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On the ill-posedness of the Prandtl equation

∗David Gérard-Varet, †Emmanuel Dormy

Abstract

The concern of this paper is the Cauchy problem for the Prandtl equation. This
problem is known to be well-posed for analytic data [13, 10], or for data with monotonicity
properties [11, 15]. We prove here that it is linearly ill-posed in Sobolev type spaces.
The key of the analysis is the construction, at high tangential frequencies, of unstable
quasimodes for the linearization around solutions with non-degenerate critical points.
Interestingly, the strong instability is due to vicosity, which is coherent with well-posedness
results obtained for the inviscid version of the equation [8]. A numerical study of this
instability is also provided.

1 Introduction

One challenging open problem of fluid dynamics is to understand the inviscid limit of the
Navier-Stokes equations





∂tuν + uν · ∇uν +∇pν − ν∆uν = 0, x ∈ Ω,

∇ · uν = 0, x ∈ Ω,

uν |∂Ω = 0,

(1.1)

in a domain Ω with boundaries, endowed with a no-slip boundary condition. Mathematically,
the main difficulty is the lack of uniform bounds on the vorticity field, as the viscosity ν goes
to zero. In terms of fluid dynamics, this corresponds to a boundary layer phenomenon near
∂Ω.

A natural approach to describe this boundary layer is to look for a double-scale asymp-
totics, with a parabolic scaling in the normal direction. Consider the case Ω ⊂ R2. At least
locally, any point x in a neighborhood of ∂Ω has a unique decomposition

x = y n(x) + x̃(x), x̃ ∈ ∂Ω,

where y > 0, x is an arc length parametrization of the boundary, and n is the inward unit
normal vector at ∂Ω. The velocity field can be written

uν(t,x) = uν(t, x, y) τ (x) + vν(t, x, y)n(x),

where (τ ,n) is the Frénet frame. It is then natural to consider an approximation of the type:

uν(t, x, y) ≈ u0(t, x, y) + uBL(t, x, y/
√

ν),

vν(t, x, y) ≈ v0(t, x, y) +
√

ν vBL(t, x, y/
√

ν),
(1.2)
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where
u0(t, x, y) = u0(t, x, y) τ (x) + v0(t, x, y)n(x)

satisfies the Euler equation with the no penetration condition, and

(uBL, vBL) = (uBL, vBL)(t, x, Y )

describes a boundary layer corrector with typical scale
√

ν in the normal direction. It is
slightly more convenient to introduce

u(t, x, Y ) := u0(t, x, 0) + uBL(t, x, Y ), v(t, x, Y ) := Y ∂yv
0(t, x, 0) + vBL(t, x, Y ).

Indeed, inserting this Ansatz in the Navier-Stokes equations, we get formally




∂tu + u∂xu + v∂Y u− ∂2
Y u =

(
∂tu

0 + u0∂xu0
) |y=0, Y > 0,

∂xu + ∂Y v = 0, Y > 0,

(u, v) = 0, Y = 0,

lim
Y→+∞

u = u0|y=0.

(1.3)

These are the so-called Prandtl equations, derived by Ludwig Prandtl [12]. Note that the
curvature of the boundary does not appear explicitly in the system. It is however involved
in (1.3) through the Euler field, and through the interval of definition of the arc length
parametrization x. Up to our knowledge, all studies deal with one of the three following
cases: x ∈ R, x ∈ T, or 0 < x < L, supplemented with a condition on u at x = 0. The first
and second choices are convenient to describe phenomena that are local in x. The case x ∈ T
may also model the outside of a bounded convex obstacle. Finally, the third configuration is
adapted to the spreading of a flow around a thin obstacle, where x = 0 corresponds to the
tip of the obstacle.

Although this formal asymptotics is very natural, its validity is not clear. As emphasized
by physicists, including Prantdl himself, it may not hold uniformly in space and time. One
reason is the so-called boundary layer separation, which is observed for flows around obstacles,
see [7]. Nevertheless, the description (1.2) fits with many experiments, upstream from the
separation zone. In any case, to understand the relevance and limitations of the Prandtl
model is a crucial issue.

From the mathematical point of view, one must address two problems:

1. The well-posedness of the Prandtl equation.

2. The justification of the expansion (1.2).

These two problems depend crucially on the choice of the underlying functional spaces, es-
pecially on the regularity that is required in the tangential variable x. Indeed, the main
mathematical difficulty is the lack of control of the x derivatives. For example, v is recovered
in (1.3) through the divergence condition, and in terms of x-regularity, behaves broadly like
∂xu. This loss of one derivative is not balanced by any horizontal diffusion term, so that
standard energy estimates do not apply.

Within spaces of functions that are analytic in x ∈ R, Y ∈ R+, Sammartino and Caflish
have overcome these problems, justifying locally in time the boundary layer asymptotics
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[13, 14]. But for more “realistic” functional settings, the way solutions of (1.1) behave is
still poorly understood. Various instability mechanisms, that are filtered out in an analytic
framework, become a huge source of trouble. For example, when the viscosity is small, the
Navier-Stokes equation admits exponentially growing solutions which are both small-scale
and isotropic in x, y. Their evolution is lost in the anisotropic Prandtl description.

This remark was used by Emmanuel Grenier in [6], who relied on the so-called Rayleigh
instability for inviscid flows to show that the asymptotics (1.2) does not (always) hold in the
Sobolev space H1 (see [6] for a precise statement). However, the relevance of this asymptotics
in Lp, or its relevance in the absence of Rayleigh instabilities, are still open issues.

Above all, the local in time well-posedness of the Prandtl equation for smooth (say Sobolev)
initial data has been so far an open problem. Up to our knowledge, the Cauchy problem has
only been solved in two settings:

i) x ∈ R, with data that are analytic in x : see [13, 10] for more.

ii) 0 < x < L, with data that are monotonic in y : see [11, 15] for more.

