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1 Introduction

The history of noncommutative residue is now rather long [35], so we sketch it only briefly: after
some approaches by Adler [2] and Manin [42] on the Korteweg-de Vries equation using a trace
on the algebra of formal pseudodifferential operators in one dimension, and of Guillemin with
his "soft” proof of Weyl’s law on the eigenvalues of an elliptic operator [29], the noncommutative
residue in any dimension was essentially initiated par Wodzicki in his thesis [50]. This residue
gives the unique non-trivial trace on the algebra of pseudodifferential operators. Then, a link
between this residue and the Dixmier’s trace was given by Connes in [11]. Thanks to Connes
again [12, 13], the setting of classical pseudodifferential operators on Riemannian manifolds
without boundary was extended to a noncommutative geometry where the manifold is replaced
by a non necessarily commutative algebra A plus a Dirac-like operator D via the notion of
spectral triple (A, H, D) where H is the Hilbert space acted upon by A and D. The previous
Dixmier’s trace is extended to the algebra of pseudodifferential operators naturally associated to
the triple (A, H, D). This spectral point of view appears quite natural in the general framework
of noncommutative geometry which goes beyond Riemannian geometry. From a physicist point
of view, this framework has many advantages: the spectral approach is motivated by quantum
physics but not only since classical observables and infinitesimals are now on the same footing
and even Dixmier’s trace is related to renormalization. It is amazing to observe that most of
classical geometrical notions like those defined in relativity or particle physics can be extended
in this really noncommutative setting. Among others, some physical actions still makes sense
as in [11] where Dixmier’s trace is used to compute the Yang-Mills action in the context of
noncommutative differential geometry. Another example is the Einstein—Hilbert action: on
a compact spin Riemannian 4-manifold, f D2 coincides (up to a universal scalar) with the
Einstein—Hilbert action, where f is precisely the noncommutative residue, a point first noticed
by Connes; then, there were some brute force proof [36] and generalization [34] (see also [1]) of
this fact which is particularly relevant here.

Since then, the case of compact manifolds with boundary have been studied, making clearer the
links between noncommutative residues, Dixmier’s trace and heat kernel expansion. This was
made using Boutet de Monvel’s algebra [20,28,46], in the case of conical singularities [40,45] or
when the symbols are log-polyhomogeneous [39]. Besides, the applications of noncommutative
residues for such manifolds to classical gravity has begun [49], and better, when the gravity is
unified with fundamental interactions [10]. Needless to say that in field theory, the one-loop
calculation divergences, anomalies and different asymptotics of the effective action are directly
obtained from the heat kernel method [48], so all of the above quoted mathematical results have
profound applications to physics.

The Chamseddine-Connes action [7] associated to a spectral triple (A, H, D) is, for a one-form
A= Zz CLZ'[D, bz], a;, b € A

sS40, 0) = Y @kAk]l DAl + B(0) ¢, (0) + O(A™) (1)
0<keSd*

where Dy := D+A (or D := D+A, A:= A+eJAJ ! in the real case),) O = L[t th/2=1 dt
and Sd™ is the strictly positive part of the dimension spectrum of the spectral triple. When D 4
is not invertible, we invert in (fl) the invertible operator D4 + P4 where Py is the projection on
Ker D4 which is a finite dimensional space.
The coefficient (p , (0) related to the constant term in ([l]) can be computed from the unperturbed
spectral action since it has been proved in [8] (with an invertible Dirac operator and a 1-form
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A such that D + A is also invertible) that

p-a(0) ~ Co(0) = Y 5" f (4D @)
q=1

using (x (s) = Tr(|X]7%).

It is important to be able to compute (f]) and here, we look at possible cancellation of terms in
this formula. We focus essentially on commutative spectral triples, where we show that there
are no tadpoles, i.e. terms like f AD™! are zero: in field theory, D! is the Feynman propagator
and AD~! is a one-loop graph with fermionic internal line and only one external bosonic line A
looking like a tadpole. More generally, the tadpoles are the A-linear terms in ().

D—l
: A

In [44], few computations of f |D|~* are presented and formula like () also appears in [41] in
the context of pseudodifferential elliptic operators.

For examples of spectral action in the real noncommutative setting, see [6,9,37] for the case of
almost commutative cases which pops up in particle physics and [21] for the Moyal plane (and
few points for non compact manifolds [22]), [19, 23] for the noncommutative torus and [32] for
the quantum group SU,(2). In this last case, there are tadpoles.

As a starting point, we investigate in section 2 the existence of tadpoles for manifolds with
boundaries, considering after Chamseddine and Connes [10] the case of a chiral boundary con-
dition on the Dirac operator. One of their original motivations was to show that the first two
terms in spectral action come with the right ratio and sign for their coefficients as in the mod-
ified Euclidean action used in gravitation. We generalize this approach to the perturbed Dirac
operator by an internal fluctuation, ending up with no tadpoles up to order 5 (see definition
5)

However, this approach stems from explicit computations of first heat kernel coefficients, so we
cannot conclude that other integrals of the same type as tadpoles are zero. It is then natural to
restrict to manifolds without boundary via a different method.

We gather in section 3 some basic results concerning the use of the reality operator J. After
some useful facts using the link between f and the Wodzicki residue, we conclude in section 4
that a lot of terms in ([ll) are zero, using pseudodifferential techniques.

Few definitions about pseudodifferential operators, dimension spectrum have been postponed in
the appendix.

2 Tadpoles and compact spin manifolds with boundary

Let M be a smooth compact Riemannian d-dimensional manifold with smooth boundary dM
and V' be a given smooth vector bundle on M. We denote dz (resp. dy) the Riemannian volume
form on M (resp. on OM.)

Recall that a differential operator P is of Laplace type if it has locally the form

P=—(¢"0,0, + A*9, + B) (3)



where (¢"")1<u,v<d is the inverse matrix associated to the metric g on M, and A* and B are
smooth L(V)-sections on M (endomorphisms). A differential operator D is of Dirac type if D?
is of Laplace type, or equivalently if it has locally the following form

where (7#)1<,<q gives V a Clifford module structure: {v#,7" } = 2¢" Idy, (v#)" = v*.
A particular case of Dirac operator is given by the following formula

D = —in*(d, + w,) (4)

where the w,, are in C*°(L(V)).
If P is a Laplace type operator of the form (), then (see [25, Lemma 1.2.1]) there is an unique
connection V on V' and an unique endomorphism E such that P = L(V, E) where by definition

L(V,E) = =(Tr, V? + E), V*(X,Y):=[Vx,Vy] = Vysy,
X, Y are vector fields on M and VY is the Levi-Civita connection on M. Locally
Try V2 = g™ (V,V, = T7,V,)

where T, are the Christoffel coefficients of V9. Moreover (with local frames of T*M and V),
V =daz* ® (0 + wy) and E are related to g, A* and B through

Wy = %gVﬂ(Au + gosrge Id) ) (5)
E =B - ¢"" (0w, + wywy, — wgfgu) . (6)

Suppose that P = L(V, E) is a Laplace type operator on M, and assume that y is an endomor-
phism of Vys so that x2 = Idy. We extend x on a collar neighborhood C of OM in M with
the condition V4 (x) = 0 where the d""-coordinate here is the radial coordinate (the geodesic
distance of a point in M to the boundary dM.)

