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This article provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational "dynamical exponent", z. The Schrödinger-Virasoro algebra of Henkel et al. corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schrödinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) and Lukierski, Stichel and Zakrzewski [alias "alt" of Henkel], with z = 1. Physical systems realizing these symmetries include, e.g., classical systems of massive, and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

Introduction

Non-relativistic conformal symmetries, which are attracting much present interest [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF][START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF][START_REF] Balasubramanian | Gravity duals for non-relativistic CFTs[END_REF][START_REF] Stichel | Nonrelativistic Dark-Energy Fluid in a Baby Universe[END_REF][START_REF] Galajinsky | Remark on quantum mechanics with conformal Galilean symmetry[END_REF][START_REF] Fouxon | CFT Hydrodynamics: symmetries, exact solutions and gravity[END_REF][START_REF] Bagchi | Galilean Conformal Algebras and AdS/CFT[END_REF][START_REF] Alishahiha | On AdS/CFT of Galilean Conformal Field Theories[END_REF][START_REF] Martelli | Comments on Galilean conformal field theories and their geometric realization[END_REF][START_REF] Horváthy | Non-relativistic conformal symmetries in fluid mechanics[END_REF], are of two types.

Firstly, it has been recognized almost forty years ago [START_REF] Jackiw | Introducing scaling symmetry[END_REF][START_REF] Burdet | About the Non-Relativistic Structure of the Conformal Algebra[END_REF] that the free Schrödinger equation of a massive particle has, beyond the obvious Galilean symmetry, two more "conformal" symmetries. They are generated by the "Schrödinger" spacetime vector fields, called dilation

D = 2t ∂ ∂t + x A ∂ ∂x A (1.1)
and expansion (or inversion)

K = t 2 ∂ ∂t + tx A ∂ ∂x A (1.2)
where the dummy index A runs from 1 to d, the dimension of space. Schrödinger dilations and expansions span, with time translations, H = ∂/∂t, a Lie algebra isomorphic to so [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF]. Adding dilations and expansions to the Galilei group yields a two-parameter extension of the latter, dubbed as the (centerless) Schrödinger group, Sch(d). 1Using the word "conformal" has been contested [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF], hinting at its insufficiently clear relation to some conformal structure. This criticism is only half-justified, however. The Schrödinger symmetry has in fact been related to the Newton-Cartan structure of non-relativistic spacetime [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Burdet | Cartan Structures on Galilean Manifolds: the Chronoprojective Geometry[END_REF][START_REF] Duval | Nonrelativistic Conformal Symmetries and Bargmann Structures[END_REF][START_REF] Carter | Canonically covariant formulation of Landau's Newtonian superfluid dynamics[END_REF], but this relation has remained rather confidential.

A different point of view was put forward in Ref. [START_REF] Duval | Bargmann Structures And Newton-Cartan Theory[END_REF], where it has been shown that non-relativistic theories can be studied in a "Kaluza-Klein type" framework, whereas the "non-relativistic conformal" transformations appear as those, genuine, conformal transformations of a relativistic spacetime in one higher dimension, which commute with translations in the "vertical" direction. The latter provides us, furthermore, with the central extension required by the mass [START_REF] Burdet | About the Non-Relativistic Structure of the Conformal Algebra[END_REF][START_REF] Duval | Celestial Mechanics, Conformal Structures and Gravitational Waves[END_REF][START_REF] Gomis | Poincaré Transformations and Galilei Transformations[END_REF].

Secondly, after the pioneering work of Henkel [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF], in [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF][START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF][START_REF] Negro | Nonrelativistic conformal groups[END_REF][START_REF] Bagchi | Galilean Conformal Algebras and AdS/CFT[END_REF][START_REF] Alishahiha | On AdS/CFT of Galilean Conformal Field Theories[END_REF][START_REF] Martelli | Comments on Galilean conformal field theories and their geometric realization[END_REF][START_REF] Gomis | Enlarged NH symmetries: particle dynamics and gauge symmetries[END_REF], attention has been directed to another, less-known and more subtle aspect. It has been shown, in fact, that a specific group contraction, applied to the relativistic conformal group O(d + 1, 2), provides, for vanishing mass, m = 0, a second type of conformal extension of the Galilei group. Since group contraction does not change the number of generators, the new extension, called the Conformal Galilean Group [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF] has the same dimension as its relativistic counterpart. Its Lie algebra, the Conformal Galilei Algebra is spelled as the CGA in the above-mentioned reference. The CGA is spanned by the vector fields2 

X = 1 2 κt 2 + λt + ε ∂ ∂t + ω A B x B + λx A + κtx A - 1 2 α A t 2 + β A t + γ A ∂ ∂x A (1.3)
with ω ∈ so(d), α, β, γ ∈ R d , and λ, κ, ε ∈ R.

The new dilations and expansions, associated with λ and κ close, with time translations parametrized by ε, into an so(2, 1) Lie subalgebra [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF][START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF][START_REF] Bagchi | Galilean Conformal Algebras and AdS/CFT[END_REF], acting differently from that of the Schrödinger case: unlike the "Schrödinger" one, (1.1), the CGA dilation in (1.3) dilates space and time at the same rate. Note also the factor 1 2 in the time component of the new expansions. The vector α generates, in turn, "accelerations" [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF]. See also [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] for another approach, and [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF] where the CGA was called alt(d).

The Lie algebra (1.3) can be further generalized [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF][START_REF] Bagchi | Galilean Conformal Algebras and AdS/CFT[END_REF], in terms of infinitesimal "time redefinition" and time-dependent translations,

X = ξ(t) ∂ ∂t + ξ ′ (t)x A + η A (t) ∂ ∂x A (1.4) 
where ξ(t), and η(t) are arbitrary functions of time, t. The new expansions and accelerations are plainly recovered choosing ξ(t) = 1 2 κ t 2 and η(t) = -1 2 α t 2 , respectively. Promoting the infinitesimal rotations, X = ω A B (t)x B ∂ A , to be also timedependent yields an infinite-dimensional conformal extension of the CGA.

The purpose of the present paper, a sequel and natural extension of earlier work devoted to Galilean isometries [START_REF] Duval | Galilean isometries[END_REF], is to trace-back all these "conformal" symmetries to the structure of non-relativistic spacetime.

Our clue is to define non-relativistic conformal transformations in the framework of Newton-Cartan spacetime [START_REF] Cartan | Sur les variétés à connexion affine et la théorie de la relativité généralisée[END_REF][START_REF] Trautman | Sur la théorie newtonienne de la gravitation[END_REF][START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF][START_REF] Duval | Dynamics of continua and particles from general covariance of Newtonian gravitation theory[END_REF], ideally suited to deal with those symmetries in a purely geometric way. In contradistinction to the (pseudo-)Riemannian framework, the degeneracy of the Galilei "metric" allows, as we shall see, for infinite-dimensional Lie algebras of conformal Galilei infinitesimal transformations, with a wealth of finite-dimensional Lie subalgebras, including the Schrödinger Lie algebra and the above-mentioned CGA.

Both the Schrödinger and Conformal Galilean transformations turn out to be special cases, related to our choice of the relative strength of space and time dilations, characterized by a dynamical exponent [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF].

Our paper is organized as follows. After reviewing, in Section 2, the Newton-Cartan structures of (d + 1)-dimensional non-relativistic spacetime, we introduce, in Section 3, the notion of conformal Galilei transformation. The latter is only concerned with the (singular) "metric", γ, and the "clock", represented by a closed one-form θ. Infinitesimal conformal Galilei transformations form an infinite-dimensional Virasoro-like Lie algebra, denoted by cgal(d) in the case of ordinary Galilei spacetime. A geometric definition of the dynamical exponent, z, allows us to define the conformal Galilei Lie algebras, cgal z (M, γ, θ) of an arbitrary Galilei structure, with prescribed z. Now, Newton-Cartan structures also involve a connection, Γ, which is not entirely determined by the previous structures. Preserving the geodesic equations adds, in the generic case, extra conditions, which are explicitly derived in Section 4.

Those help us to reduce the infinite-dimensional conformal Galilei Lie algebra to that of the Schrödinger Lie algebra, sch(d), for timelike geodesics of the flat NC-structure (with dynamical exponent z = 2). This is reviewed in Section 4.1.

For lightlike geodesics, we get, in turn, a novel, infinite-dimensional, conformal extension, cnc(d), of the (centerless) Galilei Lie algebra, which is worked out in Section 4.3. This conformal Newton-Cartan Lie algebra admits, indeed, infinitedimensional Lie subalgebras defined by an arbitrary (rational) dynamical exponent, z. Also, the maximal Lie algebra of conformal automorphisms of a Milne structure, i.e., a NC-structure with a preferred geodesic and irrotational observer field, shows up as a finite-dimensional Lie algebra, denoted by cmil(d) in the case of flat spacetime. The CGA (1.3) finally appears as a Lie subalgebra of cmil(d) defined by the dynamical exponent z = 1. The Lie algebras alt 2/N (d) first defined in [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] appear plainly as the Lie algebras of polynomial vector fields of degree N = 1, 2, 3, . . . in cgal z (d) with z = 2/N. A geometric definition for the latter Lie algebras is still missing, though.

The general theory is illustrated, in Section 5, on various examples. Schrödinger symmetry is shown to be present for a Galilean massive particle and in hydrodynamics. The massless non-relativistic particle of Souriau exhibits, as a symmetry, an infinite-dimensional conformal extension of the centerless Galilei Lie algebra. At last, the Le Bellac-Lévy-Leblond theory of (magnetic-like) Galilean electromagnetism carries, apart of the Schrödinger symmetry, also the CGA.

2 Newton-Cartan structures

Galilei structures and Newton-Cartan connections

Let us recall that a Newton-Cartan (NC) spacetime structure, (M, γ, θ, Γ), consists of a smooth, connected, (d + 1)-dimensional manifold M, a twice-contravariant symmetric tensor field γ = γ ab ∂ a ⊗∂ b (where a, b = 0, 1, . . . , d) of signature (0, +, . . . , +) whose kernel is spanned by the one-form θ = θ a dx a . Also Γ is a Galilei connection, i.e., a symmetric linear connection compatible with γ and θ [START_REF] Cartan | Sur les variétés à connexion affine et la théorie de la relativité généralisée[END_REF][START_REF] Trautman | Sur la théorie newtonienne de la gravitation[END_REF][START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF][START_REF] Duval | Dynamics of continua and particles from general covariance of Newtonian gravitation theory[END_REF][START_REF] Künzle | Covariant Newtonian limit of Lorentz space-times[END_REF][START_REF] Lin | Non-relativistic Holography and Singular Black Hole[END_REF]. Now, in contradistinction to the relativistic framework, such a connection is not uniquely determined by the Galilei spacetime structure (M, γ, θ). Therefore, in order to reduce the ambiguity, one usually introduces NC-connection as Galilei connections subject to the nontrivial symmetry of the curvature:

R b d a c = R d b c a (where R b d a c ≡ γ bk R d akc )
; the latter may be thought of as part of the covariant Newtonian gravitational field equations [START_REF] Trautman | Sur la théorie newtonienne de la gravitation[END_REF][START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF][START_REF] Duval | Sur les connexions newtoniennes et l'extension non triviale du groupe de Galilée[END_REF][START_REF] Duval | Dynamics of continua and particles from general covariance of Newtonian gravitation theory[END_REF].

