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Abstract: In this paper we present a mathematical analysis for a steady-state laminar bound-
ary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non-
Newtonian fluid past a semi-infinite power-law stretched flatplate with uniform free stream
velocity. A generalization of the usual Blasius similaritytransformation is used to find similar-
ity solutions [1]. Under appropriate assumptions, partialdifferential equations are transformed
into an autonomous third-order nonlinear degenerate ordinary differential equation with bound-
ary conditions. Using a shooting method, we establish the existence of an infinite number of
global unbounded solutions. The asymptotic behavior is also discussed. Some properties of
those solutions depend on the viscosity power-law index.
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1 Introduction

In view of their wide applications in different industrial processes, and also by the interesting mathematical
features presented their equations, boundary-layer flows of non-Newtonian fluids have motivated researchers
in many branches of engineering in recent years. The most frequently used model in non-Newtonian fluid
mechanics is the Ostwald-de Wael model (with a power-law rheology [2, 3, 4, 5, 6]), which the relationship
between the shear stress and the strain rate is given as follows

τxy = k|uy|
n−1uy, (1)

for n = 1 the fluid is called Newtonian with dynamic coefficient of viscosity k. Forn > 1 the behavior of
the fluid is dilatant or shear-thickening and for0 < n < 1 the behavior is shear-thinning, in these cases the
fluid is non-Newtonian andk is the fluid consistency. In this work we shall restrict our study to the dilatant
fluids, then throughout all the paper, the exponentn will be taken in the range(1,∞). The problem of lam-
inar flows of power-law non-Newtonian fluids have been studied by several authors. For the sake of brevity,
we mention here some examples, Acrivos et al.[7] and Pakdemirli [8] derived the boundary layer equations
of power-fluids, Mansutti and Rajagobal [9] investigated the boundary layer flow of dilatant fluids. Adopt-
ing the Crocco variable formulation, Nachman and Talliafero [10] established existence and uniqueness of
similarity solution for a mass transfer problem. Filipussiet al. [11] obtained similarity solutions and their
properties using a phase-plane formalism. Recently numerical solutions have been given by Ece and Büyük
in [12] for the steady laminar free convection over a heated flat plate.
More recently Guedda [13] studied the free convection problem of a Newtonian fluid, he showed the exis-
tence of an infinite number of solution and studied their asymptotic behavior. In this work we aim to extend
the analysis of [13] to the non-Newtonian case, we are interested also in the effect of the power-law index
on the existence and the asymptotic behavior of solutions.
The remainder of this work is organized as follows, in the next section, we introduce the mathematical for-
mulation of the problem, section 3 deals with some preliminary tools which will be useful in section 4 and
5 to prove the main results. Finally, we give some concludingremarks in section 6.

2 Similarity procedure

The problem is geometrically defined by a semi-infinite power-law stretched rigid plate, over which flows a
non-Newtonian fluid obeying to (1). The main hypotheses for the mathematical formulation of this problem
are given by:
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• Two-dimensional, incompressible and steady-state laminar flow,

• Physical properties are taken as constants,

• Body force, external gradients pressure and viscous dissipation are neglected.

Under these assumptions, and referred to a Cartesian systemof coordinatesOxy, wherey = 0 is the plate,
thex-axis is directed upwards to the plate and they-axis is normal to it, the continuity and momentum equa-
tions can be simplified, within the range of validity of the Boussinesq approximation [7], to the following
equations







uux + vuy = ν(|uy|
n−1uy)y,

ux + vy = 0,
(2)

The functionsu andv are the velocity components in thex− andy− directions respectively.
The boundary conditions accompanied equation (2) are givenby

u(x, 0) = Uw(x), v(x, 0) = Vw(x), u(x, y) → 0 asy → ∞. (3)

The functions :Uw(x) = uwx
m is called the stretching velocity anduw > 0, the exponentm is negative,

andVw(x) = vwx
m(2n−1)−n

n+1 is the suction/injection velocity wherevw > 0 for suction andvw < 0 for
injection.
From the incompressibility of the fluid we introduce the dimensionless stream functionψ = ψ(x, y) satis-
fying (u = ψy, v = −ψx).
Hence equations (2) are reduced to the single equation