Let V4 := IV the sub-bundles of V on C where 11 := %(Idv +x) are the projections on the
+1 eigenvalues of x. We also fix an auxiliary endomorphism S on V 5, extended to C.

This allows to define the mixed boundary operator B = B(x, S) as

Bs =11 (Vag+ S)ysion @ U 51901, s€CT(V). (7)

These boundary conditions generalizes Dirichlet (II_ = Idy ) and Neumann—Robin (IT = Idy)
conditions.

We define Pg as the realization of P on B, that is to say the closure of P defined on the space
of smooth sections of V satisfying the boundary condition Bs = 0.

We are interested in the behavior of heat kernel coefficients a4, defined through its expansion
as A — oo (see [25, Theorem 1.4.5])

Te(e ™ *P8) ~ ST AT " ag_,(D, B)

n>0

where D is a self-adjoint Dirac type operator. Moreover, we will use a perturbation D — D+ A,
where A is a 1-form (a linear combination of terms of the type f[D, g], where f and g are smooth
functions on M). More precisely, we investigate the linear dependence of these coefficients with
respect to A. It is clear that, since A is differential operator of order 0, a perturbation D — D+ A
transforms a Dirac type operator into another Dirac type operator.

This perturbation has consequences on the F and V terms:



erturbation| Lemma 2.1. Let D be a Dirac type operator locally of the form (|}) such that V,, := 8, + w,, is
connection compatible with the Clifford action . Let A be a 1-form associated to D, so that A
is locally of the form —iv*a, with a, € C*(U), (U,x,) being a local coordinate frame on M.
Then (D + A)? = L(VA, E4) and D?* = L(V, E) where,

wd = wy +ay, thus Vf} =V, +a,ldy,

n
EA=F+ A, E =37 Vi, Vil Fu = 0u(ay) — 0u(ay)

Moreover, the curvature of the connection VA is Qﬁy = Qu + Fu, where Q. = [V, V.
In particular Tr EA = Tr E.

Proof. This is quoted in [48, equation (3.27)].
(D + A)? = L(VA, E4) := —g™ (ViV} —Th,Va) — E4 and we get with Vi := V,, 4 a,Idy:

—(D+ A)? = VYV = A VAV A VLV
= V[V IVi 4 37 )V + 37 [V V]
= — YT, Vi + g ViV + 3989 [V + auIdy, V, + a,Idy). (8)

Since Iy, =T, we get by comparison,

FA = %#W”[VH +a,Idy,V, +a,ldy] = %7“7”([VW Vo] + 0ulay) — 8,,((1“))
= %’Y“’YV[VW Vo] + %[’Y”a’}’y] (au(au) - au(au))’ O

Remark that even if quadratic terms in A2 appear in the local presentation of the perturbation
D? — (D + A)? (in the b term), these terms do not appear in the invariant formulation (V, E)
since there are hidden in v;‘}vg‘ of (§).

In the following, D and A are fixed and satisfy the hypothesis of Lemma P.I. Indices 4, j, k,
and [ range from 1 through the dimension d of the manifold and index a local orthonormal
frame {eq, ..., eq} for the tangent bundle. Roman indices a, b, ¢, range from 1 through d — 1 and
index a local orthonormal frame for the tangent bundle of the boundary OM. The vector field
eq is chosen to be the inward-pointing unit normal vector field. Greek indices are associated to
coordinate frames.

Let Rijii, pij := Rikr; and 7 := p;; be respectively the components of the Riemann tensor,
Ricci tensor and scalar curvature of the Levi-Civita connection. Let Ly, = (Ve,ep,€q) be
the second fundamental form of the hypersurface 9M in M. Let “” denote multiple covariant

differentiations with respect to V4 and “” denote multiple covariant differentiations with respect
to V and the Levi-Civita connection of M.

We will look at a chiral boundary condition. This is a mixed boundary condition natural to
consider in order to preserve the existence of chirality on M and its boundary OM which are
compatible with the (selfadjoint) Clifford action: we assume that the operator x is selfadjoint
and satisfies the following relations:

{vayd}zo7 [X,’YG]ZO,VGE{l,"',d—l}. (9)

This condition was shown in [10] a natural assumption to enforce the hermiticity of the realization
of the Dirac operator. It is known [25, Lemma 1.5.3] that ellipticity is preserved.
Since ~¢ is invertible, dim V, = dim V_ and Try = 0.



ThmGilkey

For an even-dimensional oriented manifold, there is a natural candidate x satisfying (), namely

X = Xonr = (—0)"* (er) -+ y(ea1)
(this notation is compatible with ([4).) Recall that
Tr(y" - y+1) =0, Vk €N, Tr(y'9/) =dimV 67 (10)

The natural realization of this boundary condition for the Dirac type operator D + A is the
operator (D + A), which acts as D + A on the domain {s € C*(V) : II_sjgpy = 0}. It turns
out (see [4, Lemma 7]) that the natural boundary operator B;? defined by

Bls :=TI_(D + A)*sjgp ® T_s )9
is a boundary operator of the form (i) provided that S = 11, (—i[y?, A] — LaaX)IL.
Lemma 2.2. Actually, S and x., are independent of the perturbation A:
(i) S =—3Lag 11 .
(i) X;a = Xia-
Proof. (i) Since A is locally of the form —iv/a; with a; € C*°(U), we obtain from (f),

X0 Al = —ia; x[v A = =) aixy A =1 a; v A )x = [, Alx
j<d j<d

and the result as a consequence of I, [y¢, A] = [ JAJTI. and TIL T = 0.
(i) We have V2 = V; + a; Idy where A =: —iy7a;, and since (Vix)s = V2 (xs) — x(V{s) for
any s € C®(V), using Lemma 1, VA(x) = [Vi +a; Idy, x] = [Vi, x] = Vi(x). O

While S is not sensitive to the perturbation A, the boundary operator B;? depends a priori on
A. We shall denote B, the boundary operator B;? when A = 0.

