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In the renewal risk model, we study the asymptotic behavior of the expected time-integrated negative part of the process. This risk measure has been introduced by [1]. Both heavy-tailed and light-tailed claim amount distributions are investigated. The time horizon may be finite or infinite. We apply the results to an optimal allocation problem with two lines of business of an insurance company. The asymptotic behavior of the two optimal initial reserves are computed.

Introduction

The current change of regulation leads the insurance industry to address new questions regarding solvency. In Europe, insurance groups will have to comply with the new rules, namely Solvency II, by 2011. In comparison to the previous regulation system, Solvency II aims at defining solvency margins that are better adjusted to the underlying risks. Solvency requirements may either be computed thanks to a standard formula, or with internal models that companies are encouraged to develop. While a bottom-up approach is used in the standard formula (one first studies each small risk separately and then aggregates them thanks to a kind of correlation matrix), a top-down approach may be used in some internal or partial internal models: once the main risk drivers for the overall company have been identified and the global solvency capital requirement has been computed, it is necessary to split this overall buffer capital into marginal solvency capitals for each line of business, in order to avoid as far as possible that some lines of business become insolvent too often. Capital fungibility between lines of business or between entities of a large insurance group that lie in different countries is indeed limited by different entity-specific or country-specific solvency constraints. One possible way to define optimality of the global reserve allocation is to minimize the expected sum of the penalties that each line of business would have to pay due to its temporary potential insolvency. If one neglects discounting factors, a first approximation of this penalty is given by the time-integrated expected negative part of the surplus process. In [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF][START_REF] Loisel | Ruin theory with k lines of business[END_REF], the author studies this penalty function in infinite time and furnishes a criterion for optimal reserve allocation with different lines of business. Closed-form formulas were available in the classical risk model for exponentially distributed claim amounts, which led to a semi-explicit optimal reserve allocation. Unfortunately, the hypotheses used in these papers do not perfectly match real-world constraints for practical applications. The first point is that in practice, one may have very different claim amount distributions depending on the kind of insurance risks that are covered: there may be some heavy tails, some light tails or even some very light tails for some particular risks. The second point is that insurance regulation is based on a 1-year time horizon in the standard formula, and on a finite time horizon usually comprised between 1 and 10 years in internal models. To better take those real-world constraints into account, we address the following questions in this paper: can the results obtained by [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF] for exponentially distributed claim amounts be adapted to the sub-exponential case using results of [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the possibility of large claims[END_REF]? For large initial global reserve and two lines of business, with a finite time horizon, what is the asymptotic optimal part of the initial reserve that one should allocate to each line of business to minimize the sum of the two penalty functions? To solve these problems for regularly varying, light-tailed and super-exponential claim size distributions, we first need to compute the asymptotics of the finite-time expected time in red and of the expected timeintegrated negative part of the considered risk process. In the regularly varying case, it is often said that everything behaves as if one large claim caused ruin. We wondered whether this heuristic principle could be adapted to our problem, and we show that it applies here. Our paper is organized as follows: in Section 2 we describe our model and use results of [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the possibility of large claims[END_REF] to obtain analogous results to those of [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF] in the regular variation case, for infinite time horizon. In Section 3 we derive the asymptotics of the expected time in red and of the expected time-integrated negative part of the considered risk process for finite time horizon and for different classes of claim size distributions. In Section 4, we use these results to obtain asymptotic optimal reserve allocation in some risk models with two lines of business.

