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Abstract.
In the renewal risk model, we study the asymptotic behavior of the expected time-integrated

negative part of the process. This risk measure has been introduced by Loisel (2005). Both
heavy-tailed and light-tailed claim amount distributions are investigated. The time horizon
may be finite or infinite. We apply the results to an optimal allocation problem with two lines of
business of an insurance company. The asymptotic behavior of the two optimal initial reserves
are computed.

Keywords: Ruin theory; heavy-tailed and light-tailed claim size distribution; risk measure;
optimal reserve allocation.

1 Introduction
In Loisel (2004, 2005), the author studies the time-integrated expected negative part of some
risk processes in infinite time and furnishes a criterion for optimal reserve allocation with
different lines of business. Closed-form formulas were available in the classical risk model for
exponentially distributed claim amounts, which led to a semi-explicit optimal reserve allocation.
The first question we decided to address was the following: can the results obtained for
exponentially distributed claim amounts be adapted to the sub-exponential case using results
we can find in Embrechts and Veraverbeke (1982)? After solving the first question, we have
decided to tackle this result and some related issues all together, with this motivation: for
large initial global reserve and two lines of business, with a finite time horizon, what is the
asymptotic optimal part of the initial reserve that one should allocate to each line of business
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to minimize the sum of the two penalty functions? To answer this question for regularly
varying, light-tailed and super-exponential claim size distributions, we first needed to compute
the asymptotics of the finite-time expected time in red and of the expected time-integrated
negative part of the considered risk process. In the regularly varying case, one often hears
that everything behaves as if one large claim caused ruin. We wondered whether this heuristic
principle could be adapted to our problem, and we show that it applies here! Our paper is
organized as follows: in Section 2 we describe our model and use results of Embrechts and
Veraverbeke (1982) to obtain analogous results to those of Loisel (2005) in the regular variation
case, for infinite time horizon. In Section 3 we derive the asymptotics of the expected time in
red and of the expected time-integrated negative part of the considered risk process for finite
time horizon and for different classes of claim size distributions. In Section 4, we use these
results to obtain asymptotic optimal reserve allocation in some risk models with two lines of
business.

2 The model
For a uni-dimensional risk processes U(t) = u + Xt that represents the surplus of an insurance
company at time t, with initial reserve u and with Xt = ct − S(t), where c > 0 is the premium
income rate, and S(t) is in the most classical case a compound Poisson process, many risk
measures have been considered. The finite-time probability is one and has been studied for
different models of risk process. It has been investigated among others by Picard and Lefèvre
(1997), Rullière and Loisel (2004) and Lefèvre and Loisel (2008) for classical models. The
dependent case has been studied by Biard et al. (2008) and Lefèvre and Loisel (2009). Sensitivity
analysis has been carried out by Loisel et al. (2008) and Loisel and Privault (2009).
We may consider some others risk measures (see for example Gerber (1988), Dufresne and
Gerber (1988) and Picard (1994)): the time to ruin Tu = inf{t > 0,u + Xt < 0}, the severity of ruin
u + XTu , the couple (Tu,u + XTu), the time in red (below 0) from the first ruin to the first time of
recovery T′u −Tu where T′u = inf{t > Tu,u + Xt = 0}, the maximal ruin severity (inft>0 u + Xt), the

aggregate severity of ruin until recovery J(u) =
∫ T′u

Tu
|u + Xt|dt,... dos Reis (1993) studied the total

time in red τ(u) =
∫ +∞

0 1{u+Xt<0}dt using results of Gerber (1988).
All these random variables are drawn from the infinite time ruin theory, or involve the behavior
of the risk process between ruin times and recovery times. It seems interesting to consider risk
measures based on some fixed time interval [0,T] (T may be infinite). One other of the simplest
penalty functions may be the expected value of the time-aggregated negative part of the risk
process (see Figure 1):

E(IT(u)) = E


T∫

0

1{U(t)<0}|U(t)|dt

 .
Note that the probability P(IT = 0) is the probability of non ruin within finite time T. IT may be
seen as the penalty the company will have to pay due to its insolvency until the time horizon T.
These risk measures may be differentiated with respect to the initial reserve u, which makes it
possible to compute them quite easily as integrals of other functions of u such as the probability
of ruin or the total time in red. Moreover, they have the advantage that the integral over t and
the mathematical expectation may be permuted thanks to Fubini’s Theorem. Here we recall the
two main differentiation theorems (see Loisel (2005)) that are going to be useful for our study:
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Figure 1: Example of a time-aggregated negative part of a risk process.