One may also cite article [4], in which blow up in time of some smooth solutions is exhibited.
Finally, let us mention the interesting work [8], in which the inviscid version of (1.3) is
analyzed (no ∂2

Y u in the equation). Interestingly, for a smooth initial data, this equation
turns out to have an explicit solution through the method of characteristics. In particular,
starting from a smooth data, one recovers locally in time a smooth data. More precisely,
there is only a finite loss of x-derivatives, so that the Cauchy problem is (weakly) well-posed.
We refer to [8] for all details. See also papers [5, 1] on the hydrostatic equations, that share
some features with Prandtl equations. For more on Prandtl equations, see the review [3].

On the basis of the inviscid result, it seems reasonable to bet for well-posedness of the
Prandtl equation (1.3) in Sobolev type spaces. The aim of this paper is to show that it is
actually linearly ill-posed in this framework. As we shall see later on, the reason for ill-
posedness is a strong destabilization mechanism due to two ingredients: viscosity, and critical
points in the base velocity profile. In particular, it does not contradict the positive results
obtained in the inviscid case and for monotonic data.

Let us now describe our results. We restrict ourselves to (x, Y ) ∈ T × R+, and u0 = 0.
To lighten notations, we write y instead of Y . The Prandtl equation comes down to





∂tu + u∂xu + v∂yu− ∂2
yu = 0, in T× R+.

∂xu + ∂yv = 0, in T× R+,

(u, v)|y=0 = (0, 0), lim
y→+∞u = 0.

(1.4)

Let us = us(t, y) a smooth solution of the heat equation

∂tus − ∂2
yus = 0, us|y=0 = 0, us|t=0 = Us, (1.5)

with good decay as y → +∞. Clearly, the shear velocity profile (us, vs) = (us(t, y), 0) satisfies
the system (1.4). We consider the linearization around (us, vs), that is





∂tu + us∂xu + v∂yus − ∂2
yu = 0, in T× R+.

∂xu + ∂yv = 0, in T× R+,

(u, v)|y=0 = (0, 0), lim
y→+∞u = 0.

(1.6)
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We wish to study well-posedness properties of (1.6), for a certain class of velocities us. In
this view, we introduce the following functional spaces:

W s,∞
α (R+) :=

{
f = f(y), eαyf ∈ W s,∞(R+)

}
, ∀α, s ≥ 0,

with ‖f‖W s,∞
α

:= ‖eαyf‖W s,∞ , and

Eα,β :=

{
u = u(x, y) =

∑

k∈Z
ûk(y)eikx, ‖ûk‖

W 0,∞
α

≤ Cα,β e−β|k|, ∀k
}

, ∀α, β > 0,

with ‖u‖Eα,β
:= supk eβ|k| ‖ûk‖

W 0,∞
α

.

Note that the functions of Eα,β have analytic regularity in x. They have only L∞ regularity
in y, with an exponential weight. More regularity in y could be considered as well. Let
α, β > 0. We prove in the appendix the following result:

Proposition 1 (Well-posedness in the analytic setting)

Let us ∈ C0
(
R+; W 1,∞

α (R+)
)
. There exists ρ > 0 such that: for all T with β − ρT > 0,

and all u0 ∈ Eα,β, the linear equation (1.6) has a unique solution

u ∈ C ([0, T ); Eα,β−ρT ) , u(t, ·) ∈ Eα,β−ρt, u|t=0 = u0.

In short, the Cauchy problem for (1.6) is locally well-posed in the analytic setting. We shall
denote

T (t, s)u0 := u(t, ·)
where u is the solution of (1.6) with u|t=s = u0. As the spaces Eα,β are dense in the spaces

Hm := Hm(Tx,W 0,∞
α (R+

y )), m ≥ 0,

this makes sense to introduce the following notation: for all T ∈ L(Eα,β, Eα,β′),

‖T‖L(Hm1 ,Hm2 ) = sup
u0∈Eα,β

‖Tu0‖Hm2

‖u0‖Hm1

,

that belongs to R+∪{+∞}. In particular, it is infinite when T does not extend to a bounded
operator from Hm1 to Hm2 . The main result of our paper is

Theorem 1 (Ill-posedness in the Sobolev setting)

i) Let us ∈ C0
(
R+; W 4,∞

α (R+)
)∩C1

(
R+; W 2,∞

α (R+)
)
. Assume that the initial velocity has a

non-degenerate critical point over R+. Then, there exists σ > 0, such that for all δ > 0,

sup
0≤s≤t≤δ

‖e−σ(t−s)
√
|∂x| T (t, s)‖L(Hm,Hm−µ) = +∞, ∀m ≥ 0, µ ∈ [0, 1/2).

ii) Moreover, one can find solutions us of (1.5) and σ > 0 such that: for all δ > 0,

sup
0≤s≤t≤δ

‖e−σ(t−s)
√
|∂x| T (t, s)‖L(Hm1 ,Hm2) = +∞, ∀m1,m2 ≥ 0.
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This theorem expresses strong linear ill-posedness of the Prandtl equation in the Sobolev
framework. It is a consequence of an instability process, that holds at high tangential fre-
quencies. We will show that some perturbations with tangential frequency k À 1 grow like
e
√

kt.

The outline of the paper is as follows. Section 2 gives a formal description of the instability
mechanism. It relies on an asymptotic analysis of (1.6), in the high tangential frequency
limit. Thanks to this analysis, we show that ill-posedness for the PDE (1.6) comes down to
a “spectral condition” for a reduced ODE, namely:

(SC) There exists τ ∈ C with Imτ < 0, and a solution W = W (z) of

(τ − z2)2
d

dz
W + i

d3

dz3

(
(τ − z2)W

)
= 0, (1.7)

such that lim
z→−∞W = 0, lim

z→+∞W = 1.

