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Abstract

Non-relativistic conformal infinitesimal transformations are derived di-
rectly from the structure of Galilei spacetime. They form, as originally found
by Henkel et al., an infinite dimensional Virasoro-like Lie algebra. Its finite-
dimensional subalgebras are labeled by the “dynamical exponent” z = 2/q,
where q is some rational number. Viewed as projective Newton-Cartan sym-
metries, they yield, for timelike geodesics, the usual Schrödinger Lie algebra,
with z = 2. For lightlike geodesics, they yield the Conformal Galilean Al-
gebra of Lukierski, Stichel and Zakrzewski, with z = 1. The purpose of the
present article is to provide a unifying classification of the various confor-
mal infinitesimal symmetries of Newton-Cartan spacetime. Physical systems
which realize these symmetries include, e.g., classical systems of massive and
massless non-relativistic particles.
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1 Introduction

Non-relativistic conformal symmetries, which are attracting much present interest

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], are of two types.

Firstly, it has been recognized almost forty years ago [11, 13] that the free Schrö-

dinger equation of a massive particle has, beyond the obvious Galilean symmetry,

two more “conformal” symmetries. Those are generated by the “Schrödinger” dila-

tion

D = 2t
∂

∂t
+ xA ∂

∂xA
(1.1)

and expansion (or inversion)

K = t2
∂

∂t
+ txA ∂

∂xA
(1.2)
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spacetime vector fields, where the dummy index A runs from 1 to d, the dimension

of space.

Schrödinger dilations and expansions span, with time translations, E = ∂/∂t,

a Lie algebra isomorphic to so(2, 1). Adding dilations and expansions to the Galilei

group yields a two-parameter extension of the latter, dubbed as the [unextended]

Schrödinger group, Sch(d).1

Using the word “conformal” has been contested [1], hinting at its insufficiently

clear relation to some conformal structure. This criticism is only half-justified,

however. The Schrödinger symmetry has in fact been related to the Newton-Cartan

structure of non-relativistic spacetime [18, 19, 20, 21, 22], but this relation has

remained rather confidential.

A different point of view was put forward in Ref. [23], where it has been shown

that non-relativistic theories can be studied in a “Kaluza-Klein type” framework,

whereas the “non-relativistic conformal” transformations appear as those, genuine,

conformal transformations of a relativistic spacetime in one higher dimension, which

commute with translations in the “vertical” direction. The latter provides us, fur-

thermore, with the central extension required by the mass [24, 25]. See also [12].

Secondly, in [1, 2, 3, 8, 9, 10], however, attention has been directed to another,

less-known aspect. It has been shown, in fact, that a specific group contraction,

applied to the relativistic conformal group O(d+1, 2), provides, for vanishing mass,

m = 0, a second type of conformal extension of the Galilei group. Since group

contraction does not change the number of generators, the new extension, called the

Conformal Galilean Group has the same dimension as its relativistic counterpart.

Its Lie algebra, the Conformal Galilei Algebra is spelled as the CGA in the above-

mentioned reference. The CGA is spanned by the vector fields2

X =
(1

2
κt2 + λt+ ε

) ∂
∂t

+
(
ωA

B x
B + λxA + κtxA −

1

2
αAt2 + βAt+ γA

) ∂

∂xA
(1.3)

with ω ∈ so(3), α,β,γ ∈ R
3, and λ, κ, ε ∈ R. The new dilations and expan-

sions, associated with λ and κ; close, with time translations parametrized by ε, into

an so(2, 1) Lie subalgebra [1, 2, 3, 8], acting differently from that of the Schrödinger

case: unlike the “Schrödinger” one, (1.1), the CGA dilation in (1.3) dilates space

and time at the same rate. The vector α generates “accelerations” [1].

1 The physical realizations of the Schrödinger group, in spatial dimension d ≥ 3, admit one more
parameter, associated with the mass. Adding it yields the extended Schrödinger group, which is the
“non-relativistic conformal” extension of the one-parameter central extension of the Galilei group,
called the Bargmann group. In the plane, d = 2, the Galilei group also has a second, “exotic”,
central extension, widely studied during the last decade [14, 15, 16, 17].

2The central extensions of the CGA have been discussed in Refs. [1, 3].
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The Lie algebra (1.3) can be further generalized [2, 3, 8], in terms of infinitesimal

“time redefinition” and time-dependent translations,

X = h(t)
∂

∂t
+

(
h′(t)xA + βA(t)

) ∂

∂xA
(1.4)

where h, and β are arbitrary functions of time. The new expansions and accelera-

tions are plainly recovered choosing h(t) = 1
2
κ t2 and β(t) = −1

2
α t2, respectively.

Promoting the infinitesimal rotations, X = ωA
B(t)xB∂A, to be also time-dependent

yields an infinite dimensional conformal extension of the CGA.

The purpose of the present paper, a sequel and natural extension of earlier

work devoted to Galilean isometries [22], is to trace back all these “conformal”

symmetries to the structure of non-relativistic spacetime.

Our clue is to define non-relativistic conformal transformations in the frame-

work of Newton-Cartan spacetime [26, 27, 29, 30], ideally suited to deal with those

symmetries in a purely geometric way.

Both the Schrödinger and Conformal Galilean transformations turn out to be

special cases, related to our choice of the relative strength of space and time dilations,

characterized by a dynamical exponent [2, 3].

Our paper is organized as follows. After reviewing the Newton-Cartan struc-

tures — the structure of non-relativistic spacetime — we define Galilei conformal

transformations. They only concern the (singular) “metric”, γ, and the “clock”, rep-

resented by a one-form θ. Their symmetries form infinite dimensional Virasoro-like

Lie algebras.

Newton-Cartan structures also involve a connection, Γ, which is not entirely

determined by the previous structures. Preserving the geodesic equations adds, for

timelike curves, extra conditions, reducing the symmetry to that of Schrödinger

for timelike geodesics. We get, in turn, for lightlike geodesics, novel conformal

extensions of the [unextended] Galilei group. For rational dynamical exponent, we

get finite-dimensional Lie algebras of the CGA type.

The general theory is illustrated on two examples, namely on Galilean massive

and massless non-relativistic particle models.

2 Newton-Cartan structures

Recall that a Newton-Cartan (NC) spacetime structure, (M, γ, θ,Γ), consists of a

smooth, connected, (d + 1)-dimensional manifold M , a twice-contravariant semi-

positive symmetric tensor field γ = γab ∂a ⊗ ∂b (where a, b = 0, 1, . . . , d) whose
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kernel is spanned by the time one-form θ = θadx
a. Also Γ is a Galilei connection,

i.e., a symmetric linear connection compatible with γ and θ [26, 18, 22, 29, 30, 33].

