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Limit conditional distributions for bivariate vectors

with polar representation

Anne-Laure Fougères∗ Philippe Soulier†

September 22, 2009

Abstract

We investigate conditions for the existence of the limiting conditional distribution
of a bivariate random vector when one component becomes large. We revisit the
existing literature on the topic, and present some new sufficient conditions. We con-
centrate on the case where the conditioning variable belongs to the maximum domain
of attraction of the Gumbel law, and we study geometric conditions on the joint dis-
tribution of the vector. We show that these conditions are of a local nature and imply
asymptotic independence when both variables belong to the domain of attraction of
an extreme value distribution. The new model we introduce can also be useful to
simulate bivariate random vectors with a given limiting conditional distribution.

Keywords: Conditional excess probability; conditional extreme-value model; Γ-varying
tail; asymptotic independence; elliptic distributions; second order correction.

1 Introduction

In many practical situations, there is a need of modeling multivariate extreme events.
Extreme means, roughly speaking, that no observations are available in the domain of
interest, and that extrapolations are needed. Multivariate extreme value theory provides
an efficient mathematical framework to deal with these problems in the situation where
the largest values of the variables of interest tend to occur simultaneously. This situation
is referred to as asymptotic dependence in extreme value theory. In this case, probabilities
of simultaneous large values of the components of the vector can be approximated and
estimated by means of the multivariate extreme value distributions. In the opposite case of
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asymptotic independence, the approximate probability for two or more components being
simultaneously large given by the standard theory is zero. Refinements of the standard
theory are thus needed.

One refinement is the concept of hidden regular variation introduced by Resnick [2002].
Another approach is studying, if it exists, the limiting distribution of a random vector
conditionally on one component being large. See Heffernan and Resnick [2007]. Formally
stated in the bivariate case, this corresponds to assuming that there exist functions m,
a and ψ, and a bivariate distribution function (cdf) K on [0,∞) × (−∞,∞) with non
degenerate margins such that

lim
t→∞

P(X ≤ t+ ψ(t)x ;Y ≤ m(t) + a(t)y | X > t) = K(x, y) , (1)

at all points of continuity of K. Das and Resnick [2008] introduced the terminology of
conditional extreme-value (CEV) model. Note that Condition (1) implies that X belongs
to a max-domain of attraction. More properties can be found in Section 3.1, where in
particular the relationship between CEV models and usual multivariate extreme value
(EV) models is explicited. Statistical applications of the conditional model on various
domains are discussed in several papers: see Heffernan and Tawn [2004] for a study on
air quality monitoring, Abdous et al. [2008] and Fougères and Soulier [2008] for an insight
into financial contagion, and Das and Resnick [2009] for an application on Internet traffic
modeling.

An important issue that must be addressed is to study models under which Condition (1)
holds. The aim of this contribution is to review existing models and exhibit new ones
satisfying (1). We restrict our attention to bivariate random vectors for simplicity of
exposition. We focus on the case where the conditioning variable belongs to the domain of
attraction of the Gumbel distribution. The reason for that is that, as mentioned later, this
situation is, in the models we consider, strongly related to the asymptotic independence,
which is precisely the case where there is an advantage to work with CEV models instead
of EV models (cf. Section 3.1). Our work is an attempt to motivate the use of CEV
models by exhibiting a class of bivariate models that satisfy Condition (1).

In Section 2, we review the existing literature. In Section 3 we study new models for
bivariate vectors (X,Y ) with a polar representation R(u(T ), v(T )) where R is a nonneg-
ative random variable in the domain of attraction of the Gumbel law, independent of the
random variable T , and the functions u and v are a parametrization of a certain curve.
This model includes many models already studied in the literature, and in particular the
bivariate elliptical distributions. Our main result (Theorem 3 in Section 3) shows that the
local geometric nature of this curve around the maximum of u determines the existence
and form of the limiting distribution in (1). Our result covers situations that are more
general than the results of Balkema and Embrechts [2007]. In particular, as a consequence
of their local nature, our assumptions do not imply that the conditioned variable (Y )
belongs to the domain of attraction of a univariate extreme value distribution. Thus these
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polar distributions may not be imbedded in a standard multivariate extreme value model.
But when they are, we show that they are asymptotically independent. In order to prove
this, we extend [Das and Resnick, 2008, Proposition 4.1]. Finally, following Abdous et al.
[2008] we also study a second order correction for the asymptotic approximation (1). Sec-
tion 4 contains the proof of Theorem 3. Some additional auxiliary results are given and
proved in Section 5.

2 Elliptical and asymptotically elliptical distributions

Early results providing families of distributions that satisfy (1) were obtained by Eddy and
Gale [1981] for spherical distributions and by Berman [1983] for bivariate elliptical distri-
butions. Multivariate elliptical distributions and related distributions were investigated
by Hashorva [2006], Hashorva et al. [2007]. One essential feature of elliptical distributions
is that the level sets of their density are ellipses in the bivariate case, or ellipsoids in
general. Such geometric considerations have been deeply investigated and generalized in
many directions by Barbe [2003] and Balkema and Embrechts [2007]. It must be noted
that these geometric properties will be ruined by transformation of the marginal distribu-
tions to prescribed ones. Another specific feature of the elliptical and related models is
that the property of asymptotic dependence or independence is related to the nature of the
marginal distributions. If they are regularly varying, then the components are asymptoti-
cally dependent; if the marginal distributions belong to the maximum domain of attraction
of the Gumbel distribution, then the components are asymptotically independent.

We start by recalling some definitions that will be used throughout the paper. A
nondecreasing function g is said to belong to the class Γ or to be Γ-varying [Resnick, 1987,
Definition 0.47], if there exists a positive function ψ such that

lim
x→x1

g(x+ ψ(x)t)

g(x)
= et .

