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ON HOPKINS’ PICARD GROUP Pic2 AT THE PRIME 3

NASKO KARAMANOV

Abstract. In this paper we calculate the algebraic Hopkins’ Picard Group

Pic
alg
2 at the prime p = 3, which is a subgroup of the group of isomorphism

classes of invertible K(2)-local spectra i.e. of the Hopkins’ Picard Group Pic2.
We use the resolution of the K(2)-local sphere introduced in [3] and the meth-
ods from [5] and [7].

1. Introduction

Let C be a symmetric monoidal category with product ∧ and unit I. We say that
an object X in C is invertible if there exists an object Y in C such that X ∧ Y ∼= I.
If the collection of equivalence classes of invertible objects is a set, then the product
defines a group structure on it. We denote this group by Pic(C), the Picard group
of C .

For example, by [6] the homomorphism Z → Pic(S) : n 7→ Sn defines an iso-
morphism between the integers and the Picard group of S, the stable homotopy
category.

Let Kn be the category of K(n)-local spectra, where K(n) is the n-th Morava
K-theory at the prime p. The unit in Kn is given by LK(n)S

0 and the product of
two K(n)-local spectra by X ∧Y := LK(n)(X ∧Y ) (as the ordinary smash product
of two K(n)-local spectra need not be K(n)-local). Hopkins’ Picard group is the
group Pic(Kn) which we denote by Picn. The first account of it appears in [8] and
the case n = 1 is treated in details in [6] where also some examples of elements of
Pic2 at the prime p = 2 are given.

In this paper we are interested in Pic2 at the prime p = 3.
One way to study Kn is through the functor En∗X := π∗LK(n)(En ∧X) where

En is the Lubin-Tate (commutative ring) spectrum with coefficients ring En∗
∼=

WFpn [[u1, . . . , un−1]][u, u
−1], where the power series ring is over the Witt vectors

WFpn . Recall that En is acted on by the (Big) Morava Stabilizer group Gn =
Sn ⋊ Gal(Fpn/Fp) by E∞-maps (Goerss-Hopkins, Hopkins-Miller). Let EGn be
the category of profinite En∗[[Gn]]-modules, i.e. En∗-modules with an Gn-action
compatible with the action of Gn on En∗. The tensor product (over (En)∗) gives a
monoidal structure on EGn.

Proposition 1.1. [6] Let X ∈ Kn. Then the following conditions are equivalent :

a) X is invertible in Kn;
b) En∗X is free En∗-module of rank 1;
c) En∗X is invertible in EGn.

1.1. Let Picalg
n := Pic(EGn). By Proposition 1.1 there is a homomorphism :

ǫn : Picn → Picalg
n

X 7→ En∗X .
1
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Let Picalg,0
n be the subgroup of Picalg

n of index 2 of modules concentrated in even
degrees. Let M ∈ Picalg,0

n and ιM be a generator of M in degree 0, as an (En)∗-
module . Then for all g ∈ Gn there exists a unique element ug ∈ (En)×0 such that
g∗(ιM ) = ugιM . The map θM : g 7→ ug is a crossed homomorphism and is a well
defined element in H1(Gn; (En)×0 ) that does not depend on ιM . Thus we have a
homomorphism Picalg,0

n → H1(Gn; (En)×0 ).

Proposition 1.2. [5] Picalg,0
n

∼= H1(Gn; (En)×0 ) .

Not much is known for the kernel κn of ǫn (cf. [8]). When n2 ≤ 2(p − 1) and
n > 1 or when n = 1 and p > 2 it is known to be trivial. It is conjectured (Hopkins,
[8]) that kn is a finite p-group.

The next theorem is an unpublished result of Goerss, Henn, Mahowald and Rezk.

Theorem 1.3. At the prime p = 3, κ2
∼= Z/3 × Z/3 .

The next two theorems describe some known results for Picn.

Theorem 1.4. [6]

Pic1 ∼= Z2 × Z/2 × Z/4 p = 2
Pic1 ∼= Zp × Z/2(p− 1) p > 2 .

The spectrum S1 is a generator of Pic1 in the case p > 2. In an unpublished
result and using Shimomura’s calculations of π∗L2S at primes p > 3 Hopkins shows

Theorem 1.5. For primes p > 3

Pic2 ∼= Z
2
p × Z/2(p2 − 1) .

The main result of this paper is the following theorem.

Theorem 1.6. At the prime 3

Picalg
2

∼= Z
2
3 × Z/16

generated by (E2)∗S
1 and (E2)∗S

0[det], where det is a suitable character of G2.

Theorem 1.3 and Theorem 1.6 imply the following theorem.

Theorem 1.7. At the prime 3

Pic2 ∼= Z
2
3 × Z/3 × Z/3 × Z/16 .

