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A new proof of the uniqueness of the flow

for ordinary differential equations with BV vector fields ∗

Maxime Hauray †

April 1, 2009

Abstract We provide in this article a new proof of the uniqueness of the flow solution to ordinary
differential equations with BV vector-fields that have divergence in L∞ (or in L1) and that are nearly
incompressible (see the text for the definition of this term). The novelty of the proof lies in the fact it does
not use the associated transport equation.

1 Introduction and statement of our main result

In 1989, P.-L. Lions and R. DiPerna showed in [DL89] the existence and the uniqueness of the almost
everywhere defined flow solution to an ordinary differential equation of the type:

ẏ(t) = b(t, y(t)) , (1)

for W 1,1 vector fields b with L1
loc(Rt, L

∞
y ) divergence (along with some technical assumptions). For such

’singular’ vector fields, the only possibility is to solve the equation almost everywhere on the space Ω of
initial conditions. In that case, one defines a flow X(t, x) : R × Ω → Ω satisfying:

{

Ẋ(t, x) = b(t, X(t, x)) for all t,
X(0, x) = x

. (2)

for almost all x ∈ Ω. An initial time s 6= 0 may of course be chosen, and the flow then depends parametrically
on this initial time s. With a view to simplifying the presentation, we will assume henceforth and throughout
this article that the field b is time-independent. Our arguments may be modified to cover the time-dependent
case.

In the present article, we also adopt a notion of almost everywhere flow solution similar to that of DiPerna
and Lions. We denote by (X(t, ·)#λ) (E) = λ(X(−t, E)) the pushforward of the Lebesgue measure λ. In the
sequel, the vector-field b will always be assumed at least L1

loc.

Definition 1 (Almost everywhere flows) An almost everywhere flow solution to (2) is a measurable
function X(t, x) : R × Ω → Ω satisfying the following conditions:

(i) For almost all x ∈ Ω, the map t 7→ X(t, x) is a continuous solution to γ̇ = b(γ) satisfying γ(0) = x:

for almost all x ∈ Ω, ∀t ∈ R, X(t, x) = x +

∫ t

0

b(X(s, x)) ds

(ii) For all t, the measure X(t, ·)#λ is absolutely continuous with respect to λ, and there exist a time-
dependent function C(t) > 0 such that:

∀t ∈ R+, ∀|τ | ≤ t,
1

C(t)
λ ≤ X(τ, ·)#λ ≤ C(t)λ ,

(iii) X is a one-parameter transformation group, i.e. satisfies:

X(t, X(s, x)) = X(s + t, x), for almost all x ∈ Ω, ∀s, t
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Remark 1 Di Perna and Lions originally define in [DL89] a flow solution with condition (i) replaced by
X ∈ C(R, L1) satisfies the ordinary differential equation (2) in the sense of distribution. Their definition is
equivalent to ours. It is indeed shown in [DL89] that the original definition implies (i), and it can be shown
that conditions (ii) and (iii) together imply that X ∈ C(R, L1).

Remark 2 Condition (ii) is in particular satisfied if b is sufficiently smooth, and div(b) ∈ L∞. In that case
C(t) = e‖div(b)‖∞|t| is convenient. Besides this case, for a class of ordinary differential equations coming from
some particular types of hyperbolic equations, such as the Keyfitz-Krantzer system, div(b) is only L1, but an
estimate of the form (ii) may be established using a maximal principle. See the work [Bre03] by Bressan
for more details on these systems and that by L. Ambrosio, F. Bouchut and C. De Lellis [ABDL04] for a
discussion on the relevance of condition (ii).