Under mild geometric conditions, the quotient T = M/ ker(θ) is a well-behaved one-dimensional manifold, interpreted as the time axis endowed with the closed oneform θ, interpreted as the Galilei clock. The tensor field γ then defines a Riemannian metric on each of the (spacelike) fibers of the projection M → T .

The standard example of a NC-structure is given by M ⊂ R × R d together with γ = δ AB ∂ A ⊗ ∂ B (where A, B = 1, . . . , d), and θ = dx 0 ; the nonzero components of the connection, Γ A 00 = ∂ A V , host the Newtonian scalar potential, V . The above coordinate system (x 0 , . . . , x d ) will be called Galilean.

The flat NC-structure corresponds to the subcase where M = R × R d , and

γ ab = δ a A δ b B δ AB , θ a = δ 0 a , Γ c ab = 0 (2.1)
for all a, b, c = 0, . . . , d. Such a coordinate system will be called (NC-)inertial. Since we will be dealing with "conformal" Galilean spacetime transformations that preserve the directions of the Galilei structure, we must bear in mind that the transformation law of the NC-connection, Γ, will have to be specified independently of that of the Galilei "metric" (γ, θ), which is clearly due to the fact that there are extra degrees of freedom associated with NC-connections. Let us, hence, describe the precise geometric content of NC-connections.

It has been shown [START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF] that NC-connections can be decomposed according to3 

Γ c ab = U Γ c ab + θ (a F b)k γ kc (2.2)
where [START_REF] Trümper | Lagrangian Mechanics and the Geometry of Configuration Spacetime[END_REF] U

Γ c ab = γ ck ∂ (a U γ b)k - 1 2 ∂ k U γ ab + ∂ (a θ b) U c (2.3)
is the unique NC-connection for which the unit spacetime vector field U (i.e., such that θ a U a = 1) is geodesic and curlfree, F being an otherwise arbitrary closed twoform. Here U γ is the symmetric, twice-covariant, tensor field uniquely determined by U γ ak γ kb = δ b a -U b θ a and U γ ak U k = 0. From a mechanical standpoint, the above two-form, F , of M encodes Coriolis-like accelerations relatively to the observer U.

For example, if M ⊂ R × R 3 , the constant, future-pointing, vector field U = ∂ 0 will represent the four-velocity of an observer. Now, F being closed, one has, locally, F = dA for some one-form A, e.g., A = -V (t, x)dt + ω(t) BC x B dx C , where V (t, x) is the Newtonian (plus centrifugal) potential, and ω(t) ∈ so(3) the time-dependent angular velocity of the observer relatively to the Galilei frame associated with the coordinates t = x 0 , and x = (x 1 , x 2 , x 3 ). Anticipating the equations of free fall, we check that the equations of NC-geodesics (4.1) -with the choice of time, t, as an affine parameter -yield, with the help of (2.2), the familiar equations

ẗ = 0, ẍ = -∇V + ω × x + 2ω × ẋ (2.4)
governing the motion of a massive particle in a rotating Galilei coordinate system. 4 2.2 NC-gauge transformations, and NC-Milne structures

Gauge transformations

We have seen that, in view of (2.2), we can usefully parametrize NC-connections, Γ, by the previously introduced pairs (U, F ) which are, themselves, not entirely fixed by the NC-connection. (This arbitrariness in the expression of the NC-connection can be traced-back to the degeneracy of the Galilei structure ; this does not occur in the pseudo-Riemannian case where the Levi-Civita connection is uniquely determined by the metric.) Let us mention [START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF][START_REF] Duval | Dynamics of continua and particles from general covariance of Newtonian gravitation theory[END_REF] that for a given, fixed, Galilei structure (γ, θ), the pair (U ′ , F ′ ) defines the same NC-connection, Γ, as (U, F ) does iff both are gaugerelated by a so-called Milne boosts [START_REF] Carter | Canonically covariant formulation of Landau's Newtonian superfluid dynamics[END_REF][START_REF] Duval | Galilean isometries[END_REF]]

U ′ = U + γ(Ψ), F ′ = F + dΦ (2.5)
where Ψ = Ψ a dx a is an arbitrary one-form of M, which may be interpreted as a boost, 5 and Φ = Φ a dx a is such that

Φ a = Ψ a -Ψ b U b + 1 2 γ bc Ψ b Ψ c θ a .
(2.6) 4 The non-trivial components of the NC-connection (2.2) read, in this case, Γ A 00 = ∂ A V -ωA B x B , and Γ A B0 = -ω A B , for all A, B = 1, 2, 3. 5 Two observers U , and U ′ are related by a boost, i.e., an acceleration A = U ′ -U which is necessarily spacelike, θ(A) = 0, hence of the form A = γ(Ψ), as specified in (2.5).

The infinitesimal versions of the preceding gauge transformations read, accordingly,

δU = γ(ψ), δF = dφ (2.7)
where ψ is an arbitrary one-form of M (an infinitesimal boost), and

φ = U γ(δU). (2.8) 
One readily checks that, indeed, δΓ = 0.

NC-Milne structure

In fact, given a NC-connection, Γ, and an arbitrary observer, U, one uniquely determines the (closed) "Coriolis" two-form, F , via the fundamental relation [START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF][START_REF] Duval | Dynamics of continua and particles from general covariance of Newtonian gravitation theory[END_REF]]

F ab = -2 U γ c[a ∇ b] U c (2.9)
where ∇ stands for the covariant derivative associated with the NC-connection, Γ. This implies that the geodesic acceleration,

Ua = U b ∇ b U a , of the observer U reads Ua = -F a b U b (2.10) while its curl is of the form 2∇ [a U b] = F ab (2.11)
where coordinate indices have lifted using γ, e.g., F a b = γ ac F cb . An inertial and non-rotating observer, U, will therefore be characterized by F = 0. Whenever such an observer exists, it will be called an ether, in the spirit of [START_REF] Carter | Canonically covariant formulation of Landau's Newtonian superfluid dynamics[END_REF].

We call NC-Milne structure a NC-structure admitting an observer U such that

F ab = 0 (2.12)
for all a, b = 0, . . . , d. We will denote this special NC-structure by (M, γ, θ, U Γ); see (2.2).

3 Conformal Galilei transformations, Schrödinger-Virasoro Lie algebra 3.1 The Lie algebra, cgal, of conformal Galilei transformations

In close relationship to the Lorentzian framework, we call conformal Galilei transformation of (M, γ, θ) any diffeomorphism of M that preserves the direction of γ.

Owing to the fundamental constraint γ ab θ b = 0, it follows that conformal Galilei transformation automatically preserve the direction of the time one-form θ.

In terms of infinitesimal transformations, a conformal Galilei vector field of (M, γ, θ) is a vector field, X, of M that Lie-transports the direction of γ; we will thus define X ∈ cgal(M, γ, θ) iff

L X γ = f γ hence L X θ = g θ (3.1)
for some smooth functions f, g of M, depending on X. Then, cgal(M, γ, θ) becomes a Lie algebra whose bracket is the Lie bracket of vector fields.

The one-form θ being parallel-transported by the NC-connection, one has necessarily dθ = 0; this yields dg ∧ θ = 0, implying that g is (the pull-back of) a smooth function on T , i.e., that g(t) depends arbitrarily on time t = x 0 , which locally parametrizes the time axis. We thus have dg = g ′ (t)θ.

Let us work out the expression of the generators of the conformal Galilei Lie algebra, cgal(d) = cgal(R × R d , γ, θ), of the flat NC-structure (2.1). Those are the vector fields, X = X 0 ∂ 0 + X A ∂ A , solutions of (3.1), namely such that 6

∂ A X B + ∂ B X A = -f δ AB (3.2) ∂ A X 0 = 0 (3.3) ∂ 0 X 0 = g (3.4) for all A, B = 1, . . . , d. (We have put X A = δ AB X B .) We readily find that X ∈ cgal(d) iff 7 X = ξ(t) ∂ ∂t + ω A B (t)x B + η A (t) + κ A (t)x B x B -2x A κ B (t)x B + χ(t)x A ∂ ∂x A (3.5)
where ω(t) ∈ so(d), η(t), κ(t), χ(t), and ξ(t) are arbitrary functions of time, t; those are clearly interpreted as time-dependent infinitesimal rotations, space translations, expansions (or inversions), space dilations, and time reparametrizations.

We note, en passant, that the cgal(d)-generators (3.5) project as vector fields of the time axis; therefore, there exists a canonical Lie algebra homomorphism: cgal(d) → Vect(R) given by X → ξ(t)∂ t , onto the Lie algebra of vector fields of T ∼ = R, i.e., the (centerless) Virasoro Lie algebra.

Conformal Galilei transformations, cgal z , with dynamical exponent z

One can, at this stage, try and seek non-relativistic avatars of general relativistic infinitesimal conformal transformations. Given a Lorentzian (ore, more generally, 6 Let us recall the general expressions of the Lie derivatives of γ and θ along the vector field

X = X a ∂ a of M , namely L X γ ab = X c ∂ c γ ab -2∂ c X (a γ b)c
, and L X θ a = ∂ a (θ b X b ). 7 We will assume d > 1.

a pseudo-Riemannian) manifold (M, g), the latter Lie algebra is generated by the vector fields, X, of M such that

L X (g -1 ⊗ g) = 0 (3.6)
where g -1 denotes the inverse of the metric g : T M → T * M.

It has been shown [START_REF] Künzle | Covariant Newtonian limit of Lorentz space-times[END_REF] that one can expand a Lorentz metric in terms of the small parameter 1/c 2 , where c stands for the speed of light, as g = c 2 θ ⊗ θ -U γ + O(c -2 ), and g

-1 = -γ + c -2 U ⊗ U + O(c -4
), with the same notation as before. Then, a non-relativistic limit of Equation (3.6) would be L X lim c→∞ (c -2 g -1 ⊗ g) = 0, viz.,

L X (γ ⊗ θ ⊗ θ) = 0. (3.7)
This is merely one of the possibilities at hand in our formalism. In fact, having at our disposal a Galilei structure on M, we will introduce, instead of (3.7), a more flexible condition. Indeed, owing to the degeneracy of the Galilei "metric" (γ, θ), we will deal with the following condition, namely,

L X (γ ⊗m ⊗ θ ⊗n ) = 0 (3.8) 
for some m = 1, 2, 3, . . ., and n = 0, 1, 2, . . ., to be further imposed on the vector fields X ∈ cgal(M, γ, θ). This is equivalent to Equation (3.1) together with the extra condition f + q g = 0 where q = n m .

(3.9) Indeed, L X (γ ⊗m ⊗ θ ⊗n ) = 0 implies L X γ = f γ and L X θ = g θ for some functions f and g of M such that mf +ng = 0. Equation (3.7) plainly corresponds to the special case m = 1, n = 2.

From now on, we will call dynamical exponent the quantity

z = 2 q (3.10)
where q is as in (3.9). This quantity will be shown to match the ordinary notion of dynamical exponent; see, e.g., [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF][START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF]. We will, hence, introduce the Galilean avatars, cgal z (M, γ, θ), of the Lie algebra so(d + 1, 2) of conformal vector fields of a pseudo-Riemannian structure of signature (d, 1) as the Lie algebras spanned by the vector fields X of M satisfying (3.1), and (3.8) -or (3.9) for some rational number z. We will call cgal z (M, γ, θ) the conformal Galilei Lie algebra with dynamical exponent z (see (3.10)).

