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HYDROSTATICS AND DYNAMICAL LARGE DEVIATIONS OF

BOUNDARY DRIVEN GRADIENT SYMMETRIC EXCLUSION

PROCESSES

J. FARFAN, C. LANDIM AND M. MOURRAGUI

Abstract. We prove hydrostatics of boundary driven gradient exclusion pro-
cesses, Fick’s law and we present a simple proof of the dynamical large devia-
tions principle which holds in any dimension.

1. introduction

Statical and dynamical large deviations principles of boundary driven interacting
particles systems has attracted attention recently as a first step in the understanding
of nonequilibrium thermodynamics (cf. [5, 7, 8] and references therein).

This article has two purposes. First, inspired by the dynamical approach to
stationary large deviations, introduced by Bertini et al. in the context of boundary
driven interacting particles systems [3], we present a proof of the hydrostatics based
on the hydrodynamic behaviour of the system and on the fact that the stationary
profile is a global attractor of the hydrodynamic equation.

More precisely, if ρ̄ represents the stationary density profile and πN the empirical
measure, to prove that πN converges to ρ̄ under the stationary state µN

ss, we first
prove the hydrodynamic limit stated as follows. If we start from an initial config-
uration which has a density profile γ, on the diffusive scale the empirical measure
converges to an absolutely continuous measure, π(t, du) = ρ(t, u)du, whose density
ρ is the solution of the parabolic equation





∂tρ = (1/2)∇ ·D(ρ)∇ρ ,
ρ(0, ·) = γ(·) ,
ρ(t, ·) = b(·) on Γ ,

where D is the diffusivity of the system, ∇ the gradient, b is the boundary condition
imposed by the stochastic dynamics and Γ is the boundary of the domain in which
the particles evolve. Since for all initial profile 0 ≤ γ ≤ 1, the solution ρt is bounded
above, resp. below, by the solution with initial condition equal to 1, resp. 0, and
since these solutions converge, as t ↑ ∞, to the stationary profile ρ̄, hydrostatics
follows from the hydrodynamics and the weak compactness of the space of measures.

The second contribution of this article is a simplification of the proof of the
dynamical large deviations of the empirical measure. The original proof [15, 9, 13]
relies on the convexity of the rate functional, a very special property only fulfilled
by very few interacting particle systems as the symmetric simple exclusion process.
The extension to general processes [19, 20, 6] is relatively technical. The main
difficulty appears in the proof of the lower bound where one needs to show that any
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trajectory λt, 0 ≤ t ≤ T , with finite rate function, IT (λ) <∞, can be approximated
by a sequence of smooth trajectories {λn : n ≥ 1} such that

λn −→ λ and IT (λn) −→ IT (λ) . (1.1)

This property is proved by approximating in several steps a general trajectory
λ by a sequence of profiles, smoother at each step, the main ingredient being the
regularizing effect of the hydrodynamic equation. This part of the proof is quite
elaborate and relies on properties of the Green kernel associated to the second order
differential operator.

We propose here a simpler proof. It is well known that a path λ with finite rate
function may be obtained from the hydrodynamical path through an external field.
More precisely, if IT (λ) <∞, there exists H such that

IT (λ) =
1

2

∫ T

0

dt

∫
σ(λt) [∇Ht]

2 dx ,

where σ is the mobility of the system and H is related to λ by the equation
{
∂tλ− (1/2)∇ ·D(λ)∇λ = −∇ · [σ(λ)∇Ht]
H(t, ·) = 0 at the boundary .

(1.2)

This is an elliptic equation for the unknown function H for each t ≥ 0. Note that
the left hand side of the first equation is the hydrodynamical equation. Instead of
approximating λ by a sequence of smooth trajectories, we show that approximating
H by a sequence of smooth functions, the corresponding smooth solutions of (1.2)
converge in the sense (1.1) to λ. This approach, closer to the original one, simplifies
considerably the proof of the hydrodynamical large deviations.

2. Notation and Results

Fix a positive integer d ≥ 2. Denote by Ω the open set (−1, 1)×Td−1, where Tk

is the k-dimensional torus [0, 1)k, and by Γ the boundary of Ω: Γ = {(u1, . . . , ud) ∈
[−1, 1]× Td−1 : u1 = ±1}.

For an open subset Λ of R×Td−1, Cm(Λ), 1 ≤ m ≤ +∞, stands for the space of
m-continuously differentiable real functions defined on Λ. Let Cm

0 (Λ) (resp. Cm
c (Λ)),

1 ≤ m ≤ +∞, be the subset of functions in Cm(Λ) which vanish at the boundary
of Λ (resp. with compact support in Λ).

Fix a positive function b : Γ → R+. Assume that there exists a neighbourhood
V of Ω and a smooth function β : V → (0, 1) in C2(V ) such that β is bounded
below by a strictly positive constant, bounded above by a constant smaller than 1
and such that the restriction of β to Γ is equal to b.

For an integer N ≥ 1, denote by T
d−1
N = {0, . . . , N − 1}d−1, the discrete (d− 1)-

dimensional torus of lengthN . Let ΩN = {−N+1, . . . , N−1}×T
d−1
N be the cylinder

in Zd of length 2N−1 and basis T
d−1
N and let ΓN = {(x1, . . . , xd) ∈ Z×T

d−1
N |x1 =

±(N − 1)} be the boundary of ΩN . The elements of ΩN are denoted by letters x, y
and the elements of Ω by the letters u, v.

We consider boundary driven symmetric exclusion processes on ΩN . A config-
uration is described as an element η in XN = {0, 1}ΩN , where η(x) = 1 (resp.
η(x) = 0) if site x is occupied (resp. vacant) for the configuration η. At the bound-
ary, particles are created and removed in order for the local density to agree with
the given density profile b.
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The infinitesimal generator of this Markov process can be decomposed in two
pieces:

LN = LN,0 + LN,b , (2.1)

where LN,0 corresponds to the bulk dynamics and LN,b to the boundary dynamics.
The action of the generator LN,0 on functions f : XN → R is given by

(
LN,0f

)
(η) =

d∑

i=1

∑

x

rx,x+ei(η)
[
f(ηx,x+ei) − f(η)

]
,

where (e1, . . . , ed) stands for the canonical basis of Rd and where the second sum
is performed over all x ∈ Zd such that x, x + ei ∈ ΩN . For x, y ∈ ΩN , ηx,y is the
configuration obtained from η by exchanging the occupations variables η(x) and
η(y):

ηx,y(z) =






η(y) if z = x ,
η(x) if z = y ,
η(z) if z 6= x, y .

For a > −1/2, the rate functions rx,x+ei(η) are given by

rx,x+ei(η) = 1 + a
{
η(x− ei) + η(x+ 2ei)

}

if x− ei, x+ 2ei belongs to ΩN . At the boundary, the rates are defined as follows.
Let x̌ = (x2, · · · , xd) ∈ T

d−1
N . Then,

r(−N+1,x̌),(−N+2,x̌)(η) = 1 + a
{
η(−N + 3, x̌) + b(−1, x̌/N)

}
,

r(N−2,x̌),(N−1,x̌)(η) = 1 + a
{
η(N − 3, x̌) + b(1, x̌/N)

}
.

The non-conservative boundary dynamics can be described as follows. For any
function f : XN → R,

(LN,bf) (η) =
∑

x∈ΓN

Cb(x, η)
[
f(ηx) − f(η)

]
,

where ηx is the configuration obtained from η by flipping the occupation variable
at site x:

ηx(z) =

{
η(z) if z 6= x
1 − η(x) if z = x

and the rates Cb(x, ·) are chosen in order for the Bernoulli measure with density
b(·) to be reversible for the flipping dynamics restricted to this site:

Cb
(
(−N + 1, x̌), η

)
= η(−N + 1, x̌)

[
1 − b(−1, x̌/N)

]

+
[
1 − η(−N + 1, x̌)

]
b(−1, x̌/N) ,

Cb
(
(N − 1, x̌), η

)
= η(N − 1, x̌)

[
1 − b(1, x̌/N)

]

+
[
1 − η(N − 1, x̌)

]
b(1, x̌/N) ,

where x̌ = (x2, · · · , xd) ∈ T
d−1
N , as above.

Denote by {ηt : t ≥ 0} the Markov process associated to the generator LN

speeded up by N2. For a smooth function ρ : Ω → (0, 1), let νN
ρ(·) be the Bernoulli

product measure on XN with marginals given by

νN
ρ(·)(η(x) = 1) = ρ(x/N) .
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It is easy to see that the Bernoulli product measure associated to any constant
function is invariant for the process with generator LN,0. Moreover, if b(·) ≡ b
for some constant b then the Bernoulli product measure associated to the constant
density b is reversible for the full dynamics LN .

2.1. Hydrostatics. Denote by µN
ss the unique stationary state of the irreducible

Markov process {ηt : t ≥ 0}. We examine in Section 3 the asymptotic behavior of
the empirical measure under the stationary state µN

ss .
Let M = M(Ω) be the space of positive measures on Ω with total mass bounded

by 2 endowed with the weak topology. For each configuration η, denote by πN =
πN (η) the positive measure obtained by assigning mass N−d to each particle of η :

πN = N−d
∑

x∈ΩN

η(x) δx/N ,

where δu is the Dirac measure concentrated on u.
To define rigorously the quasi-linear elliptic problem the empirical measure is

expected to solve, we need to introduce some Sobolev spaces. Let L2(Ω) be the
Hilbert space of functions G : Ω → C such that

∫
Ω
|G(u)|2du < ∞ equipped with

the inner product

〈G, J〉2 =

∫

Ω

G(u) J̄(u) du ,

where, for z ∈ C, z̄ is the complex conjugate of z and |z|2 = zz̄. The norm of L2(Ω)
is denoted by ‖ · ‖2.

Let H1(Ω) be the Sobolev space of functions G with generalized derivatives
∂u1G, . . . , ∂ud

G in L2(Ω). H1(Ω) endowed with the scalar product 〈·, ·〉1,2, defined
by

〈G, J〉1,2 = 〈G, J〉2 +

d∑

j=1

〈∂ujG , ∂ujJ〉2 ,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2.
Let ϕ : [0, 1] → R+ be given by ϕ(r) = r(1 + ar), let ∇ρ represent the gradient

of some function ρ in H1(Ω): ∇ρ = (∂u1ρ, . . . , ∂ud
ρ), and let ‖ · ‖ be the Euclidean

norm: ‖(v1, . . . , vd)‖
2 =

∑
1≤i≤d v

2
i . A function ρ : Ω → [0, 1] is said to be a weak

solution of the elliptic boundary value problem
{

∆ϕ(ρ) = 0 on Ω ,
ρ = b on Γ ,

(2.2)

if

(S1) ρ belongs to H1(Ω):
∫

Ω

‖ ∇ρ(u) ‖
2
du < ∞ .