The model

For a uni-dimensional risk processes U(t) = u + X t that represents the surplus of an insurance company at time t, with initial reserve u and with X t = ct -S(t), where c > 0 is the premium income rate, and S(t) is in the most classical case a compound Poisson process, many risk measures have been considered. The finite-time probability is one and has been studied for different models of risk process. It has been investigated among others by [START_REF] Picard | The probability of ruin in finite time with discrete claim size distribution[END_REF], [START_REF] Rullière | Another look at the Picard-Lefèvre formula for finite-time ruin probabilities[END_REF] and [START_REF] Lefèvre | On finite-time ruin probabilities for classical risk models[END_REF] for classical models. The dependent case has been studied by [START_REF] Biard | Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavytailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF] and [START_REF] Lefèvre | Finite-time ruin probabilities for discrete, possibly dependent, claim severities[END_REF]. Sensitivity analysis has been carried out by [START_REF] Loisel | Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin[END_REF], [START_REF] Loisel | Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes[END_REF] and [START_REF] Loisel | Sensitivity analysis and density estimation for finite-time ruin probabilities[END_REF]. We may consider some others risk measures (see for example [START_REF] Gerber | Mathematical fun with ruin theory[END_REF], [START_REF] Dufresne | The surpluses immediately before and at ruin, and the amount of the claim causing ruin[END_REF] and [START_REF] Picard | On some measures of the severity of ruin in the classical Poisson model[END_REF]): the time to ruin T u = inf{t > 0, u + X t < 0}, the severity of ruin u + X T u , the couple (T u , u + X T u ), the time in red (below 0) from the first ruin to the first time of recovery T u -T u where T u = inf{t > T u , u + X t = 0}, the maximal ruin severity (inf t>0 u + X t ), the aggregate severity of ruin until recovery J(u) = T u T u |u + X t |dt,... [START_REF] Reis | How long is the surplus below zero?[END_REF] studied the total time in red τ(u) = +∞ 0 1 {u+X t <0} dt using results of [START_REF] Gerber | Mathematical fun with ruin theory[END_REF]. All these random variables are drawn from the infinite time ruin theory, or involve the behavior of the risk process between ruin times and recovery times. It seems interesting to consider risk measures based on some fixed time interval [0, T] (T may be infinite). One other of the simplest penalty functions may be the expected value of the time-aggregated negative part of the risk process (see Figure 1):

E(I T (u)) = E          T 0 1 {U(t)<0} |U(t)|dt          .
Note that the probability P(I T = 0) is the probability of non ruin within finite time T. I T may be seen as the penalty the company will have to pay due to its insolvency until the time horizon T. These risk measures may be differentiated with respect to the initial reserve u, which makes it possible to compute them quite easily as integrals of other functions of u such as the probability of ruin or the total time in red. Moreover, they have the advantage that the integral over t and the mathematical expectation may be permuted thanks to Fubini's Theorem. Here we recall the two main differentiation theorems (see [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF]) that are going to be useful for our study: Theorem 2.1. Assume T ∈ R + . Let (X t ) t∈[0,T) be a renewal risk process (possibly modulated by an environment process with finite state space) with time-integrable sample paths. For u ∈ R, denote by τ(u, T) the random variable corresponding to the time spent under zero by the process u + X t between the fixed times 0 and T:

τ(u, T) = T 0 1 {u+X t <0} dt,
Let τ 0 (u, T) correspond to the time spent in zero by the process u + X t :

τ 0 (u, T) = T 0 1 {u+X t =0} dt.
Let I T (u) represent the time-integrated negative part of the process u + X t between 0 and T:

I T (u) = T 0 1 {u+X t <0} |u + X t |dt and f (u) = E(I T (u)). For u ∈ R, if E (τ 0 (u, T)) = 0, then f is differentiable at u, and f (u) = -E (τ(u, T)).
Theorem 2.2. Let X t = ct -S(t), where S(t) is a compound Poisson process. Consider T < +∞ and define h by h(u) = E(τ(u)) for u ∈ R. h is differentiable on R + * = (0, ∞), and for u > 0,

h (u) = - 1 c E N 0 (u, T ), where N 0 (u, T) = Card ({t ∈ [0, T], u + ct -S(t) = 0}).
We introduce here more notations in the classical compound Poisson model: An insurance company has an initial surplus u ≥ 0 and receives premiums continuously at a constant rate c > 0. Claims arise according to a homogeneous Poisson process {N(t)} with mean λ per unit of time, and, independently of this process, the successive claim amounts {W i } are non-negative independent and identically distributed random variables, with common distribution function F W (x) and mean µ. So, the aggregate claims constitute a compound Poisson process {S(t)} where S(t) = N(t) i=1 W i . The surplus at time t is then given by

U(t) = u + ct -S(t), (2.1) 
and ruin occurs as soon as the surplus becomes negative. One assumes that the net profit condition holds:

c > λµ.
Let φ(u, T) be the probability of non-ruin until time T:

φ(u, T) = P[U(t) = u + ct -S(t) > 0 for 0 < t ≤ T], (2.2) 
and let ψ(u, T) = 1 -φ(u, T) be the probability of ruin before time T. As T → ∞, (2.2) becomes the ultimate non-ruin probability φ(u), the ultimate ruin probability being

ψ(u) = 1 -φ(u). For T = ∞, from [1], if τ(u)
is integrable for all u > 0, we have

E N 0 (u, ∞) = ψ(u) 1 -ψ(0) , (2.3) 
for the compound Poisson case and u > 0.