ψyψxy − ψxψyy = ν(|ψyy |
n−1ψyy)y. (4)

The boundary conditions (3) are transformed into

ψy(x, 0) = uwx
m, ψx(x, 0) = −vwx

m(2n−1)−n

n+1 , ψy(x, y) → 0 asy → ∞. (5)

Since the broad goal of this paper is to obtain similarity solutions to (4),(5) we introduce the following
similarity transformations

ψ(x, y) := Axαf(t), t := B
y

xβ
. (6)

WhereA,B,α andβ are real numbers,f is the transformed dimensionless stream function andt is the
similarity variable. In terms of (6), equation (4) can satisfy the ordinary differential equation of the shape
function :f

(|f ′′|n−1f ′′)′ + αff ′′ = (α− β)f ′
2
, (7)

where the primes denote differentiation with respect tot, if and only if the following

α(2 − n) + β(2n − 1) = 1, and α− β = m,

holds, and the parametersA,B andν satisfy

νAn−2B2n−1 = 1, and m = α− β. (8)

It follows that

α =
1 +m(2n− 1)

n+ 1
, β =

1 +m(n− 2)

n+ 1
, and p =

m(2n − 1) − n

n+ 1
.

Consequently, we have

ψ(x, y) := ν
1

n+1x
1+m(2n−1)

n+1 f(t), t := ν
−

1
n+1 yx

−
1+m(n−2)

n+1 . (9)
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The corresponding boundary conditions (5) are expressed as

f(0) =
−vw

Aα
, f ′(0) =

uw

A
, f ′(∞) = lim

t→∞

f ′(t) = 0. (10)

In the remainder, we deal with the following problem







(|f ′′|n−1f ′′)′ + αff ′′ −mf ′
2 = 0,

f(0) = a, f ′(0) = b, f ′(∞) = limt→∞ f ′(t) = 0.

(11)

For Newtonian fluids(n = 1), problem (11) reads







f ′′′ + αff ′′ −mf ′
2 = 0,

f(0) = a, f ′(0) = b, f ′(∞) = 0.

(12)

We notice that this problem arises from two different contexts in fluid mechanics when looking for similarity
solutions. First, in natural convection along a vertical heated flat plate, embedded in a saturated porous
medium, where the temperature is a power function with the exponentm, for more details, we refer the
reader to [13, 14, 16] and the references therein. Equation (12) appears also in the study of the boundary
layer flow, of a Newtonian fluid, adjacent to a stretching surface with a power-law velocity (see [15, 17]).
In [14], the authors proved that (12) witha = b = 0, has a solution (which is bounded) ifm ≥ −1

3 and
this solution is unique for0 ≤ m ≤ 1

3 . In [15] the author gives a complete study about existence and
nonexistence of solutions to (12), whereb = 1.
Recently some new results have been obtained in [13]. The author considered the problem (12), where
m ∈ (−α, 0). He showed that, under some assumptions, problem (12) has an infinite number of unbounded
solutions and these solutions satisfyf(t) ∼ t

α

α−m , ast goes to infinity.
Based on the results of [13], the interest in this work will bein existence and asymptotic behavior of solutions
of problem (11).

3 Preliminary results

As it is announced above, the existence of solutions will be established by a shooting method. We replace
the boundary condition at infinity byf ′′(0) = d, whered 6= 0. Therefore, we consider the initial value
problem







(|f ′′|n−1f ′′)′ + αff ′′ −mf ′
2 = 0,

f(0) = a, f ′(0) = b, f ′′(0) = d.

(13)

We shall see that for appropriated problem (13) has a global unbounded solution and this solution satisfies
the boundary condition at infinity.