(S2) For every function G ∈ C2
0 (Ω),

∫

Ω

(
∆G

)
(u)ϕ

(
ρ(u)

)
du =

∫

Γ

ϕ(b(u))n1(u) (∂u1G)(u)dS ,

where n=(n1, . . . ,nd) stands for the outward unit normal vector to the
boundary surface Γ and dS for an element of surface on Γ.
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We prove in Section 7 existence and uniqueness of weak solutions of (2.2). The
first main result of this article establishes a law of large number for the empirical
measure under µN

ss . Let Ω = [−1, 1] × Td−1 and denote by Eµ expectation with
respect to a probability measure µ. Moreover, for a measure m in M and a con-
tinuous function G : Ω → R, denote by 〈m,G〉 the integral of G with respect to
m:

〈m,G〉 =

∫

Ω

G(u)m(du) .

Theorem 2.1. For any continuous function G : Ω → R,

lim
N→∞

EµN
ss

[ ∣∣∣〈πN , G〉 −

∫

Ω

G(u)ρ̄(u)du
∣∣∣
]

= 0 ,

where ρ̄(u) is the unique weak solution of (2.2).

Denote by Γ−, Γ+ the left and right boundary of Ω:

Γ± = {(u1, . . . , ud) ∈ Ω | u1 = ±1}

and denote by Wx,x+ei , x, x + ei ∈ ΩN , the instantaneous current over the bond
(x, x + ei). This is the rate at which a particle jumps from x to x + ei minus the
rate at which a particle jumps from x+ ei to x. A simple computation shows that

Wx,x+ei = {hi,x(η) − hi,x+ei(η)} + {gi,x(η) − gi,x+2ei(η)}

provided x−ei and x+2ei belongs to ΩN . Here, hi,x(η) = η(x)−aη(x+ei)η(x−ei)
and gi,x(η) = aη(x− ei)η(x).

Theorem 2.2. (Fick’s law) Fix −1 < u < 1. Then,

lim
N→∞

EµN
ss

[ 2N

Nd−1

∑

y∈T
d−1
N

W([uN ],y),([uN ]+1,y)

]

=

∫

Γ−

ϕ(b(v)) S(dv) −

∫

Γ+

ϕ(b(v)) S(dv) .

Remark 2.3. We could have considered different bulk dynamics. The important
feature used here to avoid painful arguments is that the process is gradient, which
means that the currents can be written as the difference of a local function and its
translation.

2.2. Dynamical large deviations. Fix T > 0. Let M0 be the subset of M of all
absolutely continuous measures with respect to the Lebesgue measure with positive
density bounded by 1:

M0 =
{
π ∈ M : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e.

}
,

and let D([0, T ],M) be the set of right continuous with left limits trajectories
π : [0, T ] → M, endowed with the Skorohod topology. M0 is a closed subset of M
and D([0, T ],M0) is a closed subset of D([0, T ],M).

Let ΩT = (0, T ) × Ω and ΩT = [0, T ] × Ω. For 1 ≤ m,n ≤ +∞, denote by
Cm,n(ΩT ) the space of functionsG = Gt(u) : ΩT → R withm continuous derivatives
in time and n continuous derivatives in space. We also denote by Cm,n

0 (ΩT ) (resp.

C∞
c (ΩT )) the set of functions in Cm,n(ΩT ) (resp. C∞,∞(ΩT )) which vanish at [0, T ]×

Γ (resp. with compact support in ΩT ).
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Let the energy Q : D([0, T ],M0) → [0,∞] be given by

Q(π) =

d∑

i=1

sup
G∈C∞

c (ΩT )

{
2

∫ T

0

dt 〈ρt, ∂uiGt〉 −

∫ T

0

dt

∫

Ω

G(t, u)2 du
}
.

For each G ∈ C1,2
0 (ΩT ) and each measurable function γ : Ω → [0, 1], let ĴG =

ĴG,γ,T : D([0, T ],M0) → R be the functional given by

ĴG(π) = 〈πT , GT 〉 − 〈γ,G0〉 −

∫ T

0

〈πt, ∂tGt〉 dt

−

∫ T

0

〈ϕ(ρt),∆Gt〉 dt +

∫ T

0

dt

∫

Γ+

ϕ(b) ∂u1GdS

−

∫ T

0

dt

∫

Γ−

ϕ(b) ∂u1GdS −
1

2

∫ T

0

〈σ(ρt), ‖∇Gt‖
2〉 dt ,

where σ(r) = 2r(1 − r)(1 + 2ar) is the mobility and πt(du) = ρt(u)du. Define
JG = JG,γ,T : D([0, T ],M) → R by

JG(π) =

{
ĴG(π) if π ∈ D([0, T ],M0),

+∞ otherwise .

We define the rate functional IT (·|γ) : D([0, T ],M) → [0,+∞] as

IT (π|γ) =





sup
G∈C1,2

0 (ΩT )

{
JG(π)

}
if Q(π) <∞ ,

+∞ otherwise .

Theorem 2.4. Fix T > 0 and a measurable function ρ0 : Ω → [0, 1]. Consider a
sequence ηN of configurations in XN associated to ρ0 in the sense that:

lim
N→∞

〈πN (ηN ), G〉 =

∫

Ω

G(u)ρ0(u) du

for every continuous function G : Ω → R. Then, the measure QηN = PηN (πN )−1

on D([0, T ],M) satisfies a large deviation principle with speed Nd and rate function
IT (·|ρ0). Namely, for each closed set C ⊂ D([0, T ],M),

lim
N→∞

1

Nd
logQηN (C) ≤ − inf

π∈C
IT (π|ρ0)

and for each open set O ⊂ D([0, T ],M),

lim
N→∞

1

Nd
logQηN (O) ≥ − inf

π∈O
IT (π|ρ0) .

Moreover, the rate function IT (·|ρ0) is lower semicontinuous and has compact level
sets.

3. Hydrodynamics, Hydrostatics and Fick’s law

We prove in this section Theorem 2.1. The idea is to couple three copies of the
process, the first one starting from the configuration with all sites empty, the second
one starting from the stationary state and the third one from the configuration with
all sites occupied. The hydrodynamic limit states that the empirical measure of
the first and third copies converge to the solution of the initial boundary value
problem (3.1) with initial condition equal to 0 and 1. Denote these solutions by
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ρ0
t , ρ

1
t , respectively. In turn, the empirical measure of the second copy converges to

the solution of the same boundary value problem, denoted by ρt, with an unknown
initial condition. Since all solutions are bounded below by ρ0 and bounded above
by ρ1, and since ρj converges to a profile ρ̄ as t ↑ ∞, ρt also converges to this profile.
However, since the second copy starts from the stationary state, the distribution of
its empirical measure is independent of time. Hence, as ρt converges to ρ̄, ρ0 = ρ̄.
As we shall see in the proof, this argument does not require attractiveness of the
underlying interacting particle system. This approach has been followed in [18]
to prove hydrostatics for interacting particles systems with Kac interaction and
random potential.

We first describe the hydrodynamic behavior. For a Banach space (B, ‖ · ‖B)
and T > 0 we denote by L2([0, T ],B) the Banach space of measurable functions
U : [0, T ] → B for which

‖U‖2
L2([0,T ],B) =

∫ T

0

‖Ut‖
2
B
dt < ∞

holds.
Fix T > 0 and a profile ρ0 : Ω → [0, 1]. A measurable function ρ : [0, T ] × Ω →

[0, 1] is said to be a weak solution of the initial boundary value problem





∂tρ = ∆ϕ
(
ρ
)
,

ρ(0, ·) = ρ0(·) ,
ρ(t, ·)

∣∣
Γ

= b(·) for 0 ≤ t ≤ T ,
(3.1)

in the layer [0, T ]× Ω if

(H1) ρ belongs to L2
(
[0, T ], H1(Ω)

)
:

∫ T

0

ds
(∫

Ω

‖ ∇ρ(s, u) ‖2du
)
<∞ ;

(H2) For every function G = Gt(u) in C1,2
0 (ΩT ),

∫

Ω

du
{
GT (u)ρ(T, u) −G0(u)ρ0(u)

}
−

∫ T

0

ds

∫

Ω

du (∂sGs)(u)ρ(s, u)

=

∫ T

0

ds

∫

Ω

du (∆Gs)(u)ϕ
(
ρ(s, u)

)
−

∫ T

0

ds

∫

Γ

ϕ(b(u))n1(u)(∂u1Gs(u))dS .

We prove in Section 7 existence and uniqueness of weak solutions of (3.1).

For a measure µ on XN , denote by Pµ = PN
µ the probability measure on the

path space D(R+, XN ) corresponding to the Markov process {ηt : t ≥ 0} with
generator N2LN starting from µ, and by Eµ expectation with respect to Pµ. Recall
the definition of the empirical measure πN and let πN

t = πN (ηt):

πN
t = N−d

∑

x∈ΩN

ηt(x) δx/N .

Theorem 3.1. Fix a profile ρ0 : Ω → (0, 1). Let µN be a sequence of measures on
XN associated to ρ0 in the sense that :

lim
N→∞

µN
{ ∣∣∣〈πN , G〉 −

∫

Ω

G(u)ρ0(u) du
∣∣∣ > δ

}
= 0 , (3.2)
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for every continuous function G : Ω → R and every δ > 0. Then, for every t > 0,

lim
N→∞

P
N
µ

{ ∣∣∣〈πN
t , G〉 −

∫

Ω

G(u)ρ(t, u) du
∣∣∣ > δ

}
= 0 ,

where ρ(t, u) is the unique weak solution of (3.1).

The proof of this result can be found in [12]. Denote by QN
ss the probability

measure on the Skorohod space D([0, T ],M) induced by the stationary measure
µN

ss and the process {πN (ηt) : 0 ≤ t ≤ T }. Note that, in contrast with the usual
set-up of hydrodynamics, we do not know that the empirical measure at time 0
converges. We can not prove, in particular, that the sequence QN

ss converges, but
only that this sequence is tight and that all limit points are concentrated on weak
solution of the hydrodynamic equation for some unknown initial profile.

We first show that the sequence of probability measures {QN
ss : N ≥ 1} is weakly

relatively compact:

Proposition 3.2. The sequence {QN
ss
, N ≥ 1} is tight and all its limit points Q∗

ss

are concentrated on absolutely continuous paths π(t, du) = ρ(t, u)du whose density
ρ is positive and bounded above by 1 :

Q∗
ss

{
π : π(t, du) = ρ(t, u)du , for 0 ≤ t ≤ T

}
= 1 ,

Q∗
ss

{
π : 0 ≤ ρ(t, u) ≤ 1 , for (t, u) ∈ ΩT

}
= 1 .

The proof of this statement is similar to the one of Proposition 3.2 in [16] and
is thus omitted. Actually, the proof is even simpler because the model considered
here is gradient.

The next two propositions show that all limit points of the sequence {QN
ss :

N ≥ 1} are concentrated on absolutely continuous measures π(t, du) = ρ(t, u)du
whose density ρ are weak solution of (3.1) in the layer [0, T ] × Ω. Denote by
AT ⊂ D

(
[0, T ],M0

)
the set of trajectories {ρ(t, u)du : 0 ≤ t ≤ T } whose density ρ

satisfies condition (H2) for some initial profile ρ0.