Asymptotics of E(I T (u)) and E(τ T (u))

This Section gives some results on asymptotics of risk measures we have introduced before. Several cases for the claim size distribution are studied.

A heuristic result with Pareto claim amounts

In the Pareto case, with very large initial reserve u one would expect that one large claim would be responsible for ruin and for the main contribution to the penalty function

E(I T (u)).
This is a well-known heuristic result for ruin probabilities, but does it remain true for the expected timeintegrated negative part of the risk process? Denote by T u the time to ruin. Using the decomposition

E(I T (u)) = E (I T (u) | T u ≤ T) ψ(u, T),
the result we expect is that one large claim is likely to cause ruin. Given that this claim occurs, the conditional distribution of this large claim instant is uniform on the interval [0, T] (with average T/2), and the average severity at ruin is of the same order as

e(u) ∼ 1 α -1 u.
Consequently, with this approach, it is tempting to say that at the first order, given that ruin occurs before T the risk process stays below zero during an average time T/2 at a level equivalent to -1 α-1 u, which correspond to an average surface in red

T 2 1 α -1 u.
This would lead to the following equivalent:

E(I T (u)) = E (I T (u) | T u ≤ T) ψ(u, T) ∼ T 2 1 α -1 u λTu -α ,
which may be rewritten as

E(I T (u)) ∼ λT 2 2(α -1) u -α+1 (3.4) E(τ(u, T)) ∼ λT 2 2 u -α (3.5)
as u → +∞, as the risk process would remain below zero in average during a time T/2 in case of ruin: if ruin occurs, the large claim causing ruin occurs in average at time T/2 and the expected severity at ruin is e(u) = u/(α -1), so that recovery is almost impossible before time u if u is large enough.

Note that from differentiation theorems in [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF], Equation (3.5) holds as long as (3.4) holds. We shall now prove that our intuition is correct and that (3.4) holds.

Sub-exponential case

In this Section, we give the asymptotics of E(I T (u)) when u tends to infinity for claim amount distributions that belong to two sub-classes of the subexponential class.

Definition 3.1. A cdf F with support (0, ∞) is subexponential, if for all n ≥ 2, lim x→∞ F n * (x) F(x) = n.
The class of subexponential cdfs will be denoted by S.

Regular variation case

Definition 3.2. A function l on (0, ∞) is slowing varying at ∞ (we write l ∈ R 0 ) if lim x→∞ l(tx) l(x) = 1, t > 0.
The convergence is uniform on each compact subset of t ∈ (0, ∞).

Definition 3.3.

A cdf F with support (0, ∞) belong to the regular variation class if for some α > 0

lim x→∞ F(xy) F(x) = y -α , f or y > 0. or equivalently if, F(x) = x -α l(x), with l ∈ R 0 . We note F ∈ R -α . The convergence is uniform on each subset y ∈ [y 0 , ∞) (0 < y 0 < ∞).
Theorem 3.4 (Karamata's Theorem). Let l ∈ R 0 be locally bounded in [x 0 , ∞] for some x 0 ≥ 0. Then

• for 0 < α < 1, x x 0 t -α l(t)dt ∼ (1 -α) -1 x -α+1 l(x), x → ∞, • for α > 1, ∞ x t -α l(t)dt ∼ (α -1) -1 x -α+1 l(x), x → ∞.
We first investigate the infinite-time case. In the sub-exponential case, [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the possibility of large claims[END_REF] have shown that

ψ(u) ∼ λ c -λµ +∞ u (1 -F W (x))dx.
In the α-regularly varying case with α > 1 (this means that

1 -F W (x) ∼ x -α l(x) as x → +∞,
where l is a slowly varying function), this corresponds to

ψ(u) ∼ λ c -λµ 1 α -1 u -α+1 l(u).
From Theorems 2.2 and 2.1 and (2.3), we get that Proposition 3.5.

E [τ(u)] ∼ 1 c 1 1 -ψ(0) λ c -λµ 1 (α -1)(α -2) u -α+2 l(u) for α > 2 and E [I ∞ (u)] ∼ 1 c 1 1 -ψ(0) λ c -λµ 1 (α -1)(α -2)(α -3) u -α+3 l(u)
for α > 3.

For real-world applications, finite-time horizon is preferred to infinite-time horizon. This is the reason why we consider a finite-time ruin horizon in the sequel.

Definition 3.6 (Mean excess function).