Before stating our result, we give a brief state-of-the-art survey on the theory of ordinary differential
equations with vector fields of low regularity. The seminal work [DL89] by DiPerna and Lions has been
complemented and extended notably by L. Ambrosio in [Amb04]. Several other authors have made important
contributions. We would like to specifically cite the work [Ler04] by N. Lerner which has inspired our own,
present work. To date, the minimal conditions that are known to guarantee the existence and the uniqueness
of the flow are the BV regularity of the vector field, a L1 bound on the divergence together with a near-
incompressibility condition (or more classicaly a bounded divergence condition) of the type (ii). The classical
proofs of such results are based upon the consideration of the associated transport equation, written either
in the conservative form:

∂u

∂t
+ div (b(x)u) = 0, (3)

or in the non-conservative form:
∂u

∂t
+ b(x) · ∇xu = 0, (4)

both with the initial condition u(0, x) = u0(x). Remark that, for divergence-free fields, the two equations
coincide. When the existence and the uniqueness of the solution to the transport equation is established, for
any given initial condition, one deduces the same result for the a.e. flow solution to the ordinary differential
equation. The key ingredient for the resolution of the transport equation is a commutation lemma (first
stated in [DL89]), which says that:

ρε ∗ div(bu) − div((b ∗ ρε)u) −→
ε→0

0 in L1.

C. De Lellis and G. Crippa have recently given in [CDL08] a new proof of the existence and uniqueness of
the flow solution of (2), not using the the associated transport equation. Their very interesting approach
provides regularity estimates for W 1,p vector-fields with p > 1 but seemingly fails for W 1,1 vector-fields,
unfortunately.

1.1 Main result

The purpose of this article is to give a new and direct proof of the uniqueness of the a.e. flow solution
to (2) for BV vector fields, without arguing on the associated transport equation. We adopt the approach
already used in [HLBL07] for W 1,1 vector fields. Basically, the commutation lemma instrumental in the
proof contained in this prior publication is replaced by another strategy of proof, namely the introduction of
a second variable. This is explained in details in the next paragraph.

Our result is the following:

Theorem 1 Let b be a BV vector field on the N -dimensional torus T
N . If div(b) ∈ L1, then there exists at

most one a.e. flow solution to (2), in the sense of Definition 1.

Remark 3 In [CDP96], B. Perthame and I. Capuzzo Dolcetta remarked that the assumption ”b ∈ W 1,1” of
the original work by DiPerna and Lions could be replaced by the weaker assumption ”the symmetric part of
Db is a matrix-valued L1 function”. This observation seems to not be valid for the present strategy of proof,
and more generally in the BV case. The reason is, their argument is based on the use of radially symmetric
regularization kernels, while the regularization kernels we use here for the BV case are typically anisotropic.
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1.2 Main idea of the proof

To start with, we outline here the proof performed in details in the next section. As already said, the proof
uses a technique introduced in [HLBL07]. In that work, a smooth convolution kernel ρ, with normalized
integral, is considered. It is then proved that for any two a.e. flows X and Y solutions to the ordinary
differential equation with W 1,1 coefficients,

lim
ε→0

d

dt

(
∫ ∫

|X(t, x) − Y (t, y)|
1

εd
ρ(

x − y

ε
) dx dy

)

= 0.

Now, the limit of the integral is
d

dt

(
∫

|X(t, x) − Y (t, x)| dx

)

= 0.

This shows that, for all t,
∫

|X(t, x) − Y (t, x)| dx = 0,

since this quantity vanishes at initial time. The uniqueness of the solution follows. Remark that the intro-
duction of the extra-variable y allows to perform the calculation without using the transport equation.

Our aim is to now modify the above approach and treat BV vector fields. For this purpose, we use a
convolution kernel well adapted to the geometry of the flow and the possible singularities of the BV vector
field under consideration. In short, we consider the regularization kernel

1

εd
ρ(x,

x − y

ε
) with ρ(x, z) = F0(|U(x)z|2) detU(x) , and U(x) = Id + γη(x) ⊗ η(x) .

Here, F0 is a smooth function, γ is a constant that will be sent to infinity, and η is an approximation of
the direction normal to the jumps of the measure Db. The purpose of such a construction is to have a
regularization that decreases faster in the direction normal to the jumps. The idea of a direction-dependent
regularization was first introduced by P.L. Lions in [Lio98]. N. Lerner introduced the specific position-
dependent regularization used here in [Ler04] with a view to simplifying the proof of uniqueness originally
given by L. Ambrosio for the BV case. His argument, however, is still based upon the equivalence with
the transport equation. In the present paper, we combine his argument with the approach consisting in
introducing a second variable, already employed in [HLBL07] for W 1,1 vector fields.

