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Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and
Monte Carlo simulations. We introduce an algorithmic framework for simulating charged particles which
modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces
an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the
Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged

lattice gas.
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The electrostatic interaction between two point charges
in a medium with uniform dielectric constant €, varies as
e1ey/4megr. The large numerical value of this energy to-
gether with its long range are such that it is very often
the most costly component in the simulation of charged
condensed matter systems. Naive evaluation of the elec-
trostatic energies in molecular dynamics and Monte Carlo
algorithms leads to inner loops where the summation over
all pairs takes a time which scales as O(N?) for a single
step in which all N particles are updated.

Many methods are used to improve this poor scaling:
The optimized Ewald algorithm splits the summation be-
tween real and Fourier space and has a complexity of
O(N?*?) [1,2]. By interpolation of the charge distribution
onto a grid, fast Fourier transform methods allow a scal-
ing in O(N log(N)) [3]. Finally, a popular method in very
large simulations is an expansion of the charge distribu-
tion using hierarchical multipoles [4,5]. The asymptotic
improvement in efficiency comes, however, with great in-
creases in the complexity of the coding, especially when
distributed on multiprocessor computers. The numerical
prefactors in these scaling laws are uncomfortably high:
Despite the great effort put into optimizing the electro-
static loop, it is found that in the simulation of a large
biomolecule (with N ~ 10°) the great majority of the CPU
time is still used in the Coulomb loop [6] in even the most
sophisticated numerical codes. Most of these “fast” meth-
ods can be used efficiently only in molecular dynamics
simulations; there are many occasions where one would
like to perform efficient Monte Carlo simulations due to
the stability and simplicity of the method.

The classical methods for treating charged systems have
another disadvantage, their inability to treat systems with
inhomogeneous dielectric constants. Dielectric inhomo-
geneities have drastic effects on material properties. For
instance, the dielectric contrast between water and the core
of proteins leads to expulsion of counterions from a 3 A
thick hydration layer [7]. To treat charging effects in
proteins quite arbitrarily, uncontrolled approximations are
made [8] on effective electrostatic interactions in the vicin-
ity of a protein in order to reduce interactions to effective
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pairwise additive potentials. Similarly, much work [9] has
been performed on the phase structure of charged synthetic
polymers while neglecting the large dielectric contrasts be-
tween water based solvents and oily backbone structures
which are surely important in the discussion of the stabil-
ity of the necklace structures predicted in these systems.
At present the most promising algorithms are based on the
nonlocal Marcus energy functional [10,11].

This Letter introduces a local algorithm with a propagat-
ing field E with purely local dynamics on an interpolating
grid; it has a complexity in O(N) and is elementary to
implement. In contrast to conventional grid methods, we
do not solve for all the field variables at each integration
step; we let the field evolve with its own intrinsic dynam-
ics. We were motivated by the observation that Maxwell’s
equations, which are local, produce Coulomb interactions
due to the propagation of a vectorial field. These dynamic
equations are, as we shall see, not the only dynamic way
of generating the Coulomb interaction. Our method al-
lows a direct, local implementation of dielectric inhomo-
geneities. As a demonstration of the method we present an
explicit implementation of a local Monte Carlo algorithm
for a charged lattice gas. We note that techniques which
interpolate charge degrees of freedom onto a lattice are
already very well understood; they form part of standard
packages such as Amber [3].

We proceed by showing that the Coulomb interaction
can be derived from a constrained variational problem. We
then show that the constraint equations are solved locally
if we allow electric fields which have both gradient and
rotational degrees of freedom. This freedom can be used
to produce a local Monte Carlo algorithm. Finally, we
present a numerical verification of the method.

The energy of a system of charged particles in a uniform
dielectric background is expressed as a function of the
electric field E

E2
fu=eof—d3r, (1)
2
where the electric field is constrained by Gauss’s law
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divE — p/ep = 0. (2)

It is known from classical electrostatics that one solu-
tion of Eq. (2) is given by E = —grad¢ so that V2¢ =
—p/€y. The general solution to the constraint Eq. (2) is
thus

E = —grad¢ + curlQ, 3)

where ¢ is unique to within an additive constant and Q ar-
bitrary. In Fourier space the electric field can be expressed
as E(k) = —ik¢ + ik A Q. The second term of this ex-
pression is perpendicular to k so that there are two physi-
cal degrees of freedom in the Q field, corresponding to two
independent polarization states. We can consider that the
field is due to a static potential plus transverse photons.

