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Abstract. We consider the Euler equations on the Lie algebra so(4, C)
with a diagonal quadratic Hamiltonian. It is known that this system always
admits three functionally independent polynomial first integrals. We prove
that if the system has a rational first integral functionally independent of
the known three ones (so called fourth integral), then it has a polynomial
fourth first integral. This is a consequence of a more general fact that for
these systems the existence of a Darboux polynomial with non vanishing
cofactor implies the existence of a polynomial fourth integral.
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1. Introduction

For a given system of (polynomial) ordinary differential equations depend-
ing on parameters, a question is how to identify those values of the param-
eters for which the equations have (rational or polynomial) first integrals?
Except for some simple cases, this problem is very hard and there are no
general methods to solve it.
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In this paper we present a partial result concerning the integrability
problem for the so-called Euler equations on Lie algebras [1–4, 13, 14],
for which the problem is also largely open.

Let us recall some relevant definition. Let (L, [·, ·]) be a finite dimen-
sional (real or complex) Lie algebra and L∗ its dual. For f, g ∈ C∞(L∗)
their Lie-Poisson bracket {f, g} is defined by

{f, g}(x) = 〈x, [df(x), dg(x)]〉,

where x ∈ L∗, df(x), dg(x) ∈ (L∗)∗ = L∗∗ ≈ L, and for x ∈ L∗ and
y ∈ L, we denote 〈x, y〉 = x(y).

Let {e∗1, . . . , e∗n} be the dual basis to a fixed basis {e1, . . . , en} of L. An
element x ∈ L∗ can be written as x =

∑n
i=1 xie

∗
i , where the coefficients

xi (real or complex) depend smoothly on x thus defining the functions ∈
C∞(L∗), for 1 ≤ i ≤ n.

For a given function H ∈ C∞(L∗), the system of differential equations

dxi

dt
= {xi,H}, 1 ≤ i ≤ n, (1.1)

is called Euler equations on the Lie algebra L with the Hamiltonian H .
Recall that a function F ∈ C∞(L∗) is a Casimir function of the Lie

algebra L if {f, F} = 0, for every f ∈ C∞(L∗). It is clear (e.g., [13]) that
a function F defined on L∗ is a first integral of system (1.1) if and only if
{F,H} = 0. In particular, the Hamiltonian H and any Casimir function of
the Lie algebra L are first integrals of system (1.1).

Only for Hamiltonians H that are functionally independent of the Ca-
simir functions, the right sides of system (1.1) does not vanish identically.
That is why we will always suppose that the Hamiltonian H under consid-
erations is functionally independent of the Casimir functions.

From now on we will concentrate only on the complex six dimensional
Lie algebra so(4, C), the Lie algebra of the complex Lie group SO(4,C),
and study one of the simplest Euler equations on it, namely the Euler equa-
tions corresponding to the so called diagonal quadratic Hamiltonian.

In an appropriate basis of the Lie algebra so(4, C) (see [1]), the Euler
equations corresponding to the diagonal quadratic Hamiltonian 1

2

∑6
i=1 λix

2
i ,
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take the following elegant form:

dx1

dt
= (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6,

dx2

dt
= (λ1 − λ3)x1x3 + (λ4 − λ6)x4x6,

dx3

dt
= (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5,

dx4

dt
= (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6,

dx5

dt
= (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6,

dx6

dt
= (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5,

(1.2)

where λ := (λ1, . . . , λ6) ∈ C6. Exactly the same construction holds for
the Lie algebra so(4, R), where λ := (λ1, . . . , λ6) ∈ R6 and the form of
equations (1.2) remains unchanged.

The Lie algebra so(4, C) admits two functionally independent polyno-
mial Casimir functions. Thus any system of Euler equations on it always
admits three functionally independent first integrals. Indeed, the above sys-
tem possesses three first integrals:

H1 = x1x4 + x2x5 + x3x6, H2 =
6∑

i=1

x2
i , H3 =

6∑
i=1

λix
2
i , (1.3)

where the first integrals H1 and H2 are Casimir functions of the Lie algebra
so(4, C) and H3 is the Hamiltonian. These three first integrals are function-
ally independent unless all the λi, 1 ≤ i ≤ 6, are equal, in which case the
right hand sides of system (1.2) vanish.