The Lie algebra

sv(M, γ, θ) = cgal 2 (M, γ, θ) (3.11)
is the obvious generalization to Galilei spacetimes of the Schrödinger-Virasoro Lie algebra sv(d) = sv(R × R d , γ, θ) introduced in [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] (see also [START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF]) from a different viewpoint in the case of a flat NC-structure. The representations of the Schrödinger-Virasoro group and of its Lie algebra, sv(d), as well as the deformations of the latter have been thoroughly studied and investigated in [START_REF] Roger | The Schrödinger-Virasoro Lie group and algebra: from geometry to representation theory[END_REF]. An easy calculation using (3.2), (3.4), the new constraint (3.9), and (3.10) shows that X ∈ cgal z (d) iff

X = ξ(t) ∂ ∂t + ω A B (t)x B + 1 z ξ ′ (t)x A + η A (t) ∂ ∂x A (3.12)
where ω(t) ∈ so(d), η(t), and ξ(t) depend arbitrarily on time, t. Equation (3.12) generalizes (1.4) from z = 1 to any z.

The Lie algebra cgal ∞ (M, γ, θ) corresponding to the case q = 0 is interesting (see below, Section 5.3)). We have, indeed, X ∈ cgal ∞ (M, γ, θ) iff

L X γ = 0. (3.13)
In the case of a flat NC-structure, cgal ∞ (d) is spanned by the vector fields

X = ξ(t) ∂ ∂t + ω A B (t)x B + η A (t) ∂ ∂x A (3.14)
where, again, ω(t) ∈ so(d), η(t), and ξ(t) depend arbitrarily on time, t.

Conformal Newton-Cartan transformations

As previously emphasized, NC-connections are quite independent geometric objects; they, hence, deserve a special treatment. The idea pervading earlier work [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Duval | Nonrelativistic Conformal Symmetries and Bargmann Structures[END_REF][START_REF] Duval | Galilean isometries[END_REF] on non-relativistic symmetries is that specifying explicitly the transformation law of the NC-connection is mandatory in a number of cases, e.g., those relevant to geometric mechanics and non-relativistic physical theories. We will, henceforth, focus attention on the notion of Newtonian geodesics; more particularly, we will insist that the above-mentioned Galilean conformal transformations should, in addition, permute the NC-geodesics.

The geodesics of a NC-structure (M, γ, θ, Γ) are plainly geodesics of (M, Γ), i.e., the solutions of the differential equations

ẍc + Γ c ab ẋa ẋb = µ ẋc (4.1)
for all c = 0, . . . , d, where µ is some smooth (fiberwise linear) function of T M; here, we have put ẋa = dx a /dτ , where τ is an otherwise arbitrary curve-parameter.

Let us remind that Equation (4.1) models free fall in NC theory [START_REF] Cartan | Sur les variétés à connexion affine et la théorie de la relativité généralisée[END_REF][START_REF] Trautman | Sur la théorie newtonienne de la gravitation[END_REF][START_REF] Künzle | Galilei and Lorentz structures on spacetime: Comparison of the corresponding geometry and physics[END_REF], just as it does in general relativity. By putting ṫ = θ a ẋa , we characterize8 timelike geodesics by: ṫ = 0 (4.2) lightlike geodesics by: ṫ = 0. (

Spacetime transformations which permute the geodesics of (M, Γ), i.e., preserve the form of the geodesic equation (4.1), are projective transformations; they form the projective group of the affine structure. Infinitesimal projective transformations generate a Lie algebra which, hence, consists of vector fields, X, of M satisfying

L X Γ c ab = δ c a ϕ b + δ c b ϕ a (4.4)
for a certain one-form ϕ = ϕ a dx a of M depending on X.

The Schrödinger Lie algebra

Let us first cope with generic, timelike, geodesics of (M, Γ) defined by ṫ = 0, cf. Equation (4.2), and representing the worldlines of massive non-relativistic test particles.

From now on, we choose to enforce preservation of their equations (4.1), in addition to that, (3.1), of the direction of the Galilei structure (γ, θ).

The expanded Schrödinger Lie algebra, sch, of projective Galilei conformal transformations

The Lie-transport (4.4) of the NC-connection, compatible with the conformal rescalings (3.1) of the Galilei structure (γ, θ), must preserve the first constraint ∇θ = 0, i.e.,

L X ∇ a θ b = ∇ a L X θ b -θ c L X Γ c ab = 0; this yields g ′ θ a θ b -2θ (a ϕ b) = 0, or ϕ a = 1 2 g ′ θ a .
The infinitesimal projective transformations to consider are thus given by

L X Γ c ab = g ′ δ c (a θ b) . (4.5) 
Likewise, preservation of the second constraint, viz., ∇γ = 0, necessarily implies

L X ∇ c γ ab = ∇ c L X γ ab + 2L X Γ (a ck γ b)k = 0; we thus find (∂ c f + g ′ θ c )γ ab = 0, and f is therefore a function of T such that f ′ + g ′ = 0. (4.6)
We will, hence, define a new Lie algebra, denoted sch(M, γ, θ, Γ), as the Lie algebra of those vector fields that are infinitesimal (i) conformal Galilei transformations of (M, γ, θ), and (ii) projective transformations of (M, Γ). We call sch(M, γ, θ, Γ) the expanded Schrödinger Lie algebra, which is therefore spanned by the vector fields, X, of M such that [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Burdet | Cartan Structures on Galilean Manifolds: the Chronoprojective Geometry[END_REF][START_REF] Duval | Nonrelativistic Conformal Symmetries and Bargmann Structures[END_REF]]

L X γ ab = f γ ab , L X θ a = g θ a & L X Γ c ab = g ′ δ c (a θ b) (4.7)
for all a, b, c = 0, 1, . . . , d, and subject to Condition (4.6).

Let us now work out the form of the Schrödinger Lie algebra in the flat case. We will thus determine the generators of the Lie algebra sch

(d) = sch(R × R d , γ, θ, Γ) in the special case (2.1). The system (4.7) to solve for X = X 0 ∂ 0 + X A ∂ A reads 9 ∂ A X B + ∂ B X A = -f δ AB (4.8) ∂ A X 0 = 0 (4.9) ∂ 0 X 0 = g (4.10) ∂ 0 ∂ 0 X A = 0 (4.11) ∂ 0 ∂ B X A = 1 2 g ′ δ A B (4.12) ∂ A ∂ B X C = 0 (4.13)
for all A, B, C = 1, . . . , d. We deduce, from (4.13) that X A = M A B (t)x B + η A (t), and, using (4.8), we find

M A B (t) = ω A B -1 2 f (t)δ A B
, where the ω AB = -ω BA are independent of t. Then (4.11) leaves us with f ′′ (t) = 0, and (η A ) ′′ (t) = 0, i.e., with f (t) = -2(κt + λ), and η A (t) = β A t + γ A , where κ, λ, β A , and γ A are constant coefficients. At last, using Equations (4.6) and (4.10), we conclude that X 0 = κt 2 + µt + ε, with µ, ε new constants of integration.

We can therefore affirm that X ∈ sch(d) iff

X = κt 2 + µt + ε ∂ ∂t + ω A B x B + κtx A + λx A + β A t + γ A ∂ ∂x A (4.14)
where ω ∈ so(d), β, γ ∈ R d , and κ, µ, λ, ε ∈ R are respectively infinitesimal rotations, boosts, spatial translations, inversions, time dilations, space dilations, and time translations. We observe in (4.14) that time is dilated independently of space [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Duval | Nonrelativistic Conformal Symmetries and Bargmann Structures[END_REF]. The expanded Schrödinger Lie algebra, sch(d), is a finite-dimensional Lie subalgebra of cgal(d).

Let us recall that the Galilei Lie algebra gal(M, γ, θ, Γ) ⊂ cgal(M, γ, θ, Γ) of a NC-structure is plainly defined as its Lie algebra of infinitesimal automorphisms. Thus, X ∈ gal(M, γ, θ, Γ) iff [START_REF] Trautman | Sur la théorie newtonienne de la gravitation[END_REF][START_REF] Duval | Galilean isometries[END_REF] 

L X γ ab = 0, L X θ a = 0 & L X Γ c ab = 0 (4.15)
for all a, b, c = 0, 1, . . . , d, i.e., if (4.7) holds with f = 0, and g = 0. In the flat case, gal(d) = gal(R ×R d , γ, θ, Γ) is clearly spanned by the vector fields (4.14) with κ = 0, and λ = µ = 0. We therefore contend that X ∈ sch 2 (d) iff

X = κt 2 + 2λt + ε ∂ ∂t + ω A B x B + κtx A + λx A + β A t + γ A ∂ ∂x A (4.21)
where ω ∈ so(d), β, γ ∈ R d , and κ, λ, ε ∈ R. The Schrödinger dynamical exponent is z = 2; see, e.g., [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF].

The Lie algebra sch(d) admits the faithful (d + 2)-dimensional representation X → Z where

Z =     ω β γ 0 λ ε 0 -κ -λ     (4.22)
with the same notation as above.

We therefore have the Levi decomposition

sch(d) ∼ = (so(d) × sl(2, R)) ⋉ (R d × R d ). (4.23)
The Schrödinger Lie algebra is, indeed, a finite-dimensional Lie subalgebra of the Schrödinger-Virasoro Lie algebra (3.11), viz.,

sch 2 (M, γ, θ, Γ) ⊂ sv(M, γ, θ).
(4.24)

• Returning to Equation (4.17) we get, in the special case g ′ = 0, a family of Lie subalgebras algebras sch z (M, γ, θ, Γ) ⊂ sch(M, γ, θ, Γ) parametrized by a (rational) dynamical exponent, z. In the flat case, sch z =2 (d) is spanned by the vector fields (4.14) with κ = 0, and µ = zλ.

In the limit z → ∞, where f = g ′ = 0 in view of (4.6), we obtain the Lie algebra sch ∞ (M, γ, θ, Γ). For flat NC-spacetime, sch ∞ (d) is generated by the vector fields (4.14) with κ = λ = 0.

In both cases we get the Lie algebra of vector fields of the form

X = (µt + ε) ∂ ∂t + ω A B x B + µ z x A + β A t + γ A ∂ ∂x A (4.25)
with the same notation as above.

Transformation law of NC-connections under conformal Galilei rescalings

The rest of the section will be devoted to the specialization of projective transformations to the specific case of lightlike (4.3) NC-geodesics.

Let us now work out the general form of the variation, δΓ, of a NC-connection, Γ, under infinitesimal conformal rescalings of the Galilei structure (γ, θ) of M, namely

δγ = f γ hence δθ = g θ (4.26)
where f is an arbitrary function of M, and g an arbitrary function of T (compare Equation (3.1)). We will furthermore put, in full generality,

δU = -gU + γ(ψ) (4.27)
in order to comply with the constraint θ a U a = 1, where ψ is an arbitrary one-form of M interpreted as an infinitesimal Milne boost (cf. (2.7)).