Let us study the stationary states to the variational prob-
lem posed by Egs. (1) and (2) by using a Lagrange multi-
plier, with the functional

2
A = f[eo% — Ar) (eg divE — p)}d3r, (4)

implying that E + gradA = 0. The Lagrange multiplier
is identical to the static electrostatic potential, ¢, and the
minimum energy is Ucouom = 5 J(grade)? d*r. Con-
sider the energy Eq. (1) for an arbitrary E satisfying the
constraints then

U= % f [(gradg)® + (curlQ)]dr.  (5)

Cross terms vanish, as is shown by integrating by parts.

We now turn to the statistical mechanics of a field with
the energy of Eq. (1) constrained by Gauss’s law. We
do not impose that the electric field is calculated from a
potential. The partition function of a fixed set of charges
in the presence of a fluctuating field E is given by

2y = [ DEe Soawr

X [T8ldivE — p(r)/eo]. (6)

The argument {r} denotes the fact that the integral over
the particle positions has not yet been performed. There
are two ways of treating this equation. Either one intro-
duces an integral representation of the delta function or one
notes that the integral over the field E decomposes into a
(unique) gradient term and a (nonunique) rotation so that

2t = o s [ e

(7
where DE,; =[], §(divE)DE performs the summation
over all the rotational degrees of freedom of the field
described by the potential Q. All the dependence on the
particle positions is in the prefactor characterized by the
electrostatic potential ¢ found by solving Poisson’s equa-
tion. This prefactor gives the Coulomb interaction between
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the particles. The remaining integral is independent of
the positions of the charges; rather remarkably, integration
over the full set of fields allowed by the constraint multi-
plies the standard partition function by a simple constant.
This extra factor in the partition function can be ignored.

In the presence of nonuniform dielectric media one pro-
ceeds in a similar manner with the energy

D2
U= / 4’ 8
2em) ‘" ®)
and the constraint divD — p = 0. We deduce that the
displacement is given by D = —e grad¢p + curlQ with
div(e grad¢p) = —p and

Zdrh = e—(B/2)fe(r)(grad¢))2d3r

% f DE,e” [18/2€(w)IE2 @ ©)

so that
Z ({I‘}) = ZCoulomb ({l‘}) Zfluct ({l‘}) . (10)

This time the normalization is a function of the distribution
of dielectric inhomogeneities. When implemented in inho-
mogeneous media our treatment leads to potentials that are
the sum of the Coulomb and a fluctuation potential [12]
which varies as 1/r® for two widely separated particles.
This term comes from thermally driven dipole-dipole in-
teractions: Fluctuations in the field produce an inhomoge-
neous polarization, P, of the dielectric background. This
produces an equivalent charge density of —divP which in-
teracts via Coulomb’s law. Such fluctuation potentials are
to be expected from the Lifshitz theory of dielectrics.

We now propose a lattice version of the above equations
suitable for numerically studying the thermodynamics of
charged systems. The trick is to use the arbitrary vector
potential Q to simplify the calculation of the updated fields
after the motion of a charged particle. We need, also,
to sum over all rotational degrees of freedom of the field
in order to calculate statistical weights from the partition
function Eq. (6).

The observation we use in order to implement a local al-
gorithm is that the constraint equation, Eq. (2), can be up-
dated /ocally in a system in which charge is conserved. We
first reinterpret the constraint in terms of Faraday’s concept
of conserved electric flux: Consider, Fig. 1 (top), a net-
work where the charges are confined to the vertices {i} and
the field is associated with links between two sites, {i, j}.
Around each lattice point we imagine a cube and write the
constraint in integral form [ E - dS = ¢;/€,. The integral
is over the surface of the cube, ¢; is the enclosed charged
at the site. We use the notation £ » to denote the total flux
leaving 1 towards 2; clearly Ej» = —E, .

The discretized version of the integral constraint is
> ; Eij = ei/€o. The discretized energy is given by

€0
U= E. (11)

links

196402-2



VOLUME 88, NUMBER 19

PHYSICAL REVIEW LETTERS

13 MAy 2002

! Eip 2

~
) —

N

3 Ej3p 2
—
E,; * C A Ei2
-
4 1
4.1

FIG. 1. Top: A charged particle is present on the left lattice
point. If the particle is transferred to the right lattice point, the
constraints are still satisfied if E1, is modified to E1» — ¢/€g
on the connecting link where e is the charge of the particle.
Bottom: The four fields associated with a single plaquette, C,
are modified by a rotational motion.