Now, in contradistinction to the relativistic framework, such a connection is not

uniquely determined by the Galilei spacetime structure (M, γ, θ). Therefore, in

order to reduce the ambiguity, one usually introduces NC-connection as Galilei con-

nections subject to the nontrivial symmetry of the curvature: R b d
a c = R d b

c a (where

R b d
a c ≡ γbk R d

akc ); the latter may be thought of as part of the covariant Newtonian

gravitational field equations [27, 29, 28, 30]. Under mild geometric conditions, the

quotient T = M/ ker(θ) is a well-behaved one-dimensional manifold, either compact

or non-compact, interpreted as the time axis endowed with the closed one-form θ,

interpreted as the Galilei clock. The tensor field γ then defines a Riemannian metric

on each of the (spacelike) fibers of the projection M → T .

The standard example of a NC-structure is given by M ⊂ R×R
d together with

γ = δAB∂A ⊗ ∂B (where A,B = 1, . . . , d), and θ = dx0; the nonzero components

of the connection, ΓA
00 = ∂AV , host the Newtonian scalar potential, V . The above

coordinate system (x0, . . . , xd) will be called Galilean.

The flat NC-structure corresponds to the trivial subcase where M = R × R
d,

and

γab = δa
Aδ

b
B δ

AB, θa = δ0
a, Γc

ab = 0 (2.1)

for all a, b, c = 0, . . . , d. Such a coordinate system will be called (NC-)inertial.

Since we will be dealing with “conformal” Galilean spacetime transformations

that preserve the directions of the Galilei structure, we must bear in mind that the

transformation law of the NC-connection, Γ, will have to be specified independently

of that of the Galilei “metric” (γ, θ), which is clearly due to the fact that there are

extra degrees of freedom associated with NC-connections. Let us, hence, describe

the precise geometric content of NC-connections.

It has been shown [29] that any NC-connection can be decomposed according

to3

Γc
ab = UΓc

ab + θ(aFb)kγ
kc (2.2)

where [39]
UΓ

c

ab = γck
(
∂(a

Uγb)k −
1

2
∂k

Uγab

)
+ ∂(aθb) U

c (2.3)

is the unique NC-connection for which the unit spacetime vector field U (i.e., such

that θaU
a = 1) is geodesic and curlfree, F being an otherwise arbitrary closed two-

form. Here Uγ is the symmetric, twice-covariant, tensor field uniquely determined

3Round brackets denote symmetrization.
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by Uγakγ
kb = δb

a − U bθa and UγakU
k = 0. From a mechanical standpoint, the above

two-form, F , of M encodes Coriolis-like accelerations relatively to the observer U .

For example, if M ⊂ R× R
3, the constant, future-pointing, vector field U = ∂0

will represent the four-velocity of an observer. Now, F being closed, one has, locally,

F = dA for some one-form A, e.g., A = −V (t,x)dt+ ω(t)BC x
BdxC , where V (t,x)

is the Newtonian (plus centrifugal) potential, and ω(t) ∈ so(3) the time-dependent

angular velocity of the observer relatively to the Galilei frame associated with the

coordinates t = x0, and x = (x1, x2, x3). Anticipating the introduction of the

equations of free fall, we check that the equations of NC-geodesics (4.1) with the

choice of time, t, as an affine parameter, yield, with the help of (2.2), the familiar

equations

ẗ = 0, ẍ = −grad(V ) + ω̇ × x + 2ω × ẋ (2.4)

governing the motion of a massive particle in a rotating Galilei coordinate system.4

We have thus seen that, in view of (2.2), we can usefully parametrize NC-

connections, Γ, by the above pairs (U, F ).

Let us mention [29, 30] that for a given, fixed, Galilei structure (γ, θ), the

pair (U ′, F ′) defines the same NC-connection, Γ, as (U, F ) does iff both are gauge-

related by the so-called Milne boosts5

U ′ = U + γ(Ψ), F ′ = F + dΦ (2.5)

where Ψ = Ψadx
a is an arbitrary one-form of M , which may be interpreted as a

boost, and Φ = Φadx
a is such that

Φa = Ψa −
(
ΨbU

b +
1

2
γbcΨbΨc

)
θa. (2.6)

The infinitesimal versions of the preceding gauge transformations read, accordingly,

δU = γ(ψ), δF = dφ (2.7)

where ψ is an arbitrary one-form of M (an infinitesimal boost), and

φ = Uγ(δU). (2.8)

One readily checks that, indeed, δΓ = 0.

4The non-trivial components of the NC-connection (2.2) read, in this case, ΓA
00 = ∂AV − ω̇A

B
xB,

and ΓA
B0 = −ωA

B
, for all A, B = 1, 2, 3.

5See [21, 22]. This special feature of NC-connections will play a central rôle in the definition of
(lightlike) NC-conformal transformations; see Section 4.3 below.

6



3 Galilei-conformal transformations, Schrödinger-

Virasoro Lie algebra

3.1 General definition of Galilei conformal transformations

In close relationship to the Lorentzian framework, we will call Galilei-conformal

transformation of (M, γ, θ) any diffeomorphism of M that preserves the direction

of γ. In view of the fundamental constraint γabθb = 0, it follows that Galilei-

conformal transformation automatically preserve the direction of the time one-

form θ.

In terms of infinitesimal transformations, a Galilei-conformal vector field of

(M, γ, θ) is a vector field, X, of M that Lie-transports the direction of γ; we will

thus define X ∈ cgal(M, γ, θ) iff

LXγ = fγ hence LXθ = g θ (3.1)

for some smooth functions f, g of M , depending on X. Then, cgal(M, γ, θ) becomes

a Lie algebra whose bracket is the Lie bracket of vector fields.

The one-form being parallel transported by the NC-connection, one has dθ = 0;

this yields dg ∧ θ = 0, implying that g is (the pull-back of) a smooth function on T ,

i.e., that g is an arbitrary function of t = x0, which locally parametrizes the time

axis.

Let us work out the expression of the generators of the Galilei conformal Lie

algebra, cgal(d) = cgal(R × R
d, γ, θ) of the flat NC-structure (2.1). Those are the

vector fields, X = X0∂0 +XA∂A, solutions of (3.1), namely such that6

∂AXB + ∂BXA = −f δAB (3.2)

∂AX
0 = 0 (3.3)

∂0X
0 = g (3.4)

for all A,B = 1, . . . , d. We readily find that X ∈ cgal(d) iff7

X = h(t)
∂

∂t
+

(
ωA

B(t)xB + βA(t) + κA(t)xBx
B − 2xAκB(t)xB + χ(t)xA

) ∂

∂xA
(3.5)

where ω ∈ so(d), β, κ, χ, and h = X0 are arbitrary functions of time, t; those

are clearly interpreted as infinitesimal rotations, space translations, expansions (or

inversions), dilations, and time reparametrization.