Proposition 3.3. All limit points Q∗
ss

of the sequence {QN
ss
, N > 1} are concen-

trated on paths π(t, du) = ρ(t, u)du in AT :

Q∗
ss
{AT } = 1 .

The proof of this proposition is similar to the one of Proposition 3.3 in [16].

Next result states that every limit point Q∗
ss of the sequence {QN

ss , N > 1} is
concentrated on paths whose density ρ belongs to L2([0, T ], H1(Ω)) :

Proposition 3.4. Let Q∗
ss

be a limit point of the sequence {QN
ss
, N > 1}. Then,

EQ∗
ss

[ ∫ T

0

ds
(∫

Ω

‖ ∇ρ(s, u) ‖2 du
)]

<∞ .

The proof of this proposition is similar to the one of Lemma A.1.1 in [14]. We
are now ready to prove the first main result of this article.

Proof of Theorem 2.1. Fix a continuous function G : Ω → R. We claim that

lim
N→∞

EµN
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= 0 .
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Note that the expectations are bounded. Consider a subsequence Nk along
which the left hand side converges. It is enough to prove that the limit vanishes.
Fix T > 0. Since µN

ss is stationary, by definition of QNk
ss ,

Eµ
Nk
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= QNk
ss

[ ∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣
]
.

Let Q∗
ss stand for a limit point of {QNk

ss : k ≥ 1}. Since the expression inside the
expectation is bounded, by Proposition 3.3,

lim
k→∞

QNk
ss

[∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= Q∗
ss

[∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣ 1{AT }

]

≤ ‖G‖∞Q∗
ss

[∥∥ρ(T, ·) − ρ̄(·)
∥∥

1
1{AT }

]
,

where ‖ · ‖1 stands for the L1(Ω) norm. Denote by ρ0(·, ·) (resp. ρ1(·, ·)) the weak
solution of the boundary value problem (3.1) with initial condition ρ(0, ·) ≡ 0 (resp.
ρ(0, ·) ≡ 1). By Lemma 7.4, each profile ρ in AT , including the stationary profile
ρ̄, is bounded below by ρ0 and above by ρ1. Therefore

lim
k→∞

Eµ
Nk
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉
∣∣
]

≤ ‖G‖∞
∥∥ρ0(T, ·) − ρ1(T, ·)

∥∥
1
.

Note that the left hand side does not depend on T . To conclude the proof it remains
to let T ↑ ∞ and to apply Lemma 7.6.

Fick’s law, announced in Theorem 2.2, follows from the hydrostatics and elemen-
tary computations presented in the Proof of Theorem 2.2 in [14]. The arguments
here are even simpler and explicit since the process is gradient.

4. The rate function IT (·|γ)

We examine in this section the rate function IT (·|γ). The main result, presented
in Theorem 4.6 below, states that IT (·|γ) has compact level sets. The proof relies
on two ingredients. The first one, stated in Lemma 4.2, is an estimate of the
energy and of the H−1 norm of the time derivative of a trajectory in terms of the
rate function. The second one, stated in Lemma 4.5, establishes that sequences of
trajectories, with rate function uniformly bounded, which converges weakly in L2

converge in fact strongly.
We start by introducing some Sobolev spaces. Recall that we denote by C∞

c (Ω)
the set of infinitely differentiable functions G : Ω → R, with compact support in
Ω. Recall from subsection 2.1 the definition of the Sobolev space H1(Ω) and of
the norm ‖ · ‖1,2. Denote by H1

0 (Ω) the closure of C∞
c (Ω) in H1(Ω). Since Ω is

bounded, by Poincaré’s inequality, there exists a finite constant C1 such that for
all G ∈ H1

0 (Ω)

‖G‖2
2 ≤ C1‖∂u1G‖

2
2 ≤ C1

d∑

j=1

〈∂ujG , ∂ujG〉2 .

This implies that, in H1
0 (Ω)

‖G‖1,2,0 =
{ d∑

j=1

〈∂ujG , ∂ujG〉2

}1/2
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is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H1
0 (Ω) is a Hilbert space with

inner product given by

〈G , J〉1,2,0 =

d∑

j=1

〈∂ujG , ∂ujJ〉2 .

To assign boundary values along the boundary Γ of Ω to any function G in
H1(Ω), recall, from the trace Theorem ([22], Theorem 21.A.(e)), that there exists a
continuous linear operator B : H1(Ω) → L2(Γ), called trace, such that BG = G

∣∣
Γ

if G ∈ H1(Ω) ∩ C(Ω). Moreover, the space H1
0 (Ω) is the space of functions G in

H1(Ω) with zero trace ([22], Appendix (48b)):

H1
0 (Ω) =

{
G ∈ H1(Ω) : BG = 0

}
.

Since C∞(Ω) is dense in H1(Ω) ([22], Corollary 21.15.(a)), for functions F,G in
H1(Ω), the product FG has generalized derivatives ∂ui(FG) = F∂uiG+G∂uiF in
L1(Ω) and

∫

Ω

F (u) ∂u1G(u) du +

∫

Ω

G(u) ∂u1F (u) du

=

∫

Γ+

BF (u)BG(u) du −

∫

Γ−

BF (u)BG(u) du .
(4.1)

Moreover, if G ∈ H1(Ω), f ∈ C1(R) is such that f ′ is bounded, then f ◦G belongs to
H1(Ω) with generalized derivatives ∂ui(f ◦G) = (f ′ ◦G)∂uiG and trace B(f ◦G) =
f ◦ (BG).

Finally, denote by H−1(Ω) the dual of H1
0 (Ω). H−1(Ω) is a Banach space with

norm ‖ · ‖−1 given by

‖v‖2
−1 = sup

G∈C∞
c (Ω)

{
2〈v,G〉−1,1 −

∫

Ω

‖∇G(u)‖2du

}
,

where 〈v,G〉−1,1 stands for the values of the linear form v at G.
For each G ∈ C∞

c (ΩT ) and each integer 1 ≤ i ≤ d, let QG
i : D([0, T ],M0) → R

be the functional given by

QG
i (π) = 2

∫ T

0

dt 〈πt, ∂uiGt〉 −

∫ T

0

dt

∫

Ω

du G(t, u)2 ,

and recall, from subsection 2.2, that the energy Q(π) was defined as

Q(π) =

d∑

i=1

Qi(π) with Qi(π) = sup
G∈C∞

c (ΩT )

QG
i (π) .

The functional QG
i is convex and continuous in the Skorohod topology. Therefore

Qi and Q are convex and lower semicontinuous. Furthermore, it is well known that
a measure π(t, du) = ρ(t, u)du in D([0, T ],M) has finite energy, Q(π) < ∞, if and
only if its density ρ belongs to L2([0, T ], H1(Ω)), in which case

Q̂(π) :=

∫ T

0

dt

∫

Ω

du ‖∇ρt(u)‖
2 < ∞

and Q(π) = Q̂(π).
Let Dγ = Dγ,b be the subset of C([0, T ],M0) consisting of all paths π(t, du) =

ρ(t, u)du with initial profile ρ(0, ·) = γ(·), finite energy Q(π) (in which case ρt
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belongs to H1(Ω) for almost all 0 ≤ t ≤ T and so B(ρt) is well defined for those t)
and such that B(ρt) = b for almost all t in [0, T ].

Lemma 4.1. Let π be a trajectory in D([0, T ],M) such that IT (π|γ) < ∞. Then
π belongs to Dγ.

Proof. Fix a path π in D([0, T ],M) with finite rate function, IT (π|γ) < ∞. By
definition of IT , π belongs to D([0, T ],M0). Denote its density by ρ: π(t, du) =
ρ(t, u)du.

The proof that ρ(0, ·) = γ(·) is similar to the one of Lemma 3.5 in [4]. To prove
that B(ρt) = b for almost all t ∈ [0, T ], since the function ϕ : [0, 1] → [0, 1 + a] is a
C1 diffeomorphism and since B(ϕ ◦ ρt) = ϕ(Bρt) (for those t such that ρt belongs
to H1(Ω)), it is enough to show that B(ϕ ◦ ρt) = ϕ(b) for almost all t ∈ [0, T ]. To
this end, we just need to show that, for any function H± ∈ C1,2([0, T ]× Γ±),

∫ T

0

dt

∫

Γ±

du
{
B(ϕ(ρt))(u) − ϕ(b(u))

}
H±(t, u) = 0 . (4.2)

Fix a function H ∈ C1,2([0, T ] × Γ−). For each 0 < θ < 1, let hθ : [−1, 1] → R be
the function given by

hθ(r) =





r + 1 if − 1 ≤ r ≤ −1 + θ ,
−θr
1−θ if − 1 + θ ≤ r ≤ 0 ,

0 if 0 ≤ r ≤ 1 ,

and define the function Gθ : ΩT → R as G(t, (u1, ǔ)) = hθ(u1)H(t, (−1, ǔ)) for all

ǔ ∈ Td−1. Of course, Gθ can be approximated by functions in C1,2
0 (ΩT ). From the

integration by parts formula (4.1) and the definition of JGθ
, we obtain that

lim
θ→0

JGθ
(π) =

∫ T

0

dt

∫

Γ−

du
{
B(ϕ(ρt))(u) − ϕ(b(u))

}
H(t, u) ,

which proves (4.2) because IT (π|γ) <∞.
We deal now with the continuity of π. We claim that there exists a positive

constant C0 such that, for any g ∈ C∞
c (Ω), and any 0 ≤ s < r < T ,

|〈πr , g〉 − 〈πs, g〉| ≤ C0(r − s)1/2
{
IT (π|γ) + ‖g‖2

1,2,0 + (r − s)1/2‖∆g‖1

}
. (4.3)

Indeed, for each δ > 0, let ψδ : [0, T ] → R be the function given by

(r − s)1/2ψδ(t) =






0 if 0 ≤ t ≤ s or r + δ ≤ t ≤ T ,
t−s
δ if s ≤ t ≤ s+ δ ,

1 if s+ δ ≤ t ≤ r ,

1 − t−r
δ if r ≤ t ≤ r + δ ,

and let Gδ(t, u) = ψδ(t)g(u). Of course, Gδ can be approximated by functions in

C1,2
0 (ΩT ) and then

(r − s)1/2 lim
δ→0

JGδ (π) = 〈πr, g〉 − 〈πs, g〉 −

∫ r

s

dt 〈ϕ(ρt),∆g〉

−
1

2(r − s)1/2

∫ r

s

dt 〈σ(ρt), ‖∇g‖
2〉 .
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To conclude the proof, it remains to observe that the left hand side is bounded by
(r − s)1/2IT (π|γ), and to note that ϕ, σ are positive and bounded above on [0, 1]
by some positive constant. �

Denote by L2([0, T ], H1
0 (Ω))∗ the dual of L2([0, T ], H1

0 (Ω)). By Proposition
23.7 in [22], L2([0, T ], H1

0(Ω))∗ corresponds to L2([0, T ], H−1(Ω)) and for v in
L2([0, T ], H1

0 (Ω))∗, G in L2([0, T ], H1
0 (Ω)),

〈〈v,G〉〉−1,1 =

∫ T

0

〈vt, Gt〉−1,1 dt , (4.4)

where the left hand side stands for the value of the linear functional v at G. More-
over, if we denote by |||v|||−1 the norm of v,

|||v|||2−1 =

∫ T

0

‖vt‖
2
−1 dt .