Starting from (2.2), we get δΓ c ab = (δ U Γ) c ab +δθ (a F b)k γ ck +θ (a δF b)k γ ck +θ (a F b)k δγ ck . Then, using (4.26) and (4.27) applied to the expression (2.3) of the NC-connection U Γ, we find δ(

U Γ) c ab = -δ c (a ∂ b) f + U c θ (a ∂ b) (f + g) + 1 2 γ ck ∂ k f U γ ab -θ (a dφ b)k γ ck
, where φ = U γ(δU) is the one-form (2.8) associated with the "Milne" variation (4.27) of the observer U. Then, with the help of Equation (4.26), and of general result δF = dφ, see (2.7), we can finally claim that

δΓ c ab = -δ c (a ∂ b) f + U c θ (a ∂ b) (f + g) + 1 2 γ ck ∂ k f U γ ab + (f + g)γ ck θ (a F b)k (4.28)
for all a, b, c = 0, . . . , d. Equation (4.28) is of central importance in our study; it yields the general form of the variations of the NC-connection compatible with the constraints ∇γ = 0, and ∇θ = 0, and induced by the conformal Galilei rescalings (4.26) and the Milne boosts (4.27).

Conformal NC transformations: lightlike geodesics

So far, we have been dealing with the Galilei-conformal symmetries of the equations of generic, i.e., timelike geodesics. What about those of the equations of lightlike geodesics (4.3) that model the worldlines of massless non-relativistic particles [START_REF] Souriau | Structure des systèmes dynamiques[END_REF]?

Let us now determine the variations (4.28) of the NC-connection, Γ, that preserve the equations of lightlike geodesics, namely Equation (4.1) supplemented by ṫ = 0.

We thus must have δΓ c ab ẋa ẋb = δµ ẋc , so that, necessarily,

γ(df ) = 0 (4.29)
since θ a ẋa = 0 (the third term in the right-hand side of (4.28) has to vanish); this implies df = f ′ θ, hence that f is, along with g, a function of the time axis, T . We also find that δµ = 0. At last, the resulting variation of the NC-connection appears in the new guise

δΓ c ab = -f ′ δ c (a θ b) + (f ′ + g ′ )U c θ a θ b + (f + g)γ ck θ (a F b)k (4.30)
for all a, b, c = 0, . . . , d, where the unit vector field U, i.e., θ a U a = 1, and the two-form F are as in (2.2). We note that the constraint (4.6), obtained in the "massive" case, does not show up in the "massless" case.

Just as in Section 4.1, we will assume that the variations (4.26) of the Galilei structure, and those (4.30) of the NC-connection, are generated by infinitesimal spacetime transformations.

The conformal Newton-Cartan Lie algebra, cnc, of null-projective conformal Galilei transformations

The next natural step consists in demanding that the variations (4.26) of the Galilei structure, and those (4.30) of the NC-connection are, indeed, generated by infinitesimal spacetime transformations.

We will thus define a new Lie algebra, called the conformal Newton-Cartan Lie algebra, and denoted by cnc(M, γ, θ, Γ), as the Lie algebra of those vector fields that are infinitesimal (i) conformal-Galilei transformation of (M, γ, θ), and (ii) transformations which permute lightlike geodesics of (M, γ, θ, Γ). The conformal Newton-Cartan Lie algebra, cnc(M, γ, θ, Γ), is thus spanned by the vector fields, X, of M such that

L X γ ab = f γ ab (4.31) L X θ a = g θ a (4.32) L X Γ c ab = -f ′ δ c (a θ b) + (f ′ + g ′ )U c θ a θ b + (f + g)γ ck θ (a F b)k (4.33)
for all a, b, c = 0, 1, . . . , d, where f and g are functions of the time axis, T , while U, and F are as in (2.2) and (2.3).

It is worth noticing that the Lie-transport (4.33) of the NC-connection satisfies the very simple condition, viz.,

L X Γ abc = 0 (4.34)
where L X Γ abc = (L X Γ c kℓ )γ ak γ bℓ . Interestingly, Equation (4.34) is specific to the so-called Coriolis Lie algebra of Galilei isometries of (M, γ, θ); see [START_REF] Duval | Galilean isometries[END_REF].

Let us emphasize, at this stage, that the Schrödinger Lie algebra we have already been dealing with in Section 4.1.2, is clearly a Lie subalgebra of the conformal Newton-Cartan Lie algebra, viz.,

sch 2 (M, γ, θ, Γ) ⊂ cnc(M, γ, θ, Γ) (4.35)
corresponding to the constraint f + g = 0 (4.36) associated with the dynamical exponent z = 2; see (4.18). We will thus ignore, in the sequel, this special solution, and concentrate on the maximal solutions of Equations (4.31)-(4.33) with f + g = 0.

We will now determine the conformal Newton-Cartan Lie algebra in the flat case, i.e., the Lie algebra cnc(d) = cnc(R × R d , γ, θ, Γ) where γ ab and θ a are as in (2.1), as well as Γ c ab = 0. Let us put, in full generality, U = ∂ 0 +U A ∂ A , where the U A are smooth functions of spacetime.

The system (4.31)-(4.33) to solve for X = X 0 ∂ 0 + X A ∂ A reads then

∂ A X B + ∂ B X A = -f δ AB (4.37) ∂ A X 0 = 0 (4.38) ∂ 0 X 0 = g (4.39) ∂ 0 ∂ 0 X A = (f ′ + g ′ )U A + (f + g)F 0A (4.40) ∂ 0 ∂ B X A = - 1 2 f ′ δ A B - 1 2 (f + g)F AB (4.41) ∂ A ∂ B X C = 0 (4.42)
for all A, B, C = 1, . . . , d.

Straightforward computation provides the general solution of that system. We find that X 0 = ξ(t), hence g(t) = ξ ′ (t), remains arbitrary; Equations (4.37), and (4.42) yield

X A = ω A B (t)x B -1 2 f (t)x A + η A (t), the functions ω AB (t) = -ω BA (t), f ( 
t), and η A (t) being unspecified. Conspicuously, Equations (4.40), and (4.41), bring no further restriction to the spatial components, X A , as long as the two-form F , in the right-hand side of these equations, is not constrained whatsoever. Indeed, we can easily deduce from (2.10), and (2.11) that

F AB = 2∂ [A U B] . (4.43) 
and

F 0A = ∂ 0 U A + U B ∂ A U B . (4.44) 
Using then (4.41), and (4.40), we find that ω ′ AB (t)x B = (f + g)U A + ∂ A ψ, as well as

-1 2 f ′′ (t)δ AB x B + η ′′ A (t) = ∂ A χ,
for some functions ψ, and χ, and some unit vector field, U, of spacetime. Our claim is, hence, justified.

We contend that X ∈ cnc(d) iff

X = ξ(t) ∂ ∂t + ω A B (t)x B - 1 2 f (t)x A + η A (t) ∂ ∂x A , (4.45) 
where, ω(t) ∈ so(d), η(t), ξ(t) and f (t) depend smoothly on time, t, in an arbitrary fashion.

If cnc z (d) denotes the Lie subalgebra with dynamical exponent z, i.e., defined by Equation (4.16), we trivially have

cnc z (d) ∼ = cgal z (d) (4.46)
in view of (3.12). Let us emphasize that dealing with rational dynamical exponents, z, introduced in (3.10), is clearly allowed by the novel geometric definition (3.8) of conformal Galilei transformations.

The Lie algebra, cmil, of null-projective conformal transformations of NC-Milne spacetime

We will now confine considerations to the case where the NC-spacetime admits a preferred geodesic and irrotational observer (an "ether"), i.e., a unit vector field, U, such that, Condition (2.12) holds true. With the convention of Section 2.2, we denote such a "NC-Milne-structure" by (M, γ, θ, U Γ). Specializing the system (4.31)-(4.33) to the case F = 0, we thereby define the conformal Milne Lie algebra, cmil(M, γ, θ, U Γ), as the maximal Lie algebra of vector fields, X, of M such that 

L X γ ab = f γ ab (4.47) L X θ a = g θ a (4.48) L X U Γ c ab = -f ′ δ c (a θ b) + (f ′ + g ′ )U c θ a θ b (4.
∂ t ψ + 1 2 δ AB ∂ A ψ∂ B ψ = 0 (4.51)
whose general solution, ψ, is well-known and leads to ∂ A ψ = U A where (4.50) holds.

The system (4.47)-(4.49) to solve for X = X 0 ∂ 0 + X A ∂ A is now given by

∂ A X B + ∂ B X A = -f δ AB (4.52) ∂ A X 0 = 0 (4.53) ∂ 0 X 0 = g (4.54) ∂ 0 ∂ 0 X A = (f ′ + g ′ )U A (4.55) ∂ 0 ∂ B X A = - 1 2 f ′ δ A B (4.56) ∂ A ∂ B X C = 0 (4.57)
for all A, B, C = 1, . . . , d.

Returning to the calculation done in Section 4.3.1, we get X 0 = ξ(t), with g(t) = ξ ′ (t), and 

X A = ω A B (t)x B -1 2 f (t)x A + η A (t)
(f ′ + g ′ )U A = - 1 2 f ′′ x A + (η A ) ′′ . (4.59)
This entails that f ′′ = 0, i.e.

f (t) = -2(κt + λ). (4.60) 
The latter equations therefore imply (f

′ + g ′ )U A = (η A ) ′′ , leading us to the expression η A (t) = α A (ξ(t) -κt 2 ) + β A t + γ A (4.61)
where we have put

α A = U A (4.62)
and where the coefficients β A , and γ A are integration constants. Now, if X 1 , X 2 are solutions of the system (4.47)-(4.49), so is their Lie bracket X 12 = [X 1 , X 2 ]. This yields the consistency relation f 12 = X 1 f 2 -X 2 f 1 which reads here κ 12 t + λ 12 = ξ 1 (t)κ 2 -ξ 2 (t)κ 1 . Thus ξ(t) = κ u(t) + µt + ε, for some function u, the coefficients µ, and ε being constant. Exploiting the fact that X → X 0 ∂ 0 is a Lie algebra homomorphism into Vect(R), we write ξ 12 (t) = ξ 1 (t)ξ ′ 2 (t) -ξ 2 (t)ξ ′ 1 (t); straightforward calculation then shows that u is a polynomial of degree 2, which, up to lower degree terms, is given by

u(t) = 1 2 c t 2 (4.63) with (c -1)(c -2) = 0. (4.64)
We thus find X 0 = ξ(t) where ξ(t) = 1 2 κc t 2 + µt + ε, and andγ A new integration constants. The case c = 2 gives back the expanded Schrödinger Lie algebra, sch(d), see (4.14), already studied since f ′ (t) + g ′ (t) = 0. It is not the only possibility, though. 10Consider then the new case c = 1. We claim that X ∈ cmil(d) iff

X A = ω A B x B + κtx A + λx A + 1 2 (c -2)κt 2 α A + β A t + γ A , with β A ,
X = 1 2 κt 2 + µt + ε ∂ ∂t + ω A B x B + κtx A + λx A - 1 2 t 2 α A + β A t + γ A ∂ ∂x A (4.65)
where ω ∈ so(d), α, β, γ, ∈ R d , and κ, λ, µ, ε ∈ R.

Let us highlight that, just as in the case of sch(d), time and space dilations are independent within cmil(d). As for the parameter, α, in (4.65) it serves as a novel acceleration generator [START_REF] Lukierski | Galilean-invariant (2 + 1)dimensional models with a Chern-Simons-like term and d = 2 noncommutative geometry[END_REF][START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF].

4.3.3

Conformal NC-Milne Lie algebras, cmil z , with dynamical exponent z; the CGA Lie algebra Much in the same way than in Section 3.2, we will now introduce subalgebras of the conformal NC-Milne Lie algebra with prescribed dynamical exponent, z.