For the Lie algebra so(4, C), on the constant level manifolds of two
functionally independent Casimir functions, any Euler system, at least lo-
cally, can be reduced to the standard Hamiltonian equations with two de-
grees of freedom (see Secs. 6.1-6.2 and Theorem 6.22 from [13]). Therefore
whatever the chosen notion of integrability, the system (1.2) in order to be
integrable needs a supplementary first integral H4, functionally indepen-
dent of H1, H2 and H3, called shortly a fourth integral. The only known
cases when a fourth integral exists are the Manakov case, defined by the
condition

M = λ1λ4(λ2 + λ5 − λ3 − λ6) + λ2λ5(λ3 + λ6 − λ1 − λ4)
+ λ3λ6(λ1 + λ4 − λ2 − λ5) = 0,

and the product case, defined by the conditions

λ1 = λ4, λ2 = λ5, λ3 = λ6.
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In both cases the fourth integral can be found among the polynomials of
degree 2 at most (see [1, 9, 15]).

In our study, we will concentrate only on the existence of a fourth ratio-
nal integral. In fact, it is well known, its absence implies the absence of an
algebraic fourth integral [7,17,18] as well as the absence of a meromorphic
fourth integral defined on some neighbourhood of 0 of C6 [19].

In [15], two of us proved the following theorem:

Theorem 1.1. If for some λ ∈ C6, the Euler equations (1.2) admit a ratio-
nal fourth integral, then they admit a polynomial fourth integral.

Let us note that from the validity of Theorem 1.1 in complex setting, its
validity in real one follows immediately.

The proof of Theorem 1.1 presented in [15], based on Holomorphic Rec-
tification Theorem (see Theorem 1.18 in [5]) is elementary but quite long
and quite involved. The aim of this note is to present a simpler proof based
on the more powerful Holomorphic Frobenius Integrability Theorem (see
Theorem 2.9 in [5]). The present paper is self-contained and independent
of [15]. To put it in such a form some overlaps with [15] were unavoidable.

The paper is organized as follows. In Sec. 2 we collect various facts
needed for the proof. In Sec. 3, Theorem 1.1 is obtained with the help of
more general Theorem 3.1. Actually, the proof of Theorem 1.1 is based
on the study of so called Darboux polynomials (see Sec. 2.1) for the Euler
equations (1.2) and the rich symmetry properties of these equations and
Theorem 1.1 is a direct consequence of Theorem 3.1 concerning Darboux
polynomials. Let us stress that all proofs are completely elementary.

Finally let us note that in [8] exact counterparts of Theorems 1.1 and
3.1 are proved for so called natural polynomial hamiltonian systems of an
arbitrary degree of freedom.

2. Preliminaries

2.1. Darboux polynomials

Consider a polynomial system of ordinary differential equations defined in
Cn

dxj

dt
= Vj(x1, . . . , xn), 1 ≤ j ≤ n. (2.1)

For a holomorphic function F defined on some open subset of Cn, let us
define

d(F ) =
n∑

i=1

∂F

∂xi
Vi.

The operator d is called the derivation associated with system of differential
equations (2.1).
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A polynomial P ∈ C[x1, . . . , xn] \ C is called a Darboux polynomial
of system (2.1) if for some polynomial S ∈ C[x1, . . . , xn] we have

d(P ) = SP. (2.2)

The polynomial S is called a cofactor of the Darboux polynomial P . When
S 6= 0, P is called a proper Darboux polynomial. When S = 0, P is
nothing but a first integral of system (2.1).

Here we mention some properties of the Darboux polynomials that we
will need throughout:

(D1) Let P1 and P2 be non-zero relatively prime polynomials that are not
first integrals of system (2.1). Then the rational function P1/P2 is a
first integral of system (2.1) if and only if P1 and P2 are its proper
Darboux polynomials with the same cofactor.

(D2) All factors of a Darboux polynomial of system (2.1) are also its Dar-
boux polynomials.

(D3) If P1 and P2 are two Darboux polynomials of system (2.1) with co-
factors S1 and S2, respectively, then P1P2 is also its Darboux poly-
nomial with cofactor S1 + S2.

(D4) Let us suppose that the right-hand sides of system (2.1) are homoge-
neous polynomials of the same degree. Let P be a Darboux polyno-
mial of system (2.1). Then its cofactor S is homogeneous and all ho-
mogeneous components of P are also Darboux polynomials of sys-
tem (2.1).