Fix a path π(t, du) = ρ(t, u)du in Dγ and suppose that

sup
H∈C∞

c (ΩT )

{
2

∫ T

0

dt 〈ρt, ∂tHt〉 −

∫ T

0

dt

∫

Ω

du ‖∇Ht‖
2
}
< ∞ . (4.5)

In this case ∂tρ : C∞
c (ΩT ) → R defined by

∂tρ(H) = −

∫ T

0

〈ρt, ∂tHt〉 dt

can be extended to a bounded linear operator ∂tρ : L2([0, T ], H1
0 (Ω)) → R. It

belongs therefore to L2([0, T ], H1
0(Ω))∗ = L2([0, T ], H−1(Ω)). In particular, there

exists v = {vt : 0 ≤ t ≤ T } in L2([0, T ], H−1(Ω)), which we denote by vt = ∂tρt,
such that for any H in L2([0, T ], H1

0(Ω)),

〈〈∂tρ,H〉〉−1,1 =

∫ T

0

〈∂tρt, Ht〉−1,1 dt .

Moreover,

|||∂tρ|||
2
−1 =

∫ T

0

‖∂tρt‖
2
−1 dt

= sup
H∈C∞

c (ΩT )

{
2

∫ T

0

dt 〈ρt, ∂tHt〉 −

∫ T

0

dt

∫

Ω

du ‖∇Ht‖
2
}
.

Let W be the set of paths π(t, du) = ρ(t, u)du in Dγ such that (4.5) holds,
i.e., such that ∂tρ belongs to L2

(
[0, T ], H−1(Ω)

)
. For G in L2

(
[0, T ], H1

0 (Ω)
)
, let

JG : W → R be the functional given by

JG(π) = 〈〈∂tρ,G〉〉−1,1 +

∫ T

0

dt

∫

Ω

du ∇Gt(u) · ∇(ϕ(ρt(u)))

−
1

2

∫ T

0

dt

∫

Ω

du σ(ρt(u)) ‖∇Gt(u)‖
2 .

Note that JG(π) = JG(π) for every G in C∞
c (ΩT ). Moreover, since J·(π) is contin-

uous in L2
(
[0, T ], H1

0(Ω)
)

and since C∞
c (ΩT ) is dense in C1,2

0 (ΩT ) and in L2([0, T ],

H1
0 (Ω)), for every π in W ,

IT (π|γ) = sup
G∈C∞

c (ΩT )

JG(π) = sup
G∈L2([0,T ],H1

0)
JG(π) . (4.6)
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Lemma 4.2. There exists a constant C0 > 0 such that if the density ρ of some
path π(t, du) = ρ(t, u)du in D([0, T ],M0) has a generalized gradient, ∇ρ, then

∫ T

0

dt ‖∂tρt‖
2
−1 ≤ C0 {IT (π|γ) + Q(π)} , (4.7)

∫ T

0

dt

∫

Ω

du
‖∇ρt(u)‖

2

χ(ρt(u))
≤ C0 {IT (π|γ) + 1} , (4.8)

where χ(r) = r(1 − r) is the static compressibility.

Proof. Fix a path π(t, du) = ρ(t, u)du in D([0, T ],M0). In view of the discussion
presented before the lemma, we need to show that the left hand side of (4.5) is
bounded by the right hand side of (4.7). Such an estimate follows from the definition
of the rate function IT (·|γ) and from the elementary inequality 2ab ≤ Aa2 +A−1b2.

We turn now to the proof of (4.8). We may of course assume that IT (π|γ) <∞,
in which case Q(π) < ∞. Fix a function β as in the beginning of Section 2. For
each δ > 0, let hδ : [0, 1]2 → R be the function given by

hδ(x, y) = (x+ δ) log

(
x+ δ

y + δ

)
+ (1 − x+ δ) log

(
1 − x+ δ

1 − y + δ

)
.

By (4.7), ∂tρ belongs to L2([0, T ], H−1(Ω)). We claim that
∫ T

0

dt 〈∂tρt, ∂xh
δ(ρt, β)〉−1,1 =

∫

Ω

hδ(ρ
T
(u), β(u))du

−

∫

Ω

hδ(ρ0(u), β(u))du . (4.9)

Indeed, By Lemma 4.1 and (4.7), ρ− β belongs to L2
(
[0, T ], H1

0(Ω)
)

and ∂t(ρ−

β) = ∂tρ belongs to L2([0, T ], H−1(Ω)). Then, there exists a sequence {G̃n : n ≥ 1}

of smooth functions G̃n : ΩT → R such that G̃n
t belongs to C∞

c (Ω) for every t in

[0, T ], G̃n converges to ρ−β in L2([0, T ], H1
0 (Ω)) and ∂tG̃

n converges to ∂t(ρ−β) in
L2([0, T ], H−1(Ω)) (cf. [22], Proposition 23.23(ii)). For each positive integer n, let

Gn = G̃n + β and for each δ > 0, fix a smooth function h̃δ : R2 → R with compact
support and such that its restriction to [0, 1]2 is hδ. It is clear that

∫ T

0

dt 〈∂tG
n
t , ∂xh̃

δ(Gn
t , β)〉 =

∫

Ω

h̃δ(Gn
T (u), β(u))du

−

∫

Ω

h̃δ(Gn
0 (u), β(u))du . (4.10)

On the one hand, ∂xh
δ : [0, 1]2 → R is given by

∂xh
δ(x, y) = log

(
x+ δ

1 − x+ δ

)
− log

(
y + δ

1 − y + δ

)
.

Hence, ∂xh
δ(ρ, β) and ∂xh̃

δ(Gn, β) belongs to L2
(
[0, T ], H1

0(Ω)
)
. Moreover, since

∂xh̃
δ is smooth with compact support and Gn converges to ρ in L2([0, T ], H1(Ω)),

∂xh̃
δ(Gn, β) converges to ∂xh

δ(ρ, β) in L2([0, T ], H1
0(Ω)). From this fact and since

∂tG
n converges to ∂tρ in L2([0, T ], H−1(Ω)), if we let n→ ∞, the left hand side in

(4.10) converges to ∫ T

0

dt 〈∂tρt, ∂xh
δ(ρt, β)〉−1,1 .
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On the other hand, by Proposition 23.23(ii) in [22], Gn
0 , resp. Gn

T , converges to
ρ0, resp. ρT , in L2(Ω). Then, if we let n → ∞, the right hand side in (4.10) goes
to ∫

Ω

hδ(ρ
T
(u), β(u))du −

∫

Ω

hδ(ρ0(u), β(u))du ,

which proves claim (4.9).
Notice that, since β is bounded away from 0 and 1, there exists a positive constant

C = C(β) such that for δ small enough,

hδ(ρ(t, u), β(u)) ≤ C for all (t, u) in ΩT . (4.11)

For each δ > 0, let Hδ : ΩT → R be the function given by

Hδ(t, u) =
∂xh

δ(ρ(t, u), β(u))

2(1 + 2δ)
.

A simple computation shows that

JHδ (π) ≥

∫ T

0

dt
〈
∂tρt, H

δ
t

〉
−1,1

+
1

4

∫ T

0

dt

∫

Ω

du ϕ′(ρt(u))
‖∇ρt(u)‖

2

χδ(ρt(u))

−
1

8

∫ T

0

dt

∫

Ω

du σδ(ρt(u))
‖∇β(u)‖2

χδ(β(u))2
,

where χδ(r) = (r + δ)(1 − r + δ) and σδ(r) = 2χδ(r)ϕ
′(r). This last inequality

together with (4.9), (4.6) and (4.11) show that there exists a positive constant
C0 = C0(β) such that for δ small enough

C0 {IT (π|γ) + 1} ≥

∫ T

0

dt

∫

Ω

du
‖∇ρ(t, u)‖2

χδ(ρ(t, u))
.

We conclude the proof by letting δ ↓ 0 and by using Fatou’s lemma. �

Corollary 4.3. The density ρ of a path π(t, du) = ρ(t, u)du in D([0, T ],M0) is
the weak solution of the equation (3.1) with initial profile γ if and only if the rate
function IT (π|γ) vanishes. Moreover, in that case

∫ T

0

dt

∫

Ω

du
‖∇ρt(u)‖

2

χ(ρt(u))
< ∞ .

Proof. On the one hand, if the density ρ of a path π(t, du) = ρ(t, u)du inD([0, T ],M0)
is the weak solution of equation (3.1), by assumption (H1), the energy Q(π) is fi-

nite. Moreover, since the initial condition is γ, in the formula of ĴG(π), the linear
part in G vanishes which proves that the rate functional IT (π|γ) vanishes. On the
other hand, if the rate functional vanishes, the path ρ belongs to L2([0, T ], H1(Ω))
and the linear part in G of JG(π) has to vanish for all functions G. In particular,
ρ is a weak solution of (3.1). Moreover, in that case, by the previous lemma, the
bound claimed holds. �

For each q > 0, let Eq be the level set of IT (π|γ) defined by

Eq = {π ∈ D([0, T ],M) : IT (π|γ) ≤ q} .

By Lemma 4.1, Eq is a subset of C([0, T ],M0). Thus, from the previous lemma, it
is easy to deduce the next result.
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Corollary 4.4. For every q ≥ 0, there exists a finite constant C(q) such that

sup
π∈Eq

{∫ T

0

dt ‖∂tρt‖
2
−1 +

∫ T

0

dt

∫

Ω

du
‖∇ρ(t, u)‖2

χ(ρ(t, u))

}
≤ C(q) .

Next result together with the previous estimates provide the compactness needed
in the proof of the lower semicontinuity of the rate function.

Lemma 4.5. Let {ρn : n ≥ 1} be a sequence of functions in L2(ΩT ) such that
uniformly on n, ∫ T

0

dt ‖ρn
t ‖

2
1,2 +

∫ T

0

dt ‖∂tρ
n
t ‖

2
−1 < C

for some positive constant C. Suppose that ρ ∈ L2(ΩT ) and that ρn → ρ weakly in
L2(ΩT ). Then ρn → ρ strongly in L2(ΩT ).

Proof. Since H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact embedding H1(Ω) → L2(Ω),
from Corollary 8.4, [21], the sequence {ρn} is relatively compact in L2

(
[0, T ], L2(Ω)

)
.

Therefore the weak convergence implies the strong convergence in L2
(
[0, T ], L2(Ω)

)
.

�

Theorem 4.6. The functional IT (·|γ) is lower semicontinuous and has compact
level sets.

Proof. We have to show that, for all q ≥ 0, Eq is compact in D([0, T ],M). Since
Eq ⊂ C([0, T ],M0) and C([0, T ],M0) is a closed subset of D([0, T ],M), we just
need to show that Eq is compact in C([0, T ],M0).