We will define cmil z (M, γ, θ, U Γ) as the Lie subalgebra of cmil(M, γ, θ, U Γ) defined by Equation (4.16); we will call it the conformal NC-Milne Lie algebra with dynamical exponent z.

Let us lastly establish, in the case of a flat NC-Milne structure, the expression of the generators of the Lie algebra cmil z which entails that time and space are related in the same way. Therefore cmil 1 (d) is spanned by the vector fields (4.65) for which (4.68) holds. It is isomorphic to the CGA, namely, the Conformal Galilean Algebra (1.3) of Lukierski, Stichel and Zakrzewski [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF], i.e.,

(d) = cmil z (R × R d , γ, θ, U Γ).
X = 1 2 κt 2 + λt + ε ∂ ∂t + ω A B x B + λx A + κtx A - 1 2 α A t 2 + β A t + γ A ∂ ∂x A . (4.69)
where ω ∈ so(d), α, β, γ, ∈ R d , and κ, λ, ε ∈ R.

The Lie algebra cmil 1 (d) admits the faithful (d + 3)-dimensional representation X → Z, where

Z =       ω -1 2 α β γ 0 λ 2ε 0 0 1 2 κ 0 ε 0 0 -κ -λ       (4.70)
with the same notation as before.

Again, the following decomposition holds

cmil 1 (d) ∼ = (so(d) × so(2, 1)) ⋉ (R d × R d × R d ). ( 4 

.71)

• In the special case, f ′ = 0, i.e., κ = 0 (no expansions), and µ = zλ, we discover a whole family of Lie subalgebras cmil z (d) ⊂ cmil(d) parametrized by an arbitrary dynamical exponent, z.

In the limit z → ∞, where f = 0, the Lie subalgebra cmil ∞ (d) ⊂ cmil(d) is spanned by the vector fields (4.65) with κ = λ = 0. Let us stress that, in this limiting case, space dilations are ruled out (compare Equation (3.14)).

In both cases we obtain the Lie algebra of vector fields

X = µt + ε ∂ ∂t + ω A B x B + µ z x A - 1 2 α A t 2 + β A t + γ A ∂ ∂x A . (4.72) 
with the same notation as before.

4.3.4

The finite-dimensional conformal Galilei Lie algebras, alt 

X ∈ Vect(R × R d ) of the form X = ξ(t) ∂ ∂t + ω A B (t)x B + 1 z ξ ′ (t)x A + η A (t) ∂ ∂x A (4.73)
where ω(t) ∈ so(d), η(t), and ξ(t) depend smoothly on on time, t.

Previous experience with the above-mentioned Lie algebras prompts us to look for Lie algebras of polynomial -not merely smooth -vector fields of cgal z (d).

Consider, hence, vector fields, X ∈ cgal z (d), that are polynomials of fixed degree N > 0 in the variables t = x 0 , x 1 , . . . , x d . This entails the following decompositions ω(t) = N n=0 ω n t n , η(t) = N n=0 η n t n , and ξ(t) = N n=0 ξ n t n , since the spatial components X A are already of first order in x 1 , . . . , x d . Bearing in mind that X → ξ is a Lie algebra homomorphism, we claim that the ξ = ξ(t)∂/∂t do span a polynomial Lie subalgebra of Vect(R), hence a Lie subalgebra of sl(2, R) since the latter is maximal in the Lie algebra, Vect Pol (R), of polynomial vector fields of R. We therefore find ξ n = 0 for all n ≥ 3, so that

ξ(t) = 1 2 κt 2 + µt + ε (4.74)
with κ, µ, ε ∈ R. Let now us seek under which condition (if any) the Lie bracket X 12 = [X 1 , X 2 ] of two such polynomial vector fields X 1 and X 2 is, itself, polynomial of degree N, Condition (4.74) being granted. Straightforward calculation yields 

ξ 12 = ξ 1 ξ ′ 2 -ξ 2 ξ ′ 1 (4.75) ω 12 = [ω 2 , ω 1 ] + ξ 1 ω ′ 2 -ξ 1 ω ′ 1 (4.76) η 12 = ω 2 η 1 -ω 1 η 2 + ξ 1 η ′ 2 -ξ 2 η ′ 1 - 1 z (ξ ′ 1 η 2 -ξ ′ 2 η 1 ) . ( 4 
) N +1 = 1 2 N -z (κ 1 (η 2 ) N -κ 2 (η 1 ) N ).
In order to acquire a Lie algebra of polynomial vector fields of degree N > 0, we must simply impose the constraint

z = 2 N (4.79)
on the dynamical exponent. At last, we have shown that, in Equation (4.73),

η(t) = η N t N + • • • + η 1 t + η 0 (4.80)
with η n ∈ R d for all n = 0, 1, . . . , N = 2/z. We claim that the finite-dimensional Lie subalgebras of cgal 2/N (d) defined by (4.74), (4.78), and (4.80) together with (4.79) are isomorphic with the so-called alt 2/N (d) Lie algebras discovered by Henkel [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] in the study of scale invariance for strongly anisotropic critical systems (with d = 1). 11 We have thus proved that cgal It would be desirable to find a truly geometric definition of such Lie subalgebras of the Lie algebra of conformal Galilei Lie algebras, cgal(M, γ, θ), in the case of an arbitrary Galilei (or Newton-Cartan) structure.

Conformal Galilean symmetries of physical systems

In order to illustrate our general formalism, we first present a framework, due originally to Souriau [START_REF] Souriau | Structure des systèmes dynamiques[END_REF], which allows us to describe, in particular, both massive and massless Galilean elementary systems in a unified way. Consider a Hamiltonian system with d degrees of freedom, whose phase space is a 2d-dimensional symplectic manifold (M, Ω), and whose Hamiltonian is a smooth function, H, of M. The two-form Ω = 1 2 Ω αβ dx α ∧ dx β of M is closed, dΩ = 0, and non-degenerate, det(Ω αβ ) = 0. Using its inverse, Ω where α = 1, . . . , 2d, the parameter t being interpreted as "time".

-1 = 1 2 Ω αβ ∂ α ∧ ∂ β ,
If X H = {H, • } is the associated Hamiltonian vector field, we see that (5.1) can also be written as

12 dx dt = X H where Ω(X H ) = -dH (5.2)
or, using coordinates, Ω αβ X α H = -∂ β H, for all β = 1, . . . , 2d.

One can go one step farther [START_REF] Abraham | Foundations of Mechanics[END_REF] and, promoting time as a new coordinate, consider the (2d + 1)-dimensional "evolution space" V = M × R endowed with the following closed two-form which we write, with some abuse of notation, as σ = Ω -dH ∧ dt.

(5.

3)

The vector fields Y = λ(X H + ∂/∂t) of V, with λ ∈ R, clearly satisfy σ(Y ) = 0 since X H (H) = 0, and Y t = λ. Denoting y = (x, t) points of V, we see that the equations of motion (5.1) admit the alternative form

dy dτ = Y with σ(Y ) = 0 (5.4)
where τ is now an arbitrary curve-parameter.

Conversely, let us consider a closed two-form, σ, on some general evolution space, V, whose kernel, K = ker(σ), has a (nonzero) constant dimension. 13 Then K (see (5.4)) is an integrable distribution. So, there exists, passing through each point y ∈ V, a submanifold whose tangent space is spanned by those vectors in K. Each leaf (or characteristic) of K is a classical motion. The set of these motions (which is assumed to be a well-behaved manifold) is Souriau's space of motions, U = V/K, of the system. The two-form σ passes to the quotient, U, which becomes, hence, a symplectic manifold. Espousing this point of view, one regards the evolution space as fundamental since it hosts the dynamics in a purely intrinsic way. See also the recent essay [START_REF] Rovelli | Forget time[END_REF] supporting this standpoint in the classical and quantum context.

A symmetry of the evolution space (V, σ) is given by a vector field Z which Lie-transports the two-form σ, namely such that

L Z σ = 0.
(5.5)

A symmetry is called Hamiltonian if there exists a function J Z of V such that, globally, σ(Z) = -dJ Z .

(5.6)

Then, one readily finds that Y J Z = 0 for all Y ∈ K, i.e., that J Z (determined by (5.6) up to an overall constant) is a conserved quantity. See [START_REF] Souriau | Structure des systèmes dynamiques[END_REF] for an account on this formulation of Noether's theorem. Conversely, symplectic manifolds upon which a given group of Hamiltonian symmetries acts transitively can be constructed in a systematic fashion [START_REF] Souriau | Structure des systèmes dynamiques[END_REF]. For example, the homogeneous symplectic manifolds of the Galilei group will represent the spaces of motions of classical, non-relativistic, elementary particles. Skipping the details, here we simply list the results which are important for our purposes.

Galilean massive particles

Generic elementary systems of the Galilei group (whose Lie algebra has been defined in (4.15)) in four-dimensional, flat, NC-spacetime are classified by the mass, m, and spin, s, invariants. In the "massive" case, m > 0, the evolution space of a spinning particle, with s > 0, is V = R × R 3 × R 3 × S 2 parametrized by the quadruples y = (t, x, v, u), and endowed with the two-form

σ = m dv A ∧ (dx A -v A dt) - s 2 ǫ ABC u A du B ∧ du C (5.7)
where ǫ ABC is the Levi-Civita symbol with ǫ 123 = 1. Equation (5.7) happens to be of the form (5.3) that unifies the symplectic structure of phase space M = R 3 × R 3 × S 2 and the Hamiltonian, namely

σ = dp A ∧ dx A - 1 2s 2 ǫ ABC s A ds B ∧ ds C -d p 2 2m ∧ dt (5.8)
where the vector p = mv stands for the linear momentum, and s = su for the classical spin. 14 Ordinary phase space has been extended by the sphere S 2 , endowed with its canonical surface element. The two-form (5.7) is closed and has a one-dimensional kernel; the characteristic curves, which are solutions of the free equations of motion (

project on spacetime as usual straight worldlines. Those are independent of spin, which is itself a constant of the motion. These worldlines are, in fact, timelike geodesics since ṫ = 0.

(5.10)

As for the symmetries of the model coming from conformal Galilean transformations of flat spacetime, one shows [START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Duval | Nonrelativistic Conformal Symmetries and Bargmann Structures[END_REF] that the only vector fields X ∈ cgal(3) that admit a lift, X, to (V, σ) verifying L e X σ = 0 (see (5.5)) are necessarily Schrödinger vector fields, X ∈ sch(3). The explicit expression is

X = κt 2 + 2λt + ε ∂ ∂t + ω A B x B + κtx A + λx A + β A t + γ A ∂ ∂x A + ω A B v B + β A -λv A + κ(x A -v A t) ∂ ∂v A (5.11) +ω A B u B ∂ ∂u A
with the notation of (4.21). 14 At the purely classical level studied here, s is an arbitrary positive number; the "prequantizability" [START_REF] Souriau | Structure des systèmes dynamiques[END_REF] requires it to be a half-integral multiple of .

We, hence, recover the results of Section 4.1 dealing with the symmetries of the equations of timelike NC-geodesics. Notice that the Schrödinger symmetry still holds in the presence of spin.