See [11] for more details.

2.2. Permutational symmetries

The Euler equations (1.2) possess an invariance property, called permuta-
tional symmetry. In general, permutational symmetries can be described as
follows. Let x = (x1, . . . , xn) ∈ Cn, λ = (λ1, . . . , λn) ∈ Cn, and let
V (x, λ) = (V1(x, λ), . . . , Vn(x, λ)) depends holomorphically on (x, λ) ∈
C2n. Let us consider the following system of differential equations

dx

dt
= V (x, λ). (2.3)

Let σ be an element of the symmetric group Sn, i.e., the group of all per-
mutations of {1, . . . , n}. For a = (a1, . . . , an) ∈ Cn, we will denote
σ(a) = (aσ(1), . . . , aσ(n)).

A permutation σ ∈ Sn will be called a permutational symmetry of sys-
tem (2.3) if for all (x, λ) ∈ C2n, we have

Vk(σ(x), σ(λ)) = εVσ(k)(x, λ), 1 ≤ k ≤ n,

where ε = ±1 is a constant independent of k. Clearly, all permutational
symmetries of system (2.3) form a group.
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Theorem 2.1. Let σ be a permutational symmetry of system (2.3).
(a) If F = F (x) is a first integral of system (2.3), then the function

F̃ = F ◦ σ−1 is a first integral of the system

dx

dt
= V (x, σ(λ)). (2.4)

(b) If P = P (x) is a Darboux polynomial of system (2.3) (see (2.2)),
then

d̃(P̃ ) = S̃P̃ ,

where P̃ = P ◦ σ−1, S̃ = S ◦ σ−1, and d̃ is the derivation associated with
system (2.4).

For the proof of (a) see Sec. II of [9]. The proof of (b) follows the same
line.

The group of permutational symmetries of the Euler equations (1.2)
consists of 24 elements. Among others, it contains the following five per-
mutations:

τ2(1, 2, 3, 4, 5, 6) = (2, 1, 3, 5, 4, 6),
τ3(1, 2, 3, 4, 5, 6) = (3, 2, 1, 6, 5, 4),
τ4(1, 2, 3, 4, 5, 6) = (4, 2, 6, 1, 5, 3),
τ5(1, 2, 3, 4, 5, 6) = (5, 4, 3, 2, 1, 6),
τ6(1, 2, 3, 4, 5, 6) = (6, 2, 4, 3, 5, 1).

(2.5)

For more details see Sec. II of [9] where, in its notations, τ2 = σ1, τ3 = σ3,
τ4 = σ7, τ5 = σ8 ◦ σ1 and τ6 = σ7 ◦ σ3.

Let P be a proper Darboux polynomial of system (1.2), that is d(P ) =
SP , where d is the corresponding derivation and S ∈ C[x1, . . . , x6]\{0}.
Since the right-hand sides of system (1.2) are homogeneous of the same
degree, it follows from (D4) that the cofactor is a homogeneous linear form,
i.e.,

S =
6∑

i=1

αix1,

where αi ∈ C, 1 ≤ i ≤ 6, are some complex constants and at least one of
them is non-zero, say αi0 6= 0.

According to (2.5) τi0(i0) = 1. Now, Theorem 2.1b implies that without
any loss of generality, we can always assume that α1 6= 0. This fact will be
used in the proof of Theorem 1.1.

From now on, d will always denote the derivation associated with the
Euler equations (1.2).
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2.3. Another invariance property

Beside permutational symmetries, the Euler equations (1.2) possess also
another invariance property related to the change of signs of the couples of
variables (x1, x4), (x2, x5), and (x3, x6) respectively. More precisely, let
us denote:

τ14(x1, x2, x3, x4, x5, x6) = (−x1, x2, x3,−x4, x5, x6),
τ25(x1, x2, x3, x4, x5, x6) = (x1,−x2, x3, x4,−x5, x6),
τ36(x1, x2, x3, x4, x5, x6) = (x1, x2,−x3, x4, x5,−x6).

(2.6)

It is easy to see that for (ij) = (14), (ij) = (25), and (ij) = (36),

τij
−1 ◦ d ◦ τij = −d,

which means that under any of the transformations of (2.6), the right side
of equations (1.2) changes the sign.