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We denote by µ1(t, ·) (resp. µ2(t, ·)) the L∞ density of
the measure X(−t, ·)#λ (resp. Y (−t, ·)#λ) with respect to λ.

Consider now the kernel
1

εd
ρ(x,

x − y

ε
),

where ρ is a smooth, compactly supported, function, from T
n ×T

n to R
+ which we will make precise below.

Assume in addition ρ satisfies
∫

ρ(x, z) dz = 1 for all x. Our aim is to estimate

Iε(t) =
d

dt

(
∫ ∫

|X(t, x) − Y (t, y)|
1

εd
ρ(x,

x − y

ε
)µ1(t, x)µ2(t, y) dx dy

)

. (5)

where X and Y are two flow solutions to (2). In the sense of distributions,

lim
ε→0

Iε(t) =
d

dt

(
∫

|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx

)

. (6)

This is established using the Lebesgue continuity of the functions Y and µ2 at almost every point, along
with the L∞ bound on µ1. Remark that the Lebesgue continuity may be used if the support of ρ(x, ·) is
not exceedingly stretched in one direction (more specifically, we should have some constant c > 0 such that
∀x ∈ T

n, B(0, c−1) ⊂ Suppρ(x, ·) ⊂ B(0, c), See [Ste70] for more details). The kernel we shall use satisfies
such a condition for all ε > 0, even though in the limit of a vanishing ε, it is infinitely stretched. Our purpose
is to show that the limit (6) is

lim
ε→0

Iε(t) = −

∫

|X(t, x) − Y (t, x)| div(b)(x)µ1(t, x)µ2(t, x) dx.
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This will eventually prove the uniqueness of the flow solution to (2) using the bounds from below on µ1 and
µ2 inferred from (ii). To this end, we first perform the change of variable (x, y) → (X(t, x), Y (t, y)) in Iε(t),
and then differentiate under the integral:

Iε(t) =
d

dt

(
∫ ∫

|x − y|
1

εd
ρ(X(−t, x),

X(−t, x) − Y (−t, y)

ε
) dx dy

)

,

which we write Iε(t) = I1
ε (t) + I2

ε (t), with:

I1
ε (t) = −

∫ ∫

|x − y|
1

εd
∂1ρ(X(−t, x),

X(−t, x) − Y (−t, y)

ε
) · b(X(−t, x)) dx dy

I2
ε (t) = −

∫ ∫

|x − y|
1

εd+1
∂2ρ(X(−t, x),

X(−t, x) − Y (−t, y)

ε
) · (b(X(−t, x)) − b(Y (−t, y))) dx dy.

Then, we return to the original variables (x, y):

I1
ε (t) = −

∫ ∫

|X(t, x) − Y (t, y)|
1

εd
∂1ρ(x,

x − y

ε
) · b(x)µ1(t, x)µ2(t, y) dx dy

I2
ε (t) = −

∫ ∫

|X(t, x) − Y (t, y)|
1

εd+1
∂2ρ(x,

x − y

ε
) · (b(x) − b(y))µ1(t, x)µ2(t, y) dx dy,

and next use the change of variable z = (y − x)/ε:

I1
ε (t) = −

∫ ∫

|X(t, x) − Y (t, x + εz)| ∂1ρ(x, z) · b(x)µ1(t, x)µ2(t, x + εz) dx dz (7)

I2
ε (t) = −

∫ ∫

|X(t, x) − Y (t, x + εz)| ∂2ρ(x, z) ·
(b(x) − b(x + εz))

ε
µ1(t, x)µ2(t, x + εz) dx dz. (8)

We now need to estimate these two terms when ε goes to zero. We begin with the easiest of the two,
namely I1

ε .

Step 1: Limit of I1
ε

Because ρ is smooth, b ∈ L1 , and almost all points are Lesbesgue points for the two functions Y and µ2,
we can use the Lebesgue dominated convergence theorem and obtain:

lim
ε→0

I1
ε (t) = −

∫

|X(t, x) − Y (t, x)|

(
∫

∂1ρ(x, z) dz

)

· b(x)µ1(t, x)µ2(t, x) dx.