Theorem 2.1 Assume T ∈ R+. Let (Xt)t∈[0,T) be a renewal risk process (possibly modulated by an
environment process with finite state space) with time-integrable sample paths. For u ∈ R, denote by
τ(u,T) the random variable corresponding to the time spent under zero by the process u + Xt between
the fixed times 0 and T:

τ(u,T) =

∫ T

0
1{u+Xt<0}dt,

Let τ0(u,T) correspond to the time spent in zero by the process u + Xt:

τ0(u,T) =

∫ T

0
1{u+Xt=0}dt.

Let IT(u) represent the time-integrated negative part of the process u + Xt between 0 and T:

IT(u) =

T∫
0

1{u+Xt<0}|u + Xt|dt

and f (u) = E(IT(u)).
For u ∈ R, if E (τ0(u,T)) = 0, then f is differentiable at u, and f ′(u) = −E (τ(u,T)).

Theorem 2.2 Let Xt = ct − S(t), where S(t) is a compound Poisson process. Consider T < +∞ and
define h by h(u) = E(τ(u)) for u ∈ R. h is differentiable on R+

∗ = (0,∞), and for u > 0,

h′(u) = −
1
c

E
(
N0(u,T

)
),

where N0(u,T) = Card ({t ∈ [0,T], u + ct − S(t) = 0}).

We introduce here more notations in the classical compound Poisson model:
An insurance company has an initial surplus u ≥ 0 and receives premiums continuously at a
constant rate c > 0. Claims arise according to a homogeneous Poisson process {N(t)}with mean
λper unit of time, and, independently of this process, the successive claim amounts {Wi} are non-
negative independent and identically distributed random variables, with common distribution
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function FW(x) and mean µ. So, the aggregate claims constitute a compound Poisson process
{S(t)}where S(t) =

∑N(t)
i=1 Wi. The surplus at time t is then given by

U(t) = u + ct − S(t), (2.1)

and ruin occurs as soon as the surplus becomes negative. One assumes that the net profit
condition holds:

c > λµ.

Let φ(u,T) be the probability of non-ruin until time T:

φ(u,T) = P[U(t) = u + ct − S(t) > 0 for 0 < t ≤ T], (2.2)

and let ψ(u,T) = 1 − φ(u,T) be the probability of ruin before time T. As T → ∞, (2.2) becomes
the ultimate non-ruin probability φ(u), the ultimate ruin probability being ψ(u) = 1 − φ(u).

3 Asymptotics of E(IT(u)) and E(τT(u))
This Section gives some results on asymptotics of risk measures we have introduced before.
Several cases for the claim size distribution are studied.

3.1 A heuristic result with Pareto claim amounts
In the Pareto case, with very large initial reserve u one would expect that one large claim would
be responsible for ruin and for the main contribution to the penalty function

E(IT(u)).

This is a well-known heuristic result for ruin probabilities, but does it remain true for the
expected time-integrated negative part of the risk process? Denote by Tu the time to ruin.
Using the decomposition

E(IT(u)) = E (IT(u) | Tu ≤ T)ψ(u,T),

the result we expect is that one large claim is likely to cause ruin. Given that this claim occurs,
the conditional distribution of this large claim instant is uniform on the interval [0,T] (with
average T/2), and the average severity at ruin is of the same order as

e(u) ∼
1

α − 1
u.

Consequently, with this approach, it is tempting to say that at the first order, given that ruin
occurs before T the risk process stays below zero during an average time T/2 at a level equivalent
to − 1

α−1 u, which correspond to an average surface in red

T
2

1
α − 1

u.

This would lead to the following equivalent:

E(IT(u)) = E (IT(u) | Tu ≤ T)ψ(u,T) ∼
[T

2
1

α − 1
u
] [
λTu−α

]
,
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which may be rewritten as

E(IT(u)) ∼
λT2

2(α − 1)
u−α+1 (3.3)

as u→ +∞.
A similar heuristic approach would lead us to guess that the average time spent below zero by
the risk process up to time T is

E(τ(u,T)) ∼
λT2

2
u−α (3.4)

as u→ +∞, as the risk process would remain below zero in average during a time T/2 in case of
ruin: if ruin occurs, the large claim causing ruin occurs in average at time T/2 and the expected
severity at ruin is e(u) = u/(α − 1), so that recovery is almost impossible before time u if u is
large enough.