For the polynomial T ∈ C[x1, . . . , x6], let us denote T(ij) := T ◦ τij .
Thus if T is a first integral of the system (1.2), then T(14), T(25), and T(36)
also are first integrals of this system.

Moreover, if P is its Darboux polynomial, that is, d(P ) = SP , then
d(P(ij)) = −S(ij)P(ij). In particular, if

d(P )(x) = (α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6)P (x), (2.7)

then

d(P(14))(x) = (α1x1−α2x2−α3x3+α4x4−α5x5−α6x6)P(14)(x) (2.8)

and

d(P(25))(x) = (−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6)P(25)(x).
(2.9)

2.4. Explicit form of some linear differential operators

On C6, equipped with coordinates (x1, . . . , x6), we consider the linear dif-
ferential operator Xij , for 1 ≤ i < j ≤ 6, defined by the formula

Xij(G) = det
∂(H1,H2,H3, G)

∂(x1, . . . , x̂i, . . . , x̂j , . . . , x6)

where G is a holomorphic function on C6, the functions H1, H2, H3 are
given by (1.3), and x̂r means the absence of xr.

Two such operators X25 and X36 will play a crucial role in the proof
of Theorem 1.1 and we need an explicit formula of them. To simplify the
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notations, we write: λij = λi − λj for i 6= j, 1 ≤ i, j ≤ 6. A direct
calculation gives the formulae:

X25 =
(
λ63x1x3x6 + λ34x

2
3x4 + λ46x4x

2
6

) ∂

∂x1

+
(
λ16x

2
1x6 + λ41x1x3x4 + λ64x

2
4x6

) ∂

∂x3

+
(
λ13x1x

2
3 + λ61x1x

2
6 + λ36x3x4x6

) ∂

∂x4

+
(
λ31x

2
1x3 + λ14x1x4x6 + λ43x3x

2
4

) ∂

∂x6
,

X36 =
(
λ52x1x2x5 + λ24x

2
2x4 + λ45x4x

2
5

) ∂

∂x1

+
(
λ15x

2
1x5 + λ41x1x2x4 + λ54x

2
4x5

) ∂

∂x2

+
(
λ12x1x

2
2 + λ51x1x

2
5 + λ25x2x4x5

) ∂

∂x4

+
(
λ21x

2
1x2 + λ14x1x4x5 + λ42x2x

2
4

) ∂

∂x5
.

It is easy to see that outside of some very special subcases of the Mana-
kov case, these two differential operators are not identically zero. Note that
X25(Hr) = X36(Hr) = 0, 1 ≤ r ≤ 3.

2.5. Linear partial differential equations

Let us consider the following system of k, where 1 ≤ k ≤ n − 1, linear
partial differential equations

n∑
i=1

aij(x)
∂F

∂xi
= 0, 1 ≤ j ≤ k, (2.10)

where aij , 1 ≤ i ≤ n, are holomorphic functions defined on some open
subset U ⊂ Cn.

Theorem 2.2. Let x0 ∈ U be such that rankA(x0) = k, where the matrix
A(x) = (aij(x))1≤i≤n,1≤j≤k. Let us suppose that F and F1, . . . , Fn−k are
holomorphic on U solutions of system (2.10) such that F1, . . . , Fn−k are
functionally independent at x0, that means that the vectors (gradFr)(x0),
1 ≤ r ≤ n − k, are linearly independent. Then there exists a neighbour-
hood V of the point (F1(x0), . . . , Fn−k(x0)) and a holomorphic function
Ω defined on V , such that for any x in some neighbourhood of x0 we have

F (x) = Ω(F1(x), . . . , Fn−k(x)). (2.11)
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This result is a direct consequence of Holomorphic Frobenius Integra-
bility Theorem (see Sec. 2.11.20 in [12], Theorem 2.9 in [5] and Appendix
8 in [6]).

Throughout, U denotes a subset of C6 defined by the condition that for
all 1 ≤ i < j ≤ 6, and any point z ∈ U , the vectors (gradH1)(z),
(gradH2)(z), (gradH3)(z), (gradxi)(z), (gradxj)(z) are linearly inde-
pendent. Unless all λi, 1 ≤ i ≤ 6, are equal, U is always an open dense
subset of C6. Below, when saying that identity (2.11) is locally fulfilled, we
will understand that this is so on a neighbourhood of some point from U .