It is well known (cf. De Haan and Ferreira [2006, Theorem 1.2.5]) that a random variable
X, with cdf F and upper limit of the support x1, is in the max-domain of attraction of
the Gumbel distribution if and only if 1/(1 − F ) is Γ-varying, i.e.

lim
x→x1

1 − F (x+ ψ(x)t)

1 − F (x)
= e−t . (2)

The function ψ is called an auxiliary function. It is defined up to asymptotic equivalence
and necessarily satisfies ψ(x) = o(x) if x1 = ∞ and ψ(x) = o(x1 − x) if x1 < ∞. In the
sequel, for notational simplicity, we only consider the case x1 = ∞. The modifications to
be made in the case x1 < ∞ are straightforward, and the main change is that the rates
of convergence must be expressed in terms of ψ(x) instead of ψ(x)/x. The function ψ is
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self-neglecting (or Beurling slowly varying, cf. Bingham et al. [1989, Section 2.11]), i.e.
for all t > 0,

lim
x→∞

ψ(x+ ψ(x)t)

ψ(x)
= 1 .

Two random variables X and Y such that (X,Y ) belongs to the maximum domain
of attraction of a bivariate extreme value distribution G are said to be asymptotically
independent if G has independent marginals. (See e.g. [De Haan and Ferreira, 2006,
Section 6.2]).

In the following two subsections, we recall the results on elliptic distributions and we
state a bivariate version of a general result of Balkema and Embrechts [2007] which provides
geometric sufficient conditions for (1) to hold. We also point out and illustrate the local
nature of the sufficient condition formulated by Balkema and Embrechts [2007], in the
case of Γ-varying upper tails.

2.1 Elliptical distributions

Consider a bivariate elliptical random vector, i.e. a random vector (X,Y ) that can be
expressed as

(X,Y ) = R(cos Θ, ρ cos Θ + σ sin Θ) (3)

with σ2 = 1− ρ2, in terms of a positive random variable R called “radial component” and
an “angular” random variable Θ uniformly distributed on [0, 2π). The following result
was originally proved in the case ρ = 0 as a technical lemma under restrictive conditions
in Eddy and Gale [1981]. The general result was first proved in Berman [1983] in the
bivariate case (see also Berman [1992] and Abdous et al. [2005]) and Hashorva [2006] in a
multivariate setting. Throughout the paper Φ will denote the cdf of the standard normal
distribution.

Theorem 1 (Berman [1983]). Let (X,Y ) be an elliptical random vector as defined in
(3). If the radial component R is in the domain of attraction of the Gumbel law, i.e. its
survival function 1−H satisfies (2) with auxiliary function ψ, then X and Y are also in
the domain of attraction of the Gumbel law and

lim
t→∞

P(X ≤ t+ ψ(t)x , Y ≤ ρt+
√

tψ(t)y | X > t) = (1 − e−x)Φ(y) . (4)

Comments on Theorem 1 The fact that X has Γ-varying upper tails follows from (4)
by taking y = ∞. Since the same result holds with reversed roles for X and Y , the
consistency result [Das and Resnick, 2008, Theorem 2.2] implies that (X,Y ) belongs to
the domain of attraction of a bivariate extreme value distribution. Moreover, since the
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limiting distribution in (4) has two independent marginals, X and Y are asymptotically
independent, i.e. the limiting extreme value distribution is the product of its marginal
distributions. See also Hashorva [2005, Section 3.2] for a proof of this property in a related
context. In the case where R has a regularly varying tail, the limiting distribution is not a
product and the vector (X,Y ) is asymptotically dependent. See e.g. [Abdous et al., 2005,
Theorem 1, part (i)]. As mentioned in the introduction, we do not develop this case.

If the radial component R has a density h, then the vector (X,Y ) has the density f
defined by

f(x, y) =
h(

√

x2 + (y − ρx)2/σ2)
√

x2 + (y − ρx)2/σ2
.

The level lines of the density are homothetic ellipses x2 + (y − ρx)2/σ2 = c2.
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Figure 1: Level lines of the density of an elliptical distribution. The slope of the straight
line is ρ = .6.

This result can be generalized in two directions: either by weakening the assumptions on
the level lines of the density or by extending the representation (3). The first generalization
will be considered in the following subsection, and the second one in Section 3.

2.2 Asymptotically elliptical distributions

In this section, we state a bivariate version of Balkema and Embrechts [2007, Theorem
11.2]. We first need the following definition taken from Balkema and Embrechts [2007,
Section 11.2].
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Definition 1. A function L : R
2 → R+ belongs to the class L if for all (x, y) ∈ R

2,

lim
||(ξ,ζ)||→∞

L(x+ ξ, y + ζ)

L(ξ, ζ)
= 1 ,

for any norm || · || on R
2.

Assumption 1. The random vector (X,Y ) has a density f such that

f(x, y) = e−I(x,y)L(x, y) , (5)

where L ∈ L, and the function I satisfies:

I(x, y) = p ◦ n(x, y) ,

p(r) =

∫ r

0

ds

ψ(s)
, (6)

ψ is absolutely continuous with limx→∞ ψ
′(x) = 0 and n : R

2 → R is 1-homogeneous, n2

is twice differentiable and the Hessian matrix of n is positive definite.

Theorem 2 (Balkema and Embrechts [2007]). Under Assumption 1, X and Y are in
the domain of attraction of the Gumbel law and satisfy (2) with auxiliary function ψ, are
asymptotically independent, and there exist real numbers ρ and σ such that

lim
t→∞

P(X ≤ t+ ψ(t)x ;Y ≤ ρt+ σ
√

tψ(t)y | X > t) = (1 − e−x)Φ(y) . (7)

This result shows that Assumption 1 is a sufficient condition for the limit (1) to hold,
with m(x) = ρx, a(x) = σ

√

xψ(x) and K(x, y) = (1 − e−x)Φ(y). The constants ρ and σ
are characterized by the second order expansion of the function n

n(1 + x, ρ+ σy) = 1 + x+ y2/2 + o(x2 + y2) .