Note that from differentiation theorems in Loisel (2005), Equation (3.4) holds as long as (3.3)
holds. We shall now prove that our intuition is correct and that (3.3) holds.

3.2 Sub-exponential case
In this Section, we give the asymptotics of E(IT(u)) when u tends to infinity for claim amount
distributions that belong to two sub-classes of the subexponential class.

Definition 3.1 A cdf F with support (0,∞) is subexponential, if for all n ≥ 2,

lim
x→∞

Fn∗(x)

F(x)
= n.

The class of subexponential cdfs will be denoted by S.

3.2.1 Regular variation case

Definition 3.2 A function l on (0,∞) is slowing varying at∞ (we write l ∈ R0) if

lim
x→∞

l(tx)
l(x)

= 1, t > 0.

The convergence is uniform on each compact subset of t ∈ (0,∞).

Definition 3.3 A cdf F with support (0,∞) belong to the regular variation class if for some α > 0

lim
x→∞

F(xy)

F(x)
= y−α, f or y > 0.

or equivalently if,
F(x) = x−αl(x),

with l ∈ R0. We note F ∈ R−α.
The convergence is uniform on each subset y ∈ [y0,∞) (0 < y0 < ∞).

Theorem 3.4 (Karamata’s Theorem) Let l ∈ R0 be locally bounded in [x0,∞] for some x0 ≥ 0. Then
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• for 0 < α < 1, ∫ x

x0

t−αl(t)dt ∼ (1 − α)−1x−α+1l(x), x→∞,

• for α > 1, ∫
∞

x
t−αl(t)dt ∼ (α − 1)−1x−α+1l(x), x→∞.

The infinite-time case In the sub-exponential case, Embrechts and Veraverbeke (1982) have
shown that

ψ(u) ∼
λ

c − λµ

∫ +∞

u
(1 − FW(x))dx.

In the α-regularly varying case with α > 1 (this means that

1 − FW(x) ∼ x−αl(x) as x→ +∞,

where l is a slowly varying function), this corresponds to

ψ(u) ∼
λ

c − λµ
1

α − 1
u−α+1l(u).

From Theorems 2.2 and 2.1, we get that

Proposition 3.5

E [τ(u)] ∼
1
c

1
1 − ψ(0)

λ
c − λµ

1
(α − 1)(α − 2)

u−α+2l(u)

for α > 2 and

E [I∞(u)] ∼
1
c

1
1 − ψ(0)

λ
c − λµ

1
(α − 1)(α − 2)(α − 3)

u−α+3l(u)

for α > 3.

For real-world applications, finite-time horizon is preferred to infinite-time horizon. This is
the reason why we consider a finite-time ruin horizon in the sequel.

The finite-time case

Definition 3.6 (Mean excess function) For a random variable X, the mean excess function eX(u) is

eX(u) = E(X − u|X > u).

Remark 3.7 A continuous c.d.f. is uniquely determined by its mean excess function since we have

eX(u) =

∫
∞

0
(x − u)dFX(x)/FX(u)

=
1

FX(u)

∫
∞

u
FX(x)dx, 0 < u < ∞,

and

FX(x) =
eX(0)
eX(x)

exp
{
−

∫ x

0

1
eX(u)

du
}
, x > 0.
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Proposition 3.8 For a random variable X with c.d.f. FX ∈ R−α for some α > 1, we have for large u

eX(u) ∼
u

α − 1
.

Proof. For the proof, see for example Embrechts et al. (1997), p 162.

�

Theorem 3.9 For a risk process with claim amounts distribution in the regular variation class for some
α > 1 and c.d.f FW, we have, for T > 0 and large u,

E(IT(u)) ∼
λT2

2(α − 1)
uFW(u).

Proof. With Proposition 3.8 and Remark 3.7, we can express E(IT(u)) with the mean-excess
function of the compound process S(t) =

∑N(t)
i=1 Wi which has a c.d.f which belong to the regular

variation class with the same parameter as FW. Hence, we have

E(IT(u)) = E
(∫ T

t=0
1u+Xt<0 |u + Xt| dt

)
=

∫ T

t=0
E
(
1u+Xt<0 |u + Xt|

)
dt using Fubini’s Theorem

=

∫ T

t=0

∫
∞

x=0
P (S(t) > u + ct + x) dxdt

=

∫ T

t=0

∫
∞

y=u+ct
P
(
S(t) > y

)
dydt

=

∫ T

t=0
FS(t)(u + ct)eS(t)(u + ct)dt

∼ λFW(u)
∫ T

t=0
teS(t)(u + ct)dt as. u→∞

∼
λT2

2(α − 1)
uFW(u).