Remark 1 We notice that forn 6= 1, equation (11)1 can be degenerate or singular at the pointt0 where
f ′′(t0) = 0. The existence thet0 is done ford > 0. We shall see also thatf ′′′ is not bounded att0 (the
solutionf is then not classical). By a solution to (11) we will mean a function f ∈ C2(0,∞) such that
|f ′′|n−1f ′′ ∈ C1(0,∞), f ′(∞) = 0 andf ′′(∞) = 0. Note also that any solution is classical on any interval
where the second derivative does not change the sign.

Consider now the initial value problem (13) withn > 1, a, d ∈ R, b ≥ 0 andm ∈ (−α, 0).
By the classical theory of ordinary differential equationsthe above problem has local (maximal) solutions
on some interval(0, Td), Td ≤ ∞ and they are uniquely determined byd (d 6= 0). Let us denote this such
solution byfd. Integrating (13)1 to het the following identity

|f ′′d |
n−1f ′′d (t) + αf ′d(t)fd(t) = |d|n−1d+ αab+ (m+ α)

∫ t

0
f ′d(s)

2ds, ∀ t < Td. (14)



which will be used later for proving some results.
A solutionfd of (11), is of classC2 on [0, Td), and satisfies|f ′′d |

n−1f ′′d ∈ C1([0, Td)). We shall investigate
whetherfd admits an entire extension. First, we give the following result characterizing the existence time
Td.

Proposition 2 Let fd be the local solution to (13), ifTd is finite then the functionsfd, f ′d and f ′′d are
unbounded ast approachesTd from below.

Proof. Similar to [15, 18].

Let us note also that if we require a classical solution of (13) (ie. f ∈ C3(0,∞)), it is possible thatf ceases
to exist at someT < ∞ and such thatf, f ′ andf ′′ remain bounded on[0, T ). More precisely we have the
following result.

Proposition 3 Let fd be the local solution to (13) wheren > 1 ans d 6= 0. Assume that there exists
t0 ∈ (0, Td) such thatf ′′d (t0) = 0. Thend > 0, f ′′d < 0 on (t0, Td) andf ′′′d is unbounded on(0, t0).

Proof. Assume first thatd < 0. Thereforef ′′d < 0 on [0, ε), ε small, and the following equation

n|f ′′d |
n−1f ′′d + αff ′′ −mf ′2 = 0, (15)

holds on(0, ε). Hence

(f ′′d e
F )′ =

m

n
eF |f ′′d |

1−nf ′d
2
, on (0, ε), (16)

where

F (t) =
α

n

∫ t

0
fd|f

′′

d |
1−n(s)ds.

Consequently, the functiont → f ′′d e
F (t) is decreasing, and thenf ′′d (t) remains negative for allt ∈ [0, Td).

A contradiction. Thend > 0. Actually, we havef ′′d > 0, f ′d > b on (0, t0) and equation (15) holds on
(0, t0). Assume now thatf ′′′d is bounded on(0, t0). Thanks to equation (11)1 we deduce thatf ′d(t0) = 0 this
is contradiction withf ′(0) > b.

From the above we can see, in particular, thatf ′′d < 0 on (0, Td) for anyd < 0. Thenfd ∈ C∞([0, Td)).
While for the cased > 0 the solutionfd is not classical.

Proposition 4 Let fd be the local solution to (13) ford 6= 0 andn > 1. If Td < ∞ thenlimt→Td
fd(t) =

−∞.

Proof. First we show thatsup[0,Td) |fd(t)| = ∞. Suppose not andf ′′d (t0) = 0 holds, for somet0 ∈ (0, Td).
From (14) we get

−(−f ′′d )n(t) + αf ′d(t)fd(t) = αf ′d(t0)fd(t0) + (m+ α)

∫ t

t0

f ′d(s)
2
ds, ∀ t0 < t < Td.

Hence

α

2
f2

d (t) − αf ′d(t0)fd(t0)(t− t0) −
α

2
f2

d (t0) = (m+ α)

∫ t

t0

∫ τ

t0

f ′d
2
(s)dsdτ +

∫ t

t0

(−f ′′d )n(s)ds.

