
HAL Id: hal-00372414
https://hal.science/hal-00372414

Submitted on 1 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying Model Driven Engineering Techniques and
Tools to the Planets Game Learning Scenario

Thierry Nodenot, Pierre-André Caron, Xavier Le Pallec, Pierre Laforcade

To cite this version:
Thierry Nodenot, Pierre-André Caron, Xavier Le Pallec, Pierre Laforcade. Applying Model Driven
Engineering Techniques and Tools to the Planets Game Learning Scenario. Journal of Interactive
Media in Education, 2008, http://jime.open.ac.uk/2008/23/. �hal-00372414�

https://hal.science/hal-00372414
https://hal.archives-ouvertes.fr

JIME http://jime.open.ac.uk/23 Pre-print

Applying Model Driven Engineering Techniques and Tools to the
Planets Game Learning Scenario

Nodenot Thierry 1, Caron Pierre-André 2, Le Pallec Xavier 2, Laforcade Pierre 3

1 Laboratoire LIUPPA
IUT de Bayonne,

2, allée du parc Montaury
64600 Anglet

FRANCE
http://liuppa.univ-pau.fr

2 Laboratoire LIFL
Bâtiment M3,

59655 Villeneuve d'Ascq Cédex
 FRANCE

http://www.lifl.fr

3 Laboratoire LIUM
52 Rue des Dr Calmette et

Guérin, 53020 Laval Cedex 9,
 FRANCE

http://www-lium.univ-
lemans.fr/

Abstract: CPM (Cooperative Problem-Based learning Metamodel) is a visual language for the
instructional design of Problem-Based Learning (PBL) situations. This language is a UML profile
implemented on top of the Objecteering UML Case tool. In this article, we first present the way we
used CPM language to bring about the pedagogical transposition of the planets game learning
scenario. Then, we propose some related works conducted to improve CPM usability: on the one hand,
we outline a MOF solution and an Eclipse GMF solution instead of the UML profile approach. On the
other hand, we propose some explanations about transforming CPM models into LMS compliant data,
and tool functionality.

Keywords: Visual Instructional Design Languages, Learning Management Systems (LMS),
Metamodeling techniques and tools, UML profiles, Meta-Object Facility (MOF), Graphical Modeling
Framework (GMF), Model transformation.

1 Introduction
CPM means Cooperative Problem-based learning Metamodel. It is a visual design language that we
developed at the LIUPPA Laboratory (France) as a specialisation of UML language. CPM language
focuses on the design of Problem-Based Learning (PBL) situations. According to the Instructional
Design Classification Scheme defined in Botturi, Derntl, Boot and Gigl (2006), it is a visual (notation
level), layered (stratification level), semi-formal (formalisation level) language promoting multiple
perspectives (more than one view) upon the same entities.

On the one hand, educators and designers use CPM language to draw models (similar to UML
sketches) focusing on initial requirements of a PBL situation. These include the PBL domain, situated
roles of learners/teachers, learners’ skills, predicted obstacles which the educators want learners to
overcome, goals and criteria for success within the PBL situation, resources available to learners, etc.

On the other hand, CPM language addresses instructional engineers. Their work involves designing a
viable solution, coordinating all the actors involved in the development team. UML is a prerequisite
for the engineers who use CPM language to draw various models which capture different points of
view or outlooks on the same PBL situation (pedagogical, structural, social, operational viewpoints).
This set of models makes up the learning/tutoring scenario which can be planned (in terms of steps
and learning/tutoring events) but cannot be totally predetermined during the design phase since PBL
addresses generative learning Allert (2005). The blueprints they produce are expressed in terms of
concepts appearing in sketches produced by educators, thus facilitating discussion and agreement.

CPM sketches and blueprints prepare the detailed design stage that involves mapping those agreed
CPM models with Platform-Independent Models (PIM) e.g. IMS-LD (Laforcade, 2004) or Learning
Management System (LMS) abstractions (Caron, Le Pallec and Sockeel, 2006). The idea consists of
mapping conceptual design models with components representing abstract views of the services
provided by an LMS: such mapping leads designers to use CPM to specialize and contextualize the
services supplied by an LMS according to the specificities of the activities to be fulfilled.

http://liuppa.univ-pau.fr/
http://www.lifl.fr/
http://www-lium.univ-lemans.fr/
http://www-lium.univ-lemans.fr/

JIME http://jime.open.ac.uk/23 Pre-print

This paper presents some models that were produced with CPM. These models refer to the Planets
game case-study proposed by Vignollet, David, Ferraris, Martel and Lejeune (2006). Assisted by a
primary teacher, we used CPM to describe the conceptualisation level that 12 year-old pupils can
reach whilst selecting different scientific properties of the planets: their distances from the sun, their
day durations, their year durations, their compositions, their average temperatures, etc. This domain
study led us to set more detailed learning/tutoring objectives from which we defined a learning
scenario and tutoring strategies.

The article is structured as follows: in section 2, we present the way we used CPM to transpose
didactically the planets game learning scenario. Section 3 presents related works conducted to improve
CPM usability: on the one hand, considering the difficulties that educational designers encounter while
producing CPM models with the Objecteering UML Case tool, we outline a MOF solution (section
3.1) and an Eclipse GMF solution (section 3.2) instead of the UML profile approach. On the other
hand (section 3.3), we propose explanations for transforming CPM models into LMS compliant data
and tool functionality.

2 Pedagogical transposition of the Planets game with CPM
language

As presented in the introduction, CPM is well suited to enable designers to elicit a learning scenario
and question it against a/ the knowledge to be taught and b/ the learning outcomes. Since the case
study’s outline gives few results about these topics, CPM could be used to represent what the case
study’s outline tells us (cf. Figure 1):

Figure 1: An activity diagram representing identified roles and activities

In this figure, four swim lanes are used to visually represent the specific activities performed by
identified roles. This figure demonstrates the expressive power of CPM (Resources used and
produced, individual and collaborative activities) whose stereotypes can enrich the semantics of any
UML diagram. However, this activity diagram is poorly founded pedagogically because nothing is
said about the knowledge that A/B teams will discover in their Resource Pack, nothing is said about
their Forum functionality, nothing is said about the kind of tutoring that will be provided to learners,
etc.