This spectral condition is studied in section 3, and shown to be satisfied. On these grounds,
we prove theorem 1, cf section 4. We end up the paper with numerical computations, which
emphasize that our instability mechanism is effective.

2 The instability mechanism

In this section, we describe the destabilization of system (1.6), leading to the ill-posedness
theorem. As we shall see, it takes place at high tangential frequencies, say O(1/ε), and has a
typical time O(

√
ε). At this timescale, the time dependence of the base velocity (us(t, y), 0)

will not play an important role. Thus, to understand the instability mechanism, we can
consider the simpler equation





∂tu + Us∂xu + vU ′
s − ∂2

yu = 0, in T× R+.

∂xu + ∂yv = 0, in T× R+,

(u, v)|y=0 = (0, 0).

(2.1)

Handling of the real equation, that is with us instead of Us, will require minor modifications,
to be achieved in section 4.

System (1.6) has constant coefficients in t and y, so that we can perform a Fourier analysis:
we look for solutions in the form

u(t, y) = eik(ω(k)t+x)ûk(y), v = k eik(ω(k)t+x)v̂k(y), k > 0. (2.2)

As we are interested in high tangential frequencies, we denote ε := 1/k ¿ 1, and write
ω(ε) instead of ω(k), uε(y), vε(y) instead of ûk(y), v̂k(y). The divergence condition yields
v′ε(y) = −iuε(y). Using this relation in the first equation in (2.1), one ends up with

{
(ω(ε) + Us) v′ε − U ′

svε + i εv(3)
ε = 0, y > 0,

vε|y=0 = v′ε|y=0 = 0.
(2.3)

Thus, the high frequency limit ε → 0 in variable x yields a singular perturbation problem in
variable y. To investigate this problem, one must first consider the inviscid case ε = 0.
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2.1 The inviscid case

When ε = 0, one can a priori only retain the impermeability condition. The appropriate
problem is

(ω + Us) v′ − U ′
sv = 0, y > 0, v|y=0 = 0. (2.4)

This spectral problem, as well as the corresponding evolution equation, have been studied
exhaustively in [8]. Clearly, there are non-trivial solutions if and only if ω belongs to the
range of −Us. Moreover, the couples

ωa = −Us(a), va = H(y − a) (Us − Us(a)) , a > 0

where H is the Heaviside function, satisfy (2.4). Note that the regularity of va depends on the
choice of a. When a is a critical point, it belongs to W 2,∞

α (R+) with a discontinuous second
derivative. Otherwise, it is only in W 1,∞

α (R+), with a discontinuous first derivative. Luckily
enough, the additional boundary condition v′a|y=0 = 0 is also satisfied.

2.2 The viscous perturbation

When ε is not 0, the inviscid eigenelements ωa, va do not solve (2.3). All boundary conditions
are satisfied, cf the above remark, but the equation is not. First, there is a O(ε) remaining
term for y > a. More importantly, va is not smooth at y = a, whereas a solution of this
parabolic equation should be.

Nevertheless, at least if a is a non-degenerate critical point, there is an approximate
solution near (ωa, va). We shall establish this rigorously in section 4. We just give here a
formal expansion. It reads





ω(ε) ∼ ωa + ε1/2τ,

vε(y) ∼ va + ε1/2τ H(y − a) + ε1/2 V

(
y − a

ε1/4

)
,

(2.5)

where τ ∈ C, and V = V (z) quickly tends to zero as z → ±∞. Note that the approximation
of vε has two parts: the “regular” part

vreg
ε (y) = H(y − a)

(
Us(y) − Us(a) + ε1/2τ

)

and the “shear layer part”

vsl
ε (y) = ε1/2 V

(
y − a

ε1/4

)
.

For ω(ε) = −Us(a) + ε1/2τ , the function vreg
ε solves (2.3) up to O(ε), away from the critical

point y = a. However, it has a jump at y = a, together with its second derivative. The role
of the shear layer vsl

ε , which concentrates near y = a, is to cancel these discontinuities. Still
formally, we obtain the system satisfied by the profile V :





(
τ + U ′′

s (a)
z2

2

)
V ′ − U ′′

s (a) z V + i V (3) = 0, z 6= 0,

[V ]|z=0
= −τ,

[
V ′]

|z=0
= 0,

[
V ′′]

|z=0
= −U ′′(a),

lim±∞V = 0.

(2.6)
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Let us point out that this system is a priori overdetermined, as jump and boundary conditions
provide too many constraints. This justifies the introduction of the parameter τ in the Ansatz
(2.5). As we shall see below, there is a τ for which system (2.6) has a solution. Moreover,
Imτ is negative. Hence, back to the Fourier representation (2.2), the k-th mode will grow in
time like e

√
kt. This is the key of the instability mechanism.

To see how the condition (SC) of the introduction steps in, we need a few rewritings.
First, τ + U ′′

s (a) z2

2 satisfies the equation in (2.6). We therefore introduce

Ṽ (z) = V (z) + 1R+

(
τ + U ′′

s (a)
z2

2

)

which leads to




(
τ + U ′′

s (a)
z2

2

)
Ṽ ′ − U ′′

s (a) z Ṽ + i Ṽ (3) = 0, z ∈ R,

lim−∞ Ṽ = 0, Ṽ ∼+∞ τ + U ′′
s (a)

z2

2
.

Then, we introduce W such that

Ṽ =
(
τ + U ′′

s (a) z2/2
)

W.

We get: 



(
τ + U ′′

s (a) z2/2
)2 d

dz
W + i

d3

dz3

((
τ + U ′′

s (a) z2/2
)

W
)

= 0,

lim−∞W = 0, lim
+∞W = 1.

Finally, we perform the change of variables

τ =
1√
2
|U ′′(a)|1/2 τ̃ , z = 21/4 |U ′′(a)|−1/4z̃.

