗ Vω. In fact
this tensor product turns out to be multiplicity free; we write it down as

V2ω ⊗ Vω =
⊕

i

Vω+Ωi
.

Let us discuss the case of G = G(n, 2n), the usual Grassmannian. Here U∨ = ∧n
C

2n,
and the decomposition of S3U follows from the computations of Chen, Garsia and Remmel
[2]. In fact these authors compute the plethysm S3(Sn) rather than S3(∧n), but its is
known that S3(∧n) is dual to S3(Sn) for n even; for n odd S3(∧n) is dual to ∧3(Sn),
which is also computed in [2]. Here by “dual”, we mean that the highest weights of the
irreducible components are coded by dual partitions, with the same multiplicities. This
yields:

S3(∧n) =
⊕

a,b≤n
a≤2b, b≤2a

ma,bVωn−a+ωn+a−b+ωn+b
,

where the multiplicity ma,b is given by the following rule. If b ≥ a, then ma,b = E(2a−b+1
6 )

if 2a − b = 1 mod 6 or a and b are both even. Otherwise ma,b = E+(2a−b+1
6 ), if E+(t)

denotes the smallest integer at least equal to t. If a > b, then ma,b = E(2b−a+1
6 ) if

2b− a = 1 mod 6 or a and b are both even. Otherwise ma,b = E+(2b−a+1
6 ).

Observe that the decomposition of S3(∧n) is thus notably more complicated that the
decomposition of S3∆+. But most components, more precisely all those for which a 6= b,
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will automatically vanish on σ(G), since

(∧n)(2) ⊗∧n =
⊕

a≤n

Vωn−a+ωn+ωn+a
.

This indicates that we should pay special attention to the multiplicities ma := ma,a, which
are given by the formula

m6r+s = r + 1 − δs,1, r ≥ 0, 0 ≤ s ≤ 5.

Let us compute the generating series of these multiplicities:

∑

k≥0

mkx
k = (1 + x+ x2 + x3 + x4 + x5)

∑

r≥0

(r + 1)x6r −
∑

r≥0

x6r+1

= (1 + x+ x2 + x3 + x4 + x5)(1 − x6)−2 − x(1 − x6)−1

=
1

1 − x6
(

1

1 − x
− x) =

1

1 − x6

1 − x+ x2

1 − x

=
1

1 − x6

1 + x3

1 − x2
=

1

(1 − x2)(1 − x3)
.

This is the rational function we already met in Theorem 2 !

One can check that the same phenomenon holds for the Lagrangian Grassmannian. We
finally get the uniform statement:

Theorem 5. Let X ⊂ P(Vω) be a Freudenthal variety of rank n. Then there exist dominant
weights Ω0 = 2ω,Ω1, . . . ,Ωn such that:

(1) for any k ≤ l, one has

Vkω ⊗ Vlω =
⊕

0≤i1≤···≤ik≤n

V(l−k)ω+Ωi1
+···+Ωik

;

in particular

Vω ⊗ Vω =

n
⊕

i=0

VΩi
, V2ω ⊗ Vω =

n
⊕

i=0

Vω+Ωi
;

(2) the multiplicity mi of Vω+Ωi
inside S3Vω is given by the generating series

∑

i≥0

mix
i =

1

(1 − x2)(1 − x3)
,

(3) the degree three part of C[σ(X)] is

C[σ(X)]3 =
⊕

i6=1

V ∨
ω+Ωi

.

Explicitly, the weights Ωi are the following:

Ωi =











2ωn−i in type Cn,

ωn−i + ωn+i in type A2n−1,

θ2n−2i in type D2n.
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8. A toy case

It may be interesting to observe that the list of Freudenthal varieties can be completed
by two “degenerate” cases,

V = vn(P1) ⊂ P(Sn
C

2), P = (P1)n ⊂ P((C2)⊗n).

The complete series V, P,LG, V, S+, for a given n, has in particular the nice property that
each variety is a (special) linear section of the next variety in the series.

The case of the rational normal curve V is the simplest one. Its secant varieties are
well understood (see e.g. [7], Part I, 1.3). In particular the first secant variety has a
nice desingularization in terms of the secant bundle. For simplicity let U = C

2. On the
projective plane P2 = P(S2U), the secant bundle is the rank two vector bundle E defined
by the exact sequence

0 → Sn−2U∨ ⊗OP2(−1) → SnU∨ ⊗OP2 → E → 0.(4)

Obviously E is generated by global sections and H0(P2, E) = SnU∨. The line bundle
OE(1) defines a morphism η from the threefold P(E) to P(H0(P2, E)∨) = P(SnU). The
next Lemma is contained in [9], section 3.

Lemma 7. The map η : P(E) → P(SnU) is a desingularization of σ(V ). It induces an
isomorphism

C[σ(V )]k ≃ H0(P(E),OE(k)) = H0(P2, SkE).