For a random variable X, the mean excess function e X (u) is e X (u) = E(X -u|X > u). Remark 3.7. A continuous c.d.f. is uniquely determined by its mean excess function since we have

e X (u) = ∞ 0 (x -u)dF X (x)/F X (u) = 1 F X (u) ∞ u F X (x)dx, 0 < u < ∞, and 
F X (x) = e X (0) e X (x) exp - x 0 1 e X (u) du , x > 0.
Proposition 3.8. For a random variable X with c.d.f. F X ∈ R -α for some α > 1, we have for large u e X (u) ∼ u α -1 .

Proof. For the proof, see for example [START_REF] Embrechts | Modelling extremal events[END_REF], p 162.

Theorem 3.9. For a risk process with claim amounts distribution in the regular variation class for some α > 1 and c.d.f F W , we have, for T > 0 and large u,

E(I T (u)) ∼ λT 2 2(α -1)
uF W (u).

Proof. With Proposition 3.8 and Remark 3.7, we can express E(I T (u)) with the mean-excess function of the compound process S(t) =

N(t)
i=1 W i which has a c.d.f which belong to the regular variation class with the same parameter as F W . Hence, we have

E(I T (u)) = E T t=0 1 u+X t <0 |u + X t | dt = T t=0 E 1 u+X t <0 |u + X t | dt using Fubini's Theorem = T t=0 ∞ x=0 P (S(t) > u + ct + x) dxdt = T t=0 ∞ y=u+ct P S(t) > y dydt = T t=0 F S(t) (u + ct)e S(t) (u + ct)dt ∼ λF W (u) T t=0 te S(t) (u + ct)dt as u → ∞ ∼ λT 2 2(α -1)
uF W (u).

An other subclass of the subexponential class

Theorem 3.10. For a risk process with claim amounts distribution function F W we have for T > 0 : if

1 µ x 0 F W (y)dy ∈ S,
then for large u,

E(I T (u)) ∼ λT 2 2 ∞ u F W (v)dv .
Proof. We have (cf Theorem 3.9)

E(I T (u)) = T 0 F S(T) (u + ct)e S(t) (u + ct)dt.
Since Condition (3.10) implies that F W ∈ S, we have from Theorem 3 in [START_REF] Embrechts | Subexponentiality and infinite divisibility[END_REF] that F S(t) ∈ S and that

F S(t) (x) ∼ λtF W (x) for x → ∞. It follows that e S(t) (x) = ∞ x F S(t) (y)dy F S(t) (x) ∼ ∞ x F W (y)dy F W (x) = e W (x).
Hence, as u → ∞,

E(I T (u)) ∼ λT 2 2 F W (u)e W (u) = λT 2 2 ∞ u F W (x)dx.
Remark 3.11. If F W is regularly varying for some α > 1, then Condition (3.10) is satisfied and we retrieve E(I T (u)) ∼

λT 2 2 uF W (u)
α-1 .

Case where the Cramer-Lundberg coefficient exists

In this Subsection, we assume that the Cramer-Lundberg coefficient of the risk process (U t ) t≥0 exists and is equal to R.

With these assumptions and in the infinite-time case, we have the following well-known result.

Theorem 3.12 (The Cramer-Lundberg Approximation). If we denote F W the m.g.f. of F W , we have

ψ(u) ∼ Ce -Ru as u → ∞ , where C = 1 -λµ λ F W (R) -1 .
From Theorems 3.12, 2.2 and 2.1 and (2.3), we get that Proposition 3.13.

E [τ(u)] ∼ 1 c 1 1 -ψ(0) C R e -Ru and E [I ∞ (u)] ∼ 1 c 1 1 -ψ(0) C R 2 e -Ru .
In the finite-time case, a convexity argument enables us to show that:

C e -Ru 1 -e -R(c-λµ)T ∼ E [I +∞ (u)] -E [I +∞ (E [U(T)])] ≤ E [I T (u)] ≤ E [I +∞ (u)] ∼ C e -Ru , with C = 1 c 1 1-ψ(0) C R 2 .