1.2. This paper is organized as follows. In section 2 we recall the basic properties
of the Morava stabilizer group Gn and describe some important subgroups in the
case n = 2 and p = 3. We also recall the GHMR resolution of [3] and the spectral
sequence of [5] and [7] that we use for the most difficult part of our calculation. In
section 3 we define two elements of Picalg

n that turn out to be generators in the

case of Picalg
2 . In section 4 we present three short exact sequences that we use

to simplify the calculations. In Section 5 we describe the part of the first page of
the spectral sequence that is needed for the calculations. The final calculations for

Picalg,0
2 are done in section 6, and Picalg

2 is treated in the last section.
The author would like to thank Hans-Werner Henn for many usefull discussions

and for sharing his knowledge on the subject.
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2. On the Morava stabilizer group and the GHMR resolution

In this section we recall some basic properties of the Morava stabilizer group and
some important finite subgroups in the case n = 2 and p = 3. We also describe the
main tool of this work, that is the algebraic GHMR resolution of the K(2)-local
sphere constructed in [3]. This resolution is used in [5] and [7] to determine the
homotopy of the mod-3 Moore spectrum localized at K(2). We will use some of the
calculations of [5] and [7] and the spectral sequence used there. For more details
the reader is referred to the corresponding papers.

2.1. Recall that Sn is the group of automorphisms of the Honda formal group law
Γn with p-series [p]Γn

(x) = xpn

, that is, the group of units in the endomorphism
ring End(Γn). Let On be the non-commutative ring extension of WFpn (the Witt
vectors over Fpn , that we denote by W from now on) generated by an element S
satisfying Sn = p and Sw = wσS where w ∈ W and σ is the lift of the Frobenius
automorphism of Fpn . Then End(Γn) can be identified with On. For example, in
the case n = 2 and p = 3 each element g of S2 can be written as g = g1 + g2S with
g1 ∈ W

× and g2 ∈ W.

2.2. Right multiplication of Sn on End(Γn) defines a homomorphism Sn → GL(W).
Composition with the determinant can be extended to Gn to obtain a homo-
morphism Gn → W

×
⋊ Gal(Fpn/Fp) and it is easy to check that this lands in

Z
×
p ⋊ Gal(Fpn/Fp). The quotient of Z

×
p with its torsion subgroup, isomorphic to

Z/(p − 1), can be identified with Zp and we get a homomorphism called reduced
determinant or reduced norm:

Gn → Zp .

The kernel of this homomorphism is denoted by G
1
n and in the case when p − 1

divides n we have Gn
∼= G

1
n × Zp .

2.3. The element S generates a two sided maximal ideal m in On with quotient
On/m ∼= Fpn . The strict Morava stabilizer group Sn is the kernel of the homomor-
phism O×

n → F
×
pn induced by reduction modulo m. We denote its intersection with

G
1
n by S1

n .

2.4. Let n = 2 and p = 3 from now on. Let ω be a primitive eighth root of unity,
φ ∈ Gal(F9/F3) the generator, t := ω2, ψ := ωφ and a := 1

2 (1 + ωS). It is
easy to verify that a is an element of order 3 . These elements satisfy ψa = aψ,
tψ = ψt3, ta = a2t and ψ2 = t2. Then a, ψ and t generate a subgroup of order 24,
denoted G24, ω and φ a subgroup isomorphic to the semi-dihedral group of order
16, denoted SD16. The elements ω2 and φ generate a subgroup of SD16 isomorphic
to the quaternion group of order 8, denoted Q8 and we have

(1) SD16
∼= Q8 ⋊Gal(F9/F3) .

2.5. The action of the element a on F9[[u1]][u, u
−1] is described in [5, Cor. 4.7]. For

our purposes we only need the following formulae :

a∗u ≡ (1 + (1 + ω2)u1)u mod (u3
1)

a∗u1 ≡ u1 − (1 + ω2)u2
1 mod (u3

1) .

The (integral) action of ω is given by

(2) ω∗u1 = ω2u1 and ω∗u = ωu
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and the Frobenius φ acts Z3-linearly by extending the action of the Frobenius on
W via

(3) φ∗u1 = u1 and φ∗u = u .

2.6. The GHMR resolution. In [3] a resolution of the trivial G
1
2-module Z3 is

constructed that has the following form

0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ Z3 −→ 0

where C0 = C3 = Z3[[G
1
2]] ⊗Z3[G24] Z3 and C1 = C2 = Z3[[G

1
2]] ⊗Z3[SD16] χ and

χ is the non trivial character of SD16 defined over Z3, on which ω and φ act by
multiplication by −1. The complete ring Zp[[G]] is by definition limU,n Zp/p

n[G/U ]
where U runs through the open subgroups of G. Then we have the following lemma
(cf. [5, Lemma 6.1]).