This condition implies that the tangent at the point (1, ρ) to the curve n(ξ, ζ) = 1 is
vertical. Note that the level lines of the function n are not those of the density f defined
in (5), unless the function L is constant, but, loosely speaking, the level lines of f converge
to those of n. Theorem 2 implies Theorem 1 when the radial distribution is absolutely
continuous.

Example 1. Let h and g be density functions defined on [0,∞) and [−π/2, π/2], respec-
tively. The function f defined by

f(x, y) =
h(x2 + (y − ρx)2/(1 − ρ2))
√

x2 + (y − ρx)2/(1 − ρ2)
g ◦ arctan((y − ρx)/x

√

1 − ρ2) (8)

is then a bivariate density function on R
2. If g is a constant, then f is the density of an

elliptical vector. If h can be expressed as in (6) and if g is continuous and bounded above
and away from zero, then f satisfies Assumption 1. Figure 2 shows the level lines of such
a density, with ρ = .6, h(t) = exp(t2/2)/

√
2π and g(t) = c{1 + [t2 − (π/4)2]2}. The level

lines seem to be asymptotically homothetic.
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Figure 2: Level lines of the density given by (8).

It is important to note that under Assumption 1 the normalizing functions m and a
satisfy a(x) = o(m(x)), since in the present context m(x) = ρx and a(x) = σ

√

xψ(x) with
ψ(x) = o(x). This implies that only the local behaviour of the curve n(ξ, ζ) = 1 around
the point (1, ρ) matters. In other words, the limit (7) still holds if (X,Y ) is conditioned to
remain in the cone {(ρ− ǫ)x ≤ y ≤ (ρ+ ǫ)x} for any arbitrarily small ǫ > 0. This suggests
that Assumption 1 must only be checked locally to obtain the limit (7).

Example 2 (Mixture of two bivariate Gaussian vectors). Let B be a Bernoulli random
variable such that P(B = 1) = p ∈ (0, 1). Let X and Z be two i.i.d standard gaussian
random variables, ρ 6= τ ∈ [−1, 1] and define Y by

Y = B(ρX +
√

1 − ρ2Z) + (1 −B)(τX +
√

1 − τ2Z) . (9)

Then Y is a standard Gaussian variable, and (X,Y ) is a mixture of two Gaussian vectors.
Figure 3 shows the level curves of the density function of the pair (X,Y ) with p = .4,
ρ = .8 and τ = −.4. The density function of (X,Y ) does not satisfy Assumption 1, and
Theorem 2 cannot be applied. Indeed, applying Theorem 1 to each component of the
mixture yields

P(Y − ρx ≤
√

1 − ρ2z | X > x)

= pP(ρ(X − x) +
√

1 − ρ2Z ≤
√

1 − ρ2z | X > x)

+ (1 − p)P(τ(X − x) + (τ − ρ)x+
√

1 − τ2Z ≤
√

1 − ρ2z | X > x)

∼ pΦ(z) + (1 − p)1{τ<ρ} .
7



Thus the limiting distribution is degenerate, with a positive mass either at −∞ or +∞.
However, a proper limiting distribution can be obtained for (X,Y ) conditioned to remain
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Figure 3: Level lines of the density function of the pair (X,Y ) defined in Example 2.

in C = {(x, y) ∈ R
2 | c1x ≤ y ≤ c2x} for c1 < c2 such that ρ ∈ [c1, c2] and τ /∈ [c1, c2].

Denote P(· | (X,Y ) ∈ C) by PC(·). Then

lim
x→∞

PC(Y ≤ ρx+
√

1 − ρ2z | X > x) = Φ(z) . (10)

To prove this claim, we assume without loss of generality that ρ = 0. Then

PC(Y ≤ z | X > x) =
P(Y ≤ z ; (X,Y ) ∈ C | X > x)

P((X,Y ) ∈ C | X > x)
.

For fixed z and x > z/c2, it holds that

P(Y ≤ z ; (X,Y ) ∈ C | X > x)

= pP(c1X ≤ Z ≤ z | X > x)

+ (1 − p)P(c1X ≤ τX +
√

1 − τ2Z ≤ z | X > x) ∼ pΦ(z) .

Since ρ ∈ [c1, c2] and τ /∈ [c1, c2], and since z ≤ c2x, it is easily obtained that

lim
x→∞

P(c1X ≤ Z ≤ z | X > x) = Φ(z) ,

lim
x→∞

P(c1X ≤ τX +
√

1 − τ2Z ≤ z | X > x) = 0 .

Thus limx→∞ P(Y ≤ z ; (X,Y ) ∈ C | X > x) = pΦ(z), which proves (10).
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3 Bivariate vectors with polar representation

In this section, we show that Theorem 1 can be extended from elliptical distributions
to more general bivariate distributions that admit a radial representation R(u(T ), v(T ))
where R and T are independent, T is not uniformly distributed and u and v are more
general functions than in the elliptical case. We start by collecting the assumptions that
will be needed.

Assumption 2.

A The function u : [0, 1] → [0, 1] is continuous, has a unique maximum 1 at a point
t0 ∈ (0, 1) and has an expansion

u(t0 + t) = 1 − ℓ(t) (11)

where ℓ is decreasing from [−ǫ, 0] to [0, η−] and increasing from [0, ǫ] to [0, η+] for
some ǫ, η−, η+ > 0, and regularly varying at zero with index κ > 0. The functions
ℓ←− : [0, η−] → [−ǫ, 0] and ℓ←+ : [0, η+] → [0, ǫ] respectively defined as ℓ←− (s) = sup{t ∈
[−ǫ, 0] : l(t) ≤ s} and ℓ←+ (s) = inf{t ∈ [0, ǫ] : l(t) ≥ s} are absolutely continuous and
their derivatives (ℓ←− )′(s) and (ℓ←+ )′(s) are regularly varying at zero with index 1/κ− 1.

B The function v defined on [0, 1] is strictly increasing in a neighborhood of t0, v(t0) = ρ,
and the function t 7→ v(t0 + t) − ρ is regularly varying with index δ > 0. Its inverse
v← is absolutely continuous and its derivative is regularly varying at zero with index
1/δ − 1.