The coefficients aq_ for 0 < k < 4 have been computed in [3] for general mixed boundary
conditions in the case of Laplace type operators and in [4, Lemma 8] for Dirac type operators
with chiral boundary conditions. We recall here these coefficients in our setting:

Proposition 2.3.

aq(D + A,BY) = (4m) =/ /M Try 1dz,

ag1(D+ A, B{) =0,

Ga_s(D + A, BA) = U0 ¢ /M Ty (6B 4 )+ [ Try(2Laa +128)dy },

aq_s(D + A, B = Um0 /a Ty {96XEA + 3L2, + 6L%, + 965 Log + 19252 — 1242 } dy,

d/2

aq-a(D+ A, By = U / Try {607E4 + 180(E™)? + 30(Q})? + 577 — 20 + 2R*} da

+ / Try {180xE7 + 120E% Lyq + 720SE* + 60x .0y + T} dy }.
oM

where
T := 207 Laq + 4RadaaLos — 12RaabaLab + 4Rabeb Lac + o (160L3, — 48L2, Lee + 272L gy Ly Lac
+ 12075 + 144SL%, + 48S L2, + 480(S? Lag + S%) — 42X%, Ly + 6X;aXpLap — 120x%,5)
is independent of A.

tracegammai



The following proposition shows that there are no tadpoles in manifolds endowed with a chiral
boundary condition.

Theorem 2.4. Let M be an even d-dimensional compact oriented spin Riemannian manifold
with smooth boundary OM and spin bundle V. Let D := —ivJ V; be the classical Dirac operator,
and x = xou = (—9)¥* 1y(e1) - y(eq_1) where (e;)1<i<a is a local orthonormal frame of T M.
The perturbation D — D + A where A = —iv/a; is a 1-form for D, induces, under the chiral
boundary condition, the following perturbations on the heat kernel coefficients where we set
Cd_k(A) = ad_k(D + A, B;?) — ad_k(D, BX):

(’i) Cd(A) = Cd_l(A) = Cd_Q(A) = Cd_3(A) =0.

(i1) cq_s(A) = —W Jog o P d.

In other words, the coefficients aq_y for 0 < k < 3 are unperturbed, aq_4 is only perturbed by
quadratic terms in A and there are no linear terms in A in aqg—p(D + A,B;?) for k <5.

Remark 2.5. When A is selfadjoint, all coefficients aq—(D + A, B;?) and aq—(D,By) are real
while linear contributions in A are purely imaginary, modulo traces of v and x matrices and
their covariant derivatives. Since the invariant terms appearing as integrands of [ A and faM
in the coefficients at higher order are polynomial in S, x, R, EA and Q4, and their covariant
derivatives, one expects no linear terms in A at any order.

We study more examples in [33] with a generalization of Theorem [[.3.

Proof. (i) The fact that cq(A) = cq—1(A) = 0 follows from Proposition P.3.

Since by Lemma P2, cq_o(A) = (4m)~¥2 [, Trv (B4 — Ea)dz, we get c4_2(A) = 0 because
Try EA=Try E by Lemma @

From Proposition .3 and Lemma R.3, we get cq_3(A) = %(47r)_(d_1)/2 Jons Tov {x(EA - E)}.
Since X (B4 — E) = (—i)¥241 .. 43~ yJ y*F;., (L0) yields Try x(E* — E) = 0 because d is
even.

(43) Since Try (E4 — E) = 0 and Try x(E“ — E) = 0, we obtain Tryy S(E4 — F) = 0 from Lemma
P9 Thus, using Proposition P.3 and Lemma .3,

d/2

caa(A) = G002y / Try {180((E)? — E2) 4 30((4)? — (2:7)%) ) de

+ /aM Try {180X(E;A —Eq)+ GOXX;a(QZ?d — Quq)} dy }

We obtain locally Try ((EA) —E?) =4 L Tr([v*, 417, 7°]) Fjw F e using Lichnérowicz formula
E = —}7. Since Try ([v*,7"][v",17]) = 4.2%(¢"7 g"* — g7 9",

Try ((E4)? — BE?) = — 2927 F,, .

V being the spin connection associated to the spin structure of M, we have ;; = %’yk’leijkl.
So Rjjr = —Riji, implies Try Q;; = 0. Hence, with Lemma P.T],

Try () — QF) = 2Y2F2 = 292 F,, F .

Moreover, E = [Va+ a4, B4 = [V, B+ [y, 49]Fij] = Eq + 3[Va, [V ) Fy.
Using of [V;,7'] = v(Vie;) and ([I0),
Try (X(Efé — Eg)) = (—=i)"§ Fy Trv {7" 4" (1(Vae)y +7'1(Vaes)) } = 0.

7



It remains to check that Try (xx;a(Qfd — Qad)) = 0. Let xar = —ix7? be the grading operator
(see ([4).) Since xas commutes with the spin connection operator V (see [26, p. 396]),

0= [Va, xm] = [Va, X7 = X:a7 + X[V v = X:a?® + X7(Vaca)
and thus xx.. = —7(Veea)y? = —Fid’yj’yd, where Fid = —ng since (e;) is an orthonormal
frame. So Try(xX.a) = —deéjd = —ng = 0. Finally, the result on ¢4_4 follows from Lemma

@ as Try (XX:a(QaAd - Qad)) = TrV(XX:a)Fad-

The coefficient ay_5(D + A,B;?) is computed in [5]. One can check directly as above that the
linear terms in A are not present. The computation uses the fact that the trace of the following
terms XE;‘gd, E;’gS, x(E4)?, EAS?, X;aX;befb, X?GEA, do not have linear terms in A. O
In the following, we investigate the above conjecture with Connes—Chamseddine pseudodiffer-
ential calculus applied to compact spin manifolds without boundary and Riemannian spectral
triples. We also see, using Wodzicki residue, how to compute some noncommutative integrals in
this setting.

3 Notations and definitions

Let (A, D, H) be a spectral triple of dimension d.
We use the notation D = D + P, P the projection on Ker D implying invertibility of D.
Let J be the reality operator (if it exists) satisfying

JD=¢e¢DJ, e==+1

according to the dimension: ¢ = +1 when the dimension d is 0, 2, 3, 4, 6, 7 mod 8 and ¢ = —1
when d = 1, 5 mod 8.

When the triple is even, we also use chirality operator x which is a grading on ‘H, which commutes
with A, anti-commutes with D and also satisfies Jx = €/ xJ where ¢ = 1 for d = 0,4 mod 8 and
¢ =—1for d=2,6 mod 8.

Recall few definitions, see [13,18,19,31]:

Definition 3.1. A one-form A is a finite sum of operators like a1[D, as] where a; € A.
The set of one-forms is denoted by Q5 (A).

3.1 Noncommutative integrals

We recall in Appendix few definitions about the algebra W(A) of pseudodifferential operators,
zeta functions and dimension spectrum.
A. Connes has introduced the following notation

X = R_eg Tr (X|D]7°), X € ¥U(A).

f is a trace on ¥(A), (non necessarily positive, see Lemma [1.1§.)