�

3.2.2 An other subclass of the subexponential class

Theorem 3.10 For a risk process with claim amounts distribution function FW we have for T > 0 : if

1
µ

∫ x

0
FW(y)dy ∈ S,

then for large u,

E(IT(u)) ∼
λT2

2

(∫
∞

u
FW(v)dv

)
.
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Proof. We have (cf Theorem 3.9)

E(IT(u)) =

∫ T

0
FS(T)(u + ct)eS(t)(u + ct)dt.

Since Condition (3.10) implies that FW ∈ S, we have from Theorem 3 in Embrechts et al. (1979)
that FS(t) ∈ S and that

FS(t)(x) ∼ λtFW(x) for x→∞.

It follows that

eS(t)(x) =

∫
∞

x FS(t)(y)dy

FS(t)(x)
∼

∫
∞

x FW(y)dy

FW(x)
= eW(x).

Hence, as u→∞,

E(IT(u)) ∼
λT2

2
FW(u)eW(u) =

λT2

2

∫
∞

u
FW(x)dx.

�

Remark 3.11 If FW is regularly varying for some α > 1, then Condition (3.10) is satisfied and we

retrieve E(IT(u)) ∼ λT2

2
uFW(u)
α−1 .

3.3 Case where the Cramer-Lundberg coefficient exists
In this Subsection, we assume that the Cramer-Lundberg coefficient of the risk process (Ut)t≥0
exists and is equal to R.

3.3.1 Infinite-time case

With these assumptions, we have the following well-known result.

Theorem 3.12 (The Cramer-Lundberg Approximation) If we denote ˆFW the m.g.f. of FW, we have

ψ(u) ∼ Ce−Ru as u→∞ ,

where

C =
1 − λµ

λ ˆFW
′

(R) − 1
.

From Theorems 3.12, 2.2 and 2.1, we get that

Proposition 3.13

E [τ(u)] ∼
1
c

1
1 − ψ(0)

C
R

e−Ru

and
E [I∞(u)] ∼

1
c

1
1 − ψ(0)

C
R2 e−Ru.
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3.3.2 Finite-time case

In this case, a convexity argument enables us to show that:

C
′

e−Ru
(
1 − e−R(c−λµ)T

)
∼ E [I+∞(u)] − E [I+∞ (E [U(T)])] ≤ E [IT(u)] ≤ E [I+∞(u)] ∼ C

′

e−Ru,

with C
′

= 1
c

1
1−ψ(0)

C
R2 .

3.4 Super-exponential case
In this Section we consider the super-exponential case, i.e. we assume that E[eθW1] < ∞ for
all θ > 0. The aim is to present a large deviation principle (LDP) based on the results in
Macci (2008); see Dembo and Zeitouni (1998) for the definition of LDP. We start introducing the
function Λ : R→ R defined by Λ(θ) = cθ+λ(E[e−θW1]−1); moreover let Λ∗ be Fenchel-Legendre
transform of Λ, i.e. the function Λ∗(x) = supθ∈R{θx − Λ(θ)}. We recall that Λ′(0) = c − λE[W1],
and the net profit condition is Λ′(0) > 0.

Proposition 3.14 Assume Λ′(0) ≥ −1/T. Then
{

1
u2 ITu(u) : u > 0

}
satisfies the LDP with good rate

function J defined by

J(z) =


TΛ∗

(
1
T

(
−

z
T −

√(
z
T

)2
+ 2z

T − 1
))

i f z > 0

0 i f z = 0
∞ i f z < 0.

This means that

− inf
z∈E◦

J(z) ≤ lim inf
u→∞

1
u

log P
( 1
u2 ITu(u) ∈ E

)
≤ lim sup

u→∞

1
u

log P
( 1
u2 ITu(u) ∈ E

)
− inf

z∈E
J(z)

for all measurable sets E (E◦ is the interior of E and E is the closure of E).