6Let us recall the general expressions of the Lie derivatives of γ and θ along the vector field
X = Xa∂a of M , namely LXγab = Xc∂cγ

ab − 2∂cX
(aγb)c, and LXθa = ∂a(θbX

b).
7We will assume d > 1.

7



We note, en passant, that the cgal(d)-generators (3.5) project as vector fields

of the time axis; therefore, there exists a canonical Lie algebra homomorphism:

cgal(d) → Vect(R) given by X 7→ h(t)∂t, onto the Lie algebra of vector fields

of T ∼= R, i.e., the (centerless) Virasoro Lie algebra.

3.2 Galilei conformal transformations with dynamical ex-

ponent z

One can, at this stage, try and seek non-relativistic avatars of general relativistic

infinitesimal conformal transformations. Given a Lorentzian (ore, more generally,

a pseudo-Riemannian) manifold (M, g), the latter Lie algebra is generated by the

vector fields, X, of M such that

LX(g−1 ⊗ g) = 0 (3.6)

where g−1 denotes the inverse of the metric g : TM → T ∗M .

It has been shown [31] that one can expand a Lorentz metric in terms of the small

parameter 1/c2, where c stands for the speed of light, as g = c2θ⊗ θ− Uγ +O(c−2),

and g−1 = −γ + c−2U ⊗ U + O(c−4), with the same notation as before. Then, a

non-relativistic limit of Equation (3.6) would be LX limc→∞(c−2 g−1 ⊗ g) = 0, that

is

LX(γ ⊗ θ ⊗ θ) = 0. (3.7)

This is merely one of the possibilities at hand in our formalism. In fact, having at

our disposal a Galilei structure on M , we will introduce, instead of (3.7), a more

flexible condition. Indeed, owing to the degeneracy of the Galilei “metric” (γ, θ), we

will deal with the following condition, viz.,

LX(γ⊗m ⊗ θ⊗n) = 0 (3.8)

for some m = 1, 2, 3, . . ., and n = 0, 1, 2, . . ., to be further imposed on the vector

fields X ∈ cgal(M, γ, θ). This is equivalent to Equation (3.1) together with the extra

condition

f + q g = 0 where q =
n

m
. (3.9)

Indeed, LX(γ⊗m ⊗ θ⊗n) = 0 implies LXγ = fγ and LXθ = g θ for some functions f

and g of M such that mf+ng = 0. Equation (3.7) plainly corresponds to the special

case m = 1, n = 2. From now on, we will call dynamical exponent the quantity

z =
2

q
(3.10)
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where q is as in (3.9). This quantity will be shown to match the ordinary notion of

dynamical exponent; see, e.g., [32, 2].

We will, hence, introduce the Galilean avatars, cgalz(M, γ, θ), of the Lie al-

gebra so(d + 1, 2) of conformal vector fields of a pseudo-Riemannian structure of

signature (d, 1) as the Lie algebras spanned by the vector fields X of M satisfying

the conditions (3.8) — or (3.9). We will call cgalz(M, γ, θ) the conformal Galilei Lie

algebra with dynamical exponent z (see (3.10)).

The Lie algebra

sv(M, γ, θ) = cgal2(M, γ, θ) (3.11)

is the obvious curved case generalization of the Schrödinger-Virasoro Lie algebra

sv(d) = sv(R × R
d, γ, θ) introduced in [32] (see also [2]) from a different viewpoint

in the case of a flat NC-structure. The representations of the Schrödinger-Virasoro

group and of its Lie algebra, sv(d), as well as the deformations of the latter have

been thoroughly studied and investigated in [34].

An easy calculation using (3.2), (3.4), the new constraint (3.9) and (3.10) shows

that X ∈ cgalz(d) iff

X = z h(t)
∂

∂t
+

(
ωA

B(t)xB + βA(t) + h′(t)xA
) ∂

∂xA
, (3.12)

where ω ∈ so(d), β, and h are arbitrary, smooth, functions of T . Equation (3.12)

generalizes (1.4) from z = 1 to any z.

The Lie algebra cgal∞(M, γ, θ) corresponding to the case q = 0 is interesting

(see below, Section 5.2)). We have, indeed, X ∈ cgal∞(M, γ, θ) iff

LXγ = 0. (3.13)

In the case of a flat NC-structure, cgal∞(d) = cgal∞(R×R
d, γ, θ) is spanned by the

vector fields

X = h(t)
∂

∂t
+

(
ωA

B(t)xB + βA(t)
) ∂

∂xA
(3.14)

where ω ∈ so(d), β, and h are arbitrary, smooth, functions of T .

4 Newton-Cartan conformal transformations

4.1 Transformation law of NC-connections under Galilei-

conformal rescalings

As previously emphasized, NC-connections are quite independent geometric objects;

they, hence, deserve a special treatment. The idea pervading earlier work [18, 20, 22]
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on non-relativistic symmetries is that specifying explicitly the transformation law

of the NC-connection is mandatory in a number of cases, e.g., those relevant to

geometric mechanics and non-relativistic physical theories.

We will, henceforth, focus attention on the notion of Newtonian geodesic;

more particularly, we will insist that the above-mentioned Galilean conformal trans-

formations should, in addition, permute the NC-geodesics.

The geodesics of a NC-structure (M, γ, θ,Γ) are plainly geodesics of (M,Γ), i.e.,

the solutions of the differential equations

ẍc + Γc
ab ẋ

aẋb = µ ẋc (4.1)

for all c = 0, . . . , d, where µ is some smooth function of TM ; here, we have put

ẋa = dxa/dτ where τ is an otherwise arbitrary curve-parameter.

Let us remind that Equation (4.1) models free fall in NC theory [26, 27, 29],

just as it does in general relativity. By putting ṫ = θaẋ
a, we characterize8

timelike geodesics by: ṫ 6= 0, (4.2)

lightlike geodesics by: ṫ = 0. (4.3)

We recall that spacetime transformations which permute the geodesics of (M,Γ),

i.e., preserve the form of the geodesic equation (4.1), are projective transformations;

they form the projective group of the affine structure. Infinitesimal projective trans-

formations generate a Lie algebra which, hence, consists of vector fields, X, of M

satisfying

LXΓc
ab = δc

aϕb + δc
bϕa (4.4)

for a certain one-form ϕ = ϕadx
a of M depending on X.