Now
∫

∂1ρ(x, z) dz =
d

dx

(
∫

ρ(x, z) dz

)

= 0 ,

since
∫

ρ(x, z) dz = 1, for all x. Thus,
lim
ε→0

I1
ε (t) = 0. (9)

The treatment for I2
ε is more elaborate and will necessitate several steps.

Step 2: Bound for I2
ε

We now wish to pass to the limit ε → 0 in (8). If b were W 1,1, the limit could easily be identified. It would

suffice to replace (b(x + εz) − b(x))/ε by
∫ 1

0 Db(x + θεz) · z dθ in (8), and next use the Lebesgue dominated
convergence theorem. All this does not require making specific the convolution kernel ρ (See below and
[HLBL07]). Owing to the presence of the singular part of Db, we have to argue more carefully.

To proceed further, we recall the following result.

Proposition 1 [from [AFP00, Theorem 1.28, Corollary 1.29]] Let b be a BV vector-field on T
n.

(i) The Radon-Nikodym decomposition of its derivative Db writes

Db = Dab + Dsb, with Dab << Ld, Dsb ⊥ Ld,

where the superscript a stand for ”absolute continuous part”, and s stand for ”singular” respectively. As Dab
is absolutely continuous with respect to the Lebesgue measure, we write it:

Dab = ∂ab dx ,
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where ∂ab is a L1 matrix-valued fonction.
(ii) In addition, the polar decomposition of the singular part Dsb of the measure Db writes:

Dsb = M s |Dsb| ,

where |Dsb| is the total variation of the matrix-valued measure Dsb, and M s a matrix-valued fonction, such
that |M s(x)| = 1, |Dsb|-a.e (the norm used for M is the norm induced on matrices by the Euclidian norm of
R

n).

In view of the above decomposition, we now claim that

lim sup
ε−→0

∫ ∫ ∫ 1

0

|X(t, x) − Y (t, x + εz)|

∣

∣

∣

∣

∂2ρ(x, z) ·

(

b(x + εz)− b(x)

ε
− ∂ab(x + εθz) · z

)∣

∣

∣

∣

µ1(t, x)µ2(t, x + εz) dθ dx dz

≤ 2C(t)2
∫ ∫

|∂2ρ(x, z) · M s(x) · z| d|Db|(x) dz. (10)

For convenience, we denote by

I2
ε,a = −

∫ ∫ ∫ 1

0

|X(t, x) − Y (t, x + εz)| ∂2ρ(x, z) · ∂ab(x + εθz) · z dθ dx dz,

in the left-hand side, and

Ī2
s (t) =

∫ ∫

|∂2ρ(x, z) · M s(x) · z| d|Db|(x) dz,

in the right-hand side.

To prove our claim, we regularize X , Y , µ1 and µ2, using some smooth Xα, Y α, µα
1 and µα

2 . Next, we

replace (b(x + εz) − b(x))/ε by
∫ 1

0 Db(x + θεz) · z dθ (an equality true for almost all (x, z)) and perform the
change of variable x′ = x+εθz (we use it even for the measure Db because this is a linear change of variable).
We obtain:

I2,α
ε (t) := −

∫ ∫

|Xα(t, x) − Y α(t, x + εz)| ∂2ρ(x, z) ·
(b(x + εz)− b(x))

ε
µα

1 (t, x)µα
2 (t, x + εz) dx dz

= −

∫ ∫ ∫ 1

0

|Xα(t, x) − Y α(t, x + εz)| ∂2ρ(x, z) · Db(x + θεz) · zµα
1 (t, x)µα

2 (t, x + εz) dx dz dθ

= −

∫ ∫ ∫ 1

0

|Xα(t, x − εθz) − Y α(t, x + ε(1 − θ)z)|

∂2ρ(x − εθz, z) · Db(x) · zµα
1 (t, x − εθz)µα

2 (t, x + ε(1 − θ)z) dx dz dθ . (11)

Let us decompose I2,α
ε in two parts, according to the above Proposition 1,

I2,α
ε (t) = I2,α

ε,a (t) + I2,α
ε,s (t),

where:

I2,α
ε,a (t) = −

∫ ∫ ∫ 1

0

|Xα(t, x − εθz) − Y α(t, x + ε(1 − θ)z)| (12)

∂2ρ(x − εθz, z) · ∂ab(x) · z µα
1 (t, x − εθz)µα

2 (t, x + ε(1 − θ)z) dx dz dθ(13)

|I2,α
ε,s (t)| ≤ 2C(t)2

∫ ∫ ∫ 1

0

∂2ρ(x − εθz, z) · M s(x) · z |Dsb|(x) dz dθ,

(14)

where we have used that |Xα − Y α| ≤ 2 (as we work on the torus). And letting ε going to zero, we obtain
(10) for Xα, Y α and the µα

i . Then (10) is obtained letting Xα, Y α, µα
1 and µα

2 approximate X , Y , µ1 and
µ2, respectively.
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The majoration (10) being established, we proceed as follows. Arguing as above for I1
ε , that is using the

smoothness of ρ and the fact that almost every point is a Lebesgue point for Y , µ1 and µ2, we obtain:

lim
ε→0

I2
ε,a(t) = lim

ε→0
−

∫ ∫ ∫ 1

0

|X(t, x − εθz) − Y (t, x + ε(1 − θ)z)|

∂2ρ(x − εθz, z) · ∂ab(x) · z µ1(t, x − εθ)µ2(t, x + ε(1 − θ)z) dθ dx dz

= −

∫ ∫

|X(t, x) − Y (t, x)|∂2ρ(x, z) · ∂ab(x) · z µ1(t, x)µ2(t, x) dx dz

= −

∫

|X(t, x) − Y (t, x)|Ra(x)µ1(t, x)µ2(t, x) dx,

with Ra(x) =
∫

∂2ρ(x, z) · ∂ab(x) · z dz. To calculate this term, we integrate by parts and use the property
∀x ∈ T

n,
∫

ρ(x, z) dz = 1 :

Ra(x) =
∑

i,j

∫

∂ρ

∂zi

(x, z)
∂abi

∂xj

(x)zj dz =
∑

i,j

∂abi

∂xi

(x)

∫

−ρ(x, z)
∂zj

∂zi

dz = −
∑

i

∂abi

∂zi

(x)

∫

ρ(x, z) dz

= − diva b. (15)

So we have obtained:

lim
ε→0

I2
ε,a =

∫

|X(t, x) − Y (t, x)| diva b(x)µ1(t, x)µ2(t, x) dx. (16)

The next step consists in proving that the right-hand side of (10) may be chosen arbitrarily small.

Step 3: A bound on the singular part
In order to estimate the right hand side of (10), we now use a geometric information, namely, the special

form of M s(x), proved by G. Alberti [Alb93].

Theorem 2 [Alberti’s rank one Theorem, [AFP00, Theorem 3.94]] Let b be a BV vector-field defined
on T

d, and write Db = Dsb+Dab the Radon-Nikodym decomposition of its gradient. Consider Dsb = M |Dsb|
the polar decomposition of the singular part as in Proposition 1. Then, M is of rank one |Dsb|-almost
everywhere, that is, there exists two vector-valued functions ξb and ηb |Dsb|-measurables, such that ξb and ηb

are unit vectors |Dsb|-a.e. and satisfy:

M(x) = ξb(x) ⊗ ηb(x), |Dbs| − almost everywhere,

where ξb ⊗ ηb denotes the linear map x 7→ 〈ηb, x〉ξb.

Corollary 1 As a consequence, the singular part of the divergence is divs b = 〈ξ, η〉|Dsb|. If we assume that
the divergence of b belongs to L1, it follows that

〈ξ, η〉 = 0, |Dbs| − a. e.,

a property that will be crucial in the sequel.

Using the decomposition provided by Theorem 2, we rewrite our bound in (10), which we denote Ī2
s (t) in

the sequel:

Ī2
s (t) ≤ 2C(t)2

∫ ∫

|〈∂2ρ(x, z), ξb(x)〉||〈ηb(x), z〉| d|Dbs|(x) dz.