The action (5.11) is Hamiltonian, and the conserved quantities, calculated using Noether's theorem (see Equation (5.6)) read15 

J e X = J • ω -G • β + P • γ -Hε -Kκ + Dλ (5.12) 
where

P = p Linear momentum G = mq Galilean boost J = x × p + su Angular momentum H = p 2 2m Energy K = mq 2 2 
Schrödinger expansions

D = p • q Schrödinger dilations (5.13) 
together with q = xvt.

(

Note that the spin enters the angular momentum only and is, in fact, separately conserved. The space of motions, U = R 3 × R 3 × S 2 , therefore inherits from σ the symplectic two-form Ω = dp A ∧ dq A -(s/2)ǫ ABC u A du B ∧ du C . The associated Poisson brackets of the components (5.13) of the moment map [START_REF] Souriau | Structure des systèmes dynamiques[END_REF] then realize the one-parameter central extension of the Schrödinger group, via

{P A , G B } = m δ AB .
(5.15)

As a further example of massive Schrodinger symmetry, we mention non-relativistic Chern-Simons vortices [START_REF] Jackiw | Classical and quantum nonrelativistic Chern-Simons Theory[END_REF].

So far, we have only studied free particles. Let us mention that the so(2, 1) symmetry would survive, if d = 3, the addition of a Dirac monopole [START_REF] Jackiw | Dynamical symmetry of the magnetic monopole[END_REF][START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Horváthy | The dynamical symmetries of the magnetic monopole in geometric quantization[END_REF], and, if d = 2, that of a "magnetic vortex" [START_REF] Jackiw | Dynamical symmetry of the magnetic vortex[END_REF][START_REF] Duval | Supersymmetry of the magnetic vortex[END_REF].

Galilean symmetry in hydrodynamics

Another example with Schrödinger symmetry involves hydrodynamics [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF][START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF][START_REF] Bazeia | Nonlinear realization of a dynamical Poincare symmetry by a field-dependent diffeomorphism[END_REF]. To shed a new light on the problem, we present our results in a way complementary to the geometric approach followed in the previous sections.

The two terms in the free Lagrangian, L 0 , are seen to scale in the same way when a = z -2, and then the entire expression scales by λ b+z-2 . However, the measure of integration scales as dtdx = λ -(d+z) dt * dx * , where dx = dx 1 . . . dx d . Invariance of the free Lagrangian density requires therefore b = d + (2 -z). Thus, for any dynamical exponent, z, the free Lagrangian density is scale-invariant, whenever

θ * (t, x) = λ z-2 θ(t * , x * ) (5.23) ρ * (t, x) = λ d-z+2 ρ(t * , x * ). (5.24) 
Which potential can be added? Restricting ourselves to the polytropic expression V (ρ) = cρ γ , we find V (ρ * ) = λ γ(d-z+2) V (ρ), and also V (ρ * ) = λ d+z V (ρ) to match the free case. Therefore, to preserve the symmetry with respect to (5.22), the polytropic exponent must be

γ = d + z d + 2 -z . (5.25) 
Conversely, to deal with a potential V (ρ) = cρ γ having dilations as symmetries requires to choosing the dynamical exponent as

z = γ(d + 2) -d γ + 1 . (5.26) 
In other words, the potential breaks to (5.26) the freedom of choosing z.

• For z = 2, in particular, when time is twice-dilated with respect to space,

t * = λ 2 t, x * = λ x (5.27)
we recover the known results [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF] θ * (t, x) = θ(t * , x * ) (5.28)

ρ * (t, x) = λ d ρ(t * , x * ) (5.29) γ = 1 + 2 d . (5.30) 

Expansions

Schrödinger expansions, viz.,

t * = t 1 -κt , x * = x 1 -κt (5.31) implemented as ρ * (t, x) = (1 -κt) -d ρ(t * , x * ) (5.32) θ * (t, x) = θ(t * , x * ) - κ x 2 2(1 -κt) (5.33) 
are readily seen to be symmetries for the free fluid system.

Let us attempt to generalize (5.31) as

t * = Ω t, x * = Ω α x (5.34)
and (5.32), (5.33) as

ρ * (t, x) = Ω δ ρ(t * , x * ) (5.35) θ * (t, x) = θ(t * , x * ) -β κ Ω γ x * 2 (5.36) 
where Ω = (1 -κt) -1 , and α, β, γ, δ are to be determined. Then the θ-part of the free Lagrangian transforms according to

∂ t θ * + 1 2 (∇θ * ) 2 = Ω 2 ∂ t * θ + 1 2 Ω 2α (∇ * θ) 2 +κ x * • ∇ * θ αΩ -2βΩ 2α+γ (5.37) +βκ 2 (x * ) 2 2βΩ 2α+2γ -(2α + γ)Ω γ+1 .
Getting a symmetry requires, therefore, α = 1, β = 1 2 , γ = -1, and δ = d, leading to the above expressions (5.32), and (5.33). This is, hence, the only case allowed by the expansion-symmetry in fluid mechanics.

On the other hand, dilations and Schrödinger expansions generate, along with time translations, the (neutral component of the) group SO(2, 1), only when the dynamical exponent is z = 2. The only consistent way to combine dilations and expansions is, hence, when the system carries a full Schrödinger symmetry [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF][START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF].

Conserved quantities

Noether's theorem associates conserved quantities to symmetries. In the present field-theoretic context, it goes as follows. Let φ be any field. An infinitesimal transformation, δφ, is a symmetry if it changes the Lagrange density by a "surface term", δL = ∂ a C a , for some quantities C a . Then

J a = δL δ(∂ a φ) δφ -C a (5.38) is a conserved current, ∂ α J α = 0, so that the integral Q = t=t 0 dx δL δ(∂ t φ) δφ -C t (5.39)
is a constant of the motion, i.e., is independent of t 0 .

Returning to the Schrödinger case, and using the Noether theorem one finds the conserved quantities,

P = dx ρ ∇θ Linear momentum G = dx ρ x -∇θ t Galilean boosts J = dx ρ x ∧ ∇θ Angular momentum H = dx 1 2 ρ(∇θ) 2 + V (ρ) Energy K = -t 2 H + 2tD + 1 2 dx ρ x 2 Schrödinger expansion D = tH - 1 2 dx ρ (x • ∇θ), Schrödinger dilation M = dx ρ Mass (5.40)
where we have also added the total Galilean mass. Under (suitably defined) Poisson brackets, we get the generators of the one-parameter centrally extended Schrödinger algebra [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF].

In conclusion, the free system admits, for any z = 2, the expansion-less and dilations-only Lie subalgebra of sch z (d) as a Lie algebra of symmetries. It possesses the full Schrödinger Lie algebra of symmetries (including expansions) when z = 2.

The symmetry is preserved when the polytropic exponent is chosen suitably, namely as in (5.30).

Accelerations

It is worth mentioning that accelerations,

t * = t, x * = x - 1 2 at 2 , (5.41) 
implemented as

θ * (t, x) = θ(t * , x * ) + (a • x * )t * , ρ * (t, x) = ρ(t * , x * ) (5.42)
change the Lagrangian as,

ρ * ∂ t θ * + 1 2 (∇θ * ) 2 = ρ ∂ t * θ + 1 2 (∇ * θ) 2 + ρ a • x * - 1 2 a 2 t * 2 . (5.43)
The extra term, here, is not a total divergence. Accelerations are, therefore, not symmetries for the fluid equations. In fact, they carry the system into an accelerated one [START_REF] Fouxon | CFT Hydrodynamics: symmetries, exact solutions and gravity[END_REF][START_REF] Horváthy | Non-relativistic conformal symmetries in fluid mechanics[END_REF]. This is consistent with the fact that CGA-type symmetries require masslessness, while fluid mechanics has nonzero mass; see (5.40).

Time-dilations: z = ∞

Recall that the free system has actually an SO(d + 1, 2) dynamical relativistic conformal symmetry -see [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF] -, which is broken to its Poincaré subgroup in d + 1 dimensions in the Chaplygin case [START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF][START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF][START_REF] Bazeia | Nonlinear realization of a dynamical Poincare symmetry by a field-dependent diffeomorphism[END_REF], 

V (ρ) = c ρ . ( 5 
ρ * (t, x) = λ -1 ρ(t * , x * ) (5.47)
they provide a symmetry for the free system: indeed, L → λL is compensated for by the transformation law dtdx = λ -1 dt * dx * . Space dilations and expansions are broken. Moreover, the only potential consistent with (5.45) is (5.44), that of the Chaplygin gas [START_REF] Bazeia | Nonlinear realization of a dynamical Poincare symmetry by a field-dependent diffeomorphism[END_REF][START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF][START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF].

Time dilations (5.45) act infinitesimally on the fields according to

δρ = -ρ + t ∂ t ρ, δθ = θ + t ∂ t θ. (5.48) 
We find δL = ∂ t (tL), so that the conserved quantity (5.39) associated with (5.45), found by the Noether theorem, is therefore

∆ = tH -dx ρ θ (5.49)
where H is the energy in (5.40), with V (ρ) as in (5.44). The conservation of (5.49) can also be checked directly, using the equations of motion.

Galilean massless particles

Concerning the second, "Conformal Galilean (CGA)-type" symmetries, the situation is more subtle. The natural candidates are the massless Galilean systems, studied by Souriau forty years ago [START_REF] Souriau | Structure des systèmes dynamiques[END_REF]. In geometrical optics, a classical "light ray" can, in fact, be identified with an oriented straight line, D, in Euclidean space R 3 . Such a line is characterized by an arbitrary point x ∈ D, and its direction, i.e., a unit vector, u, along D. The manifold of light rays is readily identified with the (co)tangent bundle T S 2 endowed with its canonical symplectic structure, or a twisted symplectic structure if spin is admitted. This model is based on the Euclidean group. There exists, indeed, a Galilean version of Euclidean "spinoptics". The homogeneous symplectic manifolds of the Galilei group to consider are "massless", i.e., defined by the invariants m = 0, s = 0, and k > 0, a new Galilei-invariant [START_REF] Souriau | Structure des systèmes dynamiques[END_REF][START_REF] Guillemin | Symplectic techniques in physics[END_REF].

A natural "evolution space" for these massless models is V = R × R 3 × R × S 2 described by the quadruples y = (t, x, E, u) and endowed with the closed two-form

σ = k du A ∧ dx A -dE ∧ dt - s 2 ǫ ABC u A du B ∧ du C (5.50)
where the constants k > 0, and s, are the color and the spin, respectively. 17The motions of these massless particles, e.g., the classical "light rays", identified with the characteristic curves of the two-form (5.50), project onto spacetime as oriented lightlike straight worldlines directed along u, viz., ṫ = 0, ẋ = u, Ė = 0, u = 0 (5.51)

where we have chosen the parameter τ as the arc-length along the straight line D. Such a "motion" is instantaneous, t = const. (5.52) and, hence, projects as a lightlike geodesic (4.3) of flat Newton-Cartan spacetime (massless particles have "infinite speed"). By the very construction of the model, the Galilei Lie algebra, gal(3), see (4.15), acts in a Hamiltonian way (5.6) on the evolution space V according to

X = ε ∂ ∂t + (ω A B x B + β A t + γ A ) ∂ ∂x A + ku A β A ∂ ∂E + ω A B u B ∂ ∂u A , (5.53) 
where ω ∈ so(3), β, γ ∈ R 3 , and ε ∈ R.