Proof. We start noting that

1
u2 ITu(u) =

1
u2

∫ Tu

0
1
{u+ct−

∑N(t)
k=1 Wk<0}

∣∣∣∣∣∣∣u + ct −
N(t)∑
k=1

Wk

∣∣∣∣∣∣∣ dt

=
1
u2

∫ T

0
1
{u+cus−

∑N(us)
k=1 Wk<0}

∣∣∣∣∣∣∣u + cus −
N(us)∑
k=1

Wk

∣∣∣∣∣∣∣ uds

=

∫ T

0
1
{1+cs− 1

u
∑N(us)

k=1 Wk<0}

∣∣∣∣∣∣∣1 + cs −
1
u

N(us)∑
k=1

Wk

∣∣∣∣∣∣∣ ds.

Then the LDP holds by Proposition 2.1 in Macci (2008) with u = 1; indeed here we have 1
u in

place of ε in Macci (2008). The expression of the rate function is provided by equation (7) in
Macci (2008) with u = 1.
�

We remark that we could have limz→0+ J(z) > 0 = J(0); see the discussion in Remark 5.1 in
Macci (2008).
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4 Optimal reserve allocation strategy for large initial re-
serve

In this Section, we consider an insurance company with two lines of business. Two main kinds
of phenomena may generate dependence between the two processes.

• Firstly, in some cases, claims for the two lines of business may come from a common
event : for example, a car accident may cause a claim for driving insurance, liability and
disablement insurance. Hurricanes might cause losses in different countries. This should
correspond to simultaneous jumps for the two processes. The most common tool to take
this into account is the Poisson common shock model.

• Secondly, there exist other sources of dependence, for example the influence of the weather
on health insurance and on agriculture insurance. In this case, claims seem to outcome
independently for each line of business, depending on the weather. This seems to cor-
respond rather to models with modulation by a Markov process which describes the
evolution of the state of the environment.

The environment state process, denoted by (J(t))t≥0 is a Markov process with state space S =
{1, ..., J}, initial distribution µ and intensity matrix A.
For i ∈ {1, 2}, let us define the J independent processes

Y j
i = c j

i t −
N j

i (t)∑
n=1

W j
i,n , j = 1, ..., J,

• where c j
i > 0,

• (W j
i,n)n≥1 is a i.i.d. sequence with common c.d.f. FW j

i
and mean µ j

i ,

• and independent from a Poisson process (N j
i (t))t≥0 described below.

Let Tp be the instant of the pth jump of the process (J(t))τ≥0, and define (Ui(t))t≥0, for i ∈ {1, 2} by

Ui(t) = u +
∑
p≥1

∑
1≤ j≤J

[
Y j

i (Tp) − Y j
i (Tp−1)

]
1{JTp−1 = j,Tp≤t} +

∑
p≥1

∑
1≤ j≤J

[
Y j

i (t) − Y j
i (Tp−1)

]
1{JTp−1 = j,Tp−1≤t≤Tp}.

Thus, we have built the two processes modulated by a common process. For an illustration of
a single modulated process see Figure 2.
To model common shocks, we decompose, for all j ∈ {1, .., J}, (N1(t))t≥0 and (N2(t))t≥0 as follow

N j
1(t) = M j

1(t) + M j(t)

N j
2(t) = M j

2(t) + M j(t)

with (M j
1(t))t≥0, (M j

2(t))t≥0 and (M j(t))t≥0 three independent processes with parameter λ j
1, λ j

2 and
λ j respectively.
For i = 1, 2 and u > 0, we note ψi(u) = P[Ui(t) < 0 for some t ≥ 0|Ui(0) = u].
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Figure 2: A typical modulated risk process with two states (red and blue).

The allocation problem is to minimize the risk measure

IT(u1,u2) = E
[
I1
T(u1)

]
+ E

[
I2
T(u2)

]
,

under the constraint u1 + u2 = u for large u where

Ii
T(ui) =

T∫
0

1{Ui(t)<0}|Ui(t)|dt i = 1, 2.

For an illustration, see Figure 3.

4.1 Infite-time regular variation case
In the Subsection, we assume that the dependence between the two lines of business is only
generated by common shocks. There is no environment process. We also assume that the claim
amount distribution of the first (resp. second) line of business belongs to the regular variation
class with parameter α1 (resp. α2) with α1 < α2. Thus, the second line of business is safer than
the first one.
As there are no environment process, the notation in this Subsection is the same but without
the state exponent j.
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Figure 3: Two modulated risk processes with common shocks.