Super-exponential case

In this Section we consider the super-exponential case, i.e. we assume that E[e θW 1 ] < ∞ for all θ > 0. The aim is to present a large deviation principle (LDP) based on the results in [START_REF] Macci | Large deviations for the time-integrated negative parts of some processes[END_REF]; see [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] for the definition of LDP. We start introducing the function Λ : R → R defined by Λ(θ) = cθ + λ(E[e -θW 1 ] -1); moreover let Λ * be Fenchel-Legendre transform of Λ, i.e. the function Λ * (x) = sup θ∈R {θx -Λ(θ)}. We recall that Λ (0) = c -λE[W 1 ], and the net profit condition is Λ (0) > 0. Proposition 3.14. Assume Λ (0) ≥ -1/T. Then 1 u 2 I Tu (u) : u > 0 satisfies the LDP with good rate function J defined by

J(z) =              TΛ * 1 T -z T - z T 2 + 2z T -1 i f z > 0 0 i f z = 0 ∞ i f z < 0.
This means that

-inf z∈E • J(z) ≤ lim inf u→∞ 1 u log P 1 u 2 I Tu (u) ∈ E ≤ lim sup u→∞ 1 u log P 1 u 2 I Tu (u) ∈ E ≤ -inf z∈E J(z)
for all measurable sets E (E • is the interior of E and E is the closure of E).

Proof. We start noting that

1 u 2 I Tu (u) = 1 u 2 Tu 0 1 {u+ct-N(t) k=1 W k <0} u + ct - N(t) k=1 W k dt = 1 u 2 T 0 1 {u+cus-N(us) k=1 W k <0} u + cus - N(us) k=1 W k uds = T 0 1 {1+cs-1 u N(us) k=1 W k <0} 1 + cs - 1 u N(us) k=1 W k ds.
Then the LDP holds by Proposition 2.1 in [START_REF] Macci | Large deviations for the time-integrated negative parts of some processes[END_REF] with u = 1; indeed here we have 1 u in place of ε in [START_REF] Macci | Large deviations for the time-integrated negative parts of some processes[END_REF]. The expression of the rate function is provided by equation ( 7) in [START_REF] Macci | Large deviations for the time-integrated negative parts of some processes[END_REF] with u = 1.

We remark that we could have lim z→0+ J(z) > 0 = J(0); see the discussion in Remark 5.1 in [START_REF] Macci | Large deviations for the time-integrated negative parts of some processes[END_REF].

Optimal reserve allocation strategy for large initial reserve

In this Section, we consider an insurance company with two lines of business. Two main kinds of phenomena may generate dependence between the two processes.

• Firstly, in some cases, claims for the two lines of business may come from a common event : for example, a car accident may cause a claim for driving insurance, liability and disablement insurance.

Hurricanes might cause losses in different countries. This should correspond to simultaneous jumps for the two processes. The most common tool to take this into account is the Poisson common shock model.

• Secondly, there exist other sources of dependence, for example the influence of the weather on health insurance and on agriculture insurance. In this case, claims seem to outcome independently for each line of business, depending on the weather. This seems to correspond rather to models with modulation by a Markov process which describes the evolution of the state of the environment.

The environment state process, denoted by (J(t)) t≥0 is a Markov process with state space S = {1, ..., J}, initial distribution µ and intensity matrix A.

For i ∈ {1, 2}, let us define the J independent processes

Y j i = c j i t - N j i (t) n=1 W j i,n , j = 1, ..., J,
• where c j i > 0,

• (W j i,n ) n≥1 is a i.i.d. sequence with common c.d.f. F W j i
and mean µ j i ,

• and independent from a Poisson process (N j i (t)) t≥0 described below. Let T p be the instant of the pth jump of the process (J(t)) τ≥0 , and define (U i (t)) t≥0 , for i ∈ {1, 2} by

U i (t) = u + p≥1 1≤ j≤J Y j i (T p ) -Y j i (T p-1 ) 1 {J T p-1 = j,T p ≤t} + p≥1 1≤ j≤J Y j i (t) -Y j i (T p-1 ) 1 {J T p-1 = j,T p-1 ≤t≤T p } .
Thus, we have built the two processes modulated by a common process. For an illustration of a single modulated process see Figure 2. To model common shocks, we decompose, for all j ∈ {1, .., J}, (N 1 (t)) t≥0 and (N 2 (t)) t≥0 as follow

N j 1 (t) = M j 1 (t) + M j (t) N j 2 (t) = M j 2 (t) + M j (t)
with (M j 1 (t)) t≥0 , (M j 2 (t)) t≥0 and (M j (t)) t≥0 three independent processes with parameter λ j 1 , λ j 2 and λ j respectively. For i = 1, 2 and u > 0, we note

ψ i (u) = P[U i (t) < 0 for some t ≥ 0|U i (0) = u].
The allocation problem is to minimize the risk measure

I T (u 1 , u 2 ) = E I 1 T (u 1 ) + E I 2 T (u 2 ) ,
under the constraint u 1 + u 2 = u for large u where

I i T (u i ) = T 0 1 {U i (t)<0} |U i (t)|dt i = 1, 2.
For an illustration, see Figure 3.