Lemma 2.1. Let M be a left G
1
2-module. Then there is a first quadrant cohomo-

logical spectral sequence E∗,∗
r , r ≥ 1 with

(4) Es,t
1 = Extt

Z3[[G1
2
]](Cs;M) =⇒ Hs+t(G1

2;M)

in which Es,t
1 = 0 for 0 < s < 3 and t > 0, and for s ≥ 0 and t > 3, and also

E0,t
1

∼= E3,t
1

∼= Ht(G24;M) and E1,0
1

∼= E2,0
1

∼= HomSD16
(χ;M) .

Note that HomSD16
(χ;M) ∼= {m ∈M |ω∗m = φ∗m = −m}.

2.7. Let N0 be the kernel of ∂0 and j : N0 → C0 the inclusion. As explained in
the remark after [5, Lemma 6.1] the differentials in the spectral sequence can be
evaluated if we know projective resolutions Q• of N0 and P• of C0 as well as a chain
map φ : Q• → P• covering j. These data can be assembled in a double complex T••
with T•0 = P•, T•1 = Q•, vertical differentials δP and δQ and horizontal differentials
(−1)nφn : Qn → Pn. The filtration of the spectral sequence of this double complex
agrees (up to reindexing) with that of the spectral sequence of the lemma. Hence
extension problems in the spectral sequence (4) can be studied by using the double
complex. As in [5] we obtain a resolution P• := Z3[[G

1
2]] ⊗Z3[G24] P

′
• induced from

an explicit resolution of the trivial G24-module Z3 .

Lemma 2.2. [5, Lemma 6.2] Let χ be the Z3[Q8]-module whose underlying Z3-
module is Z3 and on which t acts by multiplication by −1 and ψ by the identity.
Then the trivial Z3[G24]-module Z3 admits a projective resolution P ′

• of period 4 of
the following form

a2−a
−→ χ ↑G24

Q8

e+a+a2

−→ χ ↑G24

Q8

a2−a
−→ χ ↑G24

Q8

e+a+a2

−→ χ ↑G24

Q8

a2−a
−→ 1 ↑G24

Q8
−→ Z3 .

We obtain Q• from splicing the exact complex 0 → C3 → C2 → C1 → N0 → 0
with the projective resolution P• of C3 = C0 (as C1 and C2 are projective). If we
denote by e the unit of G

1
2, by ei the generators e⊗1 of Ci and by ẽi the generators

e⊗ 1 of Pi, then by [5, Lemma 6.3] there is a chain map φ : Q• → P• covering the
homomorphism j such that φ0 : Q0 = C1 → P0 sends e1 to (e− ω)ẽ0.
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2.8. We denote by E the spectral sequence for M = E2∗/(3) ∼= F9[[u1]][u, u
−1]. The

structure of the E1-page is well known (cf. [4] for the group Sn, the case of Gn can
be deduced in the same way).

Proposition 2.3. As F3[β, v1]-modules (β acting trivially on Es,∗,∗
1 if s = 1, 2)

Es,∗,∗
1

∼=





F3[[v
6
1∆−1]][∆±1, v1, α, α̃, β]/(α2, α̃2, v1α, v1α̃, αα̃+ v1β)es s = 0, 3

ω2u4
F3[[u

4
1]][v1, u

±8]es s = 1, 2
0 s > 3

where

|es| = (s, 0, 0) |v1| = (0, 0, 4) |∆| = (0, 0, 24)
|β| = (0, 2, 12) |α| = (0, 1, 4) |α̃| = (0, 1, 12) .

Recall that v1 = u1u
−2 is invariant modulo 3 with respect to the action of G2

and therefore all the differentials in the spectral sequence are v1-linear. The element
α ∈ H1(G24; (E2)4) is defined as the modulo 3 reduction of δ0(v1), where δ0 is the
Bockstein with respect to the short exact sequence

0 −→ E2∗ −→ E2∗ −→ E2∗/(3) −→ 0 .

The element α̃ ∈ H1(G24; (E2)12) is defined as δ1(v2), where v2 = u−8 and δ1 is
the Bockstein with respect to the short exact sequence

0 −→ E2∗/(3) −→ E2∗/(3) −→ E2∗/(3, u1) −→ 0

and β ∈ H2(G24; (E2)12) is the modulo 3 reduction of δ0δ1(v2). The definition of
∆ is more complicated and we have the following formula (cf. [5, Prop. 5.1]).

(5) ∆ ≡ ω2(1 − ω2u2
1 + u4

1)u
−12 mod (u6

1) .

One of the main results in [7] (see also [5, Thm. 1.2]) is the following theorem.