The rest of the article will be devoted to the specialization of projective trans-

formations to the specific case of timelike (4.2) and lightlike (4.3) NC-geodesics.

Let us now work out the general form of the variation, δΓ, of a NC-connection, Γ,

under infinitesimal conformal rescalings of the Galilei structure (γ, θ) of M , namely

δγ = fγ hence δθ = g θ (4.5)

where f is an arbitrary function of M , and g an arbitrary function of T (compare

Equation (3.1)). We will furthermore put, in full generality,

δU = −gU + γ(ψ) (4.6)

8The condition ṫ = 0 is clearly a first-integral of Equation (4.1). Lightlike geodesics are, hence,
spacelike; the origin of the terminology will be explained later, in Section 5.
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in order to comply with the constraint θaU
a = 1, where ψ is an arbitrary one-form

of M interpreted as an infinitesimal Milne boost (cf. (2.7)).

Starting from (2.2), we get δΓc
ab = (δUΓ)c

ab+δθ(aFb)kγ
ck+θ(aδFb)kγ

ck+θ(aFb)kδγ
ck.

Then, using (4.5) and (4.6) applied to the expression (2.3) of the NC-connection UΓ,

we find δ(UΓ)c
ab = −δc

(a∂b)f + U cθ(a∂b)(f + g) + 1
2

(
γck∂kf

)
Uγab − θ(adφb)kγ

ck, where

φ = Uγ(δU) is the one-form (2.8) associated with the “Milne” variation (4.6) of the

observer U . Then, with the help of Equation (4.5), and of general result δF = dφ,

see (2.7), we can finally claim that

δΓc
ab = −δc

(a∂b)f + U cθ(a∂b)(f + g) +
1

2

(
γck∂kf

)
Uγab + (f + g)γckθ(aFb)k (4.7)

for all a, b, c = 0, . . . , d.

Equation (4.7) is of central importance in our study; it yields the general form

of the variations of the NC-connection compatible with the constraints ∇cγ
ab = 0,

and ∇aθb = 0, and associated with the conformal Galilei rescalings (4.5).

4.2 The Schrödinger Lie algebra: timelike geodesics

Let us first cope with the case of generic, timelike, geodesics of (M,Γ) defined by

ṫ 6= 0, cf. Equation (4.2), and representing the worldlines of massive non-relativistic

particles. From now on, we choose to enforce preservation of their equations (4.1),

in addition to that, (4.5), of the direction of the Galilei structure (γ, θ).

Clearly, the variations (4.7) of the NC-connection will preserve the equations

of these geodesics, i.e., will define infinitesimal projective transformations (4.4) of

(M,Γ), provided ϕ = −df , and f + g = 0 in order to guarantee the vanishing of the

fourth term (hence of the second term) in the right hand-side of (4.7). Now f = −g

depending on time only, we automatically find that γ(df) = 0, hence that the third

term brings no contribution.

The variation (4.7) of the NC-connection will, hence, be an infinitesimal pro-

jective transformation of the NC-structure iff

f + g = 0 (4.8)

ϕ+ f ′θ = 0 (4.9)

where f ′ stands for the (time-)derivative of the function f of T . This readily implies

that [18, 20]

δΓc
ab = −f ′δc

(aθb). (4.10)

The next natural step consists in demanding that the variations (4.5) of the

Galilei structure, and those (4.10) of the NC-connection are, indeed, generated by
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infinitesimal spacetime transformations. We will thus define a new Lie algebra,

denoted sch(M, γ, θ,Γ), as the Lie algebra of those vector fields that are infinitesimal

(i) Galilei-conformal transformation of (M, γ, θ), and (ii) projective transformations

of (M,Γ). We call sch(M, γ, θ,Γ) the Schrödinger Lie algebra, which is therefore

spanned by the vector fields, X, of M such that [18, 19, 20]

LXγ
ab = −g γab, LXθa = g θa & LXΓc

ab = g′δc
(aθb) (4.11)

for all a, b, c = 0, 1, . . . , d.

The Schrödinger Lie algebra (4.11) is, indeed, a finite-dimensional Lie sub-

algebra of the Schrödinger-Virasoro Lie algebra (3.11), i.e.,

sch(M, γ, θ,Γ) ⊂ sv(M, γ, θ). (4.12)

Let us now work out the form of the Schrödinger Lie algebra in the flat case. We

will thus determine the generators of the Lie algebra sch(d) = sch(R × R
d, γ, θ,Γ)

in the special case (2.1).

The system (4.11) to solve for the vector fields X = X0∂0 + XA∂A therefore

reads9

∂AXB + ∂BXA = g δAB (4.13)

∂AX
0 = 0 (4.14)

∂0X
0 = g (4.15)

∂0∂0X
A = 0 (4.16)

∂0∂BX
A =

1

2
g′δA

B (4.17)

∂A∂BX
C = 0 (4.18)

for all A,B,C = 1, . . . , d. We deduce, from (4.18) that XA = MA
B (t)xB + CA(t),

and, using (4.17), we find MA
B (t) = ωA

B + 1
2
(g(t) + c)δA

B, where ωAB = −ωBA, and c

are independent of t. Then (4.13) yields c = 0, while (4.16) leaves us with g′′(t) = 0,

and (CA)′′(t) = 0, i.e., g(t) = 2(κt + λ), and CA(t) = βAt + γA, where κ, βA, γA,

and λ are constant coefficients. At last (4.15) implies X0 = κt2 + 2λt+ ε, with ε a

new constant of integration.

We therefore contend that X ∈ sch(d) iff

X =
(
κt2 + 2λt+ ε

) ∂

∂t
+

(
ωA

B x
B + κtxA + λxA + βAt+ γA

) ∂

∂xA
(4.19)

9Let us recall that the Lie derivative of an affine connection along the vector field, X , is given
by LXΓc

ab
= ∂a∂bX

c in the flat case, in a coordinate system where Γc
ab

= 0.
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where ω ∈ so(d), β,γ ∈ R
d, and κ, λ, ε ∈ R are respectively infinitesimal rotations,

boosts, spatial translations, inversions, dilations, and time translations. We observe

that time is dilated twice as much as space [11], a specific property of the Schrödinger

Lie algebra (4.19). The Schrödinger dynamical exponent is z = 2; see, e.g., [32].

Let us recall that the Galilei Lie algebra gal(M, γ, θ,Γ) ⊂ cgal(M, γ, θ,Γ) of a

NC-structure is plainly defined as its Lie algebra of infinitesimal automorphisms.