Dropping the tildes leaves us with the reduced ODE




(
τ + sign(U ′′

s (a)) z2
)2 d

dz
W + i

d3

dz3

((
τ + sign(U ′′

s (a)) z2
)

W
)

= 0,

lim−∞W = 0, lim
+∞W = 1.

If U ′′
s (a) < 0, it is exactly the system in (SC). If on the contrary U ′′

s (a) > 0, and if (τ,W )
satisfies the system in (SC), then (τ := −τ , W := W ) satisfies the above system. In both
cases, back to the original system (2.6), condition (SC) gives a solution (τ, V ) with Imτ < 0.
In particular, this

√
ε correction to the eigenvalue is a source of strong instability, leading to

ill-posedness.

The proof of Theorem 1, which is based on this formal shear layer phenomenon, is post-
poned to section 4. In the next paragraph, we focus on condition (SC), and prove that it is
satisfied.
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3 The spectral condition (SC)

We need to study the existence of heteroclinic orbits for the ODE (1.7). Note that W = 1 is
a solution. Equation (1.7) can be written as a second order equation in X = W ′:

i(τ − z2)X ′′ − 6i z X ′ +
(
(τ − z2)2 − 6i

)
X = 0. (3.1)

To show that (SC) holds, we proceed in three steps.

Step 1. We consider an auxiliary eigenvalue problem:

Au :=
1

z2 + 1
u′′ +

6z

(z2 + 1)2
u′ +

6
(z2 + 1)2

u = α u. (3.2)

For its study, we introduce the weighted spaces

L2 :=
{

u ∈ L2
loc,

∫

R
(z2 + 1)4|u|2 < +∞

}
,

H1 :=
{

u ∈ H1
loc

∫

R
(z2 + 1)4|u|2 +

∫

R
(z2 + 1)3|u′|2 < +∞

}
↪→ L2.

with their obvious Hilbert norms. We see A as an operator from D(A) :=
{
u ∈ H1, Au ∈ L2

}
into L2. Our goal is to show that A has a positive eigenvalue.

By standard arguments, the domain D(A) is dense in L2. Moreover, for any u in D(A),
there is a sequence un of smooth functions with compact support, such that un → u in H1

and Aun → Au in L2. Integration by parts and use of this density property give easily that
A is symmetric, i.e.

∀u, v ∈ D(A), (Au | v)L2 = (Av |u)L2 (3.3)

and that for λ large enough

((λ−A)u |u)L2 = λ

∫

R
(z2 + 1)4|u|2− 6

∫

R
(z2 + 1)2|u|2 +

∫

R
(z2 + 1)3|u′|2 ≥ 1

2
‖u‖2

H1 . (3.4)

Then, the coercivity condition (3.4) allows to apply the Lax-Milgram lemma. It implies the
invertibility of λ−A, with

‖ (λ−A)−1 f‖L2 ≤ ‖ (λ−A)−1 f‖H1 ≤ C ‖f‖L2 .

Moreover, from (3.3), (λ−A)−1 is selfadjoint, and so is A.

First, let us prove that A has positive spectrum. To do so, we claim that it is enough to
find u ∈ D(A) with (Au |u)L2 > 0. Indeed, suppose a contrario that σ(A) is contained in
R−. Then, by the spectral theorem,

∀α > 0, ‖(A− α)−1‖ =
1

d(α, σ(A))
≤ α−1.

We deduce: for all u ∈ D(A)

‖u‖2
L2 ≤ α−2 ‖(A− α)u‖2

L2
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Expanding the scalar products, we obtain

0 ≤ α−2 ‖Au‖2
L2 − 2α−1(Au |u)L2

In the limit α → +∞, we get (Au |u)L2 ≤ 0 for all u ∈ D(A). This proves our claim. From
there, we simply take u = e−2z2

. A straightforward computation gives

(Au |u) =
439
512

√
π > 0,

and so σ(A) has a positive subset.

It remains to exhibit a positive eigenvalue inside this positive subset of the spectrum. We
remark that the operator A can be split into

A = A1 + A2, A1u :=
1

z2 + 1
u′′ +

6z

(z2 + 1)2
u′, A2u :=

6
(z2 + 1)2

u.

On one hand, the operator A1 is negative, and by Lax-Milgram Lemma, A1 − λ is invertible
for any λ > 0. Thus, σ(A1) ⊂ R−. On the other hand, let un a sequence with un and A1un

bounded in L2. This implies that un is bounded inH1, and so has a convergent subsequence in
L2

loc. Moreover, |un|2 is equi-integrable over R. Finally, it implies that A2un has a convergent
subsequence in L2, which means that A2 is A1−compact. Hence, the essential spectra of A
and A1 are the same, see [9]. In particular, the positive part of σ(A) is made of isolated
eigenvalues with finite multiplicity. Eventually, we state: there exists α > 0, and u in D(A)
satisfying (3.2).

Step 2. We wish to convert the eigenelements (α, u) of the previous step into an appro-
priate solution (τ, X) of (3.1). We set τ̃ = −α1/2, and z̃ = α−1/4z, Y (z̃) = u(z). Dropping
the tildes, we obtain a solution of

(τ − z2)Y ′′ − 6 z Y ′ +
(
(τ − z2)2 − 6

)
Y = 0. (3.5)

By a classical bootstrap argument, Y is smooth. Moreover, it inherits from u its integrability
properties at infinity. Actually, the behaviour of Y can be further specified, as shown in:

Proposition 2 The function Y admits a unique extension, still denoted by Y , that is holo-
morphic in z and satisfies (3.5) in the simply connected domain

Uτ := C \
([
−i∞, −i|τ |1/2

]
∪

[
i|τ |1/2, +i∞

])
.

Moreover, in the sectors arg z ∈ (−π/4 + δ, π/4− δ) and arg z ∈ (3π/4 + δ, 5π/4− δ), δ > 0,
it satisfies the inequality

|Y (z)| ≤ Cδ exp(−z2/4).