3. Proof of Theorem 1.1.

Let us suppose that the irreducible rational fraction P1/P2, where P1, P2 ∈
C[x1, . . . , x6], is a first integral of system (1.2) and that P1 (and thus also
P2) is not its first integral. Then (D1) from Sec. 2.1 implies that P1 and P2

are proper Darboux polynomials of system (1.2). Since the right-hand sides
of system (1.2) are homogeneous of the same degree, it follows from (D2)
and (D4) that system (1.2) admits also an irreducible homogeneous proper
Darboux polynomial P and its cofactor is a homogeneous linear form, i.e.,

S =
6∑

i=1

αix1,

where αi, 1 ≤ i ≤ 6, are some constants. Since S 6= 0, at least one of
its coefficients is not zero. As explained in Sec. 2.2, without any loss of
generality we can assume that α1 6= 0.

Theorem 1.1 is now a direct consequence of

Theorem 3.1. If for some λ ∈ C6, the Euler equations (1.2) have a proper
Darboux polynomial, then they have a polynomial fourth integral.

Proof. Let P be a proper Darboux polynomial of the Euler equations (1.2).
Without any lost of generality we can suppose that P is an irreducible and
homogeneous polynomial. The proof is naturally divided into three almost
independent parts.

Part 1. Construction of a polynomial first integral.
From (2.7) and (2.8) it immediately follows that R = PP(14) is a Dar-

boux polynomial of system (1.2) with cofactor 2(α1x1 + α4x4), i.e.,

d(R)(x) = 2(α1x1 + α4x4)R(x), (3.1)

Thus from (2.9) one deduces that the polynomial U = R(25) satisfies

d(U)(x) = −2(α1x1 + α4x4)U(x),

and finally (see (D3) in Sec. 2.1) that

d(V ) = 0,
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where

V := RU = RR(25) = (PP(14))(PP(14))(25) = PP(14)P(25)P(14)(25).

This means that V is a polynomial first integral of the Euler equations (1.2).
The main difficulty is to decide whether V is a fourth integral. We will

prove that this is always the case outside of some very special subcases of
the Manakov case. This is proved in Part 2 if the polynomials R and U are
relatively prime and in Part 3 if this is not the case. As in the Manakov case
the polynomial fourth integral always exists, this will prove Theorem 3.1.

Part 2. R and U are relatively prime polynomials.
We have to decide when the first integrals H1, H2, H3 (see (1.3)) and

V are functionally independent. Let us suppose that they are functionally
dependent.

Then for all αi, 1 ≤ i ≤ 6

Xij(V ) = Xij(R)U + Xij(U)R = 0. (3.2)

We will prove that outside of very special subcases of the Manakov case
this contradicts α1 6= 0.

We have supposed that the polynomials R and U are relatively prime
and thus (3.2) shows that either R divides Xij(R), i.e.,

Xij(R) = fijR, (3.3)

where fij is a homogeneous polynomial of second degree, or Xij(R) =
Xij(U) = 0. For the first possibility, according to (3.2) and (3.3), we have
that

Xij(U) = −fijU. (3.4)

In particular X25(R) = f25R and X25(U) = −f25U . Applying to the
first identity the change of variables τ25 (see Sec. 2.3), we conclude that
X25(U) = (f25◦τ25)U and finally that f25 = −f25◦τ25. But this is impos-
sible because f25 cannot depend on x2 and x5. Indeed, the maximal powers
of x2 and of x5 in X25(R) are never greater than their respective maximal
powers in R. Thus f25 = 0 and consequently X25(R) = X25(U) = 0.

We have thus proved that R satisfies the equation

X25(R) = det
∂(H1,H2,H3, R)
∂(x1, x3, x4, x6)

= 0. (3.5)

Let us note that not only U = R ◦ τ25 but also U = R ◦ τ36. This is
so because R is a homogeneous polynomial of even degree and contains
monomials that have only an even sum of powers of x1 and x4. Thus the
monomials of R containing an even sum of powers of x2 and x5 contain
also an even sum of powers of x3 and x6 and respectively, the monomials
of R containing an odd sum of powers of x2 and x5 contain an odd sum of
powers of x3 and x6.
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As U = R◦τ36, exactly in the same way as (3.5), we prove that f36 = 0
or, equivalently, that

X36(R) = det
∂(H1,H2,H3, R)
∂(x1, x2, x4, x5)

= 0. (3.6)

Equations (3.5) and (3.6) represent a system of linear homogeneous par-
tial differential equations for R. This system has four solutions: H1, H2, H3

and R. Consequently, H1, H2, H3, and R are also solutions of the linear
homogeneous partial differential equation

Y (Φ) = 0, (3.7)

where Y = [X25, X36] is the commutator (Lie bracket) of the vector fields
X25 and X36.