JIME http://jime.open.ac.uk/23 Pre-print

2.1 The knowledge to be taught
As a consequence, we had to go further in our analysis of the Planets Game. We decided to focus on
the conceptualisation level that 12 year-old pupils can reach; first we tried to define the information
that should be embedded in the interviews (resources pack) provided to both teams. Such information
concerns the following planet properties: their names, their distance from the sun, their day length,
their year length, their composition (solid / gas), their average temperature.

Name Distance from sun length of day length of year composition Temperature Diameter
 (million kms) (Earth year/day) (K) (km)

Mercury 58 59 days 88 days solid 100-700 (mean 452) 4878
Venus 108 244 years 225 days solid 726 12104
Earth 150 24 hours 365 days solid 260-310 12756
Mars 228 25 hours 687 days solid 150-310 6787

Jupiter 778 10 hours 12 years gas 120 142796
Saturn 1427 10 hours 29 years gas 88 120660
Uranus 2872 17 hours 84 years gas 59 51118
Neptune 4509 16 hours 165 years gas 48 48600

Pluto 5916 6 days 248 years solid 37 2274
Table 1: The planets focused properties and property values

From this table, we decided that the knowledge to be learned by the A and B teams from their
interview analyses should include:

• solid (vs. gaseous) planets are near (vs. far) from the sun except Pluto: this is the classification
of the nine planets based on the criteria composition / distance,

• small (vs. giant) planets are near (vs. far) from the sun except Pluto: this is the classification of
the nine planets based on the criteria diameter / distance,

• average temperature ranking of the nine planets is determined by their distance from the sun,
except for Venus

• length of year ranking of the nine planets is determined by their distance from the sun,

• …

CPM enabled us to formalise such information about the knowledge to be taught: for example, Figure
2 is a representation of the planets classification on the criteria composition / distance while Figure 3
represents the correlation between the average temperature and the distance from the sun.

Figure 2: A classification for the composition / distance criteria

JIME http://jime.open.ac.uk/23 Pre-print

Figure 3: Correlating distance and temperature properties.

Both figures conform to the following class diagram that we also formalised with CPM language. In
Figure 4, concepts with the stereotype are learning subjects, that is to say that the pupils will have
to determine/investigate them from the interviews at their disposal. The figure also provides
information about the contents of the different expert interviews (cf. the Resource stereotype with the

 icon). All of them talk about specific criteria which are either properties (diameter, day length,
composition, distance from the sun, etc.) or dependent properties (average temperature, etc.). But the
provided constraint enforces to provide information about the values of some planet properties
(nothing said about classifications / nothing about Groups of planets).

Figure 4: The CPM diagram used to represent the knowledge to be taught in the planets Game

2.2 The expert interviews embedding the knowledge to be taught
It was then quite easy to exploit such a diagram to represent the knowledge embedded within a
particular interview. For example, Figure 5 presents an extract of a CPM diagram which states that the
repository for A team is composed of different interviews. One of them talks about the particular
distances from the sun and average temperatures of Earth, Mars, etc.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 5: An object diagram describing some contents of A repository

It is therefore the same semi-formal domain language that can be used by designers to describe the
knowledge to be taught, the contents of A's and B's repositories, etc. We also used such a DSL
(Domain Specific Language) to analyze the activities that the pupils had to do.

2.3 Our didactic choices to help learners reach such knowledge embedded
in the expert interviews

Since CPM is well suited to design constructivist learning scenarios, we decided to distribute the
available planet information (cf. Table 1) among different expert interviews allocated to A or B. As a
consequence, A and B teams had to share out information to reach their particular learning objectives.
From its set of interviews, the A team had to (i) find the names of all planets (in the interviews, two of
them were called X and Y planets), (ii) discover some [distance / year length /temperature] values, (iii)
correlate year length / distance properties, (iv) correlate distance properties / temperature properties,
(v) correlate year length / distance properties, (vi) identify giant/solid planets from others, and (vii)
formulate exceptions. As regards to the B team, its provided learning goals were to (i) discover some
[distance / length of year /temperature] values, (ii) correlate year length / distance properties, (iii)
correlate distance properties / temperature properties, (iv) identify giant/solid planets from others, and
(v) formulate exceptions. To enable each team self organization, we decided to specialize the forums
to let each team document and identify/share its agenda within a workspace.

2.3.1 Workspace modeling
To answer the didactic aims presented above, we drew some CPM diagrams to represent the
cooperative functionality provided by the forums. Figure 6 describes the workspaces provided for A
and B teams:

JIME http://jime.open.ac.uk/23 Pre-print

Figure 6: The Workspaces allocated to each team

The CPM diagram states that each team is provided with an interview repository composed of one
private workspace and one public workspace (any information put within the public workspace can be
read by the other team). Each workspace contains dedicated forums, the “F_What we want to know”
forum is only available in the private Workspace since both team are competing (cf. the case study
outline). Each forum provides a list of forum entries which are either Planets or groups of planets (cf.
P_Entity in Figure 4). Any number of posts can be written by pupils for a given entry.

2.3.2 Focus on the Planets Game Learning scenario
To go further in the analysis, we also decided that each team had to assign specific tasks to dedicated
roles: a forum manager that will have the rights to add entries and posts, and investigators that will
analyze the interviews put at their disposal. Finally, reporting on the game results will be done as a
team (specific login needed and specific time to log in). From the tutoring viewpoint, we also decided
the different roles of the human teacher: he behaves as a solar system expert and his objective is to
lead pupils correlate properties and find exceptions. He is also the group manager who can post
messages when needed (to suggest further analysis of an interview for example). The last role is the
Timer that has a very important role in our educational game since we want students add posts in the
forum at regular intervals.