In order to render the right-hand side arbitrarily small, we now make specific our convolution kernel ρ.
We choose:

ρ(x, z) = F0(|U(x)z|2) det(U(x)),

where F0 is a smooth, compactly supported, non negative function such that
∫

Rd F0(|z|
2) dz = 1, and U is

a smooth, matrix-valued function, such that U(x) is an orientation preserving matrix for all x. Note that
owing to the presence of the determinant, the integral of ρ(x, ·) remains equals to one independently of x.
The dilation matrix U(x) is set to U(x) = Id + γη(x) ⊗ η(x) (with the notation a⊗ b for the endomorphism
x → 〈b, x〉a), where η is a smooth vector-valued function. On the jump of the measure Db, η will be chosen
later as an approximation of the direction normal to the jump set. The factor γ will be chosen as large as
possible. It may possibly depend upon x and be large only on a neighbourhood of the singular set of the
measure Db, but we for simplicity of the calculation we will not use that not essential possibility here.
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The partial derivative of ρ writes:

∂2ρ(x, z) = 2F ′
0(|U(x)z|2)〈U(x)z, U(x)·〉det(U(x)).

We use this in the bound on Ī2
s (t) to obtain:

Ī2
s (t) ≤ C

∫ ∫

|F ′
0(|U(x)z|2)||〈U(x)z, U(x)ξb(x)〉|〈ηb(x), z〉| det(U(x)) d|Dbs|(x) dz,

where here and below C denotes various irrelevant constants. To simplify this term, we perform the change
of variable z → U(x)z, and obtain:

Ī2
s (t) ≤ C

∫ ∫

|F ′
0(|z|

2)||〈z, U(x)ξb(x)〉| |〈ηb(x), U−1z〉| d|Dbs|(x) dz. (17)

We next intend to use the special form U(x) = Id+ γ(x)η(x)⊗ η(x), to bound from above the two scalar
products. Let us first formally illustrate our argument, performing our calculation with η = ηb, as if ηb were
smooth. In this case,

|〈z, U(x)ξb(x)〉| = |〈z, ξb(x)〉| ≤ |z|,

because 〈ηb, ξb〉 = 0 and ξb has unit norm. For the second scalar product,

|〈ηb(x), U−1(x)z〉| =
1

1 + γ
|〈ηb(x), z〉| ≤

1

1 + γ
,

because U−1 = Id −
γ

1 + γ
ηb ⊗ ηb.

Inserting these bounds in (17), we obtain:

Ī2
s (t) ≤

C

1 + γ

∫ ∫

|F ′
0(|z|

2)| |Dbs|(x) dz ≤
C(F0, b)

1 + γ
,

where the constant C(F0, b) depends only of F0 and b. It remains then to let γ to infinity to obtain Ī2
s (t) = 0

and conclude our (formal) proof.

We now modify the above formal argument using an approximation η of ηb, instead of ηb itself. First, we
remark

|〈z, U(x)ξb〉| = |〈z, ξb + γ〈ξb, η〉η〉|

≤ (1 + γ|〈ξb, η〉|) |z|

≤ (1 + γ|〈ξb, η − ηb〉|) |z|

≤ (1 + γ|η − ηb|) |z|, (18)

where we have used 〈ξb, ηb〉 = 0, |Dbs|-a.e (from Corollary 1), and that ξb, ηb are unit vectors. To bound the
scalar product |〈ηb(x), U−1z〉|, we decompose z in z = zη + z⊥, where zη is the projection of z on R · η:

|〈ηb, U
−1z〉| =

∣

∣

∣

∣

〈

ηb, z −
γ

1 + γ
〈η, z〉η

〉
∣

∣

∣

∣

=

∣

∣

∣

∣

〈

ηb, z⊥ +
1

1 + γ
zη

〉∣

∣

∣

∣

≤

∣

∣

∣

∣

〈

ηb − η, z⊥ +
1

1 + γ
zη

〉
∣

∣

∣

∣

+

∣

∣

∣

∣

〈

η, z⊥ +
1

1 + γ
zη

〉
∣

∣

∣

∣

≤

(

|ηb − η| +
1

1 + γ

)

|z|. (19)

From (18) and (19) we deduce:

|〈z, U(x)ξb〉| |〈ηb, U
−1z〉| ≤

(

2|η − ηb| +
1

1 + γ
+ γ|η − ηb|

2

)

|z|2.