Proof. This proposition follows from the general theory of ODE’s with holomorphic coef-
ficients. The existence of a holomorphic solution is well-known, because the coefficient τ − z2

does not vanish on Uτ . As regards the inequality, we rewrite equation (3.1) as the first order
system:

d

dz
Y = zA(z)Y, Y =

(
Y

z−1 d
dz

Y

)
, A(z) =

(
0 1

6−(τ−z2)2

z2(τ−z2)
6

τ−z2− 1
z2

)
. (3.6)
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In particular, A is holomorphic at infinity, with A(∞) = ( 0 1
1 0 ). It has two distinct eigenvalues

±1, with eigenvectors
(

1±1

)
.

Hence, we can apply [2, Theorem 5.1 p163]: in any closed sector S inside which Re z2 does
not cancel, there exists solutions Y± (depending a priori on S) with the following asymptotic
behaviour as |z| → +∞:

Y± ∼

∑

i≥0

Y i
± zα±−i


 eP±(z), (3.7)

where α± is a complex constant, and P±(z) is a polynomial of degree 2. Moreover, the leading
term of P± is ± z2

2 . Following the same scheme of proof, we get in the present case:

Y0
± =

(
1±1

)
, α± = −1

2
(±τ + 7) , P± = ±z2/2. (3.8)

As our solution Y is integrable over R, it is necessarily proportional to the decaying solution.
The bounds in proposition 2 follow.

Now, as Y is defined on Uτ , we can perform the complex change of variable:

z̃ := eiπ/8z, τ̃ := eiπ/4τ

Note that τ̃ has a negative imaginary part. Moreover, for z̃ real, the original variable z belongs
to the sectors arg z ∈ (−π/4 + δ, π/4− δ) or arg z ∈ (3π/4 + δ, 5π/4− δ), with δ = 1/16. By
the proposition 2, the function X(z̃) = Y (z) satisfies the estimate |X(z̃)| ≤ C exp(−1/4 z̃2).
Finally, dropping the tildes yields a solution τ, X of (3.1), where X decays at infinity. This
concludes step 1.

Step 3. To deduce from the previous step that (SC) holds, it is enough that
∫
RX(z)dz be

non zero. If so, one can consider

W (z) :=
(∫

R
X(z′)dz′

)−1 ∫ z

−∞
X(z′) dz′,

which clearly satisfies all requirements.

Let us assume a contrario that
∫
RX(z)dz = 0. Then, the function

V (z) := (τ − z2)
∫ z

−∞
X(z′) dz′

is a solution of (
τ − z2

)
V ′ + 2 z V + i V (3) = 0,

which decays exponentially as z goes to ±∞, together with all its derivatives. Differentiation
of the equation gives (

τ − z2
)
V ′′ + 2V + i V (4) = 0,

Then, we multiply by V ′′, that is the complex conjugate of V ′′, and integrate over R. Simple
integrations by parts yield:

∫

R
(τ − z2)|V ′′|2 − 2

∫

R
|V ′|2 − i

∫

R
|V (3)|2 = 0.

10



The imaginary part of this identity yields

Imτ

∫

R
|V ′′|2 =

∫

R
|V (3)|2

which contradicts the fact that Imτ < 0. Thus, the condition (SC) is satisfied.

4 Proof of ill-posedness

Theorem 1 will be deduced from the formal analysis of section 2. This analysis was performed
on (2.1), in which possible time variations of uswere neglected. To account for the original
system (1.6) will require a few modifications, notably in the choice of the approximation (2.5).
We will distinguish between the parts i) and ii) of the theorem.

4.1 Ill-posedness for general us

Let us satisfying the assumptions of part i). Let a be the non-degenerate critical point of
us|t=0 = Us. For the sake of brevity, we consider the case U”s(a) < 0, the other one being
strictly similar. The differential equation

∂t∂yus(t, a(t)) + ∂2
yus(t, a(t)) a′(t) = 0, a(0) = a

defines for small time t < t0 a non-degenerate critical point a(t) of us(t, ·). Let then τ, W
given by condition (SC). We set

V := (τ − z2)W − 1R+

(
τ − z2

)
.

In the light of section 2, we introduce, for ε > 0 and t < t0:

ω(ε, t) := −us(t, a(t)) +
ε1/2

√
2
|∂2

yus(t, a(t))|1/2τ

as well as the “regular” velocity

vreg
ε (t, y) := H(y − a(t))

(
us(t, y)− us(t, a(t)) +

ε1/2

√
2
|∂2

yus(t, a(t))|1/2τ

)
,

and the shear layer velocity

vsl
ε (t, y) :=

ε1/2

√
2

ϕ(y − a(t)) |∂2
yus(t, a(t))|1/2 V

(
|∂2

yus(t, a(t))|1/4 (y − a(t))
(2ε)1/4

)
,

where ϕ is a smooth truncation function near 0. We then consider the following velocity field:

uε(t, x, y) := eiε−1xUε(t, y), Uε(t, y) = i eiε−1
R t
0 ω(ε,s)ds ∂y

(
vreg
ε (t, y) + vsl

ε (t, y)
)

,

vε(t, x, y) := eiε−1xVε(t, y), Vε(t, y) = ε−1 eiε−1
R t
0 ω(ε,s)ds

(
vreg
ε (t, y) + vsl

ε (t, y)
)

.

In order to have a field that is 2π-periodic in x and growing in time, we take ε := 1
n , with

n ∈ N∗. One verifies easily that uε = eiε−1x Uε(t, y) is analytic in x, and W 2,∞ in t, y.
Moreover, we have the bounds

c e
σ0t√

ε ≤ ‖Uε(t, ·)‖W 2,∞
α

≤ C e
σ0t√

ε , (4.1)
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for positive constants c, C and σ0 that do not depend on ε.

Inserting the expression for uε, vε into the linearized Prandtl equation (1.6), we obtain




∂tuε + us∂xuε + vε∂yus − ∂2
yuε = rε, in T× R+.