Since the right-hand side of the above is monotonic increasing with respect tot, the functionfd has a finite
limit as t → Td. Consequently the function(−f ′′d )n is integrable on(t0, Td). Sincen > 1 we deduce that
f ′′d is also integrable on(t0, Td). Therefore the functionf ′d is bounded. Next we use (14) to deduce thatf ′′d
is also bounded. A contradiction with Proposition 2.
It remains to prove that the hypothesisf ′′d > 0 on (0, Td) leads also to a contradiction. Actually, in such
situation, we know thatfd is classical and satisfies (15), which yields to

(f ′′d )n−2f ′′′d ≤ −
α

n
fd,
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and then
(f ′′d )n−2f ′′′d ≤

α

n
sup
[0,Td)

|fd(t)|.

Thereforef ′′d andf ′d are bounded. A contradiction.
Becausefd is monotonic on(τ, Td), for some0 < τ < Td, we deduce that|fd(t)| goes to infinity ast→ Td.

Finally, to show thatfd(t) → −∞ ast→ Td we assume on the contrary thatlimt→Td
fd(t) = ∞.Hence the

functionsfd andf ′d are positive on(τ, Td).Moreover, using (11)1, we can deduce from the Energy-function
defined by

E(t) =
n

n+ 1
|f ′′d (t)|n+1 −

m

3
f ′d

3
, (17)

and satisfiesE′(t) = −αfdf
′′

d
2 ≤ 0. Thatf ′′d andf ′d are bounded. Hencefd is also bounded and this is a

contradiction with Proposition.2. We conclude that ifTd is finite the functionfd goes to minus infinity as
t→ ∞.

4 Existence of solutions

In this section we shall obtain a sufficient condition ond such that the local solutionfd of (13) is global and
satisfies the conditionf ′d(∞) = 0. We show that, for eachd satisfying|d|n−1d > −αab, fd exists on the
entire positive axisR+ and satisfiesf ′d(∞) = 0. We begin by a simple observation that: ifm+ α > 0 and
|d|n−1d > −αab, (14) yields the important fact thatfd cannot have a local maximum. Thus we prove the
following result.

Theorem 5 Leta ∈ R, b ≥ 0 andm ∈ (−α, 0). For anyd such that|d|n−1d > −αab, there exists a unique
global solutionfd, to (13), which goes to infinity witht, and its first and second derivative tend to0 as t
approaches infinity.

For our analysis, we need to distinguish two cases for the parametera = fd(0); namelya ≥ 0 anda < 0.
First we prove the following lemma.

Lemma 6 If a ≥ 0 and |d|n−1d > −αab the functionsf ′d andfd are positive on(0, Td) andTd = ∞; that
is fd is global. Moreoverf ′d andf ′′d are bounded.

Proof. Because|d|n−1d+αab > 0, the first assertion of the lemma is immediate from (14). To demonstrate
thatTd = ∞ it suffices to show thatfd remains bounded on any bounded interval[0, T ]. Let us consider the
Lyapunov functionE for fd defined by (17). Since

E′(t) = −αfdf
′′

d
2
≤ 0,

thanks to (11)1, it is seen that

n

n+ 1
|f ′′d (t)|

n+1
−
m

3
f ′d(t)

3
≤

n

n+ 1
|d|n+1 −

m

3
b3, ∀t < Td.

This in turn implies thatf ′′d , f
′

d and thenfd are bounded on[0, T ].

Lemma 7 If a ≥ 0 and |d|n−1d > −αab, fd(t) tends to infinity witht, f ′d andf ′′d tend to zero ast→ ∞.

Proof. Sincef ′d is monotonic on(t1,∞), t1, large enough, and bounded there exists al ≥ 0 such that

lim
t→∞

f ′d(t) = l.

This implies the existence of a sequence(tn) tending to infinity withn satisfyinglimn→+∞ f ′′d (tn) = 0 and
thenlimt→∞ f ′′d (t) = 0, with the help of the energy functionE.
Now we assume thatfd is bounded, thereforel = 0. Subsequently

|d|n−1d+ αab+ (m+ α)

∫

∞

0
f ′d(t)

2dt = 0.