Infinite-time regular variation case

In the Subsection, we assume that the dependence between the two lines of business is only generated by common shocks. There is no environment process. We also assume that the claim amount distribution of the first (resp. second) line of business belongs to the regular variation class with parameter α 1 (resp. α 2 ) with α 1 < α 2 . Thus, the second line of business is safer than the first one. As there are no environment process, the notation in this Subsection is the same but without the state exponent j.

From Proposition 3.5, we have for large u and i = 1, 2,

E I i ∞ (u) ∼ D i u 3 F W i (u), with D i = 1 c i 1 1 -ψ i (0) λ i + λ c -(λ i + λ)µ i 1 (α i -1)(α i -2)(α i -3)
.

Lemma 4.1. The couples (u, 0) and (0, u) do not solve our optimization problem for u large enough.

Proof. Let us choose for example u/2 for each line of business. We have

I T (u/2, u/2) ----→ u→∞ 0. Since I T (0, u) = E I 1 T (0) + E I 2 T (u) ≥ E I 1 T (0) > 0 and I T (u, 0) = E I 1 T (u) + E I 2 T (0) ≥ E I 2 T (0) > 0 for all u ∈ R, we have the result.
Theorem 4.2. Under the assumptions of this Subsection, the couple

(u 1 , u 2 ) which minimizes I ∞ (u 1 , u 2 ) satisfies        ∂E[I 1 ∞ (u 1 )] ∂u 1 = ∂E[I 1 ∞ (u 2 )] ∂u 2 , u 1 + u 2 =u.
Moreover, if we denote u 1 = (1 -β(u))u and u 2 = β(u)u with β(u) ∈ (0, 1) we have for large u

β(u) ∼       D 2 D 1 F W 2 (u) F W 1 (u)       1/(α 2 -2)
, where

D i = (α i -3) -1 D i i = 1, 2.
Note that β(u) represents the proportion of the global reserve we allocate to the safer line of business.

Proof. From Lemma 4.1, u 1 and u 2 are not equal to zero, we know from the Lagrange multiplier method, (see [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF]), that the solution of our problem satisfies

       ∂E[I 1 ∞ (u 1 )] ∂u 1 = ∂E[I 1 ∞ (u 2 )] ∂u 2 , u 1 + u 2 =u.
We know from Proposition 3.5 that for i = 1, 2 and large u,

E I i ∞ (u) ∼ D i u 3 F W i (u), with D i = 1 c i 1 1 -ψ i (0) λ i + λ c -(λ i + λ)µ 1 (α i -1)(α i -2)(α i -3)
.

For i = 1, 2, since u → E I i ∞ (u i
) is regularly varying with index α i -3, we have for large u,

∂E I i ∞ (u i ) ∂u i ∼ D i u 2 i F W i (u i ) i = 1, 2, with D i = (α i -3) -1 D i . Let us denote u 1 = (1 -β(u))u and u 2 = β(u)u with β(u) ∈ (0 , 1) (β(u 
) represents the proportion of the global reserve u we allocate to the line of business 2). With this notation, we are able to give the asymptotic behavior of u 1 and u 2 . Indeed, we have this following equation to solve, with large u,

D 1 (1 -β(u))u 2 F W 1 ((1 -β(u))u) = D 2 β(u)u 2 F W 2 (β(u)u),
or equivalently, since F W i is regularly varying with index α i for i = 1, 2 and using the uniform convergence property (cf Definition 3.3),

D 1 (1 -β(u)) -α 1 +2 u 2 F W 1 (u) = D 2 β(u) -α 2 +2 u 2 F W 2 (u).
Thus we have

β(u) α 2 -2 = D 2 D 1 F W 2 (u) F W 1 (u) (1 -β(u)) α 1 -2 → 0, since α 2 > α 1 > 1 and 1 -β(u) ∈ (0, 1).
Consequently, β(u) ----→ u→∞ 0 and for large u,

β(u) α 2 -2 D 2 D 1 F W 2 (u) F W 1 (u) = (1 -β(u)) α 1 -2 ----→ u→∞ 1.
So, we have

β(u) ∼       D 2 D 1 F W 2 (u) F W 1 (u)       1/(α 2 -2)
.