3.1.1 Noncommutative integrals and real numbers

Lemma 3.2. Let (A, D, H) be a spectral triple and X € W(A). Then

frfr

If the spectral triple is real, then, for X € W(A), JXJ ' € U(A) and

][JXJ—1 :][X* :][—X.

Proof. The first result follows from (for s large enough, so the operators are traceable)

Te(X*[D|™*) = Tr ((|D| %) X)") = Tr(|D[*X) = Te(X[D[ 7).

The second result is due to the anti-linearity of J, Tr(JY J~1') = Tr(Y), and J|D| = |D|.J, so

Tr(X|D|~%) = Te(JX|D|~5J-1) = Tr(J X J-1|D|=3). 0

Corollary 3.3. For any one-form A = A*, and for k, [ € N,
][Al Dk eR, ][(AD‘I)k eR, ][Al ID|* e R, ][XAl ID|* R, ][AlD ID| % € R.

3.1.2 Tadpole

In [17], is introduced the following
Definition 3.4. In (A, H, D), the tadpole Tadpya(k) of order k, for k € {d—1:1€ N} is

the term linear in A = A* € QL in the A* term of ([]) (considered as an infinite series) where
Dy =D+ A.

If moreover, the triple (A, H, D, J) is real, the tadpole Tady, ;(k) is the term linear in A, in
the AF term of () where Dy =D + A.

leurtadpole| Proposition 3.5. Let (A, H, D) be a spectral triple of dimension d with simple dimension
spectrum. Then

Tadpya(d —k) = —(d — k)][Ap|p|—<d—k>—2, Yk # d, (11)
Tadp.4(0) = — 4D (12)

Moreover, if the triple is real, Tad,DJrg = 2Tadpsa-

Proof. By [19, Lemma 4.6, Proposition 4.8|, we have the following formula, for any k£ € N,

k k—p
Foar @ = fIp 0T ST Res o) T (€7 (1) (V).
p=1ry, rp= s=a



where

M&mﬂ:bﬂﬂfé G(—st1, 1) g(—styrp) db,

<ty < <tp<1
e"(T) :=V(T)D~*, V(T) := [D*,T),
Y)Y THx)D 2+ mod OP™N! for any N € N,

X:=AD+DA+ A%, A:= A+ eJAJ ",

Fk(X) = %VkQ(Xvkqfl(...Xvkl(X)...)) Vg eN* k= (ki, -, k) € N

As a consequence, for k # n, only the terms with p = 1 contribute to the linear part:
k—
Tady,, 5(d — k) = LinA(][ DA |~ (@) Z Res h(s, 1) ) Tr (¢"(Lina(Y))|D| ).
=0

We check that for any N € N*,

=z

Ling(Y) ~ Y TY(AD+DAD2+)  mod OP~ N1
l

Il
=)

Ok V{(AD + DA) = (ljr—ll)l{vl(g),l)}, we get, assuming the dimension

Since I' (AD + DA) = 1L

spectrum to be simple

k-1
Tad,, ;(d—k) = _R;Skh(s,r,p) Tr (¢"(Lina(Y))|D|™*)
r=0" B
k-1 k—1—r
=Y hn—kr1) Y G Res T (7 (V/(A), D)D)
r=0 1= =
k—1 k—1—r

—~

0

1—
h(d - k, r, 1) Z l—+11)l ]lVT+I(E)D’D’_(d_k+2(r+l))_2
=0 =0

——m—meMM**”%

<3

because in the last sum it remains only the case r+1=0,s0 r=1=0.
Formula ([19) is a direct application of [19, Lemma, 4.5].
The link between Tad i and Tadp, 4 follows from JD = €DJ and Lemma B.2. [l

Corollary 3.6. In a real spectral triple (A, H,D), if A= A* € Qh(A) is such that A= 0, then
Tadpia(k) =0 for any k € Z, k < d.

Remark 3.7. Note that A =0 for all A= A* € QL, when A is commutative and JaJ ™' = a*,
for all a € A, see ([[3), so one can only use Dy = D + A.

10
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But we can have A commutative and JaJ ' # a* [15,38]:
Let Ay = C @ C represented on Hy = C3 with, for some complex number m # 0,

by 0 O
7T1(a) = 0 b O , fora= (bl, b2) cA
0 0 b
0 m m 1 0 0 1 00
Di=| m 0 0 ,x1:=1 0 =1 0 ,Ji=1 0 0 1 Joce
m 0 b 0o 0 -1 010

where cc is the complex conjugation. Then (A1, Hy, D1) is a commutative real spectral triple of
dimension d = 0 with non zero one-forms and such that Jymi(a)J;t = 71 (a*) only if a = (by,by).
Take a commutative geometry (Ay = C®(M), H = L*(M,S), Dy, X2, J2) defined in [{.1] where
d = dimM is even, and then the tensor product of the two spectral triples, namely A = A1 ® As,
H=H1®Hs, D=D1®x2+1®Ds, x = x1 ® X2 and J is either x1.J1 & Jo when d € {2,6}
mod 8 or Jy ® Jy in other cases, see [15,47].

Then (A, H, D) is a real commutative triple of dimension d such that A 0 for some selfadjoint
one-forms A, so is not exactly like in definition [[.1.

The vanishing tadpole of order 0 has the following equivalence (see [8])
][Ap—l =0,YVA € QH(A) — ][ab z]laa(b), Va,b € A, (13)

where a(b) := DbD ™!, equivalence which can be generalized as

Lemma 3.8. In a spectral triple (A, H, D), for any k € N,
k k
][(AD‘l)" =0,VAe QL(A), Yne{l, -k} <= ]lnaja(bj) :][Hajbj, Ya;, bj € A.
j=1 j=1

Proof. Note that a[D,b]D~! = a&(b) where a(b) := a(b) — b.
Assuming the left hand-side, we get

0= ][(AD—l)" = ][ald(bl) ajalby) ... and(by)
:][ald(bl) e aja(bj)aj+1d(bj+1) e akd(bk) —][ald(bl) e ajbjaj+16z(bj) N and(bn)

Vaj;, bj € A. But the last term is zero iff(AD_l)n_1 = 0 for all A. By induction, we end
up with 0 = faja(by) -+ ap—1a(bp—1) and(b,). Varying n between 1 and k, we get the right
hand-side. O

4 Commutative spectral triples

4.1 Commutative geometry

Definition 4.1. Consider a commutative spectral triple given by a compact Riemannian spin
manifold M of dimension d without boundary and its Dirac operator D associated to the Levi—
Civita connection. This means (A := C*(M), H := L*(M, S), D) where S is the spinor bundle

11



over M. This triple is real since, due to the existence of a spin structure, the charge conjugation
operator generates an anti-linear isometry J on ‘H such that

JaJ ' =a*, Vae A,
and when d is even, the grading is given by the chirality matrix

Such triple is said to be a commutative geometry (see [15] and [16] for the role of J in the nuance
between spin and spin® manifold.)