This is impossible. Thereforefd is unbounded and thenlimt→+∞ fd(t) = ∞. It remains to prove thatl = 0.
Assume on the contrary thatl > 0. Together with (14) we get

|f ′′d |
n−1

f ′′d (t) = −αl2t+ (m+ α)l2t+ o(t),

|f ′′d |
n−1

f ′′d (t) = ml2t+ o(t),

ast approaches infinity, that This is only possible ifm = 0. Consequentlyl = 0.
Next we consider the casea < 0.
The first simple consequence is thatfd(t) < 0 andf ′d(t) > 0 for smallt > 0. Sincefd cannot have a local
maximum, we have two possibilities
• Eitherfd(t) vanishes at a some point and remains positive after this point.
• Or fd(t) < 0 for all t > 0.
Hence the proof of Theorem 5 is completed by the following lemma.

Lemma 8 Assumea < 0 and |d|n−1d > −αab. Thenfd has exactly one zero, goes to∞ with t, and the
functionsf ′d, f

′′

d converge to0 ast→ ∞.

Proof. Assume that the first assertion holds. Sincef ′d is positive we deduce thatfd is bounded and then is
global. On the other hand, using (14) one sees thatf ′′d > 0. Therefore we getlimt→∞ fd(t) ∈ (a, 0] and
limt→∞ f ′d(t) = 0, sincef ′d is monotonic. This is absurd sincef ′d is positive and increasing function. Hence
fd has exactly one zero, sayt0. To finish the Proof of Lemma 8 and therewith that of Theorem 5 wenote
that the new function

h(t) = fd(t+ t0)

satisfies equation (11)1 and
h(0) ≥ 0, h′′(0) > −αh(0)h′(0).

Therefore we use Lemmas 6 and 7 to conclude.
In the next result we complete our analysis on the existence of global solutions by the caseb < 0.

Theorem 9 Let b < 0, a > 0 andm ∈ (−α, 0). For anyd > 0 satisfying

adn −
1

2
b2dn−1 + αa2b > 0. (18)

The unique local solution,fd to (13) is global unbounded and satisfieslimt→∞ f ′d(t) = limt→∞ f ′′d (t) = 0.

Proof. Sincea, d > 0 andb < 0, there exists a realt0 > 0 such thatfd is positive, decreasing and convex
on (0, t0). Define

T = sup
{

t : fd(s) > 0, f ′d(s) < 0, f ′′d (s) > 0, for all s ∈ (0, t)
}

.

The real numberT is larger thant0 and may be infinite.
Assume thatT = ∞. Then the functionfd has a finite limit at infinity andf ′d(t) (andf ′′d ) go to zero as
t→ ∞. Since the function

H = fd|f
′′

d |
n−1f ′′d −

1

2
f ′d

2
|f ′′d |

n−1 + αf2
df

′

d,

satisfies

H ′ = f(f ′d)
2

[

m+ 2α +
α(n − 1)

2n

]

−
m(n− 1)

2n
(f ′d)

4(f ′′d )−1,

thanks to (11)1, we deduce thatH is increasing on(0,∞). Hence fort > 0 we have

H(0) < lim
t→∞

H(t) = 0,

which yields to

adn −
1

2
b2dn−1 + αa2b < 0.
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A contradiction. ThereforeT is infinite. Next, we assume thatfd(T ) = 0 or f ′′d (T ) = 0. Arguing as above
we deduceH(0) < 0 and then we get a contradiction. In conclusion if condition (18) holds the function
fd has a local positive minimum at somet1 > 0. We use Theorem 5 to deduce that the new function
h(t) = fd(t+ t1) is global, unbounded and satisfiesh′(∞) = h′′(∞) = 0. The proof is finished.

Remark 10 We notice that we can extend the results of Theorem 5 to the case (−2α,−α) by using the
functionH defined above, as in the work by Guedda [13] for the Newtonian case.

5 Asymptotic behavior

In this section we shall derive the asymptotic behavior of any possible global unbounded solution to (11) for
m ∈ (−2α, 0). First we give the following result

Lemma 11 Letf be a positive solution to (11) form ∈ (−2α, 0). Thenf ′ goes to zero at infinity andf ′′ is
negative.