Theorem 2.4. There are elements

∆k ∈ E0,0,24k
1 b2k+1 ∈ E

1,0,8(2k+1)
1 b2k+1 ∈ E

2,0,8(2k+1)
1

for each k ∈ Z satisfying

∆k ≡ ∆ke0 b2k+1 ≡ ω2u−4(2k+1)e1 b2k+1 ≡ ω2u−4(2k+1)e2

(where the first congruence is modulo (u2
1) and the last two modulo (u4

1)) such that

d1(∆k) =

{
b2(3m+1)+1 ≡ (−1)m+1ω2(1 + u4

1)u
−12k k = 2m+ 1

(−1)m+1mv4·3n−2
1 b2·3n(3m−1)+1 k = 2 · 3nm,m 6≡ 0 mod (3)

d1(b2k+1) =





(−1)nv6·3n+2
1 b3n+1(6m+1) k = 3n+1(3m+ 1)

(−1)nv10·3n+2
1 b3n(18m+11) k = 3n(9m+ 8)

0 otherwise.
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3. Two elements of Picalg,0
n

3.1. We have two distinguished elements in Picalg,0
n

∼= H1(Gn; (En)×0 ). In the case
n = 2 and p = 3 these will generate the first cohomology. The first one is given by
the crossed homomorphism :

η : Gn → (En)×0

g 7→
g∗u

u
.

The second one is given as the composition of the reduced norm and the canonical
inclusion :

det : Gn → Z
×
p → (En)×0 .

We denote the corresponding elements of H1(Gn; (En)×0 ) again by η and det. Note
that by the isomorphism of Proposition 1.2 the element (En)∗S

2 ∈ Picalg,0
n is sent

to η (as u ∈ (En)−2 gives rise to a generator of (En)0S
2) .

3.2. The reduction W[[u1]]
× → W

× is equivariant with respect to the inclusion
W

× → Gn . Taking into account the Galois group we obtain a homomorphism :

red : H1(Gn; (En)×0 ) → H1(W×
⋊Gal; W×) → H1(W×; W×)Gal

and the last homomorphism is induced by the short exact sequence 1 → W
× →

W
×

⋊Gal → Gal → 1 and the corresponding spectral sequence.

Proposition 3.1. Let n = 2 and p > 2. Then the image of the homomorphism
red is (topologically) generated by the images of η and det.

Proof. Recall that when p > 2 then W
× ∼= W×Fpn with the obvious Galois action.

Thus
H1(W×; W×)Gal ∼= End(W×)Gal ∼= Z

n
p × Z/(pn − 1).

The image of det is given by the composition

W
× → Gn

det
→ Z

×
p → (En)×0 → W

×.

If g = g0 + g1S + · · · + gn−1S
n−1 with gi ∈ W and w ∈ W then

gw = (g0 + g1S + · · · + gn−1S
n−1)w = g0w + g1w

φS + · · · gn−1w
φn−1

Sn−1

and the compostion above sends w to wwφ . . . wφn−1

. The image of η is given by
the composition

W
× → Gn

η
→ (En)×0 → W

×

and this is easily verified to be the identity. �

4. Reductions

In this short section we present three short exact sequences that we use in our
calculations. The last two were also used by Hopkins in the case n = 2 and p > 3.

4.1. The first one

(6) 1 → G
1
2 → G2 → Z3 → 1

was described in section 2. We use the Lyndon-Hochschild-Serre spectral sequence
associated to (6) to calculate H1(G2; W[[u1]]

×). The main difficulty is computing
H1(G1

2; W[[u1]]
×). This is done in Theorem 6.4.
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4.2. The reduction modulo 3 gives a short exact sequence

(7) 0 → W[[u1]]
exp(p−)
−→ W[[u1]]

× −→ F9[[u1]]
× → 0

We will use the long exact sequence associated to (7)to calculate H1(G1
2; W[[u1]]) .

The difficult part is H1(G1
2; F9[[u1]]

×) (Corollary 6.2).

4.3. We have another short exact sequence coming from the reduction modulo u1

(8) 1 → U1 → F9[[u1]]
× → F

×
9 → 1

where U1 := {h ∈ F9[[u1]]
×|h ≡ 1 mod (u1)}. The hard part is to calculate

H1(G1
2;U1). This is by far the hardest part of this work (cf. Theorem 5.10).

Note that the group U1 is 3-profinite.

5. The spectral sequence

We use the spectral sequence (4) with M = U1 and denote it by E to distinguish
it from the (additive) case M = E2∗/(3) that we also make use of. We start with
the E1-page. As we only need to calculate the first cohomology, it is sufficient

to determine E
0,0

1 , E
0,1

1 and E
1,0

1
∼= E

2,0

1 and the corresponding differentials and
extension problems.

5.1. The term E
0,1

1 .