We will show first that Eq is closed in C([0, T ],M0). Fix q ∈ R and let {πn :
n ≥ 1} be a sequence in Eq converging to some π in C([0, T ],M0). Then, for all

G ∈ C(ΩT ),

lim
n→∞

∫ T

0

dt 〈πn
t , Gt〉 =

∫ T

0

dt 〈πt, Gt〉 .

Notice that this means that πn → π weakly in L2(ΩT ), which together with Corol-
lary 4.4 and Lemma 4.5 imply that πn → π strongly in L2(ΩT ). From this fact and

the definition of JG it is easy to see that, for all G in C1,2
0 (ΩT ),

lim
n→∞

JG(πn) = JG(π) .

This limit, Corollary 4.4 and the lower semicontinuity of Q permit us to conclude
that Q(π) ≤ C(q) and that IT (π|γ) ≤ q.

We prove now that Eq is relatively compact. To this end, it is enough to prove

that for every continuous function G : Ω → R,

lim
δ→0

sup
π∈Eq

sup
0≤s,r≤T
|r−s|<δ

|〈πr, G〉 − 〈πs, G〉| = 0 . (4.12)

Since Eq ⊂ C([0, T ],M0), we may assume by approximations of G in L1(Ω) that
G ∈ C∞

c (Ω). In which case, (4.12) follows from (4.3). �

We conclude this section with an explicit formula for the rate function IT (·|γ).
For each π(t, du) = ρ(t, u)du in D([0, T ],M0), denote by H1

0 (σ(ρ)) the Hilbert

space induced by C1,2
0 (ΩT ) endowed with the inner product 〈·, ·〉σ(ρ) defined by

〈H,G〉σ(ρ) =

∫ T

0

dt 〈σ(ρt),∇Ht · ∇Gt〉 .
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Induced means that we first declare two functions F,G in C1,2
0 (ΩT ) to be equivalent

if 〈F −G,F −G〉σ(ρ) = 0 and then we complete the quotient space with respect to

the inner product 〈·, ·〉σ(ρ). The norm of H1
0 (σ(ρ)) is denoted by ‖ · ‖σ(ρ).

Fix a path ρ in D([0, T ],M0) and a function H in H1
0 (σ(ρ)). A measurable

function λ : [0, T ] × Ω → [0, 1] is said to be a weak solution of the nonlinear
boundary value parabolic equation





∂tλ = ∆ϕ(λ) −
∑d

i=1 ∂ui (σ(λ)∂uiH) ,

λ(0, ·) = γ ,

λ(t, ·)|Γ = b for 0 ≤ t ≤ T .

(4.13)

if it satisfies the following two conditions.

(H1’) λ belongs to L2
(
[0, T ], H1(Ω)

)
:

∫ T

0

ds
( ∫

Ω

‖ ∇λ(s, u) ‖2du
)
<∞ ;

(H2’) For every function G(t, u) = Gt(u) in C1,2
0 (ΩT ),

∫

Ω

du
{
GT (u)ρ(T, u) −G0(u)γ(u)

}
−

∫ T

0

ds

∫

Ω

du (∂sGs)(u)λ(s, u)

=

∫ T

0

ds

∫

Ω

du (∆Gs)(u)ϕ
(
λ(s, u)

)
−

∫ T

0

ds

∫

Γ

ϕ(b(u))n1(u)(∂u1Gs(u))dS

+

∫ T

0

ds

∫

Ω

du σ(λ(s, u))∇Hs(u) · ∇Gs(u) .

In Section 7 we prove uniqueness of weak solutions of equation (4.13) when H
belongs to L2

(
[0, T ], H1(Ω)

)
, i.e., provided

∫ T

0

dt

∫

Ω

du ‖∇Ht(u)‖
2 <∞ .

Lemma 4.7. Assume that π(t, du) = ρ(t, u)du in D([0, T ],M0) has finite rate
function: IT (π|γ) < ∞. Then, there exists a function H in H1

0 (σ(ρ)) such that ρ
is a weak solution to (4.13). Moreover,

IT (π|γ) =
1

2
‖H‖2

σ(ρ) . (4.14)

The proof of this lemma is similar to the one of Lemma 5.3 in [13] and is therefore
omitted.

5. IT (·|γ)-Density

The main result of this section, stated in Theorem 5.3, asserts that any trajectory
λt, 0 ≤ t ≤ T , with finite rate function, IT (λ|γ) < ∞, can be approximated by a
sequence of smooth trajectories {λn : n ≥ 1} such that

λn −→ λ and IT (λn|γ) −→ IT (λ|γ) .

This is one of the main steps in the proof of the lower bound of the large deviations
principle for the empirical measure. The proof reposes mainly on the regularizing
effects of the hydrodynamic equation and is one of the main contributions of this
article, since it simplifies considerably the existing methods.
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A subsetA ofD([0, T ],M) is said to be IT (·|γ)-dense if for every π inD([0, T ],M)
such that IT (π|γ) < ∞, there exists a sequence {πn : n ≥ 1} in A such that πn

converges to π and IT (πn|γ) converges to IT (π|γ).
Let Π1 be the subset of D([0, T ],M0) consisting of paths π(t, du) = ρ(t, u)du

whose density ρ is a weak solution of the hydrodynamic equation (3.1) in the time
interval [0, δ] for some δ > 0.

Lemma 5.1. The set Π1 is IT (·|γ)-dense.

Proof. Fix π(t, du) = ρ(t, u)du in D([0, T ],M) such that IT (π|γ) <∞. By Lemma
4.1, π belongs to C([0, T ],M0). For each δ > 0, let ρδ be the path defined as

ρδ(t, u) =






λ(t, u) if 0 ≤ t ≤ δ ,

λ(2δ − t, u) if δ ≤ t ≤ 2δ ,

ρ(t− 2δ, u) if 2δ ≤ t ≤ T ,

where λ is the weak solution of the hydrodynamic equation (3.1) starting at γ.
It is clear that πδ(t, du) = ρδ(t, u)du belongs to Dγ , because so do π and λ and
that Q(πδ) ≤ Q(π) + 2Q(λ) < ∞. Moreover, πδ converges to π as δ ↓ 0 be-
cause π belongs to C([0, T ],M). By the lower semicontinuity of IT (·|γ), IT (π|γ) ≤
limδ→0 IT (πδ|γ). Then, in order to prove the lemma, it is enough to prove that

IT (π|γ) ≥ limδ→0 IT (πδ|γ). To this end, decompose the rate function IT (πδ|γ) as
the sum of the contributions on each time interval [0, δ], [δ, 2δ] and [2δ, T ]. The
first contribution vanishes because πδ solves the hydrodynamic equation in this
interval. On the time interval [δ, 2δ], ∂tρ

δ
t = −∂tλ2δ−t = −∆ϕ(λ2δ−t) = −∆ϕ(ρδ

t ).
In particular, the second contribution is equal to

sup
G∈C1,2

0 (ΩT )

{
2

∫ δ

0

ds

∫

Ω

du ∇ϕ(λ) · ∇G−
1

2

∫ δ

0

ds 〈σ(λt), ‖∇Gt‖
2〉

}

which, by Schwarz inequality, is bounded above by
∫ δ

0

ds

∫

Ω

du ϕ′(λ)
‖∇λ‖2

χ(λ)
.

By Corollary 4.3, this last expression converges to zero as δ ↓ 0. Finally, the
third contribution is bounded by IT (π|γ) because πδ in this interval is just a time
translation of the path π. �

Let Π2 be the set of all paths π in Π1 with the property that for every δ > 0
there exists ǫ > 0 such that ǫ ≤ πt(·) ≤ 1 − ǫ for all t ∈ [δ, T ].

Lemma 5.2. The set Π2 is IT (·|γ)-dense.

Proof. By the previous lemma, it is enough to show that each path π(t, du) =
ρ(t, u)du in Π1 can be approximated by paths in Π2. Fix π in Π1 and let λ be as
in the proof of the previous lemma. For each 0 < ε < 1, let ρε = (1 − ε)ρ + ελ,
πε(t, du) = ρε(t, u)du. Note that Q(πε) < ∞ because Q is convex and both Q(π)
and Q(λ) are finite. Hence, πε belongs to Dγ since both ρ and λ satisfy the
boundary conditions. Moreover, It is clear that πε converges to π as ε ↓ 0. By the
lower semicontinuity of IT (·|γ), in order to conclude the proof, it is enough to show
that

lim
N→∞

IT (πε|γ) ≤ IT (π|γ) . (5.1)
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By Lemma 4.7, there exists H ∈ H1
0 (σ(ρ)) such that ρ solves the equation

(4.13). Let P = σ(ρ)∇H − ∇ϕ(ρ) and Pλ = −∇ϕ(λ). For each 0 < ε < 1, let

Pε = (1 − ε)P + εPλ. Since ρ solves the equation (4.13), for every G ∈ C1,2
0 (ΩT ),

∫ T

0

dt 〈Pε
t ,∇Gt〉 = 〈πε

T , GT 〉 − 〈πε
0, G0〉 −

∫ T

0

dt 〈πε
t , ∂tGt〉 .

Hence, by (4.6), IT (πε|γ) is equal to

sup
G∈C1,2

0 (ΩT )

{∫ T

0

dt

∫

Ω

{
Pε + ∇ϕ(ρε)

}
· ∇Gdu −

1

2

∫ T

0

dt

∫

Ω

σ(ρε)‖∇G‖2 du
}
.

This expression can be rewritten as

1

2

∫ T

0

dt

∫

Ω

du
‖Pε + ∇ϕ(ρε)‖2

σ(ρε)

−
1

2
inf
G

{∫ T

0

dt

∫

Ω

‖Pε + ∇ϕ(ρε) − σ(ρε)∇G‖2

σ(ρε)
du

}

Hence,

IT (πε|γ) ≤
1

2

∫ T

0

dt

∫

Ω

‖Pε + ∇ϕ(ρε)‖2

σ(ρε)
du ·

In view of this inequality and (4.14), in order to prove (5.1), it is enough to show
that

lim
ε→0

∫ T

0

dt

∫

Ω

du
‖Pε + ∇ϕ(ρε)‖2

σ(ρε)
du =

∫ T

0

dt

∫

Ω

‖P + ∇ϕ(ρ)‖2

σ(ρ)
du ·

By the continuity of ϕ′, σ and from the definition of Pε,

lim
ε→0

‖Pε + ∇ϕ(ρε)‖2

σ(ρε)
=

‖P + ∇ϕ(ρ)‖2

σ(ρ)

almost everywhere. Therefore, to prove (5.1), it remains to show the uniform
integrability of

{‖Pε‖2

χ(ρε)
: ε > 0

}
and

{‖∇ρε‖2

χ(ρε)
: ε > 0

}
.