The following CPM diagram is a use-case diagram that provides the general picture of different use-
cases represented by ovals.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 7: The CPM use-case diagram of the Game

This figure focuses on Act2:Game; this act occurs after the presentation of the game that consists of
building two teams and providing them with required functionality to read interviews and game goals.
In our learning scenario, Act2:Game is followed by a debriefing session conducted with the whole
class and an individual assessment session: Figure 8 is a CPM diagram that describes such a
sequencing:

Figure 8: The context in which Act2:Game occurs

Figure 9 details the “posts messages” use-case from Figure 7. Here, this part of the scenario details
what happens when the “Forum Posts Manager” is asked by the Timer to post a new message. Within
a team, the posts manager and an investigator have to agree (cf. the cooperative activity stereotype)
on the information that will be copied from the “F_What we know” forum to the public “Workspace”
(and as a consequence made available to the other team). To do that, the Forum Posts Manager” uses
tools functionality (cf. the stereotype) made available to him.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 9: An activity diagram for the “posts messages” use-case of Act2:Game

2.3.3 The CPM Browser
All CPM diagrams (from Figure 2 to Figure 9) are reachable from a unique starting point provided for
the designers: the Browser.

Figure 10: The Planets Game
browser

Figure 10 is a snapshot of the Browser which enables a
designer to edit the Planets game Learning Scenario. At root
level, experience led us to create three Learning Packages
whose model elements are exploited by the Learning Process
Package called the Planets Game Scenario Process. At the
bottom of the figure, worth noting is the Planets Game
Scenario denoted as an activity diagram used to generally
describe how the different acts of the Planets Game Learning
Process are sequenced.

The model elements (and graphical views) of these four acts
are then detailed within the Planets Game Scenario Process.

In the snapshot, the details of the Act2 Process were expanded.
At this level, note that the package structure is the same as the
one at root level: Act2 shows a Local Roles Package, a Local
resources Package, a Local Learning Roles Package, and an
Act2 Scenes Package which contains all the scenes within
Act2. This structuring promotes the contextualisation of roles,
learning goals, resources and learning activities. For example,
the expanded Act2 – Local Roles Package shows different
Actor stereotypes, which are model elements used during Act2
to specialize the tutor role and the Learner role (cf. the Global
Roles Package).

JIME http://jime.open.ac.uk/23 Pre-print

3 Related works to enhance CPM usability
UML and its profile mechanism propose a framework which may be quickly efficient. First it provides
several types of diagrams which allow describing many aspects. Second, several design processes
have emerged from UML community over the last decade. They describe best-practices related to
navigation between previous types of diagram. Nevertheless, there are some weaknesses. First,
defining new modeling concepts with UML profiles requires the use of (through inheritance) existing
UML concepts/meta-class like Class or Actor. Inheriting from core UML concepts is also a way to
reuse graphical facilities of diagrams. A UML profile designer does not necessarily want all inherited
attributes or methods. She/he has to block access to these undesirable properties in conceptual AND
graphic ways (respectively through OCL constraints and J code with Objecteering) to respect the
semantics of the language she/he wants to design. This is a complex and tedious process if we consider
the definition of graphical languages for complex, condensed and non-software engineering
metamodels (like CPM or IMS-LD). In addition, an efficient profile (that is to say, with conceptual
and graphic filtered accesses) generally works only with the UML tool used to define it.

Finally, it is currently difficult to propose a free stand-alone model editor for practitioners with UML
tools: efficient tools are generally expensive; using profiles means using the entire environment;
environments are often software engineering oriented which is not a quality for practitioners.

So it is important to explore alternatives like OMG-MOF (OMG 2007) or Eclipse/EMF (EMF 2008)
environments. Based on a meta-modeling approach, they present some advantages. For example,
defining a language first starts with the definition of a metamodel (abstract syntax) which is not
created from existing concepts but from scratch. So there is no need to filter access to model elements
because of undesirable inherited features. Furthermore, there are currently powerful graphic tools such
as GMF (GMF 2008), which allow the definition of efficient graphical syntax for a language (concrete
syntax). There are other facilities which are not so efficient in UML community like model
transformation engines (GMT for Eclipse (GMT 2008), ATL for MOF-based models (see Patrascoiu,
2004) and code generation engines like JET (JET 2008)). Another useful functionality of EML is that
creating a metamodel may be done just by analysing a XML schema or a DTD. We present in this part
two technological methods with which we can create a CPM authoring tool: ModX and GMF.

3.1 ModX
ModX is a graphic tool used to create both model and MOF-based metamodel. It supports XMI format
(import/export) in order to be compatible with other MDA tools. Use of ModX may be summarized
through the following steps:

• Load an existing metamodel or create a new one,

• Define the graphic notation associated to the metamodel,

• Create models from the metamodel,

• Change the metamodel if necessary (associated models will change accordingly).

ModX should be used to graphically define models, where there is no graphical editor for the
underlying metamodel, to design a new metamodel or to improve an existing one, to manipulate
models and to remain compliant with MDA standards (MOF, XMI, UML) or to grasp and to master a
complex metamodel provided in XMI format by experimenting with it.

3.1.1 Main principles
Figure 11 describes activities that one can do with ModX and their relations.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 11: ModX Activities

Reflection is the main feature of ModX: it is possible to change the underlying metamodel or one of its
graphic formalisms (called “View Type”) during editing a related model. A ModX metamodel is MOF
1.4 compliant and it is composed of classes and associations (and inheritance links).

A metamodel may have several view types. With ModX, a view type (illustrated in figure 12 and
figure 13) corresponds to a concrete syntax (MDE term) while a ModX metamodel corresponds to an
abstract syntax. A graphic notation may be more appropriate here. A view type specifies whether
instances of a concept will be represented by an icon or a graphic shape. It also specifies whether
instances of an association will be represented by simple line, juxtaposition or the fact that one of the
two ends will be nested in the other one.

Figure 12: Graphical representation of roles in CPM Activity Diagram

Figure 13: Graphical representation of links between actors (and so roles) and activities in CPM
Activity Diagram

A model is made of model elements and links. It is represented through one or several views. Each
view respects its assigned view type. Figure 14 shows the use case diagram for the planet game using
CPM metamodel and notations.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 14: Planets game on ModX: a CPM use case diagram

Models can be “instantiated” from a metamodel at any time, even if the metamodel has only one
concept: models dynamically change according to modifications of related metamodel and associated
view types.

3.1.2 CPM with ModX
If we want to associate three different types of diagrams for CPM metamodel, we need to define three
view types in ModX.