Proposition 5.1. H1(G24; F9[[u1]]
×) ∼= Z/6.

Proof. Let F9((u1))
× be the multiplicative group of the field of fractions of F9[[u1]].

Each element of F9((u1))
× is of the form un

1f with f ∈ F9[[u1]]
× and n ∈ Z. The

map

F9((u1))
× → Z : un

1f 7→ n

is a group homomorphism with kernel F9[[u1]]
×. Thus we have a short exact se-

quence of G24-modules

(9) 1 → F9[[u1]]
× → F9((u1))

× → Z → 1

where G24 acts trivially on Z.
By Hilbert 90, the multiplicative version, we have H1(G24; F9((u1))

×) = 0 and
thus the long exact sequence induced by (9) yields

H0(G24; F9[[u1]]
×) → H0(G24; F9((u1))

×) → H0(G24; Z) ։ H1(G24; F9[[u1]]
×).

By Proposition 2.3 we have H0(G24; F9[[u1]]
×) ∼= F3[[v

6
1∆−1]]× and by a simi-

lar argument we conclude H0(G24; F9((u1))
×) ∼= F3((v

6
1∆−1))×. By (5) we have

v6
1∆−1 ≡ u6

1 mod (u8
1) so the image of the homomorphism

H0(G24; F9((u1))
×) → H0(G24; Z) ∼= Z

is 6Z, and the result follows. �

Note that η is not defined on U1 (as for example ω∗u/u = ωu 6∈ U1), but 8η is
well defined.

Proposition 5.2. E
0,1

1
∼= H1(G24;U1) ∼= Z/3 generated by the restriction of 8η.
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Proof. The short exact sequence (8) induces a long exact sequence

→ H1(G24;U1) → H1(G24; F9[[u1]]
×) → H1(G24; F

×
9 ) →

The group in the middle is isomorphic to Z/6 by Proposition 5.1 and the group
on the right is 2-torsion. The group U1 is 3-profinite, so there is no 2-torsion in
H∗(G24;U1). As H0(G24; F

×
9 ) is 2-torsion, the first morphism above is injective.

For the second part of the proposition we use the resolution P ′
• of G24 constucted

in Lemma 2.2, to show that the cocycle of 8η can not be a cobord. Recall that η
was defined as a crossed homomorphism and thus it can be easily described using
the standard (bar) resolution (cf. [1, III.3]). A cocycle representing the image of
8η in the standard resolution B• of G24 is given by B1 → U1 : [g] 7→ g∗u

8/u8. By
comparing these resolutions we find a representing cocycle in P ′

•. A homomorphism
φ• : P ′

• → B• over the identity of Z3 is given by

φ0 : P ′
0 → B0 φ1 : P ′

1 → B1

e′0 7→
1

8

∑

g∈Q8

g e′1 7→
1

8
(
∑

g∈Q8

χ(g−1)g)a[a]

where e′i are the generators e⊗ 1 of P ′
i and {[g]}g∈G24

is a G24-basis of B1 (cf. [1,
I.5]). Thus the composition

P ′
1 → B1 → U1 : e′1 7→

a2
∗u

8

a∗u8

is the desired cocycle. Using the formula from 2.5 we obtain

a2
∗u

8

a∗u8
≡ 1 − (1 + ω2)u1 mod (u2

1) .

Now we will show that this cocycle can not be a cobord. A morphism from P ′
0 → U1

sends e′0 to a Q8-invariant element h of U1. Thus by Proposition 5.3 we have h ≡ 1
mod (u2

1) and thus the composition P ′
1 → P ′

0 → U1 sends e′1 to an element congruent
to 1 modulo u2

1 which is not the case for 8η. �

5.1. The 0-th line. In the following proposition we give the structure of the 0-th
line of the first page of our spectral sequence. We end up with a nice description
of the corresponding groups as products of copies of the 3-adics.

Recall that v1 = u1u
−2 is in degree 4 and ∆ is in degree 24. Thus v6

1∆−1 is in
degree 0.

Proposition 5.3.

a) E
0,0

1
∼= {g ∈ ((E2)0/3)G24 ∼= F3[[v

6
1∆−1]]×| g ≡ 1 mod (u1)} .

b) Let gk ∈ E
0,0

1 be such that gk ≡ 1 + v6k
1 ∆−k mod (u6k+2

1 ). Then

E
0,0

1
∼=

∏

k≥1

Z3{gk}

k 6≡0 mod (3)

c) E
1,0

1 = {h ∈ U1| ∃k ∈ (E2/3)Q8

0
∼= F3[[ω

2u2
1]], h = ω∗k/k}

d) Let hk ∈ E
1,0

1 be such that hk ≡ 1 + ω2u4k+2
1 mod (u4k+4

1 ). Then

E
1,0

1
∼= E

2,0

1
∼=

∏

k≥0

Z3{hk}

k 6≡1 mod (3)
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Proof. Proposition 2.3 implies (a). By (a) each element g ∈ E
0,0