The three vector fields X25, X36 and Y are necessarily linearly depen-
dent on C6. Indeed, let us suppose that they are linearly independent. Sys-
tem (3.5)-(3.7) has three functionally independent solutions H1, H2 and
H3. Then, according to Theorem 2.2, the fourth solution R of this system
is represented locally as a function of H1, H2, and H3, i.e., R is a first
integral of system (1.2). But this is a contradiction because R is a proper
Darboux polynomial of (1.2).

We compute the vector field Y (using Maple) and obtain

Y =
[
λ25x2x5(λ63x1x3x6 + λ34x

2
3x4 + λ46x4x

2
6)

+ λ63x3x6(λ52x1x2x5 + λ24x
2
2x4 + λ45x4x

2
5)

+ (λ42x
2
2 + λ54x

2
5)(λ13x1x

2
3 + λ61x1x

2
6 + λ36x3x4x6)

+ (λ34x
2
3 + λ46x

2
6)(λ12x1x

2
2 + λ51x1x

2
5 + λ25x2x4x5)

] ∂

∂x1

+
[
(λ14x1x2 + 2λ45x4x5)(λ13x1x

2
3 + λ61x1x

2
6 + λ36x3x4x6)

+ (2λ51x1x5 + λ14x2x4)(λ63x1x3x6 + λ34x
2
3x4 + λ46x4x

2
6)

] ∂

∂x2

+
[
(λ41x1x3 + 2λ64x4x6)(λ12x1x

2
2 + λ51x1x

2
5 + λ25x2x4x5)

+ (2λ16x1x6 + λ41x3x4)(λ52x1x2x5 + λ24x
2
2x4 + λ45x4x

2
5)

] ∂

∂x3

+
[
λ52x2x5(λ13x1x

2
3 + λ61x1x

2
6 + λ36x3x4x6)

+ λ36x3x6(λ12x1x
2
2 + λ51x1x

2
5 + λ25x2x4x5)

+ (λ13x
2
3 + λ61x

2
6)(λ52x1x2x5 + λ24x

2
2x4 + λ45x4x

2
5)

+ (λ21x
2
2 + λ15x

2
5)(λ63x1x3x6 + λ34x

2
3x4 + λ46x4x

2
6)

] ∂

∂x4
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+
[
(2λ12x1x2 + λ41x4x5)(λ63x1x3x6 + λ34x

2
3x4 + λ46x4x

2
6)

+ (λ41x1x5 + 2λ24x2x4)(λ13x1x
2
3 + λ61x1x

2
6 + λ36x3x4x6)

] ∂

∂x5

+
[
(2λ31x1x3 + λ14x4x6)(λ52x1x2x5 + λ24x

2
2x4 + λ45x4x

2
5)

+ (λ14x1x6 + 2λ43x3x4)(λ12x1x
2
2 + λ51x1x

2
5 + λ25x2x4x5)

] ∂

∂x6
.

Let N be the 3× 6 matrix composed by the coefficients of vector fields
X25, X36 and Y . The linear dependence of those vector fields means that
the condition

rankN ≤ 2 (3.8)

should be fulfilled. We consider two cases:

1. λ1 6= λ4,
2. λ1 = λ4.

Case 1. Let N123 be the minor of N that consists of first, second and
third column. In particular, condition (3.8) implies

δ = detN123 ≡ 0.

The Maple computation of δ gives

δ = λ14δ1δ2δ3,

where

δ1 = λ31x
2
1x

2
3 + λ16x

2
1x

2
6 + 2λ63x1x3x4x6 + λ34x

2
3x

2
4 + λ46x

2
4x

2
6,

δ2 = λ56x1x5x6 + λ64x2x4x6 + λ45x3x4x5,

δ3 = λ12x
2
1x

2
2 + λ51x

2
1x

2
5 + 2λ25x1x2x4x5 + λ42x

2
2x

2
4 + λ54x

2
4x

2
5.