∂xuε + ∂yvε = 0, in T× R+,

(u, v)|y=0 = (0, 0).

(4.2)

The remainder term rε reads rε = eiε−1xRε(t, y), with

Rε(t, y) = eiε−1
R t
0 ω(ε,s)ds

(
− ε−1

(
us(t, y) − us(t, a(t)) − ∂2

yus(t, a(t))
y2

2

)
∂yv

sl
ε (t, y)

+ ε−1
(
∂yus(t, a(t)) − ∂2

yus(t, a(t))y
)

vsl
ε (t, y)

− i ε ∂3
yvreg

ε (t, y) + i ∂t∂y

(
vreg
ε (t, y) + vsl

ε (t, y)
)

+ O(ε∞)
)
.

The O(ε∞) gathers terms with derivatives of ϕ: as the shear layer profile V decreases ex-
ponentially, and the derivatives of ϕ(· − a) are supported away from a, their contribution is
indeed exponentially small. Straightforwardly,

‖Rε(t, ·)‖W 0,∞
α

≤ Ce
σ0t√

ε , (4.3)

with the same σ0 as in (4.1).

We are now in a position to prove part i) of Theorem 1. Let us assume a contrario that
for all σ > 0, there exists m ≥ 0, µ ∈ [0, 1/2) and δ > 0 such that

sup
0≤s≤t≤δ

‖e−σ(t−s)
√
|∂x| T (t, s)‖L(Hm,Hm−µ) < +∞.

Let
Tε(t, s) : W 0,∞

α (R+) 7→ W 0,∞
α (R+)

the restriction of T (t, s) to the tangential Fourier mode ε−1. Namely, T (t, s)
(
eiε−1x U0

)
=

eiε−1x Tε(t, s)U0. Similarly, we denote Lε = e−iε−1x Leiε−1x, where L is the linearized Prandtl
operator around us. We have, for all 0 ≤ s ≤ t ≤ δ,

‖T (t, s)‖L(W 0,∞
α )

≤ C ε−µ e
σ(t−s)√

ε .

Let U = U(t, y) the solution of ∂tU +LεU = 0, that coincides initially with the approximation
Uε. On one hand, we get

‖U(t, ·)‖
W 0,∞

α
≤ C ε−µ e

σt√
ε ‖U(0, ·)‖

W 0,∞
α

≤ C ′ ε−µ e
σt√

ε . (4.4)

On the other hand, the difference Ũ = U − Uε satisfies, for all t < δ,

Ũ(t, ·) =
∫ t

0
Tε(t, s)Rε(s)ds.
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Estimate (4.3) implies

‖Ũ(t, ·)‖
W 0,∞

α
≤ C ε−µ

∫ t

0
e

σ(t−s)√
ε e

σ0s√
ε ds ≤ C ′ ε1/2−µ e

σ0t√
|ε| ,

as soon as σ < σ0. Combining this with the estimate (4.1), we obtain the lower bound

‖U(t, ·)‖
W 0,∞

α
≥ ‖Uε(t, ·)‖W 0,∞

α
− ‖Ũ(t, ·)‖

W 0,∞
α

≥ c e
σ0t√

ε − Cεµ−1/2 e
σ0t√

ε

For ε small enough, we get

‖U(t, ·)‖
W 0,∞

α
≥ c′ e

σ0t√
ε ,

which contradicts the upper bound (4.4), as soon as σ < σ0 and t À µ
σ0−σ | ln(ε)| √ε. This

achieves the proof of part i).

4.2 Stronger ill-posedness for specific us

It remains to handle part ii) of Theorem 1. Roughly, we must find some us for which
e−σ

√
|∂x|(t−s) T (t, s) fails to be bounded from Hm to Hm−µ, µ ≥ 0 arbitrary. Using no-

tations of the previous paragraph, the keypoint is to build, for any N , a growing solution
Uε,N of

∂tUε,N + LεUε,N = Rε,N , where ‖Rε,N (t, ·)‖
W 0,∞

α
≤ CN

(
εN + t2N

)
e

σ0t√
ε .

Indeed, we can then take N + 1/2 > µ, and conclude along the same lines as above.

So far, we have not managed to improve the approximation of the previous paragraph for
general us. This explains the technical restriction µ ∈ [0, 1/2) of part i). In order to obtain
a refined approximation, we consider some special profiles: we assume that us(0, y) = Us(y),
for some exponentially decreasing Us, satisfying in the neighborhood of a > 0:

Us(y) = U ′′
s (a)

(y − a)2

2
, U ′′

s (a) < 0.

Notice that a is a non-degenerate critical point of Us. For such profiles, the approximation of
the previous paragraph reads

Uε(t, y) = i eiε−1
R t
0 ω(ε,s) ds ∂y

(
vreg
ε (t, y) + vsl

ε (t, y)
)

, ε =
1
n

, n ∈ N∗.

Using that Us is quadratic near y = a, one can improve this approximation through an
expansion of the type

Uε,N (t, y) = Uε(t, y) + i eiε−1
R t
0 ω(ε,s) ds ∂y

N∑

i=1

εi vi,reg
ε (t, y),

with additional terms vi,reg
ε . Let us briefly explain the construction of these extra terms. The

error terms due to Uε divide into three categories:
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1. Shear layer terms involving derivatives of ϕ. As mentioned before, they are O (ε∞), and
require no correction.

2. Terms that come from the replacement of us by its Taylor expansion in the shear layer
equation.They read

Rε,1 := −ε−1eiε−1
R t
0 ω(ε,s) ds

(
us(t, y) − us(t, a(t)) − ∂2

yus(t, a(t))
y2

2

)
∂yv

sl
ε (t, y),

Rε,2 := ε−1eiε−1
R t
0 ω(ε,s) ds

(
∂yus(t, a(t)) − ∂2

yus(t, a(t))y
)

vsl
ε (t, y).