From Proposition 3.5, we have for large u and i = 1, 2,

E
[
Ii
∞(u)

]
∼ Diu3FWi(u),

with
Di =

1
ci

1
1 − ψi(0)

λi + λ
c − (λi + λ)µi

1
(αi − 1)(αi − 2)(αi − 3)

.

Lemma 4.1 The couples (u, 0) and (0,u) do not solve our optimization problem for u large enough.

Proof. Let us choose for example u/2 for each line of business. We have

IT(u/2,u/2) −−−−→
u→∞

0.

Since IT(0,u) = E
[
I1
T(0)

]
+E

[
I2
T(u)

]
≥ E

[
I1
T(0)

]
> 0 and IT(u, 0) = E

[
I1
T(u)

]
+E

[
I2
T(0)

]
≥ E

[
I2
T(0)

]
> 0

for all u ∈ R, we have the result.
�

Theorem 4.2 Under the assumptions of this Subsection, the couple (u1,u2) which minimizes I∞(u1,u2)
satisfies  ∂E[I1

∞(u1)]
∂u1

=
∂E[I1

∞(u2)]
∂u2

,

u1 + u2=u.

Moreover, if we denote u1 = (1 − β(u))u and u2 = β(u)u with β(u) ∈ (0, 1) we have for large u

β(u) ∼

D
′

2

D′

1

FW2(u)

FW1(u)

1/(α2−2)

,

where
D
′

i = (αi − 3)−1Di i = 1, 2.

Note that β(u) represents the proportion of the global reserve we allocate to the safer line of business.
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Proof. From Lemma 4.1, u1 and u2 are not equal to zero, we know from the Lagrange multiplier
method, (see Loisel (2005)), that the solution of our problem satisfies ∂E[I1

∞(u1)]
∂u1

=
∂E[I1

∞(u2)]
∂u2

,

u1 + u2=u.

We know from Proposition 3.5 that for i = 1, 2 and large u,

E
[
Ii
∞(u)

]
∼ Diu3FWi(u),

with
Di =

1
ci

1
1 − ψi(0)

λi + λ
c − (λi + λ)µ

1
(αi − 1)(αi − 2)(αi − 3)

.

For i = 1, 2, since u 7→ E
[
Ii
∞(ui)

]
is regularly varying with index αi − 3, we have for large u,

∂E
[
Ii
∞(ui)

]
∂ui

∼ D
′

iu
2
i FWi(ui) i = 1, 2,

with D
′

i = (αi − 3)−1Di.
Let us denote u1 = (1 − β(u))u and u2 = β(u)u with β(u) ∈ (0, 1) (β(u) represents the proportion
of the global reserve u we allocate to the line of business 2). With this notation, we are able to
give the asymptotic behavior of u1 and u2.
Indeed, we have this following equation to solve, with large u,

D
′

1
(
(1 − β(u))u

)2 FW1((1 − β(u))u) = D
′

2
(
β(u)u

)2 FW2(β(u)u),

or equivalently, since FWi is regularly varying with index αi for i = 1, 2 and using the uniform
convergence property (cf Definition 3.3),

D
′

1(1 − β(u))−α1+2u2FW1(u) = D
′

2β(u)−α2+2u2FW2(u).

Thus we have

β(u)α2−2 =
D
′

2

D′

1

FW2(u)

FW1(u)
(1 − β(u))α1−2

→ 0,

since α2 > α1 > 1 and 1 − β(u) ∈ (0, 1).
Consequently, β(u) −−−−→

u→∞
0 and for large u,

β(u)α2−2

D′2
D′1

FW2 (u)

FW1 (u)

= (1 − β(u))α1−2
−−−−→
u→∞

1.

So, we have

β(u) ∼

D
′

2

D′

1

FW2(u)

FW1(u)

1/(α2−2)

.

�
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4.2 Finite-time regular variation case

We assume here that claim size distribution is regularly varying with parameter α j
i for state j

and process i with j ∈ {1, ..., J} and i ∈ {1, 2}. We also assume that α1
1 < α

j
1 for all j ∈ {2, ..., J}

and α1
2 < α

j
2 for all j ∈ {2, ..., J} and 1<α1

1 < α2
2. That is to say, state 1 corresponds to a crisis

environment with more severe claims and the first line of business is also riskier that the second
one.