Proof. Sincef is monotonic on[t0,∞), t0 large enough, we get the positivity off ′ andf on (t0,∞).
In addition we use the Lyapunov function to get the boundedness off ′ andf ′′. Arguing as in the previous
section we get thatf ′ → 0 andf ′′ < 0 for larget.

Proposition 12 Assume thatn > 1 andm ∈ (−2α, 0). Letf be a positive solution to (11). Then

lim
t→∞

fd(t)f
′′

d (t) = lim
t→∞

(

|f ′′|n−1f ′′
)

′

(t) = 0.

Proof. Thanks to lemma (11) we havef ′(t) > 0, f ′′(t) < 0 for all t > t0, t0 large enough andf ′ andf ′′

tend to 0 ast→ ∞. Then equation (11)1 can be written as

f ′′′ +
α

n
ff ′′|f ′′|1−n =

m

n
f ′

2
|f ′′|1−n, ∀t > t0.

By differentiation we have

f (iv) + f ′′′
[

α(2 − n)

n
|f ′′|1−nf −

m(1 − n)

n
|f ′′|−n−1f ′′f ′

2
]

= −
α− 2m

n
f ′f ′′|f ′′|1−n. (19)

Then the functionf ′′′eG is monotonic increasing on(t0,∞), where

G′ =
α(2 − n)

n
|f ′′|1−nf −

m(1 − n)

n
|f ′′|−n−1f ′′f ′

2
.

This indicates that the functionf ′′′ has at most one zero. Becausef ′′ is negative and goes to 0 at infinity, we
deduce thatf ′′′(t) > 0 on (t1,∞), for t1 large. On the other hand, from (11)1 we deduce

(|f ′′|n−1f ′′)′′ + (α− 2m)f ′f ′′ = −αff ′′′.

Therefore the functiont 7−→ (|f ′′|n−1f ′′)′+α−2m
2 f ′

2 is positive and monotonic decreasing on(inf {t0, t1} ,∞).
Together with the fact thatf ′ tends to 0 ast→ ∞ we deduce that

lim
t→+∞

(

|f ′′|n−1f ′′
)

′

(t) = 0

and then we conclude thatff ′′(t) → 0 ast→ ∞, thanks to (11)1.

Proposition 13 Letf be a solution to (11) wheren > 1, m ∈ (−2α, 0). Then

lim
t→+∞

ff ′′(t) =























∞, if m+ α > 0,

L ∈ (0,∞), if m+ α = 0,

0, if m+ α < 0.



Proof. Let f be a global solution to (11). First we claim that there existst0 ≥ 0 such that

|f ′′|n−1f ′′(t0) + αff ′(t0) > 0.

Suppose not; that is
|f ′′|n−1f ′′(t) + αff ′(t) ≤ 0,

for all t ≥ 0. Sincef ′′(t) → 0 ast→ ∞ the following

f ′′ + αff ′ ≤ 0

holds on some(t1,∞), t1 large. Consequently the functionf ′ + α
2 f

2 is decreasing and goes to infinity with
t, which is absurd. Now we use the identity

|f ′′|n−1f ′′(t) + αff ′(t) = |f ′′|n−1f ′′(t0) + αff ′(t0) + (m+ α)

∫ t

t0

f ′
2
(s)ds,

to deduce thatff ′ has a limitL ∈ [0,∞] at infinity. This limit is finite forα + m = 0. Assume that

α + m 6= 0. If L ∈ (0,∞) we get immediately thatf ′ ∼
√

L
η

at infinity which implies thatff ′ → ∞.

A contradiction. ConsequentlyL ∈ {0,∞}, we use again the above identity to conclude thatL = ∞ if
m+ α > 0 andL = 0 if m+ α < 0.

Remark 14 We stress that the condition

|f ′′|n−1f ′′(t0) + αff ′(t0) > 0, f ′(t0) ≥ 0

is necessary and sufficient to obtain a global solution converging to plus infinity witht in the casem ∈
(−α, 0).