Since SkE has no higher cohomology, as easily follows from (1), we can compute
H0(P2, SkE) = χ(P2, SkE) as a (virtual) GL(U)-module, by using the equivariant lo-
calization formula of Atiyah-Bott [1]. In order to state the result we need a few more
notations. We consider a maximal torus T in GL(U), and a compatible basis (e, f) of U .
We denote by x, y the corresponding characters of T . For g ∈ T , the formula reads

Trace(g, χ(P2, SkE)) =
∑

p∈(P2)T

Trace(g, SkEp)

det(1 − g−1, TpP2)
.

Here (P2)T denotes the set of fixed points of the action of T on P
2, which are the three

lines in S2U generated by e2, ef, f2. In order to get a compact formula, we introduce an
indeterminate t and define

Pn(t, x, y) =
∑

k≥0

tkTrace(g, χ(P2, SkE)).

Let us compute this in from the Atiyah-Bott localization formula. At the fixed point
p = [e2], the fiber of E is the space of degree n polynomials modded out by those divisible
by e2. A T -eigenbasis of Ep is thus given by the images of fn, efn−1. The induced

T -eigenbasis of SkEp consists in the degree k monomials in e, f , multiplied by fk(n−1).
Moreover, the T -module TpP

2 = Hom(〈e2〉, 〈ef, f2〉) has weights y/x and y2/x2. The
same straightforward analysis at the two other fixed points yields the formula

Trace(g, χ(P2, SkE)) =
yk(n−1)hk(x, y)

(1 − x
y )(1 − x2

y2 )
+
xk(n−1)hk(x, y)

(1 − y
x)(1 − y2

x2 )
+

hk(x
n, yn)

(1 − x
y )(1 − y

x)
,

where hk(x, y) denotes the sum of degree k monomials in x, y. Summing over k, we get
the closed expression Pn(t, x, y) = P ′

n(t, x, y)/(x − y)(x2 − y2), where

P ′
n(t, x, y) =

x3

(1 − txn)(1 − txn−1y)
+

y3

(1 − tyn)(1 − txyn−1)
−

xy(x+ y)

(1 − txn)(1 − tyn)
.
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Extracting the coefficient of t3, we get the character P 3
n(x, y) = Q3

n(x, y)/(x − y) of the
GL(U)-module H0(P2, S3E)) = C[σ(V )]3, with

Q3
n(x, y) = x2n(xn+1 + xn−1y2 + · · · + xyn) − y2n(xny + · · · + x2yn−1 + yn+1).

Since the character of the GL(U)-module SpU⊗(detU)q is (xp+q+1yq−xqyp+q+1)/(x−y),
this means that

C[σ(V )]3 = S3nU ⊕

n
⊕

k=2

S3n−2kU ⊗ (detU)k.

This is in agreement with Theorem 5, for ω = nω1, but taken with a grain of salt. Indeed,
all the formulas in Theorem 5 are correct, with

Ωi = 2ω − 2iω1,

except for the first one for k ≥ 2. Indeed, the weights Ωi, in the special case we are dealing
with, are not linearly independent (recall that this is a degenerate case !). To get a correct
result from the first formula of Theorem 5 (which is just an instance of the Clebsch-Gordan
formula), one needs to correct this by taking all non zero multiplicities to the value one.

One can go further and compute the character P k
n (x, y) = Qk

n(x, y)/(x − y) of the
GL(U)-module H0(P2, SkE) = C[σ(V )]k. Indeed, if qk

n,s is the coefficient of xnk+1−sys in
this polynomial, one can deduce for nk ≥ 2s the induction formula

qk
n,s − qk

n,s−2 = δs≤k − δn|s−1 − δn|s−2.

This leads to the following statement:

Proposition 8. Let ǫ ∈ {0, 1} be the parity of s, with nk ≥ 2s. The multiplicity of
Skn−2sU ⊗ (detU)s inside C[σ(V )]k is

qk
n,s = min

(

E(
s

2
), E(

k − ǫ

2
)
)

− E(
s − 1

n
).

For example, for k = 4 one gets that the multiplicity q4n,s is equal to 0 for s = 1, to 2
for s even and 4 ≤ s ≤ 2n, and to 1 otherwise. For n = 3 the secant variety is the whole
of P

3, and one recovers the formulas of Chen-Garsia-Remmel for the symmetric powers of
S3

C
2.

For the tangent surface τ(V ) to the normal rational curve we have

C[τ(V )]k =
⊕

s≤k
s 6=1

Skn−2sU ⊗ (detU)s.

We recover the fact that we have already observed for the spinor varieties: τ(V ) has, for
n ≥ 4, and contrary to σ(V ), some non trivial cubic equations.

It is tempting to imagine that very similar formulas could hold for the other types of
Freudenthal varieties. Observe, nevertheless, that the ideal of σ(V ) is generated by cubics
(obtained as 3x3 minors of catalecticant matrices [9]). We have seen that this statement
is not true for spinor varieties.
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