Assumption 3. The density function g : [0, 1] → R
+ is regularly varying at t0 with index

τ > −1 and bounded on the compact subsets of [0, 1] \ {t0}.

Theorem 3. Let R be in the domain of attraction of the Gumbel law with auxiliary
function ψ, i.e. its distribution function H satisfies (2). Let T be a random variable
that admits a density g that satisfies Assumption 3. Let the functions u and v satisfy
Assumption 2 with δ < κ. Define (X,Y ) = R(u(T ), v(T )). Then,

(i) the random variable X is in the domain of attraction of the Gumbel law and there
exists a function k regularly varying at zero with index (1 + τ)/κ such that

P(X > x) ∼ k(ψ(x)/x)H̄(x) ; (12)

(ii) there exists a function h regularly varying at zero with index δ/κ such that for all
y ∈ R,

lim
t→∞

P(X ≤ t+ ψ(t)x , Y ≤ ρt+ th(ψ(t)/t)y | X > t)

= (1 − e−x)Hκ/δ,(1+τ)/δ(y) , (13)
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with

Hη,ζ(y) =

∫ y
−∞ e−|s|

η/η |s|ζ−1 ds
∫∞
−∞ e−|s|η/η |s|ζ−1 ds

.

The proof of this result is in Section 4. One of its main ingredient is the fact that the
tail of R is Γ-varying. This implies that the normalizing function a(x) = xh(ψ(x)/x) is
o(x). As a consequence, only the local behavior of u and v around (1, ρ) matters. This is
similar to what was observed under Assumption 1.

Comments on Theorem 3

(i) The case u(t) = cos(t) and v(t) = sin(t) was considered by Hashorva [2008]. The
difference between the present results and this reference is not only that we consider
more general functions u and v, but more importantly that we point out the local
nature of the assumptions on u and v.

(ii) Theorem 3 handles situations where the assumptions of Theorem 2 do not hold. In
some cases, the limiting distribution is nevertheless the Gaussian distribution and the
normalization is the same as in Theorem 3; see Example 3. In other cases, the limiting
distribution and the normalization differ from those that appear in Theorem 2. There
are two reasons for this: the density of T can vanish or be unbounded at zero, or the
curvature of the line parameterized by the functions u and v at the point (u(t0), v(t0))
can be infinite or zero. This is illustrated in Example 4.

The asymptotic distribution Hκ/δ,(1+τ)/δ is of the so-called Weibull type with shape
parameter κ/δ. This ratio characterizes the geometric nature of the curve t 7→
(u(t), v(t)) around t0 and is independent of the particular choice of the parametriza-
tion t 7→ (u(t), v(t)). Its right tail is lighter than the exponential distribution. The
behavior of the density of T has influence only on the less important parameter ζ.
The normalizing function h also depends only on u and v.

(iii) Denote a(x) the normalizing function in (13): a(x) = xh(ψ(x)/x). The assumption
δ < κ implies that ψ(x) = o(a(x)), so that (X − x)/a(x) converges weakly to zero
given that X > x as x→ ∞. Hence

lim
x→∞

P

(

Y − ρX

a(x)
≤ y | X > x

)

= Hκ/δ,(1+τ)/δ(y) .

This implies in particular that the case ρ 6= 0 can be deduced from the case ρ = 0
by a linear transformation.

Since the function h is regularly varying with index δ/κ > 0 and since ψ is self-
neglecting, it also holds that a(X)/a(x) converges weakly to 1 given that X > x as
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x→ ∞, thus the conditional convergence also holds with random normalization:

lim
x→∞

P

(

Y − ρX

a(X)
≤ y | X > x

)

= Hκ/δ,(1+τ)/δ(y) .

This is a particular case of Heffernan and Resnick [2007, Proposition 5].

(iv) Note that Theorem 3 states that X is in the domain of attraction of the Gumbel
law, with the same auxiliary function ψ as R. However, little can be said about the
tails of Y other than P(Y > y) ≤ P(R > y/v∗), where v∗ = maxt∈[0,1] v(t). This
is because nothing is assumed about of the behaviour of v and g around the point
where v has a maximum. This would be needed to obtain an asymptotic form for
the tail of Y similar to (12). It is in contrast with the situation of Theorems 1 and 2.
Nevertheless, it can first be proved that

bY (t) ∼ v∗b(t) (14)

where b and bY are the inverse functions of 1/P(R > ·) and 1/P(Y > ·), respectively
(see a proof in Section 5). This implies that if Y does belong to the domain of
attraction of an extreme value distribution, then this distribution is necessarily the
Gumbel law (since Y has a lighter tail than v∗R and unbounded support) and (X,Y )
belongs to the domain of attraction of a bivariate extreme value distribution with
independent marginals, i.e. X and Y are asymptotically independent. This is shown
in Corollary 5 below.

3.1 Relations with CEV and EV models

As mentioned in the introduction, Das and Resnick [2008] referred as CEV models the
families of distributions satisfying Condition (1). An important finding of Heffernan and
Resnick [2007] is that in such a model, it is not possible to transformX and Y to prescribed
marginals F1(X) and F2(Y ), for given univariate cdf F1, F2, when the limiting distribution
K is the product of its marginals. Theorem 3 provides random vectors (X,Y ) for which
the limiting distribution in (1) is precisely a product, so that nonlinear transformations of
the marginals to prescribed marginals are impossible. This is in contrast with the usual
practice of standard multivariate extreme value theory.

As noted by Das and Resnick [2009, Section 1.2], another advantage of the CEV ap-
proach is that it does not require the assumption that all components of the vector belong
to the domain of attraction of a univariate extreme value distribution. The relationship
between CEV models and EV models has been investigated in Das and Resnick [2008].
They proved in particular that if (X,Y ) belongs to the domain of attraction of a bivari-
ate extreme value distribution with asymptotic dependence, then the CEV model does
not provide any more information than the EV model. See also Das and Resnick [2009,
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Section 1.2]. Conversely, Das and Resnick [2009, Proposition 4.1] gives conditions under
which, if (X,Y ) satisfies (1) and Y belongs to the domain of attraction of a univariate
extreme value distribution, then (X,Y ) belongs to the domain of attraction of a bivariate
extreme value.