Since, JaJ ! = a* for a € A, we get that in a commutative geometry,

JAJT ™' = —e A", VA € Qh(A). (15) [JAJ

4.2 No tadpoles

The appearance of tadpoles never occur in commutative geometries, as quoted in [17, Lemma
1.145] for the dimension d = 4. This fact means that a given geometry (A, H, D) is a critical
point for the spectral action (fl).

roptadpoles| Theorem 4.2. There are no tadpoles on a commutative geometry, namely, for any one-form
A= A" € QL(A), Tadpya(k) =0, for any k € Z, k < d.

Proof. Since A =0 when A = A* by ([5), the result follows from Corollary B.§. O

There are similar results in the following

Lemma 4.3. Under same hypothesis, for any k, |l € N
(i) f AD™F = —k+1 f ADE,
(ii) f YAD™* = —kTLf YADF,
(iii) § A'[D|* = (=)l f AID|F,
(iv) FXAD[™ = (=) f xA'[D|".

Proof.
][AD_k :][JA Dk J-1 :][JAJ—I(ekD—k) = —ek+1][A* Dk = —¢tt! ]l DA

= ¢l ][AD_k.

The same argument gives the other equalities using YA = —Ax and x|D| = |D|x. O

onentofzeta| Lemma 4.4. For any one-form A, f (A D_l)k =0 when k € N is odd.
Proof. We have

][(AD‘I)k :][J(AD—l)kJ—l :]l (JAJ-1 JD-1g-1)F = (—1)’%%]1 (A*D-1)*
- (-1 f (4D (16)

(which shows again that f AD™1 = 0.) O

12



4.3 Miscellaneous for commutative geometries

To show that more noncommutative integrals, where the use of the operator .J in the trick ([[§)
is not sufficient, are nevertheless zero, we need to use the Wodzicki residue (see [51,52]): in a
chosen coordinate system and local trivialization (z,&) of T*M, this residue is

wres,(X) = / Tr (0, (,€)) |d€] |dzt A - -+ A da), (17)
SxM

where ai(d (z,€) is the symbol of the classical pseudodifferential operator X in the chosen co-

ordinate frame (z1,---,x4), which is homogeneous of degree —d := —dim(M) and taken at
point (z, §) € T*(M), df is the normalized restriction of the volume form to the unit sphere
SEM ~ S% 1 5o we assume d > 2 to get S:M connected.

This wres,(X) appears to be a one-density not depending on the local representation of the
symbol (see [26,52]), so

Wres(X) := / wres, (X) (18)
M

is well defined.

The noncommutative integral f coincides with the Wodzicki residue, up to a scalar: since both f

and Wres are traces on the set of pseudodifferential operators, the uniqueness of the trace [52]

gives the proportionality

][X = cgWres(X) (19)

where ¢, is a constant depending only on d. Computing separately { |D|~¢ and Wres(|D|~%),
we get ¢q > 0 (note that § is not a positive functional, see Lemma k1d)

Lemma B.9 follows for instance from the fact that [, wres,(X*) = [, wres,(X).

Note that Wres is independent of the metric.

As noticed by Wodzicki, f X is equal to —2 times the coefficient in log ¢ of the asymptotics
of Tr(X e_tDZ) as t — 0. It is remarkable that this coefficient is independent of D and this

gives a close relation between the ¢ function and heat kernel expansion with Wres. Actually,
by [27, Theorem 2.7]

[e.e] o0
Tr(X e_tpz) ~oF Z ay tUordX)=d)/2 4 Z:(—af,f logt + b) t¥, (20)
k=0 k=0
so f X = 2af,. Since, via Mellin transform, Tr(X D~%) = ﬁ Joo e (X e~'P*) dt, the non-
k
zero coefficient al,, k # 0 create a pole of Tr(X D~2%) of order k+2 since fol t5" L log(t)F = %
and

Ds) = < +7+59(5) (21)

where v is the Euler constant and the function g is also holomorphic around zero.

We have {1 = 0 and more generally, Wres(P) = 0 for all zero-order pseudodifferential projec-
tions [51].

For extension to log-polyhomogeneous pseudodifferential operators, see [39].
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When M has a boundary, some a) are non zero, the dimension spectrum can be non simple
(even if it is simple for the Dirac operator, see for instance [40].)

On a spectral triple (A, H, D), the fact to change the product on .4 may or not affect the
dimension spectrum: for instance, there is no change when one goes from the commutative torus
to the noncommutative one (see [19]), while the dimension spectrum of SU,(2) which is bounded
from below, does not coincide with the dimension spectrum of the sphere S? corresponding to
g =1 [32, Corollary 4.10].

We first introduce few necessary notations. In the following we fix a local coordinate frame
(U, (x;)1<i<n) which is normal at g € M, and denote J,i( the k-homogeneous symbol of any
classical pseudodifferential operator X on M, in this local coordinate frame. The Dirac operator
is locally of the form—compatible with ([)

D = —iy(dz?) (05 + wj()) (22)

where wj is the spin connection, v is the Clifford multiplication of one-forms [26, page 392]. Here
we make the choice of gauge given by h := /g which gives [26, Exercise 9.6]

N . . —jk
wi = —% (TF; gt — 0 (hS)d0ap W) y(da?) y(dat), ~v(da?) = /g1

where 77 = v; are the selfadjoint constant v matrices satisfying {+*,7/ } = 6%. Thus

gk .
oP(2,6) = Vg1 (& —iwj(2)).

We have chosen normal (or geodesic) coordinates around the base point . Since

() = g 1 k.l 3
9ij(®) = gij(x0) + 3Rijr x"z" + o([[[[*),
9" (x) = g7 (wo) — g R 12" e’ + o(||[]*),

9ij(x0) = 6ij, Tl(z0) =0,
the matrices h(x) and h~!(z) have no linear terms in z. Thus
wi(:E(]) = 0.

We could also have said that parallel translation of a basis of the cotangent bundle along the
radial geodesics emanating from z( yields a trivialization (this is the radial gauge) such that
wi(zg) = 0. In particular, using product formula for symbols and the fact that in the decompo-
sition D =D+ P, P € OP™°, we get for k € N

oP(2,€) = Vg U (2) e = 7(€), o (20, ) = Vg, (23)
oD (3,6) = —i/g L (2) yaw; (), oD (20,€) = 0, (24)
aﬂ”?@m g) - 07 (25)
o (@, €) = Vg (@) vk €72, 16112 := g% (z) & (26)
Aol (x0,€) = 0. (27)

We will use freely the fact that the symbol of a one-form A can be written as

o(x,€) = op (x) = —i ag(x) 7" (28)
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with ag(z) € iR when A = A*.