Using the definition (5.12) of the Hamiltonian, J e X , of this action, we find the associated conserved quantities, namely Let us emphasize that the time-dependent Galilei boost, G, is a constant of the "motion", since the latter takes place at constant time, cf. (5.52). Under the Poisson bracket defined by the induced symplectic two-form Ω = k du A ∧dq A -dE ∧dt, where q = -u × (u × x), on the space of motions U = T S 2 × T R, the components (5.54) of the moment map close into the centerless Galilei group. In particular, translations and Galilean boosts commute: our "photon" is massless. Curiously, the energy, E, remains arbitrary, and determined by the initial conditions.

P = ku

What about our conformal extensions? Are they symmetries? For the trajectories, the answer is positive: the lightlike "instantaneous" geodesics are permuted by construction, see Section 4.3.

Concerning the dynamics, the answer is more subtle though: for any finite dynamical exponent z, none of the additional geometric symmetries leaves the dynamics invariant. Consider, for example, a dilation: while x → e λ x, the unit vector, u, cannot be dilated, u → u. Therefore, a "photon" of color k is carried into one with color ke -λ (which, in empty space, follows the same trajectories).

There is, however, a way to escape this obstruction: it is enough . . . not to dilate x! To see this, consider first the spinless "Fermat" case. Then the evolution space can be viewed as the submanifold V ⊂ T * M of the cotangent bundle of spacetime M = R × R 3 defined by the equation γ ab p a p b -k 2 = 0.

(5.55)

Its presymplectic two-form, given by Equation (5.50) with s = 0, is just σ = d̟, where ̟ = p a dx a is the restriction to V of the canonical one-form of T * M. Recall that a vector field, X, on space-time is canonically lifted to T * M as

X = X a ∂ ∂x a -p b ∂X b ∂x a ∂ ∂p a . (5.56) 
One easily sees that this lift is tangent to the submanifold V, cf. (5.55), iff one has identically X(γ ab p a p b -k 2 ) = (L X γ) ab p a p b = 0, i.e., iff the vector field X leaves γ invariant, viz., 18L X γ = 0 (5.57) which is the Galilei-conformal condition (3.8) with m = 1 and n = 0; the dynamical exponent is therefore z = ∞.

In the flat case under study, the general solution of Equation (5.57) is given by (3.14), i.e., by

X = ξ(t) ∂ ∂t + ω A B (t)x B + η A (t) ∂ ∂x A (5.58)
where ω(t) ∈ so(3), η(t), and ξ(t) depend arbitrarily on time. At last, the maximal Hamiltonian symmetries of the "Fermat" particle model constitute the Lie algebra cgal ∞ (3), i.e., an infinite-dimensional conformal extension of the (centerless) Galilei group.

Let us compute the explicit form of the canonical lift, X, of X ∈ cgal ∞ (3) to V. Using Equation (5.56), we end up with

X = ξ(t) ∂ ∂t + ω A B (t)x B + η A (t) ∂ ∂x A + k(ω ′ AB (t)u A x B + η ′ A (t)u A ) -ξ ′ (t)E ∂ ∂E (5.59)
+ω A B (t)u B ∂ ∂u A with the same notation as before. As previously mentioned, the cgal ∞ (3)-action on V is Hamiltonian if s = 0. Using Equation (5.6), one finds the conserved Hamiltonian

J e X = (x × ku) • ω(t) + ku • η(t) -ξ(t)E. (5.60) 
What about spin? One easily checks that, in the case s = 0, the presymplectic two-form (5.50) is no longer cgal ∞ (3)-invariant. In fact, elementary calculation shows that any X ∈ cgal ∞ (3) such that L e X σ = 0 is of the form (5.58) with ω ′ (t) = 0.

(5.61) Thus, in the general case of massless, spinning Galilean particles, the associated constants of the "motion" retain the final form

J e X = (x × ku + su) • ω + ku • η(t) -ξ(t)E (5.62)
with ω ∈ so(3), η(t), and ξ(t) remaining arbitrary functions of time. Note that the conservation of these quantities is related to the fact that the "motions" are instantaneous (5.52).

In conclusion, Souriau's "classical photon" admits an infinite-dimensional conformal extension of the (centerless) Galilei group; see (5.54).

Let us mention, for completeness, another type of massless Galilean particle, introduced by Stichel and Zakrzewski [START_REF] Stichel | Nonrelativistic Dark-Energy Fluid in a Baby Universe[END_REF]. It is described by an extended phase space and, unlike Souriau's photon, has finite velocity. It realizes dynamically the Conformal Galilean (CG) symmetry.

Galilean Electromagnetism

Le Bellac and Lévy-Leblond (LBLL) [START_REF] Bellac | Galilean Electromagnetism[END_REF] have discovered, in the early seventies, a full-fledged theory of non-relativistic electromagnetism. They have, actually, highlighted the existence of two quite distinct Galilean electromagnetisms, namely a magnetic-like and an electric-like theory that stem from different non-relativistic limits of Maxwell's theory. The LBLL theories have been, since then, cast into the geometric structure of NC-spacetime [START_REF] Künzle | Covariant Newtonian limit of Lorentz space-times[END_REF]. They have, likewise, been formulated in the "null Kaluza-Klein" (or Bargmann) framework of non-relativistic spacetime [START_REF] Duval | Celestial Mechanics, Conformal Structures and Gravitational Waves[END_REF].

Let us, here, confine considerations to the magnetic-like LBLL theory along the lines of [START_REF] Künzle | Covariant Newtonian limit of Lorentz space-times[END_REF]. Given a (d+1)-dimensional NC-spacetime structure (M, γ, θ, Γ), it is described by the following couple of PDE, namely dF = 0 (5.63) divF = J (5.64) involving a two-form, F = 1 2 F ab dx a ∧ dx b , of M interpreted as the electromagnetic field, and a one-form, J, the current density of the sources. In Equation (5.64), one must read divF c = γ ab ∇ a F bc (5.65) for all c = 0, . . . , d.

Note that d = 3 in the original formulation of LBLL theory where equations (5.63), and (5.64) retain the form

∇ • B = 0, ∇ × E + ∂B ∂t = 0 and ∇ • E = ̺, ∇ × B = j
respectively, once we posit E A = F A0 , and B A = 1 2 ǫ ABC F BC , for the components of the electromagnetic field, as well as ̺ = J 0 , and j A = J A for the those of the current density, with A = 1, 2, 3.

Notice the absence of the displacement current in Ampère's law: its presence would, clearly, break the Galilean symmetry (Maxwell's equations are relativistic).

Let us show that, much in the same way as Maxwell's sourcefree electromagnetism, the maximal symmetries of the sourcefree LBLL magnetic theory are actually richer than those expected from the original spacetime structure. More specifically, let us look at all conformal Galilei transformations that preserve the LBLL Equations (5.63) and (5.64), with J = 0. We will thus seek the maximal Lie

Conclusion

In this paper, we have presented a systematic way to derive all types of "nonrelativistic conformal transformations" of spacetime M. Due to the degeneracy of the Galilei "metric" (γ, θ), and to the relative independence of Newton-Cartan connections, Γ, there are quite a large number of candidates.

Firstly, the conformal transformations of the "metric" structure alone, (3.1), yield the conformal Galilei Lie algebra cgal(M, γ, θ). In the flat case, and in d space dimensions, it is the infinite-dimensional Lie algebra (3.5). Fixing the dynamical exponent, z, via the geometric definition (3.8), yields a family of (still infinitedimensional) Lie subalgebras, cgal z (d). For z = 2, we get the Schrödinger-Virasoro Lie algebra (3.11) of Henkel et al. [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF][START_REF] Henkel | Phenomenology of local scale invariance: from conformal invariance to dynamical scaling[END_REF][START_REF] Henkel | The Poincaré algebra in the context of ageing systems: Lie structure, representations, Appell systems and coherent states[END_REF], and for z = ∞ we get cgal ∞ (d) in (3.14).

Secondly, the Newton-Cartan structure also involves the choice of a connection, which allows us to consider the symmetries of the equations of geodesics, identified with worldlines of test particles.

-The conformal Galilei transformations which permute geodesics, which are generically timelike, are, in fact, Schrödinger transformations. Those with dynamical exponent z = 2 constitute the Schrödinger Lie algebra, sch(d), see (4.21), in the case of flat NC-spacetime.

-Those which exchange lightlike geodesics have a richer structure, though. The resulting infinite-dimensional algebra, cnc(d), is given by (4.45) in the flat case. There is no a priori restriction on the dynamical exponent, z. The infinitedimensional Lie algebra cnc(d) admits a finite-dimensional Lie subalgebra, cmil(d) -related to a flat NC-Milne structure -featuring independent space and time dilations, as well as new "acceleration" generators; see (4.65). The Lie subalgebras associated with a dynamical exponent, z, are respectively (i) the Schrödinger algebra, for z = 2, and (ii) the CGA (1.3) of Henkel [START_REF] Henkel | Schrödinger invariance and strongly anisotropic critical systems[END_REF] and Lukierski et al. [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF], for z = 1. The infinite-dimensional Lie algebra cnc ∞ (d) completes our classification.

Our geometric-algebraic framework, dealing with vector fields on NC-spacetime, leaves no place to central extensions; the latter only arise when conserved quantities -or (pre)quantization -of concrete physical systems are considered.

All these symmetries were derived by considering as fundamental the NCstructure of non-relativistic spacetime. What about concrete physical systems? In Section 5 we study two such systems. Souriau's (pre)symplectic framework [START_REF] Souriau | Structure des systèmes dynamiques[END_REF] allows us to present them in a unified manner.

The dynamics of physical systems reduce further the geometric symmetries to some of their subgroups. This is understood if we think of free fall: massive particles fall in the same way, independently of their respective masses. The trajectory of a particle can be carried therefore into another one by a geometric transformation.

However, such a transformation can change the mass -so it is not necessarily a symmetry of the dynamical system.

Firstly, for a massive Galilean particle with spin, we recover the well-known Schrödinger symmetry associated with sch(3).

Secondly, the hydrodynamics of irrotational fluids turns out to provide a special instance of a classical field theory invariant under the Schrödinger Lie algebra, sch(d), yielding new conserved quantities, apart from the standard Galilean constants of the motion.

As to the GCA-type symmetries, they require to have no mass [START_REF] Lukierski | Exotic Galilean conformal symmetry and its dynamical realizations[END_REF]. The natural candidates are, therefore, Souriau's "Galilean photons" [START_REF] Souriau | Structure des systèmes dynamiques[END_REF], which are associated with the coadjoint orbits of the (centerless) Galilei group. These "particles" have an "instantaneous motion" -they have "infinite velocity". They can carry spin, generalizing "spinless light", described by the Fermat principle [START_REF] Souriau | Structure des systèmes dynamiques[END_REF][START_REF] Duval | Geometrical Spinoptics and the Optical Hall Effect[END_REF].

Can one take such models seriously? The answer is positive since they can be obtained as suitable non-relativistic limits of relativistic massless particles, i.e., those associated with the mass zero coadjoint orbits of the Poincaré group [START_REF] Souriau | Structure des systèmes dynamiques[END_REF]. Even more importantly, the model of "Galilean photon" (s = ± ) is a trivial extension of the Euclidean model presented in [START_REF] Duval | Geometrical Spinoptics and the Optical Hall Effect[END_REF], which has been used to explain the recently observed spin-Hall effect for light [START_REF] Bliokh | Topological spin transport of photons: the optical Magnus effect and Berry Phase[END_REF].