1 can be written as

a product
∏

k≥1 g
λk

k with λk ∈ {−1, 0, 1}. As g3k ≡ g3
k mod (u18k+2

1 ) we obtain the

result. To get the action of Q8 on (E2/3)0 we use formulae (2) and (3) and then

(c) follows. As ω2 = −ω6 we have h−1
3k+1 ≡ 1+ω6u

4(3k+1)+2
1 ≡ (1+ω2u4k+2

1 )3 ≡ h3
k

mod (u12k+8
1 ) and we obtain (d). �

5.2. The goal of what follows is to construct families of generators {gk}k≥1,k 6≡0 mod (3)

and {hk}k≥0,k 6≡1 mod (3) as in the previous proposition on which d1 is easy to de-
scribe.

We start with a particular element m ∈ E
1,0

1 that is related to 8η and plays the
same role as the element b1 in [5].

Proposition 5.4. There exists m ∈ E
1,0

1 such that

a) m ≡ 1 − ω2u2
1 mod (u4

1)
b) d1(m) = 1
c) 24η = m in H1(G1

2;U1) .

Proof. We imitate the proof of [5, Prop. 5.5] and use paragraph 2.7. By definition
8η is a permanent cycle so there are cochains c ∈ HomZ2[[G1

2
]](P1, U1) and d ∈

HomZ2[[G1
2
]](Q0, U1) such that c+ d is a cocycle in the total complex of the double

complex HomZ3[[G1
2
]](T••, U1) and such that c represents the restriction of 8η in

H1(G24;U1). From the proof of the Proposition 5.2 we have an explicit cocycle
c1 for 8η in the resolution P• , so there exists hc ∈ HomZ3[[G1

2
]](P0;U1) such that

c = c1 + δP (hc). As 24η = 1 in H1(G24;U1) (Proposition 5.2) there exists h ∈
HomZ3[[G1

2
]](P0;U1) such that δP (h) = 3c1. In the double complex the cochain

3c + 3d is cohomologous to 3d − δQ(h + 3hc). One can easily check that h =
u24/(u8(a∗u

8)(a2
∗u

8)). Then 3d − (e − ω)∗(h + 3hc) is a cocycle concentrated in
HomZ3[[G1

2
]](T1,0, U1) representing 24η. The formula for m can be deduced using

the formulae for the action of a and ω given in paragraph 2.5. �

The next lemma is elementary but crutial as it relates the differentials of E
and E, and thus suggests that we could use the generators from Theorem 2.4 to
construct convenient generators gk and hk.

Lemma 5.5. Let f ∈ F9[[u1]] be such that f ≡ 0 mod (uk
1). Then

1

1 + f
≡ 1 − f mod (u2k

1 ) .

Proposition 5.6. Let gk := 1 + v6k
1 ∆−k for k ≥ 1, k 6≡ 0 mod (3). Then

d1(gk) ≡

{
1 + (−1)m+1ω2(u12m+6

1 + u12m+10
1 ) mod (u12m+12

1 ) k = 2m+ 1
1 + (−1)m+1mω2u12m+2

1 mod (u12m+4
1 ) k = 2m.

Proof. By Lemma 5.5 we have d1(1+v6k
1 ∆−k) ≡ 1+v6k

1 d1(∆−k) mod (u12k
1 ) where

we have used the v1-linearity of d1. Then the result follows from the formulae from
Theorem 2.4. �
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5.3. As in [5] we will use the image of d1 to define hk. We allow the generators hk

to be congruent to 1− ω2u4k+2
1 modulo higher powers of u1. Note that 12m+ 2 =

4 · 3m+ 2 thus for m ≥ 1 and m 6≡ 0 mod (3) we can define

h3m := d1(g2m)

and then by definition these elements are in the kernel of d1.
For the other case, note that 1 + ω2(u12m+6

1 + u12m+10
1 ) ≡ (1 + ω2u12m+6

1 )(1 +
ω2u12m+10

1 ) ≡ (1 − ω2u4m+2
1 )3(1 + ω2u12m+10

1 ) mod (u12m+12
1 ). Thus if hm is

already definied we could use d1(g1+2m) to define h3m+2 by

h3m+2 := d1(g1+2m)h3
m .