We write

|Rε,1| = ε−1e
σ0t√

ε

∣∣∣∣∣
∫ y

a(t)

(z − a(t))2

2
∂3

yus(t, z) dz

∣∣∣∣∣
∣∣∣∂yv

sl
ε (t, y)

∣∣∣

≤ ε−1e
σ0t√

ε

∫ y

a(t)

(z − a(t))2

2

2N−1∑

k=0

tk

k!

∣∣∣∂k
t ∂3

yus(0, z)
∣∣∣ dz

∣∣∣∂yv
sl
ε (t, y)

∣∣∣ + O(t2N )e
σ0t√

ε

≤ ε−1e
σ0t√

ε

∫ y

a(t)

(z − a(t))2

2

2N−1∑

k=0

tk

k!

∣∣∣∂3+2k
y Us(z)

∣∣∣ dz
∣∣∣∂yv

sl
ε (t, y)

∣∣∣ + O(t2N )e
σ0t√

ε .

The second inequality stems from a Taylor expansion of us with respect to t. As us

satisfies the heat equation, each time derivative can be replaced by two space derivatives,
so the third line. Because Us is quadratic in a vicinity of a(t) (for short times), and vsl

ε

and its derivatives decay exponentially fast, we end up with

|Rε,1| ≤ C
(
t2N + εN

)
e

σ0t√
ε .

A similar bound holds for Rε,2. Hence, these remainders do not require correction.

3. Terms that come from the time derivative and the diffusion. We focus here on the time
derivative, as the diffusion term is simpler and has smaller amplitude. This is

Rε,3 := i eiε−1
R t
0 ω(ε,s) ds ∂t∂y

(
vreg
ε (t, y) + vsl

ε (t, y)
)
.

Proceeding as for Rε,2, that is with Taylor expansions in t, leads to
∣∣∣eiε−1

R t
0 ω(ε,s) ds ∂t∂yv

sl
ε (t, y)

∣∣∣ ≤ C
(
t2N + εN

)
e

σ0t√
ε .

As regards the regular part,

eiε−1
R t
0 ω(ε,s) ds ∂t∂yv

reg
ε (t, y) = eiε−1

R t
0 ω(ε,s) ds H(y − a(t)) ∂t∂yus

= eiε−1
R t
0 ω(ε,s) ds H(y − a(t)) F (t, y) + O

(
t2N e

σ0t√
ε

)

where

F (t, y) :=
2N−1∑

k=0

tk

k!
∂3+2k

y Us(y)
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comes again from a Taylor expansion in t. The nice thing about this O(1) term is that it
is identically zero in the vicinity of y = a(t) (for short times). As a result, the Heaviside
function H(y− a(t)) in front of it does not create any discontinuity, and no extra shear
layer term is necessary. One takes care of this source term by the introduction of

v1,reg
ε = H(y − a(t))

(
us(t, y)− ω(ε, t)

) ∫ y

a(t)

F (t, z)
(us(t, z)− ω(ε, t))2

dz,

so that
U1

ε := −i ε eiε−1
R t
0 ω(ε,s) ds∂yv

1,reg
ε

solves
∂tU

1
ε + LεU

1
ε = i eiε−1

R t
0 ω(ε,s) dsH(y − a(t))F (t, y) + O(ε).

Proceeding recursively, we obtain an approximation as accurate as we want. This ends
the proof of the theorem.

5 Numerical study

In this last section, we present numerical illustrations of the instability process.

5.1 Numerical test of (SC)

To check (SC) numerically, it is more convenient to reformulate it with an Evans function.
We know from Step 2, section 3, that there are solutions Y±(z) of (3.6) satisfying (3.7)-(3.8).
Back to the ODE (3.1), this yields independent solutions X+(τ, ·) and X−(τ, ·) respectively
growing and decaying as z goes to +∞. Furthermore, the following asymptotics holds:

X±(τ, z) ∼ z±
iτ
2λ
− 7

2 exp(±1
2
λz2),

∂zX±(τ, z) ∼ ±λz±
iτ
2λ
− 3

2 exp(±1
2
λz2),

with λ = 1−i√
2
. Thus, the functions

W−(τ, z) :=
∫ +∞

z
X−(τ, s) ds, W+(τ, z) :=

∫ z

0
X+(τ, s) ds, W0(τ, z) = 1,

seen as functions of z, form a basis of solutions of (1.7). They are respectively decaying,
growing and constant at +∞. As (1.7) is preserved by the change of variable z 7→ −z, the
functions W−(τ,−z), W+(τ,−z), W0 form a basis as well. They are respectively decaying,
growing and constant at −∞. The existence of the heteroclinic orbit is the same as the
existence of some constants A and B such that

1 = AW−(−z, τ) + BW−(z, τ)

for all z, or equivalently

(
1
0
0

)
∈ Vect

((
W−(τ,0)

∂zW−(τ,0)

∂2
zW−(τ,0)

)
,

(
W−(τ,0)

−∂zW−(τ,0)

∂2
zW−(τ,0)

))
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This last condition is easily seen to be equivalent to

W−(τ, 0) 6= 0, and ∂2
zW−(τ, 0) = 0.

Hence, we must find τ with Imτ < 0 such that
∫ +∞

0
X−(τ, s) ds 6= 0, and ∂zX−(τ, 0) = 0.

Moreover, we know from Step 3, section 3 that for Imτ < 0, the constraint
∫ +∞
0 X 6= 0 is

satisfied. Finally, the condition (SC) comes down to:

∂zX−(τ, 0) = 0, for some τ with Imτ < 0.