Since IT (π|γ) <∞, by (4.8), (4.14) and Corollary 4.3, the functions ‖P‖2

χ(ρ) , ‖Pλ‖
2

χ(λ) ,
‖∇ρ‖2

χ(ρ) and ‖∇λ‖2

χ(λ) belong to L1(ΩT ). In particular, the function

g = max

{
‖P‖2

χ(ρ)
,
‖Pλ‖

2

χ(λ)
,
‖∇ρ‖2

χ(ρ)
,
‖∇λ‖2

χ(λ)

}
,

also belongs to L1(ΩT ). By the convexity of ‖ · ‖2 an the concavity of χ(·),

‖Pε‖2

χ(ρε)
≤

(1 − ε)‖P‖2 + ε‖Pλ‖
2

(1 − ε)χ(ρ) + εχ(λ)
≤ g ,

which proves the uniform integrability of the family ‖Pε‖2

χ(ρε) . The uniform integra-

bility of the family ‖∇ρε‖
2

χ(ρε) follows from the same estimate with ∇ρε, ∇ρ and ∇λ

in the place of Pε, P and Pλ, respectively. �

Let Π be the subset of Π2 consisting of all those paths π which are solutions of
the equation (4.13) for some H ∈ C1,2

0 (ΩT ).
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Theorem 5.3. The set Π is IT (·|γ)-dense.

Proof. By the previous lemma, it is enough to show that each path π in Π2 can
be approximated by paths in Π. Fix π(t, du) = ρ(t, u)du in Π2. By Lemma 4.7,
there exists H ∈ H1

0 (σ(ρ)) such that ρ solves the equation (4.13). Since π belongs
to Π2 ⊂ Π1, ρ is the weak solution of (3.1) in some time interval [0, 2δ] for some
δ > 0. In particular, ∇H = 0 a.e in [0, 2δ]×Ω. On the other hand, since π belongs
to Π1, there exists ǫ > 0 such that ǫ ≤ πt(·) ≤ 1 − ǫ for δ ≤ t ≤ T . Therefore,

∫ T

0

dt

∫

Ω

‖∇Ht(u)‖
2 du < ∞ . (5.2)

Since H belongs to H1
0 (σ(ρ)), there exists a sequence of functions {Hn : n ≥ 1}

in C1,2
0 (ΩT ) converging to H in H1

0 (σ(ρ)). We may assume of course that ∇Hn
t ≡ 0

in the time interval [0, δ]. In particular,

lim
n→∞

∫ T

0

dt

∫

Ω

du ‖∇Hn
t (u) −∇Ht(u)‖

2 = 0 . (5.3)

For each integer n > 0, let ρn be the weak solution of (4.13) with Hn in place of
H and set πn(t, du) = ρn(t, u)du. By (4.14) and since σ is bounded above in [0, 1]
by a finite constant,

IT (πn|γ) =
1

2

∫ T

0

dt 〈σ(ρn
t ), ‖∇Hn

t ‖
2〉 ≤ C0

∫ T

0

dt

∫

Ω

du ‖∇Hn
t (u)‖2 .

In particular, by (5.2) and (5.3), IT (πn|γ) is uniformly bounded on n. Thus, by
Theorem 4.6, the sequence πn is relatively compact in D([0, T ],M).

Let {πnk : k ≥ 1} be a subsequence of πn converging to some π0 inD([0, T ],M0).

For every G in C1,2
0 (ΩT ),

〈πnk

T , GT 〉 − 〈γ,G0〉 −

∫ T

0

dt 〈πnk
t , ∂tGt〉 =

∫ T

0

dt 〈ϕ(ρnk
t ),∆Gt〉

−

∫ T

0

dt

∫

Γ

ϕ(b)n1(∂u1G)dS −

∫ T

0

dt 〈σ(ρn
t ),∇Hnk

t · ∇Gt〉 .

Letting k → ∞ in this equation, we obtain the same equation with π0 and H in
place of πnk and Hnk , respectively, if

lim
k→∞

∫ T

0

dt 〈ϕ(ρnk
t ),∆Gt〉 =

∫ T

0

dt 〈ϕ(ρ0
t ),∆Gt〉 ,

lim
k→∞

∫ T

0

dt 〈σ(ρnk
t ),∇Hnk

t · ∇Gt〉 =

∫ T

0

dt 〈σ(ρ0
t ),∇Ht · ∇Gt〉 .

(5.4)

We prove the second claim, the first one being simpler. Note first that we can
replace Hnk by H in the previous limit, because σ is bounded in [0, 1] by some
positive constant and (5.3) holds. Now, ρnk converges to ρ0 weakly in L2(ΩT )
because πnk converges to π0 in D([0, T ],M0). Since IT (πn|γ) is uniformly bounded,
by Corollary 4.4 and Lemma 4.5, ρnk converges to ρ0 strongly in L2(ΩT ) which
implies (5.4). In particular, since (5.2) holds, by uniqueness of weak solutions of
equation (4.13), π0 = π and we are done. �
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6. Large deviations

We prove in this section the dynamical large deviations principle for the empirical
measure of boundary driven symmetric exclusion processes in dimension d ≥ 1. The
proof relies on the results presented in the previous section and is quite similar to
the original one presented in [15, 9]. There are just three additional difficulties. On
the one hand, the lack of explicitly known stationary states hinders the derivation of
the usual estimates of the entropy and the Dirichlet form, so important in the proof
of the hydrodynamic behaviour. On the other hand, due to the definition of the rate
function, we have to show that trajectories with infinite energy can be neglected
in the large deviations regime. Finally, since we are working with the empirical
measure, instead of the empirical density, we need to show that trajectories which
are not absolutely continuous with respect to the Lebesgue measure and whose
density is not bounded by one can also be neglected. The first two problems have
already been faced and solved. The first one in [17, 4] and the second in [19, 6].
The approach here is quite similar, we thus only sketch the main steps in sake of
completeness.

6.1. Superexponential estimates. It is well known that one of the main steps
in the derivation of the upper bound is a super-exponential estimate which allows
the replacement of local functions by functionals of the empirical density in the
large deviations regime. Essentially, the problem consists in bounding expressions
such as 〈V, f2〉µN

ss
in terms of the Dirichlet form 〈−N2LNf, f〉µN

ss
. Here V is a

local function and 〈·, ·〉µN
ss

indicates the inner product with respect to the invariant

state µN
ss. In our context, the fact that the invariant state is not known explicitly

introduces a technical difficulty.
Let β be as in the beginning of section 2. Following [17], [4], we use νN

β(·) as

reference measure and estimate everything with respect to νN
β(·). However, since

νN
β(·) is not the invariant state, there are no reasons for 〈−N2LNf, f〉νN

β(·)
to be

positive. The next statement shows that this expression is almost positive.
For each function f : XN → R, let

DN,0(f) =
d∑

i=1

∑

x

∫
rx,x+ei(η)

[
f(ηx,x+ei) − f(η)

]2
dνN

β(·)(η) ,

where the second sum is carried over all x such that x, x + ei ∈ ΩN .

Lemma 6.1. There exists a finite constant C depending only on β such that

〈N2LN,0f, f〉νN
β(·)

≤ −
N2

4
DN,0(f) + CNd〈f, f〉νN

β(·)
,

for every function f : XN → R.

The proof of this lemma is elementary and is thus omitted. Further, we may
choose β for which there exists a constant θ > 0 such that:

β(u1, ǔ) = b(−1, ǔ) if − 1 ≤ u1 ≤ −1 + θ ,

β(u1, ǔ) = b(1, ǔ) if 1 − θ ≤ u1 ≤ 1 ,

for all ǔ ∈ Td−1. In that case, for every N large enough, νN
β(·) is reversible for the

process with generator LN,b and then 〈−N2LN,bf, f〉νN
β(·)

is positive.
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This lemma together with the computation presented in [2], p. 78, for nonre-
versible processes, permits to prove the super-exponential estimate. For a cylinder
function Ψ denote the expectation of Ψ with respect to the Bernoulli product mea-

sure νN
α by Ψ̃(α):

Ψ̃(α) = EνN
α [Ψ] .

For a positive integer l and x ∈ ΩN , denote the empirical mean density on a box
of size 2l + 1 centered at x by ηl(x):

ηl(x) =
1

|Λl(x)|

∑

y∈Λl(x)

η(y) ,

where

Λl(x) = ΛN,l(x) = {y ∈ ΩN : |y − x| ≤ l} .

For each G ∈ C(ΩT ), each cylinder function Ψ and each ε > 0, let

V G,Ψ
N,ε (s, η) =

1

Nd

∑

x

G(s, x/N)
[
τxΨ(η) − Ψ̃(ηεN (x))

]
,

where the sum is carried over all x such that the support of τxΨ belongs to ΩN .
For a continuous function H : [0, T ]× Γ → R, let

V ±
N,H =

∫ T

0

ds
1

Nd−1

∑

x∈Γ±

N

V ±(x, ηs)H

(
s,
x± e1
N

)
,

where Γ−
N , resp. Γ+

N , stands for the left, resp. right, boundary of ΩN :

Γ±
N = {(x1, · · · , xd) ∈ ΓN : x1 = ±(N − 1)}

and where

V ±(x, η) =

[
η(x) + b

(
x± e1
N

)][
η(x∓ e1) − b

(
x± e1
N

)]
.

Proposition 6.2. Fix G ∈ C(ΩT ), H in C([0, T ] × Γ), a cylinder function Ψ and
a sequence {ηN : N ≥ 1} of configurations with ηN in XN . For every δ > 0,

lim
ε→0

lim
N→∞

1

Nd
log PηN

[ ∣∣∣
∫ T

0

V G,Ψ
N,ε (s, ηs) ds

∣∣∣ > δ
]

= −∞ ,

lim
N→∞

1

Nd
PηN

[
|V ±

N,H | > δ
]

= −∞ .

For each ε > 0 and π in M, denote by Ξε(π) = πε the absolutely continuous
measure obtained by smoothing the measure π:

Ξε(π)(dx) = πε(dx) =
1

Uε

π(Λε(x))

|Λε(x)|
dx ,

where Λε(x) = {y ∈ Ω : |y − x| ≤ ε}, |A| stands for the Lebesgue measure of the
set A, and {Uε : ε > 0} is a strictly decreasing sequence converging to 1: Uε > 1,
Uε > Uε′ for ε > ε′, limε↓0 Uε = 1. Let

πN,ε = Ξε(π
N ) .
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A simple computation shows that πN,ε belongs to M0 for N sufficiently large
because Uε > 1, and that for each continuous function H : Ω → R,

〈πN,ε, H〉 =
1

Nd

∑

x∈ΩN

H(x/N)ηεN (x) + O(N, ε) ,

where O(N, ε) is absolutely bounded by C0{N
−1 + ε} for some finite constant C0

depending only on H .
For each H in C1,2

0 (ΩT ) consider the exponential martingale MH
t defined by

MH
t = exp

{
Nd

[〈
πN

t , Ht

〉
−

〈
πN

0 , H0

〉

−
1

Nd

∫ t

0

e−Nd〈πN
s ,Hs〉

(
∂s +N2LN

)
eNd〈πN

s ,Hs〉 ds
]}
.