As hm ≡ 1 ± ω2u4m+2
1 ≡ 1 ± v4m+2

1 b−1−2m mod (u4m+6
1 ) we can use Lemma

5.5 to calculate d1. In order to do that we will use the partition of N introduced in
Theorem 2.4. If −1 − 2m = 1 + 2(3l + 1) then 1 + 2m is divisible by 3. The other
cases are of relevance : if −1−2m = 1+2 ·3n(3l−1) then m = 3n(−3l+1)−1 with
l 6≡ 0 mod (3), if −1−2m = 1+2 ·3n(9l+8) then m = 3n(−9l−8)−1 with l ≤ −1
and the last one, if −1− 2m = 1+2 · 3n+1(3l+1) then m = 3n+1(−3l− 1)− 1 with
l ≤ −1 . In each of these cases , if hm is defined then h3m+2 belongs to the same
family with n augmented by one. This allows to define recursevely, for l, n ≥ 0 :

h3n+1(3l+1)−1 := h3
3n(3l+1)−1d1(g1+2·3n(3l+1)) l 6≡ 0 mod (3)

h3n+1(9l+1)−1 := h3
3n(9l+1)−1d1(g1+2·3n(9l+1))

h3n+2(3l+2)−1 := h3
3n+1(3l+2)−1d1(g1+2·3n+1(3l+2)) .

For this to work we need to define the corresponding element of each family for
n = 0. In the first case h3l is already defined. In the other cases we define:

h0 := m

h9l := ω∗(1 + v36l+2
1 b−1−18l)/(1 + v36l+2

1 b−1−18l) l > 0

h9l+5 := ω∗(1 + v36l+22
1 b−11−18l)/(1 + v36l+22

1 b−11−18l) l ≥ 0 .

Note that b−1−18l and b−11−18l belong to the two families of Theorem 2.4 that
have non trivial image under d1. In both of these cases we can apply Lemma 5.4.
This would not have been the case if we would have defined h0 as 1+v2

1b−1 as then
Lemma 5.5 does not give the enough precision. The following proposition and the

recursive definition of the generators describe d1 : E
1,0

1 → E
2,0

1 . The proof uses
Theorem 2.4 and Lemma 5.5.

Proposition 5.7.

z1,l := d1(h9l) ≡ 1 + ω2u36l+14
1 mod (u36l+18

1 )

z2,l := d1(h9l+5) ≡ 1 + ω2u36l+30
1 mod (u36l+34

1 ) .

A more complete description of d1 is given with the following proposition.

Proposition 5.8. The following complexes are exact :
∏

n≥0

Z3{g1+2·3n(3l+1)} →
∏

n≥0

Z3{h3n(3l+1)−1} → 1 for l 6∈ 3N

∏

n≥0

Z3{g1+2·3n(9l+1)} →
∏

n≥0

Z3{h3n(9l+1)−1} → Z3{z1,l} for l > 0

∏

n≥0

Z3{g1+2·3n+1(3l+2)} →
∏

n≥0

Z3{h3n+1(3l+2)−1} → Z3{z2,l} for l ≥ 0 .
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The first homology of the following complex
∏

n≥0

Z3{g1+2·3n} →
∏

n≥0

Z3{h3n−1} → 1

is isomorphic to Z3{h0}. In each complex the infinite matrix of the first homo-

morphism has the following form

(
−3
1 −3

1 −3
···

)
and when non trivial the infinite

matrix of the second morphism has the following form ( 1 3 9 27 ··· ).

Proof. The proof is a consequence of Proposition 5.3, Proposition 5.4, the defini-
tions of the generators in paragraph 5.3 and Proposition 5.8. �

Corollary 5.9. E
1,0

2
∼= Z3.

Proof. This is consequence of the previous proposition. Indeed, the relevant part
of the 0-th line of the first page of the spectral sequence is the product over l of the
four complexes of the previous proposition together with the exact complex

∏

m>0

Z3{g2m} →
∏

m>0

Z3{h3m} → 1 .

�

Theorem 5.10. H1(G1
2;U1) ∼= Z3 is generated by 8η.

Proof. We only need to resolve the extension problem

0 → E
1,0

2
∼= Z3 → H1(G1

2;U1) → Z/3Z ∼= E
0,1

2 → 0 .

But this is immediate due to Proposition 5.4 �

6. Getting to H1(G1
2; W[[u1]]

×)

In this section we prove the main theorem by using the short exact sequences
from Section 4. The element η again plays an important role in the proof.

Proposition 6.1. H1(G1
2; F

×
9 ) ∼= F

×
9 .

Proof. There is a short exact sequence

1 → S1
2 → G

1
2 → SD16 → 1

that gives a spectral sequence and as S1
2 acts trivially on F

×
9 we have

H∗(G1
2; F

×
9 ) ∼= H∗(SD16; F

×
9 ) .

There is another short exact sequence

1 →< ω >→ SD16 → Gal → 1

(where Gal := Gal(F9/F3)) and thus a spectral sequence

H∗(Gal;H∗(< ω >; F×
9 )) ⇒ H∗(SD16; F

×
9 ).