We insert this bound in (17) and obtain:

Ī2
s (t) ≤ C

∫
(

|η − ηb| +
1

1 + γ
+ γ|η − ηb|

2

) (
∫

F ′
0(|z|

2)|z|2 dz.

)

|Dbs|(x)

≤ C(F0)

(

1

1 + γ
+ (1 + 2γ)

∫

|η − ηb| |Dbs|(x)

)

, (20)
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because the integral
∫

F ′
0(|z|

2)|z|2 dz is fixed, and both ηb and η are unit vectors.
We finally show that

inf
γ>0,η smooth

(

1

1 + γ
+ (1 + 2γ)

∫

|η − ηb| |Dbs|(x)

)

= 0.

To this end, we first choose γ such that 1/(1+γ) is small, and then construct a smooth function η, sufficiently
close to ηb on the support of Dsb so that (1 + 2γ)

∫

|η − ηb| |Dbs|(x) is also small (use for that classical
approximation theorem with respect to the Radon measure Dsb). Note that η can be arbitrarily extended
to the whole torus as its value outside the support of Dsb is irrelevant. This concludes the proof of the
convergence of the right-hand side of (10) to zero.

Step 4: Conclusion Collecting all the previous results, we obtain

d

dt

∫

|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx = −

∫

|X(t, x) − Y (t, x)| div(b)(x)µ1(t, x)µ2(t, x) dx. (21)

where we have replaced diva(b) by div(b), since we are dealing with vector fields b having at least, divergence
in L1. If div(b) ∈ L∞, then

d

dt

∫

|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx ≤ C

∫

|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx .

Since the integral in the right hand side vanishes initially, we conclude that
∫

|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx = 0

and finally that X(t, ·) = Y (t, ·) a.e. in x since the µi are bounded away from 0. Note that, as usual, if only
the solution at positive times if of interest, an assumption on the negative part div(b)− of the divergence
suffices to conclude.

When only the weaker hypothesis div(b) ∈ L1 holds, we have to slightly adapt the above argument. We
choose a smooth compactly supported function φ(x), insert a factor φ(X(t, x)) in the integral (5) defining
Iε. We now estimate

Iφ
ε (t) =

d

dt

(
∫ ∫

φ(X(t, x))|X(t, x) − Y (t, y)|
1

εd
ρ(x,

x − y

ε
)µ1(t, x)µ2(t, y) dx dy

)

.

The above argument carries over to the present case. An equality similar to (21) is obtained:

d

dt

∫

φ(X(t, x))|X(t, x) − Y (t, x)|µ1(t, x)µ2(t, x) dx

= −

∫

φ(X(t, x))|X(t, x) − Y (t, x)| div(b)(x)µ1(t, x)µ2(t, x) dx (22)

which can also be written (using the change of variable x = X(t, x))

d

dt

(
∫

φ(x)|x − Y (t, X(−t, x))|µ2(t, X(−t, x)) dx

)

= −

∫

φ(x)|x − Y (t, X(−t, x))| div(b)(X(−t, x))µ2(t, X(−t, x)) dx. (23)

We next define u(t, x) = |x − Y (t, X(−t, x))|µ2(t, X(−t, x)). Equation (23) holding for all φ, it follows that

∂u

∂t
+ div(b)(X(−t, x))u = 0, (24)

in the distributional sense. There is no derivative of u with respect to x in the equation, so that the variable
x is only a parameter. Since div(b) ∈ L1 and condition (ii) holds, we have

∫

x

∫ T

0

| div(b)(X(−t, x))| dtdx < +∞

for all time T . So that, for almost all x,
∫ T

0
| div(b)(X(−t, x))| dt < +∞. Therefore equation (24) is well-

posed for almost all x, and since by construction its solution u vanishes at initial time, it vanishes for all
time: u(t, x) = 0 for all t, a.e. in x. This concludes the proof: X ≡ Y .
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