Thus, X ∈ gal(M, γ, θ,Γ) iff [27, 22]

LXγ
ab = 0, LXθa = 0 & LXΓc

ab = 0 (4.20)

for all a, b, c = 0, 1, . . . , d, i.e., if (4.11) holds with f = 0, and g = 0. In the flat

case, gal(d) = gal(R×R
d, γ, θ,Γ) is clearly spanned by the vector fields (4.19) with

κ = 0, and λ = 0.

4.3 NC-conformal transformations: lightlike geodesics

So far, we have been dealing with the Galilei-conformal symmetries of the equations

of timelike geodesics. What about those of the equations of lightlike geodesics (4.3)

that model the worldlines of massless non-relativistic particles [35]?

Let us now determine the variations (4.7) of the NC-connection, Γ, that preserve

the equations of lightlike geodesics, namely Equation (4.1) supplemented by ṫ = 0.

We thus must have δΓc
abẋ

aẋb = δµ ẋc, so that, necessarily,

γ(df) = 0 (4.21)

since θaẋ
a = 0; this implies df = f ′θ, hence that f is a function of the time axis, T .

We furthermore find δµ = −ḟ . At last, the resulting variation of the NC-connection

appears in the new guise

δΓc
ab = −f ′δc

(aθb) + (f ′ + g′)U cθaθb + (f + g)γckθ(aFb)k (4.22)

for all a, b, c = 0, . . . , d, where the unit vector field U , i.e., θaU
a = 1, and the

two-form F are as in (2.2).

We note that the constraint f + g = 0 in (4.8), obtained in the “massive” case,

does not show up, at this stage, in the “massless” case.

Just as in Section 4.2, we will assume that the variations (4.5) of the Galilei

structure, and those (4.22) of the NC-connection, are generated by infinitesimal

spacetime transformations. We will thus define a new Lie algebra, we call the

Newton-Cartan conformal Lie algebra, and denote by cnc(M, γ, θ,Γ), as the Lie alge-

bra of those vector fields that are infinitesimal (i) Galilei-conformal transformation of
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(M, γ, θ), and (ii) transformations which permute lightlike geodesics of (M, γ, θ,Γ).

The Newton-Cartan conformal Lie algebra, cnc(M, γ, θ,Γ), is thus spanned by the

vector fields, X, of M such that

LXγ
ab = fγab (4.23)

LXθa = g θa (4.24)

LXΓc
ab = −f ′δc

(aθb) + (f ′ + g′)U cθ(aθb) + (f + g)γckθ(aFb)k (4.25)

for all a, b, c = 0, 1, . . . , d, where f and g are functions of the time axis, T , while U ,

and F are as in (2.2) and (2.3).

It is worth noticing that the Lie-transport (4.25) of the NC-connection satisfies

the very simple condition, viz.,

LXΓabc = 0 (4.26)

where LXΓabc = (LXΓc
kℓ)γ

akγbℓ. Interestingly, Equation (4.26) is specific to the

so-called Coriolis Lie algebra of Galilei-isometries of (M, γ, θ); see [22].

We will now determine the Newton-Cartan conformal Lie algebra in the flat

case, i.e., the Lie algebra cnc(d) = cnc(R×R
d, γ, θ,Γ) where γ and θ are as in (2.1),

as well as Γc
ab = 0 — or, equivalently, U = ∂0 + uA∂A, with uA = const. for all

A = 1, . . . , d, and F = 0; see (2.2) and (2.3). Let us emphasize that the Galilei

(inertial) observer, U , remains here totally arbitrary.

The system (4.23)—(4.25) to solve for X = X0∂0 +XA∂A reads now

∂AXB + ∂BXA = −fδAB (4.27)

∂AX
0 = 0 (4.28)

∂0X
0 = g (4.29)

∂0∂0X
A = (f ′ + g′)uA (4.30)

∂0∂BX
A = −

1

2
f ′δA

B (4.31)

∂A∂BX
C = 0 (4.32)

for all A,B,C = 1, . . . , d. Much in the same way as in Section 4.2, straightforward

computation yields the general solution of that system. More precisely, we find

again that XA = ωA
B x

B − 1
2
f(t)xA +CA(t), with the same notation as before. Now,

using (4.30), we find f ′′(t) = 0, and (CA)′(t) = (f + g)uA + β̃A, where the β̃A are

constant. We thus have

f(t) = −2(κt+ λ). (4.33)

with κ, λ new integration constants.

14



So, we claim with the help of (4.29) that X ∈ cnc(d) iff

X = h(t)
∂

∂t
+

(
ωA

B x
B + κtxA + λxA + (h(t) − κt2)uA + βAt+ γA

) ∂

∂xA
(4.34)

where ω ∈ so(d), β,γ,∈ R
d, and κ, λ ∈ R, the function X0 = h of T remaining

arbitrary, and u ∈ R
d. We, again, highlight the homomorphism: cnc(d) → Vect(R)

given by X 7→ h(t)∂t. Such an homomorphism has already been encountered in the

case of the Galilei conformal, cgal(d), or Schrödinger-Virasoro, sv(d), Lie algebras;

see (3.1), and (3.11) respectively.

4.4 NC-conformal Lie algebras with dynamical exponent z;
the CGA Lie algebra

The (infinite-dimensional) NC-conformal Lie algebra, cnc(M, γ, θ,Γ), we have just

unveiled admits, as we shall see, a whole family of finite-dimensional Lie subalgebras.

Much in the same way than in Section 3.2, we will now introduce subalgebras

of the latter NC-conformal Lie algebra with prescribed dynamical exponent, z. In

contradistinction to the case of generic NC-geodesics, where Condition (4.8) neces-

sarily holds true, viz. z = 2, we have a total freedom in the choice of a dynamical

exponent, z, in the case of NC-massless geodesics. Indeed, the two rescaling func-

tions, f (see Equation (4.33)), and g = h′, remain quite independent in (4.34).

We will therefore define cncz(M, γ, θ,Γ) as the Lie subalgebra of cnc(M, γ, θ,Γ)

defined by Equation (3.8) — or (3.9); we will call it the NC-conformal Lie algebra

with dynamical exponent z. Any vector field X ∈ cncz(M, γ, θ,Γ) will thus satisfy

Equations (4.23), (4.24), and (4.25), where

f +
2

z
g = 0 (4.35)

with z > 0, a rational number.

Let us finally establish, in the case of a flat NC-structure (2.1) — again defined

by U = const., and F = 0 —, the expression of the generators of the Lie algebra

cncz(d) = cncz(R×R
d, γ, θ,Γ). Those retain the form (4.34) where, in view of (4.29),

(4.33) and (3.9), we now have (X0)′(t) = g(t) = −f(t)/q = 2(κt + λ)/q. We will

also put αA = αuA.