Let us emphasize that Souriau's model of massless Galilean particles carry an infinite-dimensional Lie algebra of symmetries, namely cgal ∞ (3).

As a provisionally last illustration of our formalism, we show that the maximal symmetry Lie algebra of the Le Bellac-Lévy-Leblond equations of (magnetic-like) Galilean electromagnetism in vacuum turns out to be the conformal NC-Milne algebra, i.e., cmil(d), in flat spacetime, with the CGA as a Lie subalgebra.

Let us also refer to [START_REF] Roger | A Hamiltonian action of the Schrödinger-Virasoro algebra on a space of periodic time-dependent Schrödinger operators in (1 + 1)-dimensions[END_REF] where the space of periodic time-dependent Schrödinger operators, in the case d = 1, has been shown to be naturally sv(1)-invariant.

Recently, a supersymmetric extension of the CGA has been found [START_REF] De Azcarraga | Galilean Superconformal Symmetries[END_REF].

Let us end our paper with some historical remarks, cf. [START_REF] Hosseiny | Affine Extension of Galilean Conformal Algebra in 2+1 Dimensions[END_REF].

The first person to consider the CGA seems to be Barut [START_REF] Barut | Conformal Group → Schrödinger Group → Dynamical Group -The Maximal Kinematical Group of the Massive Schrödinger Particle[END_REF], in 1973, who derived it by contraction from the relativistic conformal group. But then he discarded it, however, arguing that it is not a symmetry of the Schrödinger equation. In 1978, Havas and Plebański generalized both the Schrödinger and CG groups to an infinite-dimensional group [START_REF] Havas | Conformal extensions of the Galilei group and their relation to the Schrödinger group[END_REF].

Even more astonishingly, the Schrödinger symmetry has already be known to Jacobi [START_REF] Havas | Conformal extensions of the Galilei group and their relation to the Schrödinger group[END_REF]. In his 1842/43 lectures delivered at the University of Königsberg [START_REF] Jacobi | Vorlesungen über Dynamik[END_REF], he studied indeed the dynamics of a particle in a homogeneous potential, U, of degree k. Using a scaling argument reminiscent of the proof of the virial theorem (see, e.g., [START_REF] Duval | Celestial Mechanics, Conformal Structures and Gravitational Waves[END_REF]), he proved that 

  [START_REF] Duval | Supersymmetry of the magnetic vortex[END_REF] for all a, b, c = 0, 1, . . . , d, where f and g are functions of the time axis, T .We now determine the Lie algebra cmil(d) = cmil(R×R d , γ, θ, U Γ), in the special case of flat NC-Milne spacetime specified by Equations (2.1), where Γ c ab = U Γ c ab = 0 for all a, b, c = 0, 1, . . . , d, in a chosen inertial coordinate system -we have, in particular, U = ∂ 0 + U A ∂ A whereU A = const. (4.50) for all A = 1, . . . , d. Indeed, an ether in flat NC-spacetime is a solution, U, of the PDE (4.43) and (4.44) with F = 0. We get U A = ∂ A ψ and ∂ A (∂ 0 ψ+ 1 2 U B U B ) = 0. One can thus choose ψ to be a solution of the free Hamilton-Jacobi equation

  Those retain the form (4.65) where, in view of (4.54), and (4.60), Equation (4.16) writes 1 z ((1 -z)κt + (µ -zλ)) = 0. (4.66)• In the generic case, f ′ = 0, one ends up with

Pol 2 /

 2 N (d) ∼ = alt 2/N (d). (4.81) Note the special cases cgal Pol 2 (d) = sch 2 (d), and cgal Pol 1 (d) = cmil 1 (d) corresponding to N = 1, and N = 2 respectively.

  we get the Poisson bracket {F, G} = Ω αβ ∂ α F ∂ β G of two observables F , and G. (The Jacobi identity is equivalent to dΩ = 0.) Then Hamilton's equations read dx α dt = {H, x α } (5.1)

  E is, in modern terms, the conserved energy. Then he observed that for the inverse-square potential, k = -2, Equation (6.1) can be rewritten asd dt (mx • ẋ -2Et) = 0.Putting p = m ẋ, the quantityD = p • x -2Et(. But E, D, K are precisely the conserved quantities which stem, through the Noether theorem, from the conformal, O(2, 1), subgroup of the Schrödinger group, cf. (5.13).

  4.1.2 The Schrödinger Lie algebras, sch z , with dynamical exponent z Just as in Section 3.2, we define Schrödinger Lie algebra with dynamical exponent z as the Lie subalgebra sch

		f +	2 z	g = 0	(4.16)
	where z is given by (3.10). This entails, via Equation (4.6), that
	2 z	-1 g ′ (t) = 0.	(4.17)
	• We, hence, find			
		z = 2	(4.18)
	since g Schrödinger Lie algebra			
	sch(d) = sch 2 (d)	(4.19)
	for which			
		µ = 2λ.	(4.20)

z (M, γ, θ, Γ) ⊂ sch(M, γ, θ, Γ) defined by the supplementary condition (3.9), i.e., ′ = 0, generically. For the flat NC-structure, see

(4.14)

, this implies that time is dilated twice as much as space

[START_REF] Jackiw | Introducing scaling symmetry[END_REF]

, a specific property of the (centerless)

  , with the same notation as before. Equation (4.56) readily implies

	ω ′ AB (t) = 0	(4.58)
	while Equation (4.55) yields	

The physical realizations of the Schrödinger group, in spatial dimension d ≥ 3, admit one more parameter, associated with the mass. Adding it yields the extended Schrödinger group, which is the "non-relativistic conformal" extension of the one-parameter central extension of the Galilei group, called the Bargmann group. (See, e.g.,[33, 

[START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF][START_REF] Duval | Minimal Gravitational Coupling in the Newtonian Theory and the Covariant Schrödinger Equation[END_REF][START_REF] Duval | Galilean isometries[END_REF] for a geometrical account on the Bargmann group.) In the plane, d = 2, the Galilei group also has, apart from the previous one, a second, "exotic", central extension widely studied during the last decade[START_REF] Lévy-Leblond | Galilei group and galilean invariance[END_REF][START_REF] Lukierski | Galilean-invariant (2 + 1)dimensional models with a Chern-Simons-like term and d = 2 noncommutative geometry[END_REF][START_REF] Duval | The "Peierls substitution" and the exotic Galilei group[END_REF][START_REF] Horváthy | Galilean symmetry in noncommutative field theory[END_REF].

The central extensions of the CGA have been discussed in Refs.[1, 

3].

Round brackets denote symmetrization, and square ones will denote skew-symmetrization.

The condition ṫ = 0 is clearly a first-integral of Equation (4.1). Lightlike -or null -geodesics are, hence, spacelike; the origin of the terminology will be explained later, in Section 5.

Let us recall that the Lie derivative of a linear connection, Γ, along the vector field, X, is given by L X Γ c ab = ∂ a ∂ b X c in the flat case, and in a coordinate system where Γ c ab = 0.

The Schrödinger Lie algebra is the Lie algebra of a group of spacetime transformations that actually permute all geodesics, in particular lightlike geodesics.

The definition of these Lie algebras clearly involves constraints given by differential operators of higher order, which go, strictly speaking, beyond our formalism relying essentially on second order PDE associated with transport equations of NC-structures.

The form (5.2) of Hamilton's equations allows for a variational interpretation; see, e.g.,[START_REF] Souriau | Structure des systèmes dynamiques[END_REF][START_REF] Horváthy | Analogy between statics and dynamics -related to variational mechanics[END_REF][START_REF] Tuynman | Un principe variationnel pour les variétés symplectiques[END_REF].

One says that the two-form is presymplectic.

We have put ω A = -1 2 ǫ ABC ω BC for all A = 1, 2, 3.

The transformation (5.45) can be viewed as the limiting case, z → ∞, of z-dilation.

For s = 0 we get a "Fermat particle", i.e., "spinless light," described by the Fermat principle[START_REF] Souriau | Structure des systèmes dynamiques[END_REF][START_REF] Duval | Geometrical Spinoptics and the Optical Hall Effect[END_REF]. Quantization requires that s/ be a half-integer, and the color becomes k = 2π /λ, where λ is the wavelength[START_REF] Souriau | Structure des systèmes dynamiques[END_REF][START_REF] Guillemin | Symplectic techniques in physics[END_REF].

This construction is general, and can be extended to the case of any NC-structure[START_REF] Duval | Quelques procédures géométriques en dynamique des particules[END_REF].

Acknowledgement. We are greatly indebted to M. Henkel, J. Lukierski, P. Stichel, and S. Rouhani for useful correspondence.

The equations of motion of an isentropic and dissipationless fluid, in flat (d+1)dimensional non-relativistic spacetime, read [START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF] ∂ t ρ + ∇ • (ρ v) = 0, (5.16)

where ρ(t, x) is the density and v(t, x) the velocity field.

The enthalpy, V ′ (ρ), is related to the pressure, P , via ρV ′ (ρ) -V (ρ) = P . For simplicity, we focus our attention to the irrotational case, v = ∇θ, -where θ(t, x) is a potential for the velocity field -when the system can be derived from a variational principle using the Lagrangian

Varying L in (5.18) with respect to θ yields the continuity equation (5.16), and varying it with respect to ρ yields the Bernoulli equation

whose gradient is the Euler equation (5.17).

The system is plainly Galilei-invariant: a boost implemented by θ → θ * , and ρ → ρ * , where

leaves the Lagrangian (5.18) invariant. Routine calculation proves the invariance against space and time translations, as well as rotations [START_REF] Hassaïne | Field-dependent symmetries of a non-relativistic fluid model[END_REF][START_REF] Jackiw | Lectures on fluid dynamics. CRM series in mathematical Physics[END_REF], proving the full Galilean invariance of the model. Now we inquire about the conformal symmetries.

Scale invariance

• Consider a dilation with dynamical exponent, z, namely

and attempt to implement it as

where a and b have to be determined. algebra of Galilei conformal vector fields X of (M, γ, θ), i.e., satisfying (3.1), and such that

for all solutions, F , of the above sourcefree LBLL equations. Equation (5.66) is trivially satisfied (as a consequence of the general fact that the Lie and exterior derivatives commute). As to Equation (5.67), one finds

since L X γ ab = f γ ab , and γ ab ∇ a F bc = 0. This readily entails

for all c, k, ℓ = 0, . . . , d.

Utilizing Equation (4.28), giving the most general form of the variations of the NC-connection compatible with Galilei conformal rescalings, we will now put δΓ c ab = L X Γ c ab , and easily show that Equation (5.69) writes now

(5.70)

Taking traces, we readily deduce that γ ℓa ∂ a f = 0, hence that Equation (5.70) reads (f + g)F ab γ ka γ ℓb = 0.

(5.71)

On the one hand, we can have the case f + g = 0 (with z = 2) leading us to the Schrödinger Lie algebra, sch(M, γ, θ, Γ), for a general NC-structure.

On the other hand, considering a NC-Milne structure (M, γ, θ, U Γ), characterized by F = 0, already enables us to satisfy Equation (5.71), hence the full system (4.47)-(4.49) providing us with a higher-dimensional symmetry algebra.

We have just proved that the maximal Lie algebra of symmetries of the Le Bellac-Lévy-Leblond equations in vacuum is isomorphic to cmil(M, γ, θ, U Γ). In the flat case this is the Lie algebra cmil(d) -see (4.65) -, containing the CGA (1.3).