By using the standard resolution it is easily seen that the group H∗(< ω >; F×
9 ) is

isomorphic to F
×
9 in each degree as ω acts trivially on F

×
9 .

The group H1(< ω >; F×
9 ) is generated by the identity which is Galois invariant

thus

H0(Gal;H1(< ω >; F×
9 )) ∼= F

×
9



12 NASKO KARAMANOV

and by Hilbert 90

H1(Gal;H0(< ω >; F×
9 )) = H1(Gal; F×

9 ) = 0 .

As the image of η in H1(G1
2; F

×
9 ) ∼= H1(SD16; F

×
9 ) reduces to the identity in the

group H1(< ω >; F×
9 ), the differential

d2 : H0(Gal;H2(< ω >; F×
9 )) → H1(Gal;H0(< ω >; F×

9 ))

has to be trivial. �

Corollary 6.2. H1(G1
2; F9[[u1]]

×) ∼= Z3 × F
×
9 generated by η.

Proof. The short exact sequence (8) induces a long exact sequence

→ H0(G1
2; F

×
9 ) → H1(G1

2;U1) → H1(G1
2; F9[[u1]]

×) → H1(G1
2; F

×
9 ) → H2(G1

2;U1) .

By Theorem 5.10 we have H1(G1
2;U1) ∼= Z3 and by Proposition 6.1 we have

H1(G1
2; F

×
9 ) ∼= F

×
9 . As U1 is a 3-profinite group, the first and the last homo-

morphisms are trivial. �

Proposition 6.3.

a) H1(G1
2; F9[[u1]]) = 0

b) The group H1(G2
1; W[[u1]]) is 3-profinite.

c) H1(G1
2; W[[u1]]) = 0.

Proof. (a) is direct consequence of [5, Thm. 1.6]. The group W[[u1]] is 3-profinite
and there is a resolution of finite type (Lazard) of the trivial G

1
2-module Z3 and (b)

follows. Multiplication by 3 induces a short exact sequence

W[[u1]]
×3
−→ W[[u1]] −→ F9[[u1]]

which induces a long exact sequence

−→ H1(G1
2; W[[u1]]) −→ H1(G1

2; W[[u1]]) −→ H1(G1
2; F9[[u1]]) −→

From (a) and the long exact sequence above it follows that the homomorphism

H1(G1
2; W[[u1]]) −→ H1(G1

2; W[[u1]])

is surjective i.e. the group G := H1(G1
2; W[[u1]]) is 3-divisible. As G is 3-profinite,

it is the limit of finite 3-groups G/In. Thus the homomorphism G/In → G/In
induced by the multiplication by 3 is surjective and therefore G is trivial. �

Theorem 6.4. H1(G1
2; W[[u1]]

×) ∼= Z3 × F
×
9 generated by η.

Proof. We use the long exact sequence in H1(G1
2;−) induced from the short exact

sequence (7). The homomorphism H1(G1
2; W[[u1]]

×) → H1(G1
2; F9[[u1]]

×) is injec-
tive by Proposition 6.3 (c) and also surjective as the image of η ∈ H1(G1

2; W[[u1]]
×)

is a generator (by Corollary 6.2). �

Finally we get to the proof of 1.6(a).

Theorem 6.5. H1(G2; W[[u1]]
×) ∼= Z

2
3 × F

×
9 generated by η and det.

Proof. We use the short exact sequence (6). We have

H1(Z3;H
0(G1

2; W[[u1]]
×)) ∼= H1(Z3; Z3) ∼= Z3

and
H0(Z3;H

1(G1
2; W[[u1]]

×)) ∼= H0(Z3; Z3 × F
×
9 ) ∼= Z3 × F

×
9 .
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The theorem follows from

1 → H1(Z3;H
0(G1

2; W[[u1]]
×)) → H1(G2; W[[u1]]

×) → H0(Z3;H
1(G1

2; W[[u1]]
×)) → 1

�

Note the det is the image of the identity and the image of η is a generator.

7. Picalg
2

In this short section we prove of Theorem 1.6 i.e. we calculate Picalg
2 .

We are left with the short exact sequence

0 → Picalg,0
2 → Picalg

2 → Z/2 → 0

that comes from the definition of Picalg,0
2 (cf. paragraph 1.1). Note that the

isomorphism of Proposition 1.2 sends (E2)∗S
2 to η (cf. paragraph 3.1). Thus

(E2)∗S
2 is an element of Picalg,0

1 that generates Z3×Z/8 in Picalg
2 . But (E2)∗S

1 is

not an element of Picalg,0
2 , therefore its image in the above sequence is a generator

of Z/2. Thus (E2)∗S
1 itself must generate Z3 × Z/16.
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