At last, we assert that X ∈ cncz(d) iff

X =
(1

2
zκt2 + zλt+ ε

) ∂
∂t

+
(
ωA

B x
B + κtxA + λxA +

(z − 2)

2
t2αA + βAt+ γA

) ∂

∂xA
(4.36)

where ω ∈ so(d), α,β,γ ∈ R
d, and κ, λ, ε ∈ R.
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Apart from the Schrödinger-like generators, we notice the appearance of a new,

acceleration generator, α, if z 6= 2.

Let us emphasize that dealing with rational dynamical exponents, z, introduced

in (3.10), is clearly allowed by the novel geometric definition (3.8) of Galilei con-

formal transformations; such a flexibility is furthermore specific to the symmetries

of non-relativistic models of massless particles. The values studied in [2] appear for

m = 1, and n = N , i.e., for z = 2/N .

Again, just as was the case for the Schrödinger Lie algebra, sch(d), we obtain,

for each z, an so(2, 1) Lie subalgebra, generated by time translations ε, dilations zλ,

and expansions zκ; see Equation (4.36).

• For z = 2, we recover the Schrödinger Lie algebra, i.e.,

cnc2(d) ∼= sch(d). (4.37)

• For z = 1, we get the CGA Lie algebra, namely, the Conformal Galilean

Algebra (1.3) of Lukierski, Stichel and Zakrzewski [1].

• In the case z = ∞, the Lie algebra cnc∞(d) is the (infinite-dimensional) Lie

subalgebra of cnc(d) defined by κ = 0, and λ = 0 in (4.34).10

5 Conformal Galilean symmetries of physical sys-

tems

In order to illustrate our general formalism, we first present a framework, due

originally to Souriau [35], which allows us to describe, in particular, both massive

and massless Galilean elementary systems in a unified way.

Consider a Hamiltonian system with d degrees of freedom, whose phase space is

a 2d-dimensional symplectic manifold (M,Ω), and whose Hamiltonian is a smooth

function, H , of M. The two-form Ω = 1
2
Ωαβ dξ

α ∧ dξβ of M is closed, dΩ = 0, and

non-degenerate, det(Ωαβ) 6= 0. Using its inverse, Ω−1 = 1
2
Ωαβ∂ξα ∧ ∂ξβ , we get the

Poisson bracket {F,G} = Ωαβ∂αF ∂βG of two observables F , and G. (The Jacobi

identity is equivalent to dΩ = 0.) Then Hamilton’s equations read

dξα

dt
= {H, ξα} (5.1)

where α = 1, . . . , 2d, the parameter t being interpreted as “time”.

10Put f(t) = 0 in (4.33).
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If XH = {H, · } is the associated Hamiltonian vector field, we see that (5.1) can

also be written as11

dξ

dt
= XH where Ω(XH) = −dH (5.2)

or, using coordinates, Ωαβ X
α
H = −∂βH , for all β = 1, . . . , 2d.

One can go one step farther [37] and, promoting time as a new coordinate,

consider the (2d+ 1)-dimensional “evolution space” V = M× R endowed with the

following closed two-form which we write, with some abuse of notation, as

σ = Ω − dH ∧ dt. (5.3)

The vector fields Y = λ(XH + ∂/∂t) of V, with λ ∈ R, clearly satisfy σ(Y ) = 0

since XH(H) = 0, and Y (t) = λ. Denoting y = (ξ, t) points of V, we see that the

equations of motion (5.1) admit the alternative form

dy

dτ
= Y with σ(Y ) = 0 (5.4)

where τ is now an arbitrary curve-parameter.

Conversely, let us consider a closed two-form, σ, on some general evolution

space, V, whose kernel, K = ker(σ), has a (nonzero) constant dimension.12 Then K

(see (5.4)) is an integrable distribution. So, there exists, at each point y ∈ V,

a submanifold whose tangent space is spanned by those vectors in K. Each leaf

(or characteristic) of K is a classical motion. The set of these motions (which is

assumed to be a well-behaved manifold) is Souriau’s space of motions, U = V/K,

of the system. The two-form σ passes to the quotient, U , which becomes, hence, a

symplectic manifold. Espousing this point of view, one regards the evolution space

as fundamental since it hosts the dynamics in a purely intrinsic way. See also the

recent essay [38] supporting this standpoint in the classical and quantum context.

A symmetry of the evolution space (V, σ) is given by a vector field Z which

Lie-transports the two-form σ, namely such that

LZσ = 0. (5.5)

A symmetry is called Hamiltonian if there exists a function JZ of V such that,

globally,

σ(Z) = −dJZ . (5.6)

11 The form (5.2) of Hamilton’s equations allows for a variational interpretation; see, e.g., [35,
40, 41].

12One says that the two-form is presymplectic.
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Then, one readily finds that Y (JZ) = 0 for all Y ∈ K, i.e., that JZ (determined

by (5.6) up to an overall constant) is a conserved quantity. See [35] for an account

on this formulation of Noether’s theorem.

Conversely, symplectic manifolds upon which a given group of Hamiltonian

symmetries acts transitively can be constructed in a systematic fashion [35]. For

example, the homogeneous symplectic manifolds of the Galilei group will represent

the spaces of motions of classical, non-relativistic, elementary particles. Skipping

the details, here we simply list the results which are important for our purposes.

5.1 Galilean massive particles

Generic elementary systems of the Galilei group (cf. (4.20)) in four-dimensional,

flat, NC-spacetime are classified by the mass, m, and spin, s, invariants. In the

“massive” case, m > 0, the evolution space of a spinning particle, with s > 0, is

V = R×R
3 ×R

3 ×S2 parametrized by the quadruples y = (t,x,v,u), and endowed

with the two-form

σ = mdvA ∧ (dxA − vAdt) −
s

2
ǫABC u

AduB ∧ duC (5.7)

where ǫABC is the Levi-Civita symbol with ǫ123 = 1. Equation (5.7) happens to be of

the form (5.3) that unifies the symplectic structure of phase space M = R
3×R

3×S2

and the Hamiltonian, namely

σ = dpA ∧ dxA −
1

2s2
ǫABC s

AdsB ∧ dsC − d

(
p2

2m

)
∧ dt (5.8)

where the vector p = mv stands for the linear momentum, and s = su for the clas-

sical spin.13 Ordinary phase space has been extended by the sphere S2, endowed with

its canonical surface element. The evolution space, V, is therefore 9-dimensional.