We used Modx graphic abilities to define the view types which conform to the UML representations
of CPM version of the case study (cf. figure 15).For example, in the view type related to use case
diagram, an actor is represented by an icon and all links in which an actor may occur are simple lines
or arrows. On the other hand, within an activity diagram, an actor appears as a rectangle which may
contain activities: the Activity end of the association plays is graphically noted « isNested ».

JIME http://jime.open.ac.uk/23 Pre-print

Figure 15: View types in ModX

Thanks to the previous metamodel and the three associated view types, ModX provides a basic CPM
model editor. We have duplicated original diagrams for the planets game with ModX (cf. figure 16).

Figure 16: Diagrams for the planets game realized with ModX.

JIME http://jime.open.ac.uk/23 Pre-print

3.2 Use of Domain-Specific Modeling tools from the EMF project
The other approach that we outline here goes one step beyond the UML-based approach (CPM) and
the MDE approach of ModX. It concretely deals with the application of Domain-Specific Modeling
(DSM) theories and practices (see Kelly and Tolvanen, 2008) for instructional design.

3.2.1 Domain-Specific Modeling
DSM is a part of the MDE domain. It is a software engineering methodology for designing and
developing systems. It involves the systematic use of a graphic Domain-Specific Language (DSL) to
represent the various facets of a system, also called Domain-Specific Modeling Languages (DSML).
Several technical approaches coexist currently to support the specification of DSML (see Jouault,
Bézivin, Consel, Kurtev and Latry, 2006): commercial products like MetaCase/MetaEdit+, the
Microsoft DSL tools (based on the Software Factories vision), and academic propositions or open-
source projects like VMTS, TIGER, EMF, GEF, GMF, etc. All these DSM tools propose
metamodeling techniques capable of expressing domain-specific vocabularies (abstract syntaxes), and
propose facilities to construct various notations (concrete syntaxes). These editing frameworks offer
techniques for multiple customizations with minimal programming. As a result, these tools can
generate powerful and user-friendly dedicated editors for DSM languages. They are kind of meta-
CASE editors capable of generating CASE tools. The final editors give domain-designers the ability to
graphically specify models from their domain, and propose some persistence facilities to load and
store these models in a machine-interpretable format. This machine-directed format is always
independent from the notation used to visually represent the model.

As the ModX tool, DSM tools are meta-tools that can allow specific editors to be used for instructional
purposes. The DSM approach can help the emergence of communities of interests or practices sharing
the same domain-vocabulary and formalisms. Some DSM tools can be used in this instructional design
context to support the emergence of Visual Instructional Design Languages (VIDL), with their specific
editors. We can imagine various uses of this new approach: specific editors focusing on teacher-
designer practices (for example in relation to some pedagogical theories, didactic fields as well as
specific references to the LMS they use; a CPM editor could be used as well), other editors specific to
EML standards (like an visual editor providing a graphic notation for the IMS-LD standard), and other
editors dedicated to specific platforms (like a visual editor for Moodle, Ganesha, etc.). Such a DSM
approach can cover all the three steps of an instructional design process: conception, specification and
implementation activities. Also, other DSM tools focusing on model transformations (e.g. the Eclipse
ATL tool, described in Allilaire, Bézivin, Jouault and Kurtev (2006)) can be used to support the
transformation of instructional scenarios from VIDL to another.

We are in the process of experimenting with the Graphical Modeling Framework (GMF) to support
the DSM approach for learning scenarios. We propose to detail an experiment about a UseCase-centric
VIDL and editor for the Planets game in the next sub-section.

3.2.2 The Planets game case study: a new use case-based representation
We choose to focus also on one CPM diagram detailed in section 2.3.2: the UseCase-based view of the
main activities and roles involved in the Planets Game learning scenario. This previously depicted
diagram illustrates 'Act 2'. The notation is UML for this kind of diagram: actors, usecases, one system,
and various relations (inheritance between actors, communication links between actors and usecases,
includes and extends relations between usescases, etc.). The CPM notation for this diagram is limited
to the addition of stereotypes for the UML meta-concepts and meta-relations involved into UseCase
diagrams: actors have been extended to represent « roles » and a dedicated icon has been provided to
illustrate such stereotype application. Also, the expressiveness of this CPM diagram is limited to the
addition of semantics to show concepts and relations via the stereotype whose semantics is defined in
natural language.

Since UML UseCase diagrams are not made for expressing time-related relationships between
usecases, it is not possible to link main learning activities, derived from the usecases, between each
other to specify a precedence/following relationship. Our experimental work will consist in providing

JIME http://jime.open.ac.uk/23 Pre-print

a pluridisciplinary learning design team with a dedicated visual editor able to express such scenario
representation. Also, we aim to provide them with a specific VIDL guaranteeing that the produced
models will be both human-readable and machine-interpretable.

3.2.3 EMF/GMF framework presentation
The Eclipse Graphical Modeling Framework (GMF) (GMF 2008) provides a generative component
and runtime infrastructure for developing graphic editors based on EMF (Eclipse Modeling
Framework) and GEF (Graphical Editing Framework).

Figure 17: The GMF process

The above figure is a diagram illustrating the main components and models used during GMF-based
development. One of the GMF core concepts is the graphic definition model. This model contains
information related to the graphic elements that will appear in the future diagrams produced by
practitioners. These graphic elements have no direct connection to the domain models for which they
will provide representation and editing. Also, a tooling definition model is used to design the palette
and other periphery (menus, toolbars, etc.). GMF allows the graphic definition to be reused for several
domains by using a separate mapping model to link the graphic and tooling definitions to the selected
domain model(s).

Once the appropriate mappings are defined, GMF provides a generator model to allow implementation
details to be defined for the generation phase. The production of an editor plug-in based on the
generator model will target a final model; that is, the diagram runtime (or "notation") model. The
runtime will bridge the notation and domain model(s) when a user is working with a diagram, and also
provides services for the persistence (XMI as well as XML) and synchronization of both. The final
generated editor can also be provided as a standalone RCP (Rich Client Platform) application
(independent from Eclipse).