When d is even (so € = 1), remark that for ¥ = [ and A; = ;[D,b;] and a = Hle a;, then
by [18, page 231 (actually, x is missing)|, [43] or [26, p. 479] when k = d, (M is supposed to be
oriented)

][x/h - ARD| TR = cg/ A(R) =) A adby A - A dby,
M

where A(R) is the A-genus associated to the Riemannian curvature R. Since we have A(R) €
D;en¥ (M, R), § xA¥|D|=* can be non zero only when k = d — 45. For instance in dimension
d =2, for j =0,

A1 Ay D2 A1 A -2 j
Xy T (2,) = oy (2) 0'?2 (z,8) = —a1(z) az(x) ngk(iﬂ)%'% m-

Thus wres, (xA1 AsD~2) = —2a; (x) ag(z) v/det g; Tr(x17~*), so if v, is the Riemannian density,

][X141A2 D2 = —2¢ Tr(;wjyk)/ aias vg. (29)
M
Actually, this last equality is nothing else than Wodzicki—-Connes’ trace theorem, see [26, section
7.6], and this is equal to cél fM aiagdby A dby as claimed above.
We introduce a few subspaces of the pseudodifferential operators space ¥(M). Let
B.:={PeV¥Y(M): O']I-D € E;,VjeZ} e foreven,
Bo:={PecVU(M):ol €0;,VjEZ} oforodd,

such that, for m = 2ld/ 2],

Eji={f€C*U xRN\{0}, Mn(C)) : ZW I#0,
k; €N, ﬁieNd,m—%-:], hi € C®(U, My (C)) },

0;:={f € C®(U xRN\{0}, Mn(C)) : ZHSH% wrhi(e) , 1#0,
kieN, B eNt |8 — (2ki4+1) =4, hi € C°(U, Mn(C)) }.

Lemma 4.5. For any j, j € Z and o € N¢,

( ) OjOj’ C Ejyj and 9¢0; € Oj_a), 970, € O;.

(i13) O;E; and EjO; are included in Ojy .

(iv) B. is a sub-algebra of W(M).

(v) BB, B,B, are included in B, and BeB,, BB, are included in B,.

Bi

Proof. (i) Let f € E; and a € N. We have, if f(2,£) = > ,c; ”5”—2,% hi(z),
o= v B gy
%) = Zaf ||s||2k =22 (D)% (gaee) i)

i€l y<a
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[Diracs]

We check by induction that we can write

11

aﬁ(ufni’“i) T Jg)2FPTED Yoo e
‘ p  j=1

where ), are real numbers, the sum on indices p is finite, and Z‘fil (B3P = ~. As a consequence,
since Hf”ikl = (g"(x)&r&)% is a homogeneous polynomial in & of degree 2k;, we get Off € Ej_ -
The inclusions E;E; C Ejj, 0fE; C Ej are straightforward.

(74) The proof is smnlar to (i) since by mductlon

11

_ B3P 2
% () = e 2w L1267 el
p J=

where )\, are real numbers, the sum on the indices p is finite and Zlfil [BIP = ~.

(797) Straightforward.

(7v) The product symbol formula for two classical pseudodifferential operators P € WP(M),
Q € VI(M) gives

ol (=1 o
VERED S SN LT e @

aeNd k>0, |a|+k<j

The presence of the factor il®l that will be crucial in later arguments like Lemma, [£.1(.
If P,QQ € B., we see that by (1), 8?05 tlal+k € E,_j+r and E?O‘UQ " € Eq_i. Again by (i), we
obtain 8?a§_j+‘a|+k oy aq x € Epiq—j, so the result follows from ()

(v) A similar argument as (iv) can be applied, using (i7) to obtain B,B, C B, and (i) to get
BoBe C Bo, BeBBo € Bo. O

B. and B, are stable by inverse:

Lemma 4.6. Let P € B, (resp. B,) be an elliptic classical pseudodifferential operator in WP (M)
with o (z,€) = ||€||I%, p € N. Then any parametriz P~ of P is in Be (resp. Bo).

Proof. Assume P € B, so p is even. From the parametrix equation PP~' = 1, we obtain
0'1_31;1 = (o)t = |€|l,? € E_p. Moreover, using (B), we see that for any j € N*,

) i—lal

P~ -
=Y ot Y el ety 1)
0§k<J 0<|a|<j k=0
We prove by 1nduct10n that for any j € N, o plj € E_,_j: suppose that for a j € N*, we
have for any j' < j, oo € E_p_j. We then directly check with Lemma B.H and (1)) that
P 1

o, € E_,_;.
The case P € B, is similar. O

Lemma 4.7. For any k € Z, D* € B, and when k is odd, |D|F € B,.
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Proof. Since D € B,, D2 is in B, by Lemma [£.6 and [i.] and so is D*.

Using (B0) for the equation |D||D| = D?, we check that J'lm(x,ﬁ) = |¢]|, and for any j € N*,

i=led
Dl __ 1 D2 D] D] Jaf (=1)! D] D]
915 =ape; (0275 ~ Dot Y Y NS0t a0t y). (32)

0<k<yj 0<|a|<j k=0
Again, a straightforward induction argument shows that for any j € N, UE‘]- € O1_;, and thus
|D| € B,. The result follows as above. O

In the next four lemmas, we emphasize the fact that only some of the results could be obtained
using the trick ([[f)) with operator J.

Lemma 4.8. (i) If d is odd, then for any P € B., § P = 0.

(i) If d is even, then for any P € B,, { P = 0.

(iii) For any pseudodifferential operator P € ¥1(A) (see Appendix 5.1),

- when d is odd, then §f P =0,

- when d is even, then § P|D|™1 = 0.

Proof. (i) Since o, € E_q, o )(2,£) = e, ”5”% hi(z) where |3¢| are odd. The integration
on the cosphere in ([[7) therefore vanishes. ’

(7i) The same argument can be applied.

(7i1) Direct consequence of (i) and (ii). O

Remark 4.9. Lemma [[.§ (iii) entails for instance that § B|D|~*+1) where B is a polynomial
in A and D and k € N, always vanish in even dimension, while § BD~% always vanish in odd
dimension. In other words, fB|D|_(d_q) =0 for any odd integer q.

We shall now pay attention to the real or purely imaginary nature (independently of the ap-
pearance of gamma matrices) of homogeneous symbols of a given pseudodifferential operator.
Let

C:={PeW’(M):0] ;€l;VjeN}

where I, = I, if k is even and I, = I, if k is odd, with

Io:={feC®(UxR" M(C)) : =k v, b, hreal valued },
I ={feC®UxR" Mp(C)) : f=1ik v, h(x,§) , hreal valued }.
Lemma 4.10. (i) C is a sub-algebra of W(M).