Recall from subsection 2.2 the definition of the functional ĴH . An elementary
computation shows that

MH
T = exp

{
Nd

[
ĴH(πN,ε) + V

H
N,ε + c1H(ε) + c2H(N−1)

]}
. (6.1)

In this formula,

V
H
N,ε = −

d∑

i=1

∫ T

0

V
∂2

ui
H,hi

N,ε (s, ηs) ds−
1

2

d∑

i=1

∫ T

0

V
(∂ui

H)2,gi

N,ε (s, ηs) ds

+ a V +
N,∂u1H − a V −

N,∂u1H + 〈πN
0 , H0〉 − 〈γ,H0〉 ;

the cylinder functions hi, gi are given by

hi(η) = η(0) + a
{
η(0)[η(−ei) + η(ei)] − η(−ei)η(ei)

}
,

gi(η) = r0,ei(η) [η(ei) − η(0)]2 ;

and cjH : R+ → R, j = 1, 2, are functions depending only on H such that

cjH(δ) converges to 0 as δ ↓ 0. In particular, the martingale MH
T is bounded by

exp
{
C(H,T )Nd

}
for some finite constant C(H,T ) depending only on H and T .

Therefore, Proposition 6.2 holds for PH
ηN = PηNMH

T in place of PηN .

6.2. Energy estimates. To exclude paths with infinite energy in the large devi-
ations regime, we need an energy estimate. We state first the following technical
result.

Lemma 6.3. There exists a finite constant C0, depending on T , such that for
every G in C∞

c (ΩT ), every integer 1 ≤ i ≤ d and every sequence {ηN : N ≥ 1} of
configurations with ηN in XN ,

lim
N→∞

1

Nd
log EηN

[
exp

{
Nd

∫ T

0

dt 〈πN
t , ∂uiG〉

}]
≤ C0

{
1 +

∫ T

0

‖Gt‖
2
2 dt

}
.

The proof of this proposition is similar to the one of Lemma A.1.1 in [14].
Fix throughout the rest of the subsection a constant C0 satisfying the statement

of Lemma 6.3. For each G in C∞
c (ΩT ) and each integer 1 ≤ i ≤ d, let Q̃G

i :
D([0, T ],M) → R be the function given by

Q̃G
i (π) =

∫ T

0

dt 〈πt, ∂uiGt〉 − C0

∫ T

0

dt

∫

Ω

du G(t, u)2 .
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Notice that

sup
G∈C∞

c (ΩT )

{
Q̃G

i (π)
}

=
Qi(π)

4C0
. (6.2)

Fix a sequence {Gk : k ≥ 1} of smooth functions dense in L2([0, T ], H1(Ω)). For
any positive integers r, l, let

Br,l =
{
π ∈ D([0, T ],M) : max

1≤k≤r
1≤i≤d

Q̃Gk
i (π) ≤ l

}
.

Since, for fixed G in C∞
c (ΩT ) and 1 ≤ i ≤ d integer, the function Q̃G

i is continuous,
Br,l is a closed subset of D([0, T ],M).

Lemma 6.4. There exists a finite constant C0, depending on T , such that for any
positive integers r, l and any sequence {ηN : N ≥ 1} of configurations with ηN in
XN ,

lim
N→∞

1

Nd
logQηN [(Br,l)

c] ≤ −l+ C0 .

Proof. For integers 1 ≤ k ≤ r and 1 ≤ i ≤ d, by Chebychev inequality and by
Lemma 6.3,

lim
N→∞

1

Nd
log PηN

[
Q̃Gk

i > l
]
≤ −l + C0 .

Hence, from

lim
N→∞

1

Nd
log(aN + bN ) ≤ max

{
lim

N→∞

1

Nd
log aN , lim

N→∞

1

Nd
log bN

}
, (6.3)

we obtain the desired inequality. �

6.3. Upper Bound. Fix a sequence {Fk : k ≥ 1} of smooth nonnegative functions
dense in C(Ω) for the uniform topology. For k ≥ 1 and δ > 0, let

Dk,δ =
{
π ∈ D([0, T ],M) : 0 ≤ 〈πt, Fk〉 ≤

∫

Ω

Fk(x) dx + Ckδ , 0 ≤ t ≤ T
}
,

where Ck = ‖∇Fk‖∞ and ∇F is the gradient of F . Clearly, the set Dk,δ, k ≥ 1,
δ > 0, is a closed subset of D([0, T ],M). Moreover, if

Em,δ =
m⋂

k=1

Dk,δ ,

we have that D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n. Note, finally, that for all m ≥ 1,
δ > 0,

πN,ε belongs to Em,δ for N sufficiently large. (6.4)

Fix a sequence of configurations {ηN : N ≥ 1} with ηN in XN and such that
πN (ηN ) converges to γ(u)du in M. Let A be a subset of D([0, T ],M),

1

Nd
log PηN

[
πN ∈ A

]
=

1

Nd
log EηN

[
MH

T (MH
T )−1 1{πN ∈ A}

]
.

Maximizing over πN in A, we get from (6.1) that the last term is bounded above
by

− inf
π∈A

ĴH(πε) +
1

Nd
log EηN

[
MH

T e−Nd
V

H
N,ε

]
− c1H(ε) − c2H(N−1) .
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Since πN (ηN ) converges to γ(u)du in M and since Proposition 6.2 holds for PH
ηN =

PηNMH
T in place of PηN , the second term of the previous expression is bounded

above by some CH(ε,N) such that

lim
ε→0

lim
N→∞

CH(ε,N) = 0 .

Hence, for every ε > 0, and every H in C1,2
0 (ΩT ),

lim
N→∞

1

Nd
log PηN [A] ≤ − inf

π∈A
ĴH(πε) + C′

H(ε) , (6.5)

where lim
ε→0

C′
H(ε) = 0.

For each H ∈ C1,2
0 (ΩT ), each ε > 0 and any r, l,m, n ∈ Z+, let Jr,l,m,n

H,ε :

D([0, T ],M) → R ∪ {∞} be the functional given by

Jr,l,m,n
H,ε (π) =

{
ĴH(πε) if π ∈ Br,l ∩ Em,1/n ,

+∞ otherwise .

This functional is lower semicontinuous because so is ĴH ◦ Ξε and because Br,l,
Em,1/n are closed subsets of D([0, T ],M).

Let O be an open subset of D([0, T ],M). By Lemma 6.4, (6.3), (6.4) and (6.5),

lim
N→∞

1

Nd
logQηN [O] ≤ max

{
lim

N→∞

1

Nd
logQηN [O ∩Br,l ∩ Em,1/n] ,

lim
N→∞

1

Nd
logQηN [(Br,l)

c]
}

≤ max
{
− inf

π∈O∩Br,l∩Em,1/n

ĴH(πε) + C′
H(ε) , −l+ C0

}

= − inf
π∈O

Lr,l,m,n
H,ε (π) ,

where

Lr,l,m,n
H,ε (π) = min

{
Jr,l,m,n

H,ε (π) − C′
H(ε) , l − C0

}
.

In particular,

lim
N→∞

1

Nd
logQηN [O] ≤ − sup

H,ε,r,l,m,n
inf

π∈O
Lr,l,m,n

H,ε (π) .

Note that, for each H ∈ C1,2
0 (ΩT ), each ε > 0 and r, l,m, n ∈ Z+, the functional

Lr,l,m,n
H,ε is lower semicontinuous. Then, by Lemma A2.3.3 in [13], for each compact

subset K of D([0, T ],M),

lim
N→∞

1

Nd
logQηN [K] ≤ − inf

π∈K
sup

H,ε,r,l,m,n
Lr,l,m,n

H,ε (π) .

By (6.2) and since D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n,

lim
ε→0

lim
l→∞

lim
r→∞

lim
m→∞

lim
n→∞

Lr,l,m,n
H,ε (π) =

{
ĴH(π) if Q(π) <∞ and π ∈ D([0, T ],M0) ,

+∞ otherwise .

This result and the last inequality imply the upper bound for compact sets because

ĴH and JH coincide on D([0, T ],M0). To pass from compact sets to closed sets,
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we have to obtain exponential tightness for the sequence {QηN}. This means that
there exists a sequence of compact sets {Kn : n ≥ 1} in D([0, T ],M) such that

lim
N→∞

1

Nd
logQηN (Kn

c) ≤ −n .

The proof presented in [1] for the non interacting zero range process is easily adapted
to our context.

6.4. Lower Bound. The proof of the lower bound is similar to the one in the con-
vex periodic case. We just sketch it and refer to [13], section 10.5. Fix a path π in Π

and let H ∈ C1,2
0 (ΩT ) be such that π is the weak solution of equation (4.13). Recall

from the previous section the definition of the martingale MH
t and denote by PH

ηN

the probability measure on D([0, T ], XN) given by PH
ηN [A] = EηN [MH

T 1{A}]. Un-

der PH
ηN and for each 0 ≤ t ≤ T , the empirical measure πN

t converges in probability

to πt. Further,

lim
N→∞

1

Nd
H

(
P

H
ηN

∣∣PηN

)
= IT (π|γ) ,

where H(µ|ν) stands for the relative entropy of µ with respect to ν. From these
two results we can obtain that for every open set O ⊂ D([0, T ],M) which contains
π,

lim
N→∞

1

Nd
log PηN

[
O

]
≥ −IT (π|γ) .

The lower bound follows from this and the IT (·|γ)-density of Π established in The-
orem 5.3.

7. Existence and uniqueness of weak solutions

We prove in this section existence and uniqueness of weak solutions of the bound-
ary value problems (2.2) and (3.1), as well as some properties of the solutions. We
start with the parabolic differential equation.

Proposition 7.1. Let ρ0 : Ω → [0, 1] be a measurable function. There exists a
unique weak solution of (3.1).

Proof. Existence of weak solutions of (3.1) is warranted by the tightness of the

sequence QN
ss proved in Section 3. Indeed, fix a profile ρ0 : Ω → [0, 1] and consider

a sequence {µN : N ≥ 1} of probability measures in M associated to ρ0 in the
sense (3.2). Fix T > 0 and denote by QN the probability measure on D([0, T ],M)
induced by the measure µN and the process πN

t . Repeating the arguments of
Section 3, one can prove that the sequence {QN : N ≥ 1} is tight and that any
limit point of {QN : N ≥ 1} is concentrated on weak solutions of (3.2). This proves
existence. Uniqueness follows from Lemma 7.2 below. �

Denote by ‖ · ‖1 the L1(Ω) norm. Next lemma states that the L1(Ω)-norm of
the difference of two weak solutions of the boundary value problem (3.1) decreases
in time:

Lemma 7.2. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be weak solutions

of (3.1) with initial condition ρj
0. Then, ‖ρ1

t −ρ
2
t‖1 decreases in time. In particular,

there is at most one weak solution of (3.1).
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Proof. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj , j = 1, 2, be weak solutions of

(3.1) with initial condition ρj
0. Fix 0 ≤ s < t. For δ > 0 small, denote by Rδ the

function defined by

Rδ(u) =
u2

2δ
1{|u| ≤ δ} +

(
|u| − δ/2

)
1{|u| > δ} .