The next result elucidates the relationship between the conditional limit of Theorem 3
and extreme value theory. It is similar to Das and Resnick [2008, Proposition 4.1]
but covers cases ruled out by this reference, as shown afterwards in Corollary 5. In
the following, the extreme value distribution with index γ is denoted by Gγ , that is
to say Gγ(y) = exp{−(1 + γy)−1/γ} for each y such that 1 + γy > 0 for γ 6= 0, and
G0(y) = exp{−e−x}.
Proposition 4. Assume that the vector (X,Y ) satisfies (1) and that Y belongs to the
domain of attraction of an extreme value distribution Gγ with auxiliary function ψY , i.e.

lim
t→∞

P(Y > t+ ψY (t)y | Y > t) = − logGγ(y) .

Assume moreover that for all y ∈ R,

lim
t→∞

bY (t) −m ◦ bX(t) + ψY ◦ bY (t)y

a ◦ bX(t)
= +∞ (15)

where bX and bY are the inverse functions of 1/P(X > ·), of 1/P(Y > ·), respectively.
Then, (X,Y ) belongs to the domain of attraction of a bivariate extreme value distribution
with independent marginals, i.e. X and Y are asymptotically independent.

Proof. To prove asymptotic independence, we must show that

lim
t→∞

tP(X > bX(t) + ψ ◦ bX(t)x , Y > bY (t) + ψY ◦ bY (t)y) = 0 , (16)

where ψ is as in (1). For any y ∈ R, define ỹ by bY (t)+ψY ◦bY (t)y = m◦bX(t)+a◦bX(t)ỹ,
i.e.

ỹ =
bY (t) −m ◦ bX(t) + ψY ◦ bY (t)y

a ◦ bX(t)
.

Thus, by (15), for any z ∈ R, we have,

lim sup
t→∞

tP(X > bX(t) + ψ ◦ bX(t)x , Y > bY (t) + ψY ◦ bY (t)y)

= lim sup
t→∞

tP(X > bX(t) + ψ ◦ bX(t)x , Y > m ◦ bX(t) + a ◦ bX(t)ỹ)

≤ lim sup
t→∞

tP(X > bX(t) + ψ ◦ bX(t)x , Y > m ◦ bX(t) + a ◦ bX(t)z)

= P(X∗ > x , Y ∗ > z) ,

where (X∗, Y ∗) is a random vector with distribution K. This can be made arbitrarily
small by choosing z large enough, so (16) holds.
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A simple example is provided by the elliptical distributions with identical margins, for
which one has: bX = bY , ψY (x) = o(x), ψY (x) = o(a(x)) and m(x) = ρx, so that (15)
holds. A more general result is provided by the following corollary.

Corollary 5. Under the assumptions of Theorem 3, if moreover Y belongs to a domain of
attraction, then it is the Gumbel law, and (15) holds, so that X and Y are asymptotically
independent.

Proof. Under the assumptions of Theorem 3, the normalizing functions in (1) satisfy
m(t) = ρt, ψ(t) = o(a(t)) and a(t) = o(t). Since R has unbounded support, then so
has Y and since Y has lighter tails than v∗R, the max-domain of attraction of Y can
only be the Gumbel law. Thus it also holds that ψY (t) = o(t). By (14) we know that
bY (t) ∼ v∗b(t) and (12) implies that bX(t) ∼ b(t). Thus we have

bY (t) −m ◦ bX(t) + ψY ◦ bY (t)y

a ◦ bX(t)
∼ (v∗ − ρ)b(t)

a ◦ bX(t)
.

The assumptions on v imply that v∗ > ρ, so

lim
t→∞

(v∗ − ρ)b(t)

a ◦ bX(t)
= ∞ .

Thus (15) holds for all y ∈ R.

Remark Das and Resnick [2008, Proposition 4.1] show the same result under a condition
which can be expressed with the present notation as limt→∞ ψY ◦ bY (t)/a ◦ bX(t) ∈ (0,∞].
Under the conditions of Theorem 3, if moreover v and g satisfy some smoothness as-
sumptions around the maximum of v similar to Assumptions 2A and 3, it can be shown
that ψY ∼ ψ and thus limt→∞ ψY ◦ bY (t)/a ◦ bX(t) = 0, so that Das and Resnick [2008,
Proposition 4.1] cannot be applied here.

3.2 Some applications of Theorem 3

We now give some examples of applications of Theorem 3.

Example 3. If the density g of the variable T has a positive limit at t0, then τ = 0. If u
is twice differentiable with u′(t0) = 0 and u′′(t0) 6= 0, then κ = 2 and if v′(0) > 0, then
δ = 1. If these three conditions hold, the limiting distribution is the standard Gaussian
and the normalization is σ

√

xψ(x). Figure 2 also illustrates this case. As will be shown
in Section 3.3, this is actually a particular case of Theorem 2.

Example 4. Hashorva et al. [2007] have introduced a generalisation of the elliptical distri-
butions, which they called Lp-Dirichlet distributions for all p > 0. We consider here the

13



case p > 1. Instead of being ellipses, the level lines of the density of these distributions
have the following equation:

|x|p +
|y − ρx|p
1 − |ρ|p = 1 , (17)

with ρ ∈ (−1, 1). See Figure 4. To simplify the discussion, we consider the case ρ = 0.
An admissible parametrization is given by u(t) = (1 − tp)1/p and v(t) = t, which yields
δ = 1 and κ = p. Thus, Assumption 1 does not hold except if p = 2, which is the elliptical
context. If the density of T has a positive limit at zero, then τ = 0 and the cdf of the
limiting distribution is then

Hp,1(y) =

∫ y
−∞ e−|s|

p/p ds

2p1/p−1 Γ(1/p)
.
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Figure 4: The curve given by Equation (17) with p = 3/2, ρ = 0 (left) and ρ = .7 (right).