Finite-time regular variation case

We assume here that claim size distribution is regularly varying with parameter α j i for state j and process i with j ∈ {1, ..., J} and i ∈ {1, 2}. We also assume that α 1 1 < α j 1 for all j ∈ {2, ..., J} and α 1 2 < α j 2 for all j ∈ {2, ..., J} and 1<α 1 1 < α 2 2 . That is to say, state 1 corresponds to a crisis environment with more severe claims and the first line of business is also riskier that the second one. Proposition 4.3. Under the assumptions of this Section, we have for large u and i ∈ {1, 2}

E I i T (u) ∼         J j=1 µ(j) T 0 E(N 1 i (V 1 j (t)))dt         uF W 1 i (u) α 1 i -1 , where V 1 j (t)
is the time spent by the environment process in state 1 during [0, t] given J(0) = j.

Proof. First, rewrite, for i = 1, 2, U i (t) as follows,

U i (t) = u + C i (t) -S i (t),
where

C i (t) = p≥1 1≤ j≤J c j i (T p -T p-1 ) 1 {J T p-1 = j,T p ≤t} + p≥1 1≤ j≤J c j i (t -T p-1 ) 1 {J T p-1 = j,T p-1 ≤t≤T p } ,
and where

S i (t) = p≥1 1≤ j≤J           N j i (T p ) n=1 W j i,n - N j i (T p-1 ) n=1 W j i,n           1 {J T p-1 =j,T p ≤t} + p≥1 1≤ j≤J           N j i (t) n=1 W j i,n - N j i (T p-1 ) n=1 W j i,n           1 {J T p-1 = j,T p-1 ≤t≤T p } .
Then, notice that, for all t > 0, S i (t) has the same distribution as

Si (t) = J j=1 N j (V j (t)) n=1 W j i,n ,
where for j = 1, ..., J and t > 0, V j (t) is the time spent by the environment process in state j during [0, t].

In [START_REF] Biard | Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavytailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF], we have the following result :

P(U i (t) < 0) = J j=1 µ( j)P( Si (t) > u + C i (t)|J(0) = i), ∼         J j=1 µ( j)E(N 1 i (V 1 j (t)))         F W 1 ,i (u) as u → ∞, for i = 1, 2.
Thus, u → J j=1 µ( j)P( Si (t) > u + C i (t)|J(0) = i) is regularly varying with parameter α 1 i and from Karamata's Theorem we have for large u,

E(I i T (u)) = E T t=0 1 U i (t)<0 |U i (t)| dt = T t=0 E 1 U i (t)<0 |U i (t)| dt using Fubini's Theorem = T t=0 ∞ x=0 J j=1 µ( j)P( Si (t) > u + C i (t) + x|J(0) = j)dxdt = T t=0 ∞ y=u J j=1 µ(j)P( Si (t) > y + C i (t)|J(0) = j)dydt ∼ T t=0 u α 1 i -1 J j=1 µ( j)P( Si (t) > u|J(0) = j)dt ∼         J j=1 µ( j) T 0 E(N 1 i (V 1 j (t)))dt         uF W 1 i (u) α 1 i - 1 
Lemma 4.4. The couples (u, 0) and (0, u) do not solve our optimization problem for u large enough.

Proof. The proof is the same as in Lemma 4.1.

Theorem 4.5. Under the assumptions of this Subsection, the couple (u 1 , u 2 ) which minimizes I T (u 1 , u 2 ) satisfies

       ∂E[I 1 T (u 1 )] ∂u 1 = ∂E[I 1 T (u 2 )] ∂u 2 , u 1 + u 2 =u.
Moreover, if we denote u 1 = (1 -β(u))u and u 2 = β(u)u with β(u) ∈ (0, 1) we have for large u

β(u) ∼         K 2 K 1 F W 1 2 (u) F W 1 1 (u)         1/α 2 , where K i =         J j=1 µ( j) T 0 E(N 1 i (V 1 j (t)))dt         i = 1, 2.
Note that β(u) represents the proportion of the global reserve we allocate to the safer line of business.