Here and in what follows we assume that the lattice spacing
is unity.

Start with a system where the constraint is satisfied,
Fig. 1 (top), and displace a charge, e, situated on the
leftmost lattice site, 1, to the rightmost site, 2. The con-
straint is again satisfied at both sites if the field associ-
ated with the connecting link is updated according to the
rule E1p, — E12 — e/€. This is our Monte Carlo move
for the particles, involving a correlated update of a single
charge and the field on the link connecting two sites. To
update the field configurations, Fig. 1 (bottom), we update
all the field values of a single plaquette while conserving
the constraint at each vertex. In Fig. 1 (bottom) £;» and
Ey4 increase by an increment A, whereas E43 and Ej3)
decrease by A so that at each vertex the sum of the enter-
ing and leaving fields is constant. It is this last update that
performs the integration over all the rotational degrees of
freedom in the E field.

The two moves are not quite sufficient to equilibrate a
system with periodic boundary conditions in all situations.
This problem is linked with the solution ¢ = —E - r or
E = E of the Laplace equation on a torus where E is an
arbitrary constant vector. Motion of the charges generates
fluctuations in E, while updates such as those in Fig. 1
(bottom) preserve E; similar phenomena also occur with

196402-3

Maxwell’s equations. In order to be absolutely sure that the
algorithm is ergodic we introduced a third possible Monte
Carlo step which consists of a shift in E. By keeping
track of the evolution of E as the particles move, this last
update can be efficiently implemented without destroying
the O(N) scaling of the algorithm. In the largest systems
fluctuations in this single mode should give a small con-
tribution to the thermodynamics if the initial condition is
typical; in such cases this update can be eliminated.

We have performed two initial verifications of the al-
gorithm. First we randomly placed four positive and four
negative charged particles on a4 X 4 X 4 lattice with pe-
riodic boundary conditions. We performed field updates
using the Metropolis algorithm at zero temperature in or-
der to anneal the field E. We then solved for the elec-
tric fields using a standard linear algebra package. The
results were identical to within numerical errors. An-
nealing E was crucial in order to get agreement between
the two methods with frozen charges. A second check
was then performed with two different implementations
of the Metropolis algorithm now run at several finite tem-
peratures: 36 mutually avoiding, charged particles were
distributed in a 6 X 6 X 6 cube with periodic boundary
conditions. The dielectric constant was uniform. In the
first simulation the linear solver was used to calculate the
exact interaction energy of the charged particles at each
Monte Carlo step. In the second simulation we imple-
mented the above local algorithm. For the two methods we
then compared the static structure factor for charge-charge
correlations, finding good agreement.

We verified the efficiency of the algorithm by deter-
mining the autocorrelation time of the slowest density and
charge modes in a cube of dimension L using the method
described in [13], Fig. 2. We plot the relaxation time in
Monte Carlo sweeps; during each sweep an average of one
Monte Carlo trial is performed for each degree of freedom
in the simulation. As expected in a Monte Carlo algorithm
dominated by diffusive motion the slowest mode relaxes
in a time which varies as L?. There is no anomalous or
critical slowing down due to the coupling between the par-
ticles and the electric field. The saturation of the relaxation
time for charge fluctuations at large L is a consequence of
screening; charge fluctuations relax by diffusion over the
Debye length.

We have shown that the thermodynamics of charged sys-
tems can be simulated locally by introducing a propagating
vector field so that particles interact via retarded, diffusing
fields. The dynamic properties of the system are strongly
modified, but by construction thermodynamics is an in-
variant of the propagation dynamics. Our treatment of the
dynamics of the field E is similar to the Coulomb or ra-
diation gauge in classical electrodynamics: Normally one
writes that

oA
E = —grad¢ — o (12)
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FIG. 2. Relaxation times in Monte Carlo sweeps for the
density-density (top) correlation function and the charge-charge

(bottom) correlation function measured for the mode 2TW(I, 0,0)
plotted as a function of L2. The top curve shows scaling com-
patible with simple diffusion. The bottom curve saturates for
large system sizes. The multiple points for each L correspond