As a last remark in this section, note that the result (12) on the upper tail of X is
actually a particular case of a more general result on the tail of the product of a random
variable X in the domain of attraction of the Gumbel law and a bounded random variable
U . Similar results exist for heavy-tailed or subexponential distributions, for instance the
celebrated Breiman’s Lemma (see Breiman [1965] and Cline and Samorodnitsky [1994]).
In the present context, Hashorva [2008, Theorem 3] states a version of this result with
U = cos Θ and Θ has a density on (−π, π). We state it under slightly more general
assumptions which highlight the fact that only the behaviour of U near its maximum
must be specified.

Proposition 6. Let R be a nonnegative random variable whose cdf H is in the domain
of attraction of the Gumbel law. Let U be a nonnegative random variable, independent of
R, such that U ≤ b < ∞ a.s. and that admits a density g in a neighborhood of b which is
regularly varying at b with index τ > −1. Then RU satisfies (2) with auxiliary function
ψ(x/b) and

P(RU > x) ∼ b2Γ(τ + 1)
ψ(x/b)

x
g({1/b + ψ(x/b)/x}−1)H̄(x/b) . (18)

14



Proof. The proof is along the lines of the proof of (12), and makes use of Lemma 8.

3.3 Relation between Theorems 2 and 3

Let X,Y be random variables whose joint density f can be expressed as

f(x, y) = g ◦ n(x, y) , (19)

where g is a nonnegative function on R+ such that
∫∞
0 rg(r) dr < ∞, n is a positively

homogeneous function with index 1 and the level line n(x, y) = 1 admits the parametriza-
tion t→ (u(t), v(t)), t ∈ [0, 1]. The change of variable x = ru(t), y = rv(t) yields, for any
bounded measurable function ϕ:

E[ϕ(X,Y )] =

∫ ∞

0

∫ 1

0
ϕ(ru(t), rv(t)) rg(r) |u(t)v′(t) − u′(t)v(t)|dr dt .

Hence (X,Y ) = R(u(T ), v(T )), where R has density c(g)−1rg(r), with c(g) =
∫∞
0 rg(r) dr

and T has density c(u, v)−1|uv′ − u′v| with c(u, v) =
∫ 1
0 |u′(t)v(t) − u(t)v′(t)|dt.

Conversely, if (X,Y ) = R(u(T ), v(T )) where R and T are independent, R has a density
h on [0,∞), and if there exists a point t0 such that u′(t0) = 0, u′′(t0) > 0 and v′(t0) > 0,
then the function v/u is invertible on an interval around t0. Let φ be its inverse, and
define n(x, y) = x/{u ◦ φ(y/x)}. Without loss of generality, we can assume that u(t0) = 1
and denote v(t0) = ρ. Then n is a positively homogeneous function with index 1, and if
T admits a density g, then (X,Y ) has a density f in a cone C = {(x, y) | (ρ− ǫ)x ≤ y ≤
(ρ+ ǫ)x} around the line y = ρx, defined by

f(x, y) =
h(n(x, y))

n(x, y)
L(x, y) ,

with

L(x, y) =
g ◦ φ(y/x)

|u′v − uv′| ◦ φ(y/x)
.

If the density g and the Jacobian |u′v − uv′| are both positive and continuous at t0, then
the function L belongs to the class L. See Lemma 9 for a proof. Thus Assumption 1
locally holds, and Theorem 2 implies Theorem 3 in this context.

3.4 Second order correction

As illustrated in Abdous et al. [2008], it is useful for statistical purposes to have a second
order correction to the asymptotic approximation (13) provided by Theorem 3. In order
to obtain such a refinement, rates of convergence in all the approximations used to prove
Theorem 3 are needed. To simplify the discussion, we will consider the following additional
assumptions.
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• The random variable T is uniformly distributed over [0, 1].

• There exist λ > 0 and σ > 0 such that

u(t0 + t) = 1 − σ2t2

2
+ o(t3) , v(t0 + t) = ρ+ λt+O(t2) .

• There exist functions χ and B such that

∣

∣

∣

∣

H̄(x+ tψ(x))

H̄(x)
− e−t

∣

∣

∣

∣

≤ χ(x)B(t) , (20)

for all t ≥ 0 and x large enough, where limx→∞ χ(x) = 0, and B is bounded on the
compact subsets of [0,∞) and integrable over [0,∞).

The bound (20) is a nonuniform rate of convergence. See Abdous et al. [2008, section 2.2]
for examples. Under these assumptions, it is possible to obtain a rate of convergence and
a second order correction in Theorem 3. Proceeding as in the proof of Abdous et al. [2008,
Theorem 3] yields

P(Y ≤ ρx+
λ

σ

√

xψ(x)z | X > x)

= Φ(z) − ρ

λ

√

ψ(x)

x
φ(z) +O(χ(x)) + o

(

√

ψ(x)/x
)

.

Replacing z by z + ρλ−1
√

ψ(x)/x yields

P

(

Y ≤ ρx+
λ

σ

√

xψ(x)z +
ρ

σ
ψ(x) | X > x

)

= Φ(z) +O(χ(x)) + o
(

√

ψ(x)/x
)

.

This second order correction is meaningful only if χ(x) = o(
√

ψ(x)). The improvement
is only moderate here: the bound is o(

√

ψ(x)/x) instead of O(
√

ψ(x)/x), because we
assumed only that u(t0 + t) = 1 − σ2t2/2 + o(t3). If the expansion of u around t0 is
u(t0 + t) = 1 − σ2t2/2 + O(t4), then the bound becomes O(ψ(x)/x). This is the case for
bivariate elliptical distributions.
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4 Proof of Theorem 3

Let ǫ be defined as in Assumption 2. Since u has its maximum at t0, there exists η > 0
such that for all t /∈ [t0 − ǫ, t0 + ǫ], it holds that u(t) ≤ 1 − η. Then,

P(X > x ; Y > y) =

∫ 1

0
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

=

∫

|t−t0|≤ǫ
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

+

∫

|t−t0|>ǫ
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt .

Let r(x) denote the last term. The bound (22) in Lemma 7 yields that for any p > 0,

r(x) ≤ H̄(x/(1 − η)) = O
(

{ψ(x)/x}pH̄(x)
)

.

This will prove that r(x) is negligible with respect to the first integral for which we now
give an asymptotic equivalent. By assumption, we can choose ǫ such that the function
v/u is continuous and increasing on [t0 − ǫ, t0 + ǫ], because δ < κ, so that v/u ∼ v in a
neighborhood of t0.

If y can be expressed as y = ρx+ o(x), then for large x, it holds that y/x ∈ [(v/u)(t0 −
ǫ), (v/u)(t0 + ǫ)]. If y/x > ρ = (v/u)(t0), then there exists t1 ∈ [t0, t0 + ǫ] such that
(v/u)(t1) = y/x. Thus,

∫ t0+ǫ

t0−ǫ
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

=

∫ t1

t0−ǫ
H̄

(

y

v(t)

)

g(t) dt+

∫ t0+ǫ

t1

H̄

(

x

u(t)

)

g(t) dt .

Let I and J denote the last two integrals, respectively. The successive changes of variables
s = 1/u(t) and s = 1 + ωψ(x)/x yield

J =

∫ 1/u(t0+ǫ)

1/u(t1)
H̄(xs)

−(u←)′(1/s)

s2
g(u←(1/s)) ds

=
ψ(x)

x

∫ x{1/u(t0+ǫ)−1}/ψ(x)

x{1/u(t1)−1}/ψ(x)
H̄(x+ ψ(x)ω)

× −(u←)′(1/{1 + ωψ(x)/x})
{1 + ωψ(x)/x}2

g(u←(1/{1 + ωψ(x)/x})) dω .

Let k1 denote the function defined by

k1(ω) = −ω(u←)′(1/{1 + ω})g(u←(1/{1 + ω})) .
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Assumptions 2 and 3 imply that k1 is regularly varying at zero with index (1 + τ)/κ and
Lemma 8 yields

J ∼ k1{ψ(x)/x}H̄(x)

∫ ∞

z0

e−tt(1+τ)/κ−1 dt ,

where z0 = x{1/u(t1)− 1}/ψ(x) and if y is chosen in such a way that z0 has a finite limit
when x → ∞. Set y/x = ρ + ξ. Then, by definition of t1, z0 = x{1/u ◦ (v/u)←(ρ +
ξ) − 1}/ψ(x). Assumption 2 implies that the function ξ 7→ u ◦ (v/u)←(ρ+ ξ) is regularly
varying at zero with index κ/δ. Define an increasing function h which is regularly varying
at zero with index δ/κ by

h(x) = (v/u) ◦ u←(1/{1 + x}) − ρ = (1 + x)v ◦ u←(1/{1 + x}) − ρ .

For z ≥ 0, set y/x = ρ+ h(ψ(x)/x)z. Then

z0 =
x

ψ(x)
h←(h(ψ(x)/x)z) ∼ zκ/δ ,

J ∼ k1{ψ(x)/x}H̄(x)

∫ ∞

zκ/δ

e−tt(1+τ)/κ−1 dt .

We next deal with the integral I, still in the case y/x > ρ. Noting that {y/v(t1) −
x}/ψ(x) = z0, the changes of variables s = 1/v(t) and s = {x+ ψ(x)ω)}/y yield

I =

∫ 1/v(t0−ǫ)

1/v(t1)
H̄(ys)

(v←)′(1/s)

s2
g(v←(1/s)) ds

=
yψ(x)

x2

∫ {y/v(t0−ǫ)−x}/ψ(x)

z0

H̄(x+ ψ(x)ω)

× (v←)′((y/x)/{1 + ωψ(x)/x})
{1 + ωψ(x)/x}2

g(v←((y/x)/{1 + ωψ(x)/x}))dω .

The choice y/x = ρ+ h(ψ(x)/x)z also yields

y/x

1 + ωψ(x)/x
=
ρ+ h(ψ(x)/x)z

1 + ωψ(x)/x
∼ ρ+ h(ψ(x)/x)z .

Let the function k2 be defined by

k2(ξ) = ξ(v←)′(ρ+ h(ξ))g ◦ v←(ρ+ h(ξ)) .

Assumptions 2 and 3 imply that k2 is regularly varying at zero with index (1+ τ)/κ+ 1−
δ/κ > (1 + τ)/κ. Lemma 8 yields

I ∼ ρz(1+τ)/δ−1k2(ψ(x)/x)H̄(x)

∫ ∞

zκ/δ

e−t dt = o(J) .

The case y/x < ρ can be dealt with similarly and is omitted. The remaining of the proof
of assertions (i) and (ii) is straightforward.
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5 Lemmas

The following Lemma is a straightforward consequence of the representation theorem for
the class Γ [Bingham et al., 1989, Theorem 3.10.8]. The argument was used in the proof
of Abdous et al. [2005, Theorem 1]. We briefly recall the main lines of the proof for the
sake of completeness.

Lemma 7. Let H be a cdf in the domain of attraction of the Gumbel law infinite right
endpoint. For any p > 0, there exists a constant C such that for all x large enough, and
all t ≥ 0,

H̄(x+ ψ(x)t)

H̄(x)
≤ C(1 + t)−p . (21)

H̄(αx)

H̄(x)
≤ C(ψ(x)/x)p . (22)

Proof. If γ = 0, the function H̄ can be expressed as

H̄(x) = c(x) exp

{

−
∫ x

x0

ds

ψ(x)

}

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ ψ
′(x) = 0. Thus, for any ǫ > 0 and x large

enough, there exists a constant C such that

c(x+ ψ(x)t)

c(x)
≤ C ,

ψ(x+ ψ(x)t)

ψ(x)
≤ 1 + ǫt .