3.2.4 Rationale for using GMF to develop a CPM editor
A basic domain model for our « Learning Design Use Case » view has been defined. It is illustrated
in the following figure (it is a diagrammatical view of the concrete domain model whose native format
is XML). We can observe the domain concepts and relations that are not related to UML meta-
concepts but are fully related to the domain we want to specify. We keep references to the UML
constructs we decided to maintain on purpose: « includes » and « extends » relationships between
« HighLevelActivities ». The inheritance link between « actors » has also been maintained. However,
we add a new relationship between activities so as to be able to express precedence/following relations
between activities.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 18: The domain model

A graphic definition model has been designed; it defines the figures, nodes, links, etc. that we want
to draw in the final diagrams. An extract of this model is presented in the following figure (depicted
here by the user-friendly tree-view proposed by GMF). If you examine this model, you will find
reference to a Canvas at the root with a Figure gallery containing basic Rectangle, Label, and Polyline
Connection elements. These are used by corresponding Node, Diagram Label, and Connection
elements to represent our Actors, LearningPhase, etc. from the previous domain model.

Figure 19: The graphic definition model

We then designed the tooling definition model which is used to specify the palette, creation tools,
actions, etc. for our graphic elements. Next, the mapping definition model will let us bind the three
previous models: the domain, the graphic definition, and the tooling definition. The following figure is
an image of this model (tree-view). The mapping definition is a key model in GMF development
because it will be used as an input to a transformation step which will produce the final code.

JIME http://jime.open.ac.uk/23 Pre-print

Figure 20: The mapping definition model

3.2.5 Back to the Planets Game example
Thanks to the editor generated by GMF we can now use a specific and visual editor that proposes us to
draw graphically scenarios conformed to both the domain and the notation we discussed before. The
next figure shows an extract of the new version for the « Act2 » of the Planets Game. In this new
view, we can notice the new relation between activities to express the precedence relationship.

Figure 21: Example of model designed with a GMF-based editor

It is important to not reduce the scenario to the visual representation depicted into the previous figure.
This is just a human-readable « view » of the model that we concretely designed. Indeed, the scenario
is serialized into a machine-interpretable format (cf. figure 22). Such a concrete model can be edited
with a simple text editor (in this case, we customized the GMF based editor to serialize models as
XMI resources but a XML version is available if we prefer a serialization conformed to a given XML
schema).

Figure 22: The produced model in its computer-readable view

JIME http://jime.open.ac.uk/23 Pre-print

The previous XMI serialization of the produced scenario is based on the domain model we designed:
direct references to concepts and relations are made. This example emphasizes the added-value of
having XMI serialization of domain models rather than XMI serialization showing some references to
UML constructs. It is also important to notice that the EMF framework (used with GMF)
automatically generates code in order to load and store such serialized resources.

3.2.6 Synthesis
In this subsection, we presented ongoing work on porting CPM language to the Eclipse Community.
For the time being, such effort provides no added-value to instructional designers and pedagogues
since the more visible result is a GMF-based editor that enables these actors producing CPM like
diagrams. However on the backstage, the EMF specification of the produced learning scenario can
then be exploited by any EMF-compatible tool, particularly by Model Driven Engineering tools to
transform such a specification into executable code. Moreover, CPM usability could also be improved
from such an approach since it enables engineers to more easily develop dedicated editors fitted to the
users’ needs (we recall that our efforts –cf. section 2- to specialize the Objecteering UML case tool for
CPM language did not completely succeed because specialization was limited by the UML profile
mechanism).

Yet, such an approach can only fit experimented teams with high-level technological skills. Diving
into Eclipse EMF techniques and tools is not straightforward. Producing GMF editors, transforming
EMF specifications into code is anything but simple and facing such complexity could bring
instructional engineers round to forget that the emphasis must remain on the educational added-value
of such editors and tools.

3.3 Operationalization through the Bricoles project
The Bricoles project proposed by Caron (2007) aims to provide, for small scale teaching teams who
could not benefit from the help an Instructional Designer, an infrastructure to construct pre-structuring
device on e-learning platforms. We speculate that pre-structuring devices are learning objects that are
sufficiently weak to be handled within the frame of controlled teaching improvisation. We believe that
such objects can be modeled, manipulated, constructed and technically implemented in e-learning
Platforms.

3.3.1 The conceptual framework
The conceptual framework of our proposition is made up of two processes. The first process aims to
create a workshop adapted to a specific type of pedagogical concern. The stakeholders of this process
are: the teacher, the instructional designer and the computer engineer.

Specific
Constructor

CPM metamodel

Automatic
transformation

Refining

Moodle metamodel Web Services Plugin
Figure 23: First process - pedagogical concerns, transformation rules, and web service plugin.

• The first step of this process is the description of types of pedagogical concerns by the teacher
and the instructional designer. It is possible to perform this work within the CPM metamodel.

• The second step is the definition of the transformation rules for the CPM metamodel to
Moodle metamodel by all the stakeholders. We take it for granted that the Moodle metamodel
and the Web service plugin, needed to communicate with Moodle, already exist (Hoogstoel
and Caron, 2008). Otherwise, they are produced by both the computer engineer (s) and the
instructional designer(s). This work and the implementation of the specific constructor are
detailed in next section.

The goal of the second process is to carry out the pedagogical aims of a teacher. Its principle is
simple:

JIME http://jime.open.ac.uk/23 Pre-print

• First the teacher defines his didactic purpose in a CPM model with graphic language.

• Second he transcribes it into a Moodle model.

• Third he uses Specific Constructor to deploy this model on the moodle platform via the Web
Service plugin.

3.3.2 The software support
The software support for the conceptual framework is made up of two tools developed by the LIFL
laboratory: ModX proposed by Le Pallec (2001) and used for the definition of metamodels and the
creation of models (cf. section 3.1), and GenDep proposed by Caron (2007) for implementation
purposes. GenDep - Generic Deployer – has been developed for the Bricoles project. For a given
source model, it communicates with the e-learning platform (selected through its web address) to
create matching target elements. A plugin must be inserted in each target web-based tool, so that
GenDep can interact with it. This plugging enables GenDep to create tangible technological model
elements.

3.3.3 Technical approach
We propose to plug a pre-structuring model onto an e-learning platform facilitating its pre structuring
use.