Let ψ : Rd → R+ be a smooth approximation of the identity:

ψ(u) ≥ 0 , supp ψ ⊂ [−1, 1]d ,

∫
ψ(u) du = 1 .

For each positive ǫ, define ψǫ as

ψǫ(u) = ǫ−dψ(uǫ−1) .

Taking the time derivative of the convolution of ρj
t with ψǫ, after some elementary

computations based on properties (H1), (H2) of weak solutions of (3.1), one can
show that ∫

Ω

duRδ

(
ρ1(t, u) − ρ2(t, u)

)
−

∫

Ω

duRδ

(
ρ1(s, u) − ρ2(s, u)

)

= −δ−1

∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) ·
{
ϕ′(ρ1)∇ρ1 − ϕ′(ρ2)∇ρ2

}
,

where Aδ stands for the subset of [0, T ]×Ω where |ρ1(t, u)− ρ2(t, u)| ≤ δ. We may
rewrite the previous expression as

− δ−1

∫ t

s

dτ

∫

Aδ

duϕ′(ρ1)‖∇(ρ1 − ρ2)‖2

− δ−1

∫ t

s

dτ

∫

Aδ

du
{
ϕ′(ρ1) − ϕ′(ρ2)

}
∇(ρ1 − ρ2) · ∇ρ2 .

Since ρ1, ρ2 are positive and bounded by 1, there exists a positive constant c0
such that c0 ≤ ϕ′(ρj(τ, u)). The first line in the previous formula is then bounded
above by

−c0δ
−1

∫ t

s

dτ

∫

Aδ

du ‖∇(ρ1 − ρ2)‖2 .

On the other hand, since ϕ′ is Lipschitz, on the set Aδ, |ϕ
′(ρ1)−ϕ′(ρ2)| ≤M |ρ1 −

ρ2| ≤ Mδ for some positive constant M . In particular, by Schwarz inequality, the
second line of the previous formula is bounded by

δ−1MA

∫ t

s

dτ

∫

Aδ

du ‖∇(ρ1 − ρ2)‖2 + δMA−1

∫ t

s

dτ

∫

Aδ

du ‖∇ρ2‖2

for every A > 0. Choose A = M−1c0 to obtain that
∫

Ω

duRδ

(
ρ1(t, u) − ρ2(t, u)

)
−

∫

Ω

duRδ

(
ρ1(s, u) − ρ2(s, u)

)

≤ δc−1
0 M2

∫ t

0

dτ

∫
du ‖∇ρ2‖2 .

Letting δ ↓ 0, we conclude the proof of the lemma because Rδ(·) converges to the
absolute value function as δ ↓ 0. �
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Lemma 7.3. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be weak

solutions of (4.13) for the same H satisfying (5.2) and with initial condition ρj
0.

Then, ‖ρ1
t −ρ

2
t‖1 decreases in time. In particular, there is at most one weak solution

of (4.13) when H satisfies (5.2).

Proof. Following the same procedure of the proof of the previous lemma, we get
first ∫

Ω

duRδ

(
ρ1(t, u) − ρ2(t, u)

)
−

∫

Ω

duRδ

(
ρ1(s, u) − ρ2(s, u)

)

= −δ−1

∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) ·
{
ϕ′(ρ1)∇ρ1 − ϕ′(ρ2)∇ρ2

}

−δ−1

∫ t

s

dτ

∫

Aδ

du
{
σ(ρ1) − σ(ρ2)

}
∇(ρ1 − ρ2) · ∇H ,

and then ∫

Ω

duRδ

(
ρ1(t, u) − ρ2(t, u)

)
−

∫

Ω

duRδ

(
ρ1(s, u) − ρ2(s, u)

)

≤ δC1

∫ t

0

dτ

∫
du ‖∇ρ2‖2 + δC2

∫ t

0

dτ

∫
du ‖∇H‖2 ,

for some positive constants C1 and C2. Hence, letting δ ↓ 0 we conclude the proof
of the lemma. �

The same ideas permit to show the monotonicity of weak solutions of (3.1). This
is the content of the next result which plays a fundamental role in proving existence
and uniqueness of weak solutions of (2.2).

Lemma 7.4. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be the weak

solutions of (3.1) with initial condition ρj
0. Assume that there exists s ≥ 0 such

that

λ
{
u ∈ Ω : ρ1(s, u) ≤ ρ2(s, u)

}
= 1 ,

where λ is the Lebesgue measure on Ω. Then, for all t ≥ s

λ
{
u ∈ Ω : ρ1(t, u) ≤ ρ2(t, u)

}
= 1 .

Proof. We just need to repeat the same proof of the Lemma 7.2 by considering the
function R+

δ (u) = Rδ(u)1{u ≥ 0} instead of Rδ. �

Corollary 7.5. Denote by ρ0 (resp. ρ1) the weak solution of (3.1) associated to
the initial profile constant equal to 0 (resp. 1). Then, for 0 ≤ s ≤ t, ρ1

t (·) ≤ ρ1
s(·)

and ρ0
s(·) ≤ ρ0

t (·) a.e.

Proof. Fix s ≥ 0. Note that ρ̂(r, u) defined by ρ̂(r, u) = ρ1(s + r, u) is a weak
solution of (3.1) with initial condition ρ1(s, u). Since ρ1(s, u) ≤ 1 = ρ1(0, u), by
the previous lemma, for all r ≥ 0, ρ1(r + s, u) ≤ ρ1(r, u) for almost all u. �

We now turn to existence and uniqueness of the boundary value problem (2.2).
Recall the notation introduced in the beginning of Section 4. Consider the following
classical boundary-eigenvalue problem for the Laplacian:

{
−∆U = αU ,
U ∈ H1

0 (Ω) .
(7.1)
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By the Sturm–Liouville theorem (cf. [10], Subsection 9.12.3), problem (7.1) has
a countable system {Un, αn : n ≥ 1} of eigensolutions which contains all possible
eigenvalues. The set {Un : n ≥ 1} of eigenfunctions forms a complete orthonormal
system in the Hilbert space L2(Ω), each Un belong to H1

0 (Ω), all the eigenvalues
αn, have finite multiplicity and

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · → ∞ .

The set {Un/α
1/2
n : n ≥ 1} is a complete orthonormal system in the Hilbert space

H1
0 (Ω). Hence, a function V belongs to L2(Ω) if and only if

V = lim
n→∞

n∑

k=1

〈V, Uk〉2 Uk

in L2(Ω). In this case,

〈V,W 〉2 =
∞∑

k=1

〈V, Uk〉2 〈W,Uk〉2

for all W in L2(Ω). Moreover, a function V belongs to H1
0 (Ω) if and only if

V = lim
n→∞

n∑

k=1

〈V, Uk〉2 Uk

in H1
0 (Ω). In this case,

〈V,W 〉1,2,0 =

∞∑

k=1

αk〈V, Uk〉2 〈W,Uk〉2 (7.2)

for all W in H1
0 (Ω).

Lemma 7.6. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be the weak

solutions of (3.1) with initial condition ρj
0. Then,

∫ ∞

0

‖ρ1
t − ρ2

t‖
2
1 dt < ∞ .

In particular,

lim
t→∞

‖ρ1
t − ρ2

t‖1 = 0 .

Proof. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1] and let ρj, j = 1, 2, be the weak solutions

of (3.1) with initial condition ρj
0. Let ρj

t (·) = ρj(t, ·). For n ≥ 1 let Fn : R+ → R

be the function defined by

Fn(t) =

n∑

k=1

1

αk

∣∣〈ρ1
t − ρ2

t , Uk〉2
∣∣2 .

Since ρ1, ρ2 are weak solutions, Fn is time differentiable. Since ∆Uk = −αkUk

and since αk > 0, for t > 0,

d

dt
Fn(t) = −

n∑

k=1

{
〈ρ1

t − ρ2
t , Uk〉2 〈ϕ(ρ1

t ) − ϕ(ρ2
t ) , Uk〉2

+ 〈ϕ(ρ1
t ) − ϕ(ρ2

t ) , Uk〉2 〈ρ1
t − ρ2

t , Uk〉2

}
.

(7.3)
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Fix t0 > 0. Integrating (7.3) in time, applying identity (7.2), and letting n ↑ ∞,
we get

∫ T

t0

dt

∫

Ω

[
ϕ(ρ1

t (u)) − ϕ(ρ2
t (u))

][
ρ1

t (u) − ρ2
t (u)

]
du = lim

n→∞

1

2

{
Fn(t0) − Fn(T )

}

≤
1

2α1
‖ρ1

t0 − ρ2
t0‖

2
2

for all T > t0. Since ρ1
t0 − ρ2

t0 belongs to L2(Ω),
∫ ∞

t0

dt

∫

Ω

[
ϕ(ρ1

t (u)) − ϕ(ρ2
t (u))

][
ρ1

t (u) − ρ2
t (u)

]
du < ∞ .

There exists a positive constant C2 such that, for all a, b ∈ [0, 1]

C2(b − a)2 ≤
(
ϕ(b) − ϕ(a)

)
(b− a) .

On the other hand, by Schwarz inequality, for all t ≥ t0,

‖ρ1
t − ρ2

t‖
2
1 ≤ 2‖ρ1

t − ρ2
t‖

2
2 .

Therefore ∫ ∞

t0

‖ρ1
t − ρ2

t‖
2
1 dt <∞ .

and the first statement of the lemma is proved because the integral between [0, t0]
is bounded by 4t0. The second statement of the lemma follows from the first one
and from Lemma 7.2. �

Proposition 7.7. There exists a unique weak solution of the boundary value prob-
lem (2.2).

Proof. We start with existence. Let ρ1(t, u) (resp. ρ0(t, u)) be the weak solution of
the boundary value problem (3.1) with initial profile constant equal to 1 (resp. 0).
By Lemma (7.4), the sequence of profiles {ρ1(n, ·) : n ≥ 1} (resp. {ρ0(n, ·) : n ≥ 1})
decreases (resp. increases) to a limit denoted by ρ+(·) (resp. ρ−(·)). In view of
Lemma 7.6, ρ+ = ρ− almost surely. Denote this profile by ρ̄ and by ρ̄(t, ·) the
solution of (3.1) with initial condition ρ̄. Since ρ0(t, ·) ≤ ρ̄(·) ≤ ρ1(t, ·) for all t ≥ 0,
by Lemma 7.4, ρ0(t+ s, ·) ≤ ρ̄(s, ·) ≤ ρ1(t+ s, ·) a.e. for all s, t ≥ 0. Letting t ↑ ∞,
we obtain that ρ̄(s, ·) = ρ̄(·) a.e. for all s. In particular, ρ̄ is a solution of (2.2).

Uniqueness is simpler. Assume that ρ1, ρ2 : Ω → [0, 1] are two weak solution of
(2.2). Then, ρj(t, u) = ρj(u), j = 1, 2, are two stationary weak solutions of (3.1).
By Lemma 7.6, ρ1 = ρ2 almost surely. �
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