(ii) If P € C is hypo-elliptic then P~ € C.
(iii) D* € C and |D|F € C for any k € Z.

Proof. (i) Consequence of (B0).
(ii) Consequence of (B1]).
(ii7) It is clear that D € C and the fact that |D| € C is a consequence of (B2). O

Lemma 4.11. Let k € N odd. Then any element B of the polynomial algebra generated by A
and [D, A] satisfies fB|D|—(d—k) :fBF|D|—(d—k) —0.
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Proof. We may assume that B is selfadjoint so BD~(d=k) ¢ R,
(d—k)

By Lemma [[.10, o827 = aéga?g(dfk) € Iy. Thus f AD~% € iR and the result follows. The
case f BF|D|~(@%) is similar. O

We now look at the information given by the gamma matrices.

Lemma 4.12. For any one-form A, f A|D|77 =0, q € N in either of the following cases:
-d#1 mod 8 and d# 5 mod 8,
-(d=1 mod 8 ord=5 mod 8) and (q is even or q > diz?’)

Proof. In the case d #1 mod 8 and d # 5 mod 8, the result follows from the fact that ¢ = 1.
The case d even and ¢ odd or d odd and ¢ even is done by Lemma [[.§ (iit).

Suppose that d is even and ¢ is even. If ¢ = 2k, with a recurrence and the symbol product
formula, we see that 02D,€2_k j and all its derivatives are linear combinations of terms of the form
f(x, &) ®~71 -+ 49i where i is even and less than 25 (with the convention 471 - - yji =1ifi=0).
We call (P;) this property. The parametrix equation D?D=2k — 1 entails that o2 % = (o gfk) 1
and for any j > 1,

j—1
D2k . D2k D2k D2k
O ok—j = —0_2 ( E O2k—(j—r) O —2k—r
r=max{j—2k,0}

i—lal

ol g -
+ > Yo CE R g %0 ).

1<]a|<2k r=max{j—2k,0}

Note that 0?;,: " satisfies (P). By recurrence, this formula shows that O'?;;i ; satisfies (P;) for

any j € N. In particular, 0’?;% satisfies (P_ok1¢) and the result follows then from (P§) and the

product of an odd number (different from the dimension) of gamma matrices is traceless.
Suppose now that d is odd, ¢ is odd and d > ¢. In that situation, any odd number of gamma
matrices 't ---~" is traceless when r < d.

Using (B0) for the equation |D|~%|D|~% = D~2%, we check that J'D‘ (z,€) = €], and for any
J €N,

D[~ 2 DI~ D17 ' ‘ L 925D P
41 oD B o) (=D fe) -
T—q—j _2II£III‘Z T-20—j — Z O gjtk T—gq—k T Z Z —q- J+|a\+ka —q—k)’

0<k<j 0<|a|<j k=0

—2
I_Dz‘q_; satisfies (P;), that is to say, is a linear combination of terms of the

form f(z,&) ® 47t -+ 17 where i is even and less than 2j. Again, a straightforward induction

We saw that each o

argument shows that for any j € N, o” l_» satisfies (P;). In particular o_4(A|D|7?) is a linear
combination of terms of the form f(x,§ ) AL qdr where r < 2(d — q) + 1 is odd. This yields
the result. 0

The fact that f AD~%+1 = 0, consequence of Lemmas [[.§ and is also a consequence of the
fact that a?f“(a;o,f) =0:

Lemma 4.13. For all k € N*, we have akDfl(xo,é) = 0?;:1(%75) =0.
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Proof. We already know that of (z¢,£) = 0, see (4). We proceed by recurrence, assuming
Dn+1
o

Uka1(3307§) =0 for k =1,--- ,n. Then o, =
®) and @), o2 (20,€) = 0.

Since DD~ = 1 yields 0?*1(%,5) = —(0’?1*1 J(’)D)(xo,ﬁ) = 0, we assume 0?1:1@0,5) =0 for
k = 1,---n. Then UD:L; =oP" 07_); + 07_),2107_)171 — i 000" amka?fl. Using (R7) and
recurrence hypothesis, o2 L; (z0,£) = 0. N

PP + 0P 0P — i 0 0l" O,k0P, thus by

Remark 4.14. Regularity of Cx(s) := Tr(|X|™*) at point 0 when X is an elliptic selfadjoint
differential operator of order one (see [24]):

One checks that (x(s) = F(s fo t5= 1 Tr(e~ X1 dt for R(s) > d. Because of the asymptotic
expansion

—t\X| _ t_d Ztn an + O tN+1 d) (33)

[X]

and meromorphic extension to the whole complex plane, Rdes (x(s) = %. In particular,
s=d—n

(x(s) = F(s)_l(@ + f(s)), where f is holomorphic around s = 0. By (B]) we get that (x(s)
is regular around zero and (x(0) = aq[X] if d is even and (x(0) = 0 if d is odd.

Corollary 4.15. (p44(0) = (p(0) =0 when d = dim(M) is odd.
When d is even, (p4+4(0) — (p(0) = Z/jl = f(AD1)%*

Proof. The result follows from (f) and Lemma [£.4. O
A proof of (B)) also follows from alog(1+AD ~ Y e 1 oAD" with log(X) := %|220X %, 80
Wres(log(1+ AD™Y)) = Zk ED* prpes (AD h ) since (AD_l)k has zero Wodzicki residue

if K > d and moreover (p44(0 ) = —Wres(log(D + A)). Actually, the important point is that

det(X) = eWTes(lOg(X)) is multiplicative (see [41].) Moreover, such determinant is different
from the zeta-determinant e=$x() used for instance by Hawking [30] in his regularization via
the partition function which suffers from conformal anomalies.

The fact that in the asymptotic expansion of the heat kernel (B3), the term as[D + A] depends
only on the scalar curvature, so independent of A is reflected in

Lemma 4.16. In any spectral triple of dimension 2 (commutative or not) with vanishing tad-
poles of order zero (i.e. ([J) is satisfied), (pya(0) = (p(0) for any one-form A.

Proof. Let a1, as, bl, by € A. Then, with A1 = al[D,bl],

f A1 D ag[D, by D1 fAl 1 a9][D,ba] D7t + § Ayas D7D, by] DL
The first term is zero since the integrand is in OP~3, while the second term is equal to
f (a1a(braz) — arbia(az)) (a(b2) — be), so is zero using a(z)a(y) = a(zy), fzy = fza(y) by
([(3) and the fact that f is a trace. Thus (AD_1)2 = 0 and Corollary {.13 yields the result. O

Note that (p4+4(0) — {p(0) is usually non zero: consider for instance the flat 4-torus and as a
generic selfadjoint one-form A, take

A:=¢e0,2n[t = —in® Zzem Gal e,
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where aal is in the Schwartz space S(Z 4) and a,; = —aq,—;. We have by [19, Lemma 6.12]
(with ¢ = |l|2 Dok I¥% and © = 0)

(p+4(0) = ¢p(0) = ][(AD =Y Gy 1 Gy 1 (1711°2 = 5°1°21]7)
lez*

since f(AD~1)* = 0.
This last equality suggests that Lemma can be extended:

Proposition 4.17. For any one-form A, f (AD™1)? =0 if d = dim(M).