The two-form (5.7) is closed and has a one-dimensional kernel; the characteristic

curves, which are solutions of the free equations of motion (5.4), namely

ṫ = 1, ẋ = v, v̇ = 0, u̇ = 0, (5.9)

project on spacetime as usual straight worldlines. Those are independent of the

spin, which is itself a constant of the motion. These worldlines are, in fact, timelike

geodesics since

ṫ 6= 0. (5.10)

13At the purely classical level studied here, s is an arbitrary positive number; the “pre-
quantizability” [35] requires it to be a half-integer.
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As for the symmetries of the model coming from conformal Galilean transforma-

tions of flat spacetime, one shows [18, 20] that the only vector fields X ∈ cgal(3) that

admit a lift, X̃, to (V, σ) verifying L eXσ = 0 (see (5.5)) are necessarily Schrödinger

vector fields, X ∈ sch(3). The explicit expression is

X̃ =
(
κt2 + 2λt+ ε

) ∂
∂t

+
(
ωA

B x
B + κtxA + λxA + βAt+ γA

) ∂

∂xA

+
(
ωA

B v
B + βA − λvA + κ(xA − vAt)

) ∂

∂vA

(5.11)

+ωA
B u

B ∂

∂uA

with the notation of (4.11).

We, hence, recover the results of Section 4.2 dealing with the symmetries of

the equations of timelike NC-geodesics. Notice that the Schrödinger symmetry still

holds in the presence of spin.

The action (5.11) is Hamiltonian, and the conserved quantities, calculated using

Noether’s theorem (see Equation (5.6)) read14

J eX
= J · ω − G · β + P · γ −Hε−Kκ +Dλ (5.12)

where
P = p Linear momentum

G = mq Galilean boost

J = x × p + su Angular momentum

H =
p2

2m
Energy

K =
mq2

2
Schrödinger expansions

D = p · q Schrödinger dilations

(5.13)

together with

q = x − vt. (5.14)

Note that the spin enters the angular momentum only and is, in fact, separately

conserved. The space of motions, U = R
3 × R

3 × S2, therefore inherits from σ

the symplectic two-form Ω = dpA ∧ dqA − (s/2)ǫABC u
AduB ∧ duC. The associated

14We have put ωA = − 1
2ǫABCωBC for all A = 1, 2, 3.
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Poisson brackets of the components (5.13) of the moment map [35] then realize the

one-parameter central extension of the Schrödinger group, via

{PA, GB} = mδAB. (5.15)

Other example with Schrödinger symmetry involve hydrodynamics [42, 43] and

non-relativistic Chern-Simons vortices [44].

5.2 Galilean massless particles

Concerning the second, “Conformal Galilean type” symmetries, the situation is more

subtle. The natural candidates are the massless Galilean systems, studied by Souriau

forty years ago [35]. In geometrical optics, a classical “light ray” can, in fact, be

identified with an oriented straight line, D, in Euclidean space R
3. Such a line is

characterized by an arbitrary point x ∈ D, and its direction, i.e., a unit vector,

u, along D. The manifold of light rays is readily identified with the (co)tangent

bundle TS2 endowed with its canonical symplectic structure, or a twisted symplectic

structure if spin is admitted. This model is based on the Euclidean group.

There exists, indeed, a Galilean version of Euclidean “spinoptics”. The homo-

geneous symplectic manifolds of the Galilei group to consider are “massless”, i.e.,

defined by the invariants m = 0, s 6= 0, and k > 0, a new Galilei-invariant [35, 36].

A convenient “evolution space” for these massless models is V = R×R
3×R×S2

described by the quadruples y = (t,x, E,u) and endowed with the closed two-form

σ = k duA ∧ dxA − dE ∧ dt−
s

2
ǫABC u

AduB ∧ duC (5.16)

where the constants k > 0, and s, are the color and the spin, respectively.15

The motions of these massless particles, e.g., the classical “light rays”, identified

with the characteristic curves of (5.16), project onto spacetime as oriented lightlike

straight worldlines directed along u, viz.,

ṫ = 0, ẋ = u, Ė = 0, u̇ = 0, (5.17)

where we have chosen the parameter τ as the arc-length along the straight line D.

Such a “motion” is instantaneous,

t = const. (5.18)

15 For s = 0 we get a “Fermat particle”, i.e., “spinless light,” described by the Fermat principle
[35, 45]. Quantization requires that s/~ be a half-integer, and the color becomes k = 2π~/λ,
where λ is the wavelength [35, 36].
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and, hence, projects as a lightlike geodesic (4.3) of flat Newton-Cartan spacetime

(massless particles have “infinite speed.”)

The Galilei Lie algebra gal(3), see (4.20), acts in a Hamiltonian way (5.6) on

the evolution space V according to

X̃ = ε
∂

∂t
+ (ωA

B x
B + βAt+ γA)

∂

∂xA
+ kuAβ

A ∂

∂E
+ ωA

B u
B ∂

∂uA
, (5.19)

where ω ∈ so(3), β,γ ∈ R
3, and ε ∈ R.

Using the definition (5.12) of the Hamiltonian, J eX
, of this action, we find the

associated conserved quantities, namely

P = ku Linear momentum

G = −P t Galilean boost

J = x × P + su Angular momentum

H = E Energy

(5.20)

Let us emphasize that the time-dependent Galilei boost, G, is a constant of the

“motion”, since the latter takes place at constant time, cf. (5.18). Under the Poisson

bracket defined by the induced symplectic two-form Ω = k duA∧dq
A−dE∧dt, where

q = −u× (u×x), of the space of motions U = TS2×TR, the components (5.20) of

the moment map close into the unextended Galilei group. In particular, translations

and Galilean boosts commute: our “photon” is massless. Curiously, the energy, E,

remains arbitrary, and determined by the initial conditions.

What about our conformal extensions? Are they symmetries? For the trajec-

tories, the answer is positive: the lightlike “instantaneous” geodesics are permuted

by construction, see Section 4.3.

Concerning the dynamics, the answer is more subtle though: for any finite

dynamical exponent z, none of the additional geometric symmetries leaves the dy-

namics invariant. To see this, consider, for example, a z-dilation: while x 7→ eλx, the

unit vector, u, cannot be dilated, u 7→ u. Therefore, a “photon” of color k is carried

into one with color ke−λ (which, in empty space, follows the same trajectories).