To check this, and get a value for τ , one can use a shooting method. For any τ and any
z0 À 1, one can start from the approximation

X−(τ, z0) ≈ z
−iτ
2λ
− 7

2
0 exp(−1

2
λz2

0), ∂zX−(τ, z0) ≈ −λz
−iτ
2λ
− 3

2
0 exp(−1

2
λz2

0),

and integrate backwards (3.1) using a Runge-Kutta scheme. This gives access to the function
∂zX−(τ, z), for any τ and any z ≤ z0. Then, a Newton-Raphson procedure allows to find a
zero in {Imτ < 0} for the function τ 7→ ∂zX−(τ, 0). Using such a procedure, we have found

τ ≈ −0.706− 0.706 i.

Note that this value is proportional to 1 + i, as expected from the analysis.

5.2 Simulation of the instability mechanism

To observe the instability mechanism described in section 2, we have performed direct simu-
lations of system (2.1). More precisely, we have considered the velocity

us(t, y) = Us(y) := 2y exp(−y2)

(already studied in [8] in the inviscid case), and solutions of the type

uε(t, x, y) = i eiε−1x ∂yVε(ε−1t, y), vε(t, y) = ε−1Vε(ε−1t, y).

The profiles Vε = Vε(θ, y) satisfy the singular perturbation problem

(∂θ + iUs) ∂yVε − i U ′
sVε − ε eiε−1x ∂3

yVε = 0

on Vε(θ, y). One more differentiation gives the parabolic like equation

(∂θ + iUs) ∂2
yVε − i U ′′

s Vε − ε ∂4
yVε = 0,

fulfilled with the boundary conditions

Vε|y=0 = ∂yVε|y=0 = ∂3
yVε|y=0 = 0.
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Figure 1: The correction to the inviscid eigenvalue. Plot of 1√
ε
(ωnum(ε) + Us(a)), seen as a

function of the tangential frequency k = ε−1. Top: real part. Bottom: imaginary part. As
expected from the theory, both approximately converge to −0.9, as k goes to infinity.

We have discretized this equation in space using finite differences on a stretched grid, and in
time through a Crank-Nicholson scheme. Starting from initial random data (i.e. with random
values at each gridpoint), we have computed its time evolution for values of k = ε−1 ranging
from 1 to 3.107. For sufficiently large times, one observes that the numerical solution V num

ε

behaves like
V num

ε (θ, y) ≈ eiωnum(ε)θvnum
ε (y)

in the sense that
ωnum(ε) :=

V num
ε (θ + ∆θ, y)− V num

ε (θ, y)
∆θ V num

ε (t, y)
gets independent of θ and y. Computations show a relation of the type

ωnum(ε) ∼ −Us(a) +
√

ε (−0.92− 0.91i),

see figure 1. Here a = 1√
2

is as usual the critical point of Us. This relation is in very good
agreement with the theoretical prediction.

ωth(ε) := −Us(a) + ε1/2 |U”s(a)|1/2τ√
2

≈ −Us(a) +
√

ε (−0.92− 0.92i),

if we take for τ the value −0.706−0.706i found in the previous subsection. Moreover, with this
value of τ , one can compute directly the solution V of the shear layer equation. After proper
rescaling, this allows for comparison between the “numerical” and “theoretical” eigenmodes.
More precisely, using the notations of (2.5), one can compare the functions

vth
out(y) :=

1√
ε

(
vreg
ε (y)

vreg
ε (∞)

− va(y)
va(∞)

)
and vnum

out (y) =
1√
ε

(
vnum
ε (y)

vnum
ε (∞)

− va(y)
va(∞)

)

which should both describe the correction to the inviscid eigenmode outside the shear layer.
As regards the shear layer, one can compare

vth
in(z) :=

1√
ε

vsl
ε (ε1/4(z + a))

vreg
ε (∞)

and vnum
in (z) :=

1√
ε

vnum
ε (ε1/4(z + a))

vnum
ε (+∞)

−vnum
out (ε1/4(z+a)).
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Figure 2: Plots of vth
out (dashed line) and vnum

out (full line), seen as functions of y, at ε = 10−7.
Left and right figures correspond respectively to the real and imaginary parts. They match,
as expected, outside the shear layer.

Illustrations of these comparisons are given in figures 2 and 3. Again, we obtain an
excellent agreement. This confirms that the instability mechanism we have described is indeed
effective, and moreover dominates the linear dynamics (1.6).
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Appendix : Well-posedness in the analytic setting

We start from a simple estimate on the heat equation:

For U0 ∈ W 0,∞
α (R+), F ∈ L1(0, T ; W 0,∞

α (R+)), the solution U of

∂tU − ∂2
yU = F on R× R+, U |t=0 = U0, U |y=0 = 0,
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satisfies
‖U‖

L∞(W 0,∞
α )

≤ C
(
‖U0‖W 0,∞

α
+ ‖F‖

L1(W 0,∞
α )

)
. (5.1)

This estimate follows directly from the representation formula

U(t, y) =
∫

R+

S(t, y, z)U0(z) dz +
∫ t

0

∫

R+

S(t− s, y, z)F (s, z) dz ds

where the heat kernel in the half plane S(t, y, z) reads

S(t, y, z) := G(t, y − z)−G(t, y + z), G(t, y) :=
1√
4πt

exp(−y2/4t).

Details are left to the reader. This estimate allows to prove proposition 1. Indeed, by
decomposing

u(t, x, y) =
∑

k∈Z
eikx Uk(t, y),

the well-posedness is an easy consequence of the a priori estimate

‖Uk(t, ·)‖W 0,α ≤ C eρkt ‖Uk(0, ·)‖W 0,α

for some ρ. Now, the equation satisfied by Uk is

∂tU
k − ∂2

yUk = i k

(
U ′

s

∫ y

0
Uk(t, z) dz − UsU

k

)
.

Using (5.1), we get

‖Uk(t, ·)‖
W 0,∞

α
≤ C‖Uk(0, ·)‖

W 0,∞
α

+ Cs k

∫ t

0
‖Uk(s, ·)‖

W 0,∞
α

ds

where Cs depends on us. We conclude by the Gronwall lemma.
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