Proposition 4.3 Under the assumptions of this Section, we have for large u and i ∈ {1, 2}

E
[
Ii
T(u)

]
∼

 J∑
j=1

µ( j)
[∫ T

0
E(N1

i (V1
j (t)))dt

] uFW1
i
(u)

α1
i − 1

,

where V1
j (t) is the time spent by the environment process in state 1 during [0, t] given J(0) = j.

Proof. First, rewrite, for i = 1, 2, Ui(t) as follows,

Ui(t) = u + Ci(t) − Si(t),

where

Ci(t) =
∑
p≥1

∑
1≤ j≤J

(
c j

i (Tp − Tp−1)
)
1{JTp−1 = j,Tp≤t} +

∑
p≥1

∑
1≤ j≤J

(
c j

i (t − Tp−1)
)
1{JTp−1 = j,Tp−1≤t≤Tp},

and where

Si(t) =
∑
p≥1

∑
1≤ j≤J


N j

i (Tp)∑
n=1

W j
i,n −

N j
i (Tp−1)∑
n=1

W j
i,n

1{JTp−1 = j,Tp≤t}+
∑
p≥1

∑
1≤ j≤J


N j

i (t)∑
n=1

W j
i,n −

N j
i (Tp−1)∑
n=1

W j
i,n

1{JTp−1 = j,Tp−1≤t≤Tp}.

Then, notice that, for all t > 0, Si(t) has the same distribution as

S̃i(t) =

J∑
j=1

N j(V j(t))∑
n=1

W j
i,n,

where for j = 1, ..., J and t > 0, V j(t) is the time spent by the environment process in state j
during [0, t].
In Biard et al. (2008), we have the following result :

P(Ui(t) < 0) =

J∑
j=1

µ( j)P(S̃i(t) > u + Ci(t)|J(0) = i),

∼

 J∑
j=1

µ( j)E(N1
i (V1

j (t)))

 FW1,i(u) as u→∞,

for i = 1, 2.
Thus, u 7→

∑J
j=1 µ( j)P(S̃i(t) > u + Ci(t)|J(0) = i) is regularly varying with parameter α1

i and from

14



Karamata’s Theorem we have for large u,

E(Ii
T(u)) = E

(∫ T

t=0
1Ui(t)<0 |Ui(t)| dt

)
=

∫ T

t=0
E
(
1Ui(t)<0 |Ui(t)|

)
dt using Fubini’s Theorem

=

∫ T

t=0

∫
∞

x=0

J∑
j=1

µ( j)P(S̃i(t) > u + Ci(t) + x|J(0) = j)dxdt

=

∫ T

t=0

∫
∞

y=u

J∑
j=1

µ( j)P(S̃i(t) > y + Ci(t)|J(0) = j)dydt

∼

∫ T

t=0

u
α1

i − 1

J∑
j=1

µ( j)P(S̃i(t) > u|J(0) = j)dt

∼

 J∑
j=1

µ( j)
[∫ T

0
E(N1

i (V1
j (t)))dt

] uFW1
i
(u)

α1
i − 1

�

Lemma 4.4 The couples (u, 0) and (0,u) do not solve our optimization problem for u large enough.

Proof. The proof is the same as in Lemma 4.1.
�

Theorem 4.5 Under the assumptions of this Subsection, the couple (u1,u2) which minimizes IT(u1,u2)
satisfies  ∂E[I1

T(u1)]
∂u1

=
∂E[I1

T(u2)]
∂u2

,

u1 + u2=u.

Moreover, if we denote u1 = (1 − β(u))u and u2 = β(u)u with β(u) ∈ (0, 1) we have for large u

β(u) ∼

K2

K1

FW1
2
(u)

FW1
1
(u)


1/α2

,

where

Ki =

 J∑
j=1

µ( j)
[∫ T

0
E(N1

i (V1
j (t)))dt

] i = 1, 2.

Note that β(u) represents the proportion of the global reserve we allocate to the safer line of business.

Proof. From Lemma 4.4, u1 and u2 are not equal to zero, we know from the Lagrange multiplier
method, (see Loisel (2005)), that the solution of our problem satisfies ∂E[I1

T(u1)]
∂u1

=
∂E[I1

T(u2)]
∂u2

,

u1 + u2=u.

15



We know from Proposition 4.3 that for large u,

E
[
Ii
T(ui)

]
∼ Kiui

FW1
i
(ui)

α1
i − 1

i = 1, 2,

with

Ki =

 J∑
j=1

µ( j)
[∫ T

0
E(N1

i (V1
j (t)))dt

] i = 1, 2.