Hence

H̄(x+ ψ(x)t)

H̄(x)
≤ C exp

{

−
∫ t

0

ds

1 + ǫs

}

= C(1 + ǫt)−1/ǫ .

This proves (21). The bound (22) follows trivially from (21) by choosing ǫ < 1/p and by
setting t = (α− 1)x/ψ(x).

Lemma 8. Let H be a cdf in the domain of attraction of the Gumbel law with infinite right
endpoint. Let g be a function regularly varying at zero with index τ > −1 and bounded on
compact subsets of (0,∞]. Then

lim
x→∞

∫ ∞

z

H̄(x+ ψ(x)t)

H̄(x)

g(tψ(x)/x)

g(ψ(x)/x)
dt =

∫ ∞

z
tτ e−t dt ,

locally uniformly with respect to z ≥ 0.
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Proof. Denote χ(x) = ψ(x)/x; then limx→∞ χ(x) = 0. By assumption, H̄(x+ψ(x)t)/H̄(x)
converges to e−t and g(χ(x)t)/g(χ(x)) converges to tτ , and both convergences are uniform
on compact sets of (0,∞). It is thus sufficient to prove that

lim
A→∞

lim sup
x→∞

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt = 0 , (23)

lim
η→0

lim sup
x→∞

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt = 0 . (24)

Let ǫ > 0 be such that 1/ǫ− 1 > τ . By Lemma 7, for large enough x,

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)
g(χ(x)t) dt ≤ C

∫ ∞

A
t−1/ǫg(χ(x)t) dt

= Cχ(x)1/ǫ−1

∫ ∞

Aχ(x)
t−1/ǫg(t) dt .

Since g is locally bounded on (0,∞] and −1/ǫ + τ < −1, Karamata’s Theorem (cf. for
instance Bingham et al. [1989, Proposition 1.5.10]) implies that there exists a constant C ′

such that
∫ ∞

Aχ(x)
t−1/ǫg(t) dt ≤ C ′(χ(x)A)1−1/ǫg(χ(x)A) ,

lim sup
x→∞

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt ≤ CC ′A1−1/ǫ lim sup

x→∞

g(χ(x)A)

g(χ(x))

= CC ′A1−1/ǫ+τ → 0

as A tends to infinity, because 1−1/ǫ+τ < 0. This proves (23). Since H̄(x+ψ(x)t)/H̄(x) ≤
1 and by Karamata’s Theorem, we get, for some constant C,

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)
g(χ(x)t) dt ≤

∫ η

0
g(χ(x)t) dt

= χ(x)−1

∫ χ(x)η

0
g(t) dt ≤ Cηg(χ(x)η) .

Hence

lim
η→0

lim sup
x→∞

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt ≤ lim

η→0
Cη1+τ = 0 ,

because 1 + τ > 0, which proves (24).

Lemma 9. Let ℓ be a continuous function defined on [0,∞), bounded above and away
from zero and with a finite limit at infinity. Define L on R+ × R+ by L(x, y) = ℓ(y/x).
Then L belongs to the class L.
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Proof. Since ℓ is bounded, it suffices to prove that if the limit lim(ξ,ζ)→∞ ℓ((x + ξ)/(y +
ζ))/ℓ(ξ/ζ) exists, then it is equal to 1. Since moreover ℓ is continuous and bounded away
from zero, it is enough to consider subsequences and to show that if ‖(ξn, ζn)‖ → ∞ and
if limn→∞ ξn and limn→∞ ζn both exist, then limn→∞(x + ξn)/(y + ζn) = limn→∞ ξn/ζn.
Three cases arise.

(i) If limn→∞ ξn = limn→∞ ζn = ∞, then

x+ ξn
y + ζn

=
ξn
ζn

1 + x/ξn
1 + y/ζn

∼ ξn/ζn .

(ii) If limn→∞ ξn <∞ and limn→∞ ζn = ∞, then

lim
n→∞

(x+ ξn)/(y + ζn) = 0 = lim
n→∞

ξn/ζn .

(iii) If limn→∞ ξn = ∞ and limn→∞ ζn <∞, then

lim
n→∞

(x+ ξn)/(y + ζn) = ∞ = lim
n→∞

ξn/ζn .

Proof of (14). By assumption, P(Y > y) ≤ H̄(y/v∗), thus bY (t) ≤ v∗b(t). Denote V =
v(T ). Two cases only are possible: (i) v∗ is an isolated point of the support of the
distribution of V and P(V = v∗) > 0; (ii) P(V = v∗) = 0 and for any ǫ > 0, there exists
v ∈ (v∗ − ǫ, v∗) such that P(V > v) > 0.

(i) If P(V = v∗) > 0 and v∗ is an isolated point, then there exists v∗∗ < v∗ such that

P(Y > y) = H̄(y/v∗)P(V = v∗) + P(RV > y , V ≤ v∗∗) .

Note that P(RV > y , V ≤ v∗∗) ≤ H̄(y/v∗∗), and since H̄ is Γ-varying, H̄(y/v∗∗) =
o(H̄(y/v∗)), thus P(Y > y) ∼ ǫH̄(y/v∗) with ǫ = P(V = v∗). Since b is slowly
varying, this implies that bY (t) ∼ v∗b(ǫt) and finally that bY (t) ∼ v∗b(t) as t→ ∞.

(ii) In the second case, fix some v < v∗ and denote ǫ = P(V > v) > 0 by assumption.
Then

P(Y > y) = P(RV > y , V > v) + P(RV > y , V ≤ v) ≥ ǫP(R > y/v).

Thus, bY (t) ≥ vb(ǫt) and since b is slowly varying,

lim inf
t→∞

bY (t)

b(t)
≥ v .

Since v can be chosen arbitrarily close to v∗ and since we already know that bY (t) ≤
v∗b(t), we conclude that limt→∞ bY (t)/b(t) = v∗.
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