Specific builder

Dispositives on Moodle
platform

Specific modeler

Model of
dispositive

To build and
contextualize

Moodle metamodel

Web Services plugin

definition

CPM
metamodel

1

3

2

44

Figure 24: From modeling to deployment

Our approach is founded on the definition of an infrastructure that allows the building of a pre-
structuring device on an e-learning platform via the Web Service call. To achieve our goal, we have
defined a pluggable web services module for each application. This plugin is inspired by the IMS
enterprise standard and is a wrapper for the e-learning platform (Caron, Hoogstoel, Le Pallec and
Warin, 2007). From this plugin, we have defined the metamodel of Moodle (1). This metamodel,
expressed in Meta Object Facilities language, enables us to parameter a specific modeler of the
application, and to build a pre-structuring device constructor (2). Then, it is possible to express a
specific pre-structuring device model of the application (3). The engineering process we want to set up
is able to structure an application in order to promote its pedagogical use. E-learning platforms single
out emerging structuring mechanisms, which is why our infrastructure identifies a context definition
phase. This phase allows a dialog between pre-structuring device models and the emerging structures
(4).

Building a device on Moodle requires the identification of its construction functions. We propose to
wrap these functionalities with services. This solution avoids application code modification. It also
provides a standard solution to address an application, which doesn't depend on our solution.

JIME http://jime.open.ac.uk/23 Pre-print

It is possible to define the e-learning platform functionalities metamodel from the expression of the
services. (see next section). We propose to use this metamodel for two different purposes:

• The first one consists of using it as a metamodel to get a specific modeling tool for this web
application. Thus the models created are compliant to this metamodel.

• The second one implements the service constructor, compatible with the models produced
before. Within this constructor, it is possible to define a context for a model before it is
constructed.

The choice of Model Driven Engineering (MDE) enables us to define a fast and formal method to
generate these two specific tools. In the learning context, the evolution of practices and the lifecycle
development of e-learning platforms can bring teachers to redefine the modeling tools frequently. The
strength of MDE and our infrastructure is allowing these changes to happen dynamically. The MDE
and pre-structuring device approach of e-learning platforms promote usage-centered designs which are
important in an educational approach.

3.3.4 Web services Plugin
E-learning platforms do not always provide native service interface. So, our proposition is to wrap
their functionality in a Web service plugin (cf. Table 2). Such services ease the contextualization step.
The dialog these services promote allows the Pre-Structuring Device to take into account -in the
application context- already established structures. As Web Services are built on industry standard
protocols, and because Web Services are easy—even trivial—to implement with PHP and Java, we
decided to implement the services to wrap the Moodle application as Web Services (Hoogstoel et al.,
2008). They are indeed a useful technology for connecting a learning environment to organizational
data and processes, and for integrating various kinds of common functionalities. In our
experimentation, we address a Moodle application but our work is also conducted on four of the most
popular Open Source E-learning platforms (Ganesha, Claroline, Dokeos, Atutor). There is no standard
defining how to address a specific e-learning platform. E-Learning Framework initiatives present the
different service-oriented architectures applied to the development and integration of computer
systems in the learning domain. Amongst them, "IMS Enterprise specification: People and Groups"
are the definition of how systems manage the exchange of information describing people, groups and
memberships within the context of learning. Our proposition uses and expands this specification to
define the services adapted to our goal.

about
auth
createNewUser
createNewGroup
createNewCategory
createNewCourse
createNewSection
createNewAssignment
createNewWiki
createPageOfWiki
createNewForum
createNewDatabase

createNewLabel
getAllCourses
getAllTeachers
getAllUsers
getAllGroupsOfACourse
getAllGroups
getAllStudents
getAllCategories
getAllSectionsOfACourse
getAllSections
getAllForums
getAllDatabases

getAllWikis
getAllAssignments
affectUserToGroup
affectGroupToCourse
affectCourseToCategory
affectTeacherToTheCourse
affectStudentToTheCourse
affectSectionToCourse
affectSectionToForum
affectSectionToDatabase
affectSectionToWiki

affectSectionToAssignment
affectSectionToLabel
renameCourse
renameCategory
removeCourse
removeCategory
removeUser
removeWiki
removeAssignment
removeStudentFromCourse
removeTeacherFromCourse

Table 2: Our proposition of a generic web services API

3.3.5 Moodle Metamodel
It is generally difficult to define the technological metamodel of a domain. In an E-learning context,
this problem is reinforced by the diversity of platforms. Our approach defines the features that such a
metamodel must have and is organized as follows:

• Limitation of the functionalities.

• Identification of the element factories.

• Definition of the factorization mechanism.

JIME http://jime.open.ac.uk/23 Pre-print

The first point consists of restricting the modeling domain to the web services considered, excluding
for example the global setting (security, display pattern…). From the analysis of these services, we
can't identify element factories and their capacity to set elements which can be used by the web
services. These represent the concepts of the metamodel.

Figure 25: Part of the Moodle metamodel.

The definition of a factorization mechanism is the subject of our third part. The mechanism we
propose is based on the fact that a model is a simplified view of a system. Therefore a model element
can factorize the system collection of elements. This profiling mechanism is more general than the
mechanism of cast definition that we use to generate our specific constructor.

3.3.6 From CPM to Moodle
The transformation rules from a CPM model to a Moodle model have not been written. It is a very
difficult task:

• A lot of information in a CPM model is only for documentary purposes,

• Underlying CPM orchestration mechanisms have no equivalent on Moodle platforms,

• As a consequence of the second point, such rules would be very subjective, that is to say,
depending on pedagogical practices of the rule writer.

We only present in this part a small part of what “it” could be. We start from figure 6 which represents
workspaces that include different forums. The idea is to create forums functionalities in tune with the
forums offered by the Moodle platform. Figure 6 shows what a designer has to create: a resource
called “Forum” and for each forum that he/she wants to create, a class that inherits from the previous
resource must be created too. So here the principle of forum mapping rules is to search all resources
containing “Forum” and to look for classes that inherit from them.