There is, however, a way to escape this obstruction: it is enough . . .not to

dilate x! To see this, consider first the spinless “Fermat” case. Then the evolution

space can be viewed as the submanifold V ⊂ T ∗M of the cotangent bundle of

spacetime M = R × R
3 defined by the equation

γabpapb − k2 = 0. (5.21)
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Its presymplectic two-form, given by Equation (5.16) with s = 0, is just σ = d̟,

where ̟ = padx
a is the restriction to V of the canonical one-form of T ∗M . Recall

that a vector field, X, on space-time is canonically lifted to T ∗M as

X̃ = Xa ∂

∂xa
− pb

∂Xb

∂xa

∂

∂pa

. (5.22)

One easily sees that this lift is tangent to the submanifold V, cf. (5.21), iff one has

identically X̃(γabpapb − k2) = (LXγ)
abpapb = 0, i.e., iff the vector field X leaves γ

invariant, viz.,16

LXγ = 0 (5.23)

which is the Galilei-conformal condition (3.8) with m = 1 and n = 0; the dynamical

exponent is therefore z = ∞. This corresponds to “dilating” time alone.

In the flat case under study, the general solution of Equation (5.23) is given

by (3.14), i.e., by

X = h(t)
∂

∂t
+

(
ωA

B(t)xB + βA(t)
) ∂

∂xA
(5.24)

where h(t), ω(t) ∈ so(3), and β(t) depend arbitrarily on time. At last, the max-

imal Hamiltonian symmetries of the “Fermat” particle model constitute the Lie

algebra cgal∞(3), i.e., an infinite-dimensional conformal extension of the [centrally

unextended] Galilei group.

Let us compute the explicit form of the canonical lift, X̃, of X ∈ cgal∞(3) to V.

Using Equation (5.22), we end up with

X̃ = h(t)
∂

∂t
+

(
ωA

B(t)xB + βA(t)
) ∂

∂xA

+
(
k(ω′

AB(t)uAxB + β ′

A(t)uA) − h′(t)E
) ∂

∂E
(5.25)

+ωA
B(t)uB ∂

∂uA

with the same notation as before. As previously mentioned the cgal∞(3)-action

on V is, by construction, Hamiltonian if s = 0. Using Equation (5.6), one finds the

conserved Hamiltonian

J eX = (x × ku) · ω + ku · β(t) − h(t)E. (5.26)

What about spin? One easily checks that, in the case s 6= 0, the presymplectic

two-form (5.16) is no longer cgal∞(3)-invariant. In fact, elementary calculation

16This construction is general, and can be extended to the case of any NC-structure [18].
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shows that any X ∈ cgal∞(3) such that L eXσ = 0 is of the form (5.24) with

ω′(t) = 0. (5.27)

Thus, in the general case of massless, spinning Galilean particles, the associated

constants of the “motion” retain the final form

J eX
= (x × ku + su) · ω + ku · β(t) − h(t)E (5.28)

with ω ∈ so(3), β(t), and h(t) remaining arbitrary functions of time. Note that

the conservation of these quantities is related to the fact that the “motions” are

instantaneous (5.18).

In conclusion, Souriau’s “classical photon” admits an infinite-dimensional con-

formal extension of the unextended Galilei group; see (5.20).

6 Conclusion

In this paper, we have presented a systematic way to derive all types of “non-

relativistic conformal transformations” of spacetime M . Due to the degeneracy of

the Galilei “metric” (γ, θ), and to the (relative) independence of Newton-Cartan

connections, Γ, there are quite a large number of subcases.

Firstly, the conformal transformations of the “metric” structure alone, (3.1),

yield the conformal Galilei Lie algebra cgal(M, γ, θ). In the flat case, and in d space

dimensions, it is the infinite-dimensional Lie algebra (3.5). Fixing the dynamical

exponent, z, via the geometric definition (3.8), yields various (still infinite dimen-

sional) Lie subalgebras, cgalz(d). For z = 2, we get the Schrödinger-Virasoro Lie

algebra (3.12) of Henkel et al. [32, 2, 3], and for z = ∞ we get cgal∞(d) in (3.14).

The Newton-Cartan structure also involves the choice of a connection, and

allows us to consider geodesics, identified with motions of test particles.

- Those Galilei-conformal transformations which preserve the timelike geodesics

are, in fact, the usual Schrödinger transformations with dynamical exponent z = 2,

namely sch(d) in (4.19).

- Those which preserve the lightlike geodesics have a richer structure, though.

There is no a priori restriction on the dynamical exponent, z. The resulting infinite

dimensional algebra, cnc(d), is given by (4.34). The latter admits finite-dimensional

subalgebras, cncz(d), for each rational z < ∞, see (4.36). For z = 2 we find, once

again, the Schrödinger algebra, and for z = 1, we obtain the CGA (1.3), of Lukierski

et al. [1]. The infinite-dimensional Lie algebra cnc∞(d) completes our classification.
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Let us emphasize that our geometric-algebraic framework based on NC-space-

time leaves no place to central extensions; the latter only arise when conserved

quantities (or (pre)quantization) of concrete physical systems are considered.

All these symmetries were derived by considering as a fundamental the NC-

structure of non-relativistic spacetime. What about concrete physical systems ?

In Section 5 we study two such systems. Souriau’s (pre)symplectic framework [35]

allows us to present them in a unified manner.

The dynamics of the concrete physical systems reduce further the geometric

symmetries to some of their subgroups. This is understood if we think of free fall:

massive particles fall in the same way, independently of their respective masses.

The trajectory of a particle can be carried therefore into another one by a geometric

transformation. However, such a transformation can change the mass — so it is not

necessarily a symmetry of the dynamical system.

Firstly, for a massive Galilean particle with spin, we recover the well-known

Schrödinger symmetry associated with sch(3).

The GCA-type symmetries require no mass [1]. The natural candidates are,

therefore, Souriau’s “Galilean photons” [35], which are associated with the coadjoint

orbits of the [unextended] Galilei group. These “particles” have an “instantaneous

motion” — they have “infinite velocity”. They can carry spin, generalizing “spinless

light”, described by the Fermat principle [45].

Can one take such models seriously? The answer is positive since they can

be obtained as suitable non-relativistic limits of relativistic massless particles, i.e.,

those associated with the mass zero coadjoint orbits of the Poincaré group [35].

Even more importantly, the model of “Galilean photon” is a trivial extension of

the Euclidean model presented in [45], which has been used to explain the recently

observed spin-Hall effect for light [46].

Let us emphasize, in conclusion, that Souriau’s model of massless Galilean par-

ticles carry an infinite-dimensional Lie algebra of symmetries, namely cgal∞(3).

Similar results are being found by Stichel and Zakrzewski [48] in a cosmological

model.

Acknowledgement. We are indebted to J. Lukierski and M. Henkel for correspondence,

and to P. Stichel for informing us about their unpublished paper [48].
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