Proof. From Lemma 4.4, u 1 and u 2 are not equal to zero, we know from the Lagrange multiplier method, (see [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF]), that the solution of our problem satisfies

       ∂E[I 1 T (u 1 )] ∂u 1 = ∂E[I 1 T (u 2 )] ∂u 2 , u 1 + u 2 =u.
We know from Proposition 4.3 that for large u,

E I i T (u i ) ∼ K i u i F W 1 i (u i ) α 1 i -1 i = 1, 2,
with

K i =         J j=1 µ( j) T 0 E(N 1 i (V 1 j (t)))dt         i = 1, 2.
For i = 1, 2, since F W 1 ,i is regularly varying with index α 1 i , we have for large u,

∂E I i T (u i ) ∂u i ∼ K i F W 1 i (u i ) i = 1, 2.
Let us denote u 1 = (1 -β(u))u and u 2 = β(u)u with β(u) ∈ (0, 1) (β(u) represents the proportion of the global reserve u we allocate to the line of business 2). With this notation, we are able to give the asymptotic behavior of u 1 and u 2 . Indeed, we have this following equation to solve, with large u,

K 1 F W 1 1 ((1 -β(u))u) = K 2 F W 1 2 (β(u)u).
or equivalently, since F W 1 i is regularly varying with index α 1 i for i = 1, 2 and using the uniform convergence property (cf Definition 3.3),

K 1 (1 -β(u)) -α 1 1 F W 1 1 (u) = K 2 β(u) -α 1 2 F W 1 2 (u).
Thus we have

β(u) α 1 2 = K 2 K 1 F W 1 2 (u) F W 1 1 (u) (1 -β(u)) α 1 1 → 0,
since α 2 > α 1 > 1 and 1 -β(u) ∈ (0, 1). Consequently, β(u) ----→ u→∞ 0 and for large u,

β(u) α 1 2 K 2 K 1 F W 1 2 (u) F W 1 1 (u)
= (1 -β(u)) α 1 1 ----→

Infinite time case where Cramer-Lundberg coefficient exists

In the Subsection, we assume that the dependence between the two lines of business is only generated by common shocks. There is no environment process. We also assume that the Cramer-Lundberg exponent of the risk process (U 1 (t)) t≥0 (resp. (U 2 (t)) t≥0 ) exists and is equal to R 1 (resp. R 2 ). Finally, we assume that R 1 < R 2 , that is to say that the second line of business is safer than the first one. As there is no environment process, the notations in this Subsection are the same but without the state exponent j.

From Proposition 3.13, we have for large u and i = 1, 2,

E I i ∞ (u) ∼ M i e -R i u ,
with

M i = 1 c i 1 1 -ψ i (0) 1 -(λ i + λ)µ i R 2 i ((λ i + λ) F W i (R i ) -1)
.

Lemma 4.6. The couples (u, 0) and (0, u) do not solve our optimization problem for u large enough.

Proof. The proof is the same as in Lemma 4.1.

Theorem 4.7. Under the assumptions of this Subsection, the couple (u 1 , u 2 ) which minimizes I ∞ (u 1 , u 2 ) satisfies

       ∂E[I 1 ∞ (u 1 )] ∂u 1 = ∂E[I 1 ∞ (u 2 )] ∂u 2 , u 1 + u 2 =u.
For large u, the solution is given by

u 1 = R 2 R 1 + R 2 u + 1 R 1 + R 2 log       M 2 M 1       + o(1), u 2 = u -u 1 + o(1), where M i = -R i M i i = 1, 2.
Proof. From Lemma 4.6, u 1 and u 2 are not equal to zero, we know from the Lagrange multiplier method, see [START_REF] Loisel | Differentiation of some functionals of risk processes, and optimal reserve allocation[END_REF], that the solution of our problem satisfies

       ∂E[I 1 ∞ (u 1 )] ∂u 1 = ∂E[I 1 ∞ (u 2 )] ∂u 2 , u 1 + u 2 =u.
We know from Proposition 3.13 that for i = 1, 2 and large u,

E I i ∞ (u) ∼ M i e -Ru ,
with

M i = 1 c i 1 1 -ψ i (0) 1 -(λ i + λ)µ i R 2 i ((λ i + λ) F W i (R i ) -1)
.

For i = 1, 2, we have for large u, ∂E I i ∞ (u i ) ∂u i ∼ M i e -R i u i i = 1, 2,
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 1 Figure 1: Example of a time-aggregated negative part of a risk process.
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 2 Figure 2: A typical modulated risk process with two states (red and blue).

Figure 3 :

 3 Figure 3: Two modulated risk processes with common shocks.

with M i = -R i M i . We have this following equation to solve, with large u,

The solution is as in the statement of the theorem.