Proof. As in the proof of Lemma [L.14, D! commutes with the element in the algebra as the
integrand is in OP~?. So for a family of a;,b; € A and using a := H?Zl a;,

][ljl (a:[D,b:] D7) =][ (ITe) I (2,01 D) =][aH (au(bi) — bs).

i=1 i=1 =1

We obtain, since a(b;) — b; € OP™L,

aH’ ralb)=bi _ HO‘ = ﬁaf(lbi).
i=1

Moreover, UD? D~ (:130,5) = 0: we already know by Lemma .13 that o2, (z0,£¢) = 0, by (29)
that d,x0?] "(20,€) = 0 for all k, and agbi(xo,ﬁ) = b;(70) 0F (20,&) = 0 giving the claim and
the result. O

This proposition does not survive in noncommutative spectral triples, see for instance [32, Table
1].
Note that for a one-form A, f AYD~¢ £ {(AD~1)=% = 0: in dimension d = 2, as in (9),

][A2 D2 = —9¢, Tr(’yk’yl)/ aga Vg.
M

It is known (see [17, Proposition 1.153]) that the d — 2 term (for d = 4) in the spectral action
expansion f |D + A|~2 is independent of the perturbation A. This is why the Einstein-Hilbert
action S(D) = f |D|7%"2 = —c [,, 7\/g dz (see [26, Theorem 11.2]) is so fundamental. Here 7 is
the scalar curvature (positive on the sphere) and c is a positive constant.

We give here another proof of this result.

Lemma 4.18. We have f|D + A|=%2 = f|D|74+2 = —c [, 7, /g dx with c = 2 {|D|~2.
Proof. We get from [19, Lemma 4.10 (ii)] the following equality, where X := AD + DA + A?:

][’D+A‘_d+2 —][’D’_d+2 — @ (%][X2’D’_d_2 —][X‘D‘_d).

Since the tadpole terms vanish, we have f X|D|~¢ = f A?|D|=¢. Moreover, since mod OP!,
X2 = (AD)? + (DA)? + AD?A + DA?D, we get with [D?, A] € OP!,

]1X2u>y—d—2 = 2][(AD)2\D\‘d‘2 - 2][A2]D]‘d
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which yields

frosaee - fper e fappppaz - 25t f 4y,

Thus, it is sufficient to check that
/ Tr (0_a((AD)*|D|77%) (0, £)) dé = 234 / Tr (0-a(A%|D|™) (w0, €)) €.
S5, M Sz M
A straightforward computation yields, with A =: —ia,+*, and oP(xg,€) = Yy,

/lMﬂAMDWM””WmO%Z—é%%ﬂWWWWJWMW*%

0

LoD w0 €)d = a0, Tr(7) Vol(5%).

Now, f |D+ A|=%+2 = §|D|~4+2 follows from the equality Tr(v*7~v7¥,) = (2—d) Tr(y#47). The
constant ¢ is given in [26, Theorem 11.2 and normalization (11.2)]. O

Remark 4.19. In [17, Definition 1.143], the above result justifies the definition of a scalar
curvature for (A, H,D) as R(a) := §a|D|"*2 for a € A. This map is of course a trace on
A for a commutative geometry. But for the triple associated to SUy(2), this not a trace since

(see [32]):

R(CLCL*) :][GCL* |D|_1 — % while R(a*a) = ][a*a |D|_1 — 3‘;—?;__6;122)_71 .

5 Appendix

5.1 Pseudodifferential operators

Definition 5.1. Let us define D(A) as the polynomial algebra generated by A, JAJ™', D and
|D|.
A pseudodifferential operator is an operator T such that there exists d € 7Z such that for any
N € N, there exist p € Ng, P € D(A) and R € OP™ (p, P and R may depend on N) such
that PD~% € OP? and

T=PD % +R.

Define U(A) as the set of pseudodifferential operators and ¥(A)* := ¥(A) N OP*.

Note that the notion of pseudodifferential operator is modified as ¥(.A) now includes JAJ !,
see [19].

When A is a one-form, A and JAJ~! are in D(A) and moreover D(A) C Upen,OP*. Since
|D| € D(A) by construction and P, is a pseudodifferential operator, for any k € Z, |D|* is a
pseudodifferential operator (in OPF.) Let us remark also that D(A) C W(A) C UpezOPF.

The set of all pseudodifferential operators W(.A) is an algebra. We denote W;(.A) the subalgebra
of W(A) defined the same way as W(.A), replacing D(A) by the polynomial algebra generated by
D, A and JAJ~!. This algebra is similar to the one defined in [8].
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5.2 Zeta functions and dimension spectrum
For any operator B and if X is either D or D4, we define
(X(s) =T (B|X]™*),
Cx(s) = Tr (] X]7%).
The dimension spectrum Sd(A, H,D) of a spectral triple has been defined in [13,18]. It is

extended here to pay attention to the operator J and to our definition of pseudodifferential
operator.

Definition 5.2. The spectrum dimension of the spectral triple is the subset Sd(A, H,D) of all
poles of the functions (5 = s — Tr (P|D|_8) where P is any pseudodifferential operator in
OP°. The spectral triple (A, H, D) is said to be simple when these poles are all simple.

The following is part of folklore in noncommutative geometry, even if sometimes it is unclear if
there is an equality or an inclusion of Sp(M) in {d —k : k€ N}.

Proposition 5.3. Let Sp(M) be the spectrum dimension of a commutative geometry of dimen-
sion d. Then Sp(M) is simple and Sp(M) ={d—k : k€ N}.

Proof. Let a € A = C*(M) such that its trace norm ||a||z1 is non zero and for k& € N, let
Py, :=a|D|7*. Then P, € OP~% c OP° and its associated zeta-function has a pole at d — k:

E{desk ¢h(s) = R_eg E(s+d—k)= R_eg Tr (a]D]_k\D\_(s+d_k)) = ][a\D\_d

= [ o [ (P o) el = [ o) [

||€1| 792 |dg| | d|
ch
=/mmmm=wm¢o
M

where v, is the Riemann density normalized on g-orthonormal basis of T'M.

Conversely, since W(A)? is contained in the algebra of all pseudodifferential operators of order
less or equal to 0, it is known [29,51,52] that Sp(M) C {d—k : ke N}.

The fact that all poles are simple is due to the fact that D being differential and M being
without boundary, a) = 0, Vk € N* in (R0). O
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