As we consider now the case λ1 6= λ4, then the condition δ ≡ 0 implies
that either δ1 ≡ 0 or δ2 ≡ 0 or δ3 ≡ 0. From δ1 ≡ 0 we obtain

λ1 = λ3 = λ4 = λ6

that is a subcase of the Manakov case. From δ2 ≡ 0 we obtain

λ4 = λ5 = λ6

that is a subcase of the Manakov case. From δ3 ≡ 0 we obtain

λ1 = λ2 = λ4 = λ5

that is a subcase of the Manakov case.
In this way we conclude that in Case 1 condition (3.8) is eventually

fulfilled in some subcases of the Manakov case only.
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Case 2. In this case, condition (3.8) is fulfilled. Equations (3.5) and
(3.6) have four functionally independent solutions. We know three of them
explicitly: they are H1, H2 and H3. As it is easily seen, equations (3.5) and
(3.6) have also the solution

R = λ42x
2
2 + λ45x

2
5.

We prove that out of the Manakov case, R is functionally independent of
H1, H2 and H3. Indeed, if R were functionally dependent on H1, H2, and
H3, then R would be a first integral of the Euler equations (1.2). We com-
pute d(R) and obtain

d(R) = 2(λ24λ34x1x2x3 + λ54λ64x1x5x6 + λ24λ64x2x4x6

+ λ54λ34x3x4x5).

A necessary condition for the equation d(R) ≡ 0 to hold is that either
λ2 = λ4 or λ3 = λ4. Let us first suppose that λ2 = λ4. Then

d(R) = 2λ54x5(λ64x1x6 + λ34x3x4)

and therefore either λ5 = λ4 or λ3 = λ4 = λ6. Both possibilities together
with the condition of Case 2, i.e., λ1 = λ4, lead to subcases of the Manakov
case.

Let us suppose now that λ3 = λ4. Then

d(R) = 2λ64x6(λ54x1x5 + λ24x2x4)

and therefore either λ6 = λ4 or λ2 = λ4 = λ5. As above, both possibilities
lead to subcases of the Manakov case.

So far we have proved that outside of the Manakov case the functions
H1, H2, H3 and R are four functionally independent solutions of equations
(3.5) and (3.6). By Theorem 2.2 we know that locally any other holomor-
phic solution of those two equations is a function of H1,H2,H3 and R.
Thus our Darboux polynomial R, being a solution of equations (3.5) and
(3.6), is represented locally in the following way

R = W (H1,H2,H3, R),

where W is some holomorphic function.
The polynomial R satisfies equation (3.1) and therefore

d(R) =
∂W

∂R
d(R) = 2(α1x1 + α4x4)W,

which shows that the functions H1, H2, H3, R, d(R) and α1x1 + α4x4 are
functionally dependent. Thus the determinant ∆ of their Jacobi matrix is
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identically zero, i.e.

∆ = 16

∣∣∣∣∣∣∣∣∣∣∣∣

x4 x5 x6 x1 x2 x3

x1 x2 x3 x4 x5 x6

λ4x1 λ2x2 λ3x3 λ4x4 λ5x5 λ6x6

0 λ42x2 0 0 λ45x5 0
∂d(R)
∂x1

∂d(R)
∂x2

∂d(R)
∂x3

∂d(R)
∂x4

∂d(R)
∂x5

∂d(R)
∂x6

α1 0 0 α4 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
≡ 0.

It is easy to compute ∆ (using Maple) but this is not necessary. As ∆
equals zero identically, we can compute it only for some fixed particular
values of certain variables xi, 1 ≤ i ≤ 6. For x1 = 0, x5 = 0, and x6 = 0
we obtain easily (and without any computer algebra tools) that

∆
∣∣∣
x1=x5=x6=0

= 16α1x2x3x
2
4λ34λ42(λ64λ42x

2
2 + λ34λ45x

2
3) ≡ 0. (3.9)

As α1 6= 0, identity (3.9) is fulfilled in three cases only:

A. λ2 = λ4,
B. λ3 = λ4,
C. λ4 = λ5 = λ6.

Case A. We compute ∆ for x1 = 0, x2 = 0, and x3 = 0 and obtain

∆
∣∣∣
x1=x2=x3=0,λ2=λ4

= 16α1λ
2
45λ43λ64x

2
4x

3
5x6 ≡ 0. (3.10)

As α1 6= 0 identity (3.10) is fulfilled if and only if either λ5 = λ4 or
λ3 = λ4 or λ6 = λ4. Each of these possibilities together with the conditions
λ1 = λ4 and λ2 = λ4 leads to a subcase of the Manakov case.