For i = 1, 2, since FW1,i is regularly varying with index α1
i , we have for large u,

∂E
[
Ii
T(ui)

]
∂ui

∼ KiFW1
i
(ui) i = 1, 2.

Let us denote u1 = (1 − β(u))u and u2 = β(u)u with β(u) ∈ (0, 1) (β(u) represents the proportion
of the global reserve u we allocate to the line of business 2). With this notation, we are able to
give the asymptotic behavior of u1 and u2.
Indeed, we have this following equation to solve, with large u,

K1FW1
1
((1 − β(u))u) = K2FW1

2
(β(u)u).

or equivalently, since FW1
i

is regularly varying with index α1
i for i = 1, 2 and using the uniform

convergence property (cf Definition 3.3),

K1(1 − β(u))−α
1
1FW1

1
(u) = K2β(u)−α

1
2FW1

2
(u).

Thus we have

β(u)α
1
2 =

K2

K1

FW1
2
(u)

FW1
1
(u)

(1 − β(u))α
1
1 → 0,

since α2 > α1 > 1 and 1 − β(u) ∈ (0, 1).
Consequently, β(u) −−−−→

u→∞
0 and for large u,

β(u)α
1
2

K2
K1

FW1
2

(u)

FW1
1

(u)

= (1 − β(u))α
1
1 −−−−→

u→∞
1.

So,

β(u) ∼

K2

K1

FW1
2
(u)

FW1
1
(u)


1/α1

2

.

�

Note that K1 and K2 may be computed from an adaptation of Proposition 5.2 in Biard et al.

(2008). For example, if we consider only one state (e.g. state 1), we have K1 =
λ1

1T2

2 and K2 =
λ1

2T2

2
and for large u,

β(u) ∼

λ
1
2FW1

2
(u)

λ1
1FW1

1
(u)


1/α1

2

.
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4.3 Infinite time case where Cramer-Lundberg coefficient exists
In the Subsection, we assume that the dependence between the two lines of business is only
generated by common shocks. There is no environment process. We also assume that the
Cramer-Lundberg exponent of the risk process (U1(t))t≥0 (resp. (U2(t))t≥0) exists and is equal to
R1 (resp. R2). Finally, we assume that R1 < R2, that is to say that the second line of business is
safer than the first one.
As there is no environment process, the notations in this Subsection are the same but without
the state exponent j.

From Proposition 3.13, we have for large u and i = 1, 2,

E
[
Ii
∞(u)

]
∼Mie−Riu,

with

Mi =
1
ci

1
1 − ψi(0)

1 − (λi + λ)µi

R2
i ((λi + λ) ˆFWi

′

(Ri) − 1)
.

Lemma 4.6 The couples (u, 0) and (0,u) do not solve our optimization problem for u large enough.

Proof. The proof is the same as in Lemma 4.1.
�

Theorem 4.7 Under the assumptions of this Subsection, the couple (u1,u2) which minimizes I∞(u1,u2)
satisfies  ∂E[I1

∞(u1)]
∂u1

=
∂E[I1

∞(u2)]
∂u2

,

u1 + u2=u.

For large u, the solution is given by

u1 =
R2

R1 + R2
+

1
R1 + R2

log

M
′

2

M′

1

 + o(1),

u2 = 1 − u1 + o(1),

where
M
′

i = −RiMi i = 1, 2.

Proof. From Lemma 4.6, u1 and u2 are not equal to zero, we know from the Lagrange multiplier
method, see Loisel (2005), that the solution of our problem satisfies ∂E[I1

∞(u1)]
∂u1

=
∂E[I1

∞(u2)]
∂u2

,

u1 + u2=u.

We know from Proposition 3.13 that for i = 1, 2 and large u,

E
[
Ii
∞(u)

]
∼Mie−Ru,

with

Mi =
1
ci

1
1 − ψi(0)

1 − (λi + λ)µi

R2
i ((λi + λ) ˆFWi

′

(Ri) − 1)
.
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For i = 1, 2, we have for large u,

∂E
[
Ii
∞(ui)

]
∂ui

∼M
′

ie
−Riu i = 1, 2,

with M
′

i = −RiMi.
We have this following equation to solve, with large u,

M
′

1e−R1u1 = M
′

2e−R2(u−u1).

The solution is as in the statement of the theorem.
�
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