JIME http://jime.open.ac.uk/23 Pre-print

Within ModX, rules are written in Java. Generally rules start by referencing CPM and Moodle
metamodels :
 modx.MOF.Model.Package CPM=getMetamodel("CPM");

 modx.MOF.Model.Package Moodle=getMetamodel("Moodle");

Then, in the script, the user is asked to choose the source mode; then, our rules create a corresponding
target model:
 //choose CPM source model

 modx.MOF.Instance.Model cpmModel=chooseModel(CPM);
 if (modelCPM==null) return;

 //create target Moodle model

 java.lang.String moodleModelName=askName("Moodle model
 name ?",cpmModel.getName()+"_moodle");
 modx.MOF.Instance.Model moodleModel =
 modx.MOF.Instance.Models.newModel(moodleModelName,CPM);

The rules load all resources of the selected CPM model and look for “*forum*” ones:
 //Load resources

 modx.MOF.Instance.Object[] resources =
 getObjects(getClass("CPM.contents.Resource"),cpmModel);

 //Select *Forum* resources

 java.util.Vector cpmForums=new java.util.Vector();
 for (int i=0;i<resources.length;i++)
 if (resources[i].getName().toUpperCase().matches(".*\\bFORUM\\b.*"))
 cpmForums.add(resources[i]);

the rules search for classes inheriting (directly or not) from previous selected resources:
 //Select also forum-like classes

 modx.MOF.Instance.Object[] classes =
 getObjects(getClass("CPM.contents.Class"),cpmModel);
 boolean doARoundAgain=true;
 while (doARoundAgain) {
 doARoundAgain=false;
 for (int i=0;i<classes.size();i++) {
 if (!(cpmForums.contains(classes[i])))
 if (cpmForums.contains(classes.get("superClassifier"))) {
 cpmForums.add(classes[i]);
 doARoundAgain=true;
 }
 }
 }
Finally, the rules create corresponding forums in the Moodle target model:
 //Create Equivalent Moodle forums

 for (int i=0;i<cpmForums.size();i++) {

 modx.MOF.Instance.Object currentCpmForum =
 (modx.MOF.Instance.Object)cpmForums.get(i);
 modx.MOF.Instance.Object moodleForum =
 createObjectInModel(currentCpmForum.getName(),
 getClass("Moodle.contents.Forum"),moodleModel);
 }

JIME http://jime.open.ac.uk/23 Pre-print

3.3.7 Specific Constructor implementation
For each application, we have to create a specific constructor which allows the context definition of
the modeled Pre-Structuring Device. From the Pre-Structuring Device model, this constructor
generates a contextual Pre-Structuring Device through the platform Web services plugin. The
implementation of the specific constructor is almost exclusively generated from the metamodel
interpretation and from the file describing the different Web Services. Only the methods allowing the
deployment and the retrieving of the object on the e-learning platform must be completed to address
the correct service.

Web based
TOOL

Generic
constructor

Class
implementation

Generic
interface to
construct

Service stub
implementation

WS

Modeling
tool

Specific
modeler

model

Meta model

MOF

Specific
constructor

Collection
of Object

Dispositive

Collection
of Calls

Figure 26: Gendep Technical process

3.3.8 Synthesis
In this subsection, we presented ongoing work on porting CPM scenarios to the Moodle Community.
For the time being, such effort showed that technology enables developers to map learning activities
with Moodle components and services, and as a consequence to deploy CPM learning scenarios on the
Moodle platform. This advance makes possible to spread CPM language abroad the Moodle
community, particularly those users who try to deploy constructivist learning scenarios with the
Moodle platform. Since the design and development of Moodle were guided by social constructivist
pedagogy with an emphasis on tools that promote collaboration and self evaluation (Dougiamas and
Taylor, 2003), CPM and the Bricoles toolkit can clearly help Moodle users draw and deploy a scenario
that makes use of such collaborative and self evaluation tools.

Yet, such an approach can introduce further complexity: Moodle is a Course Management System that
is specialized in editing and using online-courses; not to design such online-courses. While Moodle
uses Web forms to edit courses, CPM favours diagrammatical tools. As a consequence, usability of a
platform that would embed CPM in Moodle (thanks to the Bricoles Toolkit) is far from being
guaranteed.

4 Conclusion and perspectives
CPM is a visual, layered, semi-formal, multi-perspective language dedicated to the description of
collaborative learning scenarios with special emphasis on Problem-Based Learning (PBL). It is not a
drawing tool; it is based on the CPM profile that defines the syntax and semantics of such a visual
language.

In this paper, we first presented in section 2 the way designers can model the planets game learning
scenario with CPM language. We showed that, by means of the layering mechanism, designers may
tackle more easily a complex situation using this graphical and conceptual feature of CPM language:
they start with a coarse-grained description to grasp the global situation (cf. Figure 8 and Figure 7) and
can then decompose each element to get a complete and detailed description. Next, with the multi-
perspective mechanism, the designers may focus on the same objects in different perspectives (for
example, the interview repository in Figure 4 and in Figure 6) and at different levels of abstraction (for
example, the Act2:Game in Figure 7 and in Figure 8). Thanks to such language, they may focus on the
sequencing of activities, the behaviour of a particular activity, role responsibilities, etc. The browser
provides a uniform access to all objects of the learning scenario (cf. Act2:Game in Figure 10).

JIME http://jime.open.ac.uk/23 Pre-print

The different case-studies that we conducted over three years with this language demonstrated
(Nodenot, Laforcade, Le Pallec, 2007) that even though most pedagogues are not able to produce,
without methodological support, a set of CPM coherent models, both pedagogues and developers can
contribute to and benefit from such design models. Among the recurrent difficulties faced by
designers, we underline two important points:

1. The concepts offered by CPM language enabled designers to map the services supplied by an
LMS according to the specificities of the activities to be fulfilled within a learning scenario
(cf. the CPL stereotypes of Figure 9 that represent different functionalities offered by a
forum tool). But the CPM toolset did not offer any functionality to help them deploy such
activities in a concrete LMS form. As a consequence, there was an important gap between
the time for designing a learning scenario and the time for its evaluation on a concrete LMS.
Such a gap was somewhat frustrating since the models produced at design time could have
been transformed into code (cf. Model-Driven Engineering techniques and tools).

2. The CPM toolset provides the designers with a modeler built on top of the Objecteering UML
case-tool. We developed different CPM assistants, wizards and macros to help the designers
select and use CPM concepts according to the diagram being produced, to automatically
generate an adequate hierarchy of packages (cf. figure 10) when a new project was being
created. Yet, pedagogues and designers still felt that the toolset was not usable enough for
people without computer-science skills. They were not confident in the interaction process
enforced by the underlying UML case-tool and they often asked us to propose the CPM in a
dedicated visual environment.

In section 3, we presented different works to answer such implementation weaknesses. Thus, we
outlined a MOF solution (section 3.1) and an Eclipse GMF solution (section 3.2) instead of the UML
profile approach. We also proposed in section 3.3 some indications to transform CPM models into
LMS compliant data and tools functionality. This work in progress already demonstrates that going
towards more usability for CPM is a reachable objective. The usability of the next versions of the
CPM editor will then need to be assessed by pedagogues in real-world case studies as we have done
with the current CPM editor.

5 References
Allert, H. (2005). Modeling Coherent Social Systems for Learning. Thesis Dissertation, Hannover
University (Germany).

Allilaire, F., J. Bézivin, F. Jouault and I. Kurtev (2006). ATL - Eclipse Support for Model
Transformation. Proceedings of the Eclipse Technology eXchange workshop (eTX), ECOOP 2006
Conference , Nantes, France.

Botturi, L., M. Derntl, E. Boot and K. Gigl (2006). A Classification Framework for Educational
Modeling Languages in Instructional Design. 6th IEEE International Conference on Advanced
Learning Technologies (ICALT 2006), Kerkrade (The Netherlands).

Caron, P.-A. (2007). Ingénierie dirigée par les modèles pour la construction de dispositifs
pédagogiques sur des plateformes de formation. Doctorat en Informatique de l'Université de Sciences
et Technologies de Lille.

Caron, P.-A., X. Le Pallec and S. Sockeel (2006). Configuring a web based tool through pedagogical
scenarios. IADIS Virtual Multi Conference on Computer Science and Information Systems (MCCSIS
2006).

Caron, P. A. (2007). Web services plug-in to implement "Dispositives" on Web 2.0 applications. EC-
TEL 07 International Conference, Springer LNCS, Crete (Greece).

Caron, P. A., F. Hoogstoel, X. Le Pallec and B. Warin (2007). Construire des dispositifs sur la
plateforme Moodle. Moodlemoot 2007 Conference, Castres (France).

JIME http://jime.open.ac.uk/23 Pre-print

Dougiamas, M. and P. C. Taylor (2003). Moodle: Using Learning Communities to Create an Open
Source Course Management System. EDMEDIA 2003 Conference, Honolulu, Hawaii (USA).

EMF. (2008). Eclipse Modeling Framework Project. Accessed online on May 2008, at
http://www.eclipse.org/modeling/

GMF. (2008). GMF Project. Accessed online on September 2008, at http://www.eclipse.org/gmf/

GMT. (2008). GMT Project. Accessed online on June 2008, at http://www.eclipse.org/gmt/

Hoogstoel, F. and P.-A. Caron. (2008). projet GenDep-Moodle, Espace dédié au développement WS
Moodle. Accessed online on September 2008 at
http://www.assembla.com/wiki/show/MoodleWSPourGenDep .

JET. (2008). JET Project. Accessed online on September 2008 at
http://www.eclipse.org/modeling/m2t/?project=jet

Jouault, F., J. Bézivin, C. Consel, I. Kurtev and F. Latry (2006). Building DSLs with AMMA/ATL, a
Case Study on SPL and CPL Telephony Languages. Proceedings of the 1st ECOOP Workshop DSPD,
Nantes, France.

Kelly, S. and J. P. Tolvanen (2008). Domain-Specific Modeling. Wiley-IEEE Computer Society Press.

Laforcade, P. (2004). Méta-modélisation UML pour la mise en oeuvre de situations problèmes
coopératives. LIUPPA. Doctorat en informatique de l'Université de Pau et des Pays de l'Adour
(France).

Le Pallec, X. (2001). RAM3 : un outil dynamique pour le Meta-Object Facility. LMO2001: Langages
et Modèles à Objets, numéro spécial de la revue L'Objet, Hermes, 2001, 79-94.

Nodenot, T., P. Laforcade and X. Le Pallec (2007). Visual Design of coherent Technology-Enhanced
Learning Systems: a few lessons learnt from CPM language. Handbook of Visual Languages in
Instructional Design; Theories and Practices. L. Botturi and T. Stubbs, Hershey, PA: IDEA Group:
254-280.

OMG. (2007). Meta-Object Facility (MOF) Specification. Accessed online on February 2007 at
http://www.omg.org/mof

Patrascoiu, O. (2004). YATL:Yet Another Transformation Language. 1st European MDA Workshop,
University of Twente, The Netherlands.

Vignollet, L., J.-P. David, C. Ferraris, C. Martel and A. Lejeune (2006). Comparing Educational
Modeling Languages on a Case Study. Workshop in conjunction with the 6th IEEE International
Conference on Advanced Learning Technologies (ICALT 2006), Kerkrade, The Netherlands.

http://www.eclipse.org/modeling/
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmt/
http://www.assembla.com/wiki/show/MoodleWSPourGenDep
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.omg.org/mof

	1 Introduction
	2 Pedagogical transposition of the Planets game with CPM language
	2.1 The knowledge to be taught
	2.2 The expert interviews embedding the knowledge to be taught
	2.3 Our didactic choices to help learners reach such knowledge embedded in the expert interviews
	2.3.1 Workspace modeling
	2.3.2 Focus on the Planets Game Learning scenario
	2.3.3 The CPM Browser

	3 Related works to enhance CPM usability
	3.1 ModX
	3.1.1 Main principles
	3.1.2 CPM with ModX

	3.2 Use of Domain-Specific Modeling tools from the EMF project
	3.2.1 Domain-Specific Modeling
	3.2.2 The Planets game case study: a new use case-based representation
	3.2.3 EMF/GMF framework presentation
	3.2.4 Rationale for using GMF to develop a CPM editor
	3.2.5 Back to the Planets Game example
	3.2.6 Synthesis

	3.3 Operationalization through the Bricoles project
	3.3.1 The conceptual framework
	3.3.2 The software support
	3.3.3 Technical approach
	3.3.4 Web services Plugin
	3.3.5 Moodle Metamodel
	3.3.6 From CPM to Moodle
	3.3.7 Specific Constructor implementation
	3.3.8 Synthesis

	4 Conclusion and perspectives
	5 References