Case B. We compute ∆ also for x1 = 0, x2 = 0 and x3 = 0 and obtain

∆
∣∣∣
x1=x2=x3=0,λ3=λ4

= 16α1λ54λ
2
46λ42x

2
4x5x

3
6 ≡ 0. (3.11)

As α1 6= 0, identity (3.11) is fulfilled if and only if either λ5 = λ4 or
λ6 = λ4 or λ2 = λ4. Each of these possibilities together with the conditions
λ1 = λ4 and λ3 = λ4 leads to a subcase of the Manakov case.

Case C. This case is directly a subcase of the Manakov case.
Thus the assumption that H1, H2, H3 and V are functionally dependent

when R and U are relatively prime can eventually be true in some very
special subcases of the Manakov case only.

Remark. We have to note here that there are, indeed, some subcases of the
Manakov case when our procedure does not lead to a fourth integral. For
example, when λ1 = λ4 = λ5 = λ6 = 0 and λ2 = −λ3 (subcase of
the case C), the polynomial P = x2 + x3 is a proper Darboux polynomial
of the Euler equations (1.2). Applying our procedure on P, one obtains,
however, a polynomial first integral that is functionally dependent on H3.
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But we know that in the Manakov case there always exists a polynomial
fourth integral. That is why we do not exclude the Manakov case from the
condition of the theorem.

Part 3. R and U are not relatively prime polynomials.
We have for R and U

R = PP(14) and U = P(25)P(14)(25).

Since the polynomial P is irreducible, the polynomials P(14), P(25) and
P(14)(25) are also irreducible. Thus polynomials R and U are not relatively
prime in the following 8 cases only:

1. P = P(25);
2. P = −P(25);
3. P = P(14)(25);
4. P = −P(14)(25);
5. P(14) = P(25), that is, equivalent to case 3;
6. P(14) = −P(25), that is, equivalent to case 4;
7. P(14) = P(14)(25), that is, equivalent to case 1;
8. P(14) = −P(14)(25), that is, equivalent to case 2.

Let us examine case 1. The cofactor of P is

α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + α6x6.

According to (2.9) the cofactor of P(25) is

−α1x1 + α2x2 − α3x3 − α4x4 + α5x5 − α6x6.

Since P and P(25) are equal in the case under consideration, comparing the
two cofactors we find

α1 = 0, α3 = 0, α4 = 0, α6 = 0.

This contradicts, however our assumption that α1 6= 0. In the same way,
cases 2, 3 and 4 also lead to α1 = 0. ut

As an example of an application of the constructing procedure of the
fourth integral described in the above proof, let us consider the product
case when λ1 6= λ2 and λ1 6= λ3. One can easily see that in this case the
polynomial

P =
λ21

c
x2 + x3 +

λ21

c
x5 + x6,

where c =
√

λ13λ21, is a proper Darboux polynomial of system (1.2) with
cofactor c(x1 + x4). Here P = P(14) and thus R = PP(14) = P 2 and
U = (P 2)(25) = P 2

(25). Finally, the polynomial

V = RU =
(
PP(25)

)2 =
[
−λ21

λ13
(x2 + x5)2 + (x3 + x6)2

]2
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is a fourth integral of (1.2). In fact, in this example, already PP(25) is a
fourth integral.

The explicit form of the polynomial fourth integral when λ2 6= λ1 and
λ2 6= λ3 or when λ3 6= λ1 and λ3 6= λ2 follows now from Theorem 2.1b
applied to the permutational symmetries τ = τ2 ◦ τ3 and τ2 respectively.

Remark. When comparing our system (1.2) with its ”twin brother”, which
are the Euler-Poisson equations of heavy rigid body motion (see [2,3,14,16,
17]), we conclude from [20] (see also [10]) that for these equations the exact
counterpart of Theorem 1.1 holds. Nevertheless, the exact counterpart of
Theorem 3.1 for the Euler-Poisson equations fails. Indeed, in the non-inte-
grable so-called Hess-Appelrot case, proper Darboux polynomial exists.
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