Now we are ready to give the result concerning the larget−behavior of solutions to (11).

Theorem 15 Supposen > 1,−2α < m < 0. Let f be a solution to (11) such thatf → ∞. Then there
exists a constant,A > 0, such that

f(t) = t
α

α−m (A+ o(1)), (20)

ast→ ∞.

Proof. Let f be a global solution to (11). First we prove the result for thecasem+ α > 0.
Let t0 be a real number such thatf ′′ < 0 andf ′′′ > 0 on (t0,∞). Dividing equation (11)1 by ff ′ gives

(|f ′′|n−1f ′′)′

ff ′
= m

f ′

f
− α

f ′′

f ′
.

Integrating over(t1, t), for t1 > t0, gives
∫

t1

t (|f ′′|n−1f ′′)′

ff ′
ds = log (fm(t)f ′−α(t) − log (fm(t1) − f ′−α(t1)).

According to Proposition 13,ff ′ goes to infinity witht and then the left hand side of the above is integrable,
consequentlyfmf ′−α has a positive finite limit at infinity. The desired asymptotic behavior (20) follows by
a simple integration.
Now we deal with the casem+ α < 0. For this sake we define

Ψ = ϕ(f)|f ′′|n−1f ′′ −
1

2
ϕ′(f)(f ′)2|f ′′|n−1 + αϕ(f)ff ′,

whereϕ is a smooth function. Then if follows from (11)1

Ψ′(t) = f ′
2 [

αfϕ′(f) + (α+m)ϕ
]

−
1

2
ϕ′′(f)f ′

3
|f ′′|n−1 −

n− 1

2
ϕ′(f)f ′

2
|f ′′|n−3f ′′f ′′′.
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Let the functionϕ be defined by

ϕ(s) = s−
m+α

α .

It satisfies the following differential equation

αsϕ′(s) + (α+m)ϕ = 0.

This implies that

Ψ′ = −
1

2
ϕ′′(f)f ′

3
|f ′′|n−1 −

n− 1

2
ϕ′(f)f ′

2
|f ′′|n−3f ′′f ′′′ ≥ 0,

Ψ = ϕ(f)

[

|f ′′|n−1f ′′ −
α+m

2αf
(f ′)2|f ′′|n−1 + αff ′

]

,

and then

|Ψ′(t)| ≤ ε
[

f−
3α+m

α f ′ + (n − 1)(−f ′′)n−2f ′′′
]

,

for all t ≥ t0, t0 large. ThereforeΨ′ is integrable on[0,∞) and thenΨ has a finite limit at infinity, sayL.
Next we show thatL > 0. It will be sufficient to show thatΨ(t1) > 0 for somet1 large. Suppose not; that
is for anyt > t2, t2 large we have

|f ′′|n−1f ′′ −
α+m

2αf
f ′

2
|f ′′|n−1 + αff ′ ≤ 0.

Sinceα+m < 0 then

f ′′ + αff ′ ≤ 0,

from which we deduce, as above, thatf ′ + α
2 f

2 is a decreasing function going to infinity witht. A contra-
diction. We conclude thatlimt→∞ f−

m

α f ′ = L
α
. Finally, a simple integration leads to estimate (20).

To finish, we pay attention to the casem = −α. Here the identity (14) leads to

|f ′′|n−1f ′′ + αff ′ = |γ|n−1γ + αab.

According to Theorem 5,f is global and satisfiesf ∼ t
1
2 at infinity.

6 Conclusion

The laminar two-dimensional steady boundary layer flow, of anon-Newtonian incompressible fluid, over
a stretching surface have been considered. Using the shooting method, existence of global unbounded
similarity solutions have been shown, the dependency of those solutions on the power-law index has been
investigated, and their asymptotic behavior was also discussed.
Coming back to the original problem (2),(3) we find that, for−2α < m < 0, the stream function satisfies

ψ(x, y) ∼ y
1+m(2n−1)
1+m(n−2) as yx

(2−n)m−1
n+1 → ∞.
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