Early Stages in the Nucleation Process of Carbon Nanotubes
Résumé
The early stages of carbon nanotube nucleation are investigated using field ion/electron microscopy along with in situ local chemical probing of a single nanosized nickel crystal. To go beyond experiments, tight-binding Monte Carlo simulations are performed on oriented Ni slabs. Real-time field electron imaging demonstrates a carbon-induced increase of the number density of steps in the truncated vertices of a polyhedral Ni nanoparticle. The necessary diffusion and step-site trapping of adsorbed carbon atoms are observed in the simulations and precede the nucleation of graphene-based sheets in these steps. Chemical probing of selected nanofacets of the Ni crystal reveals the occurrence of Cn (n14) surface species. Kinetic studies prove C2~ species are formed from C1 with a delay time of several milliseconds at 623 K. Carbon dimers, C2, must not necessarily be formed on the Ni surface. Tight-binding Monte Carlo simulations reveal the high stability of such dimers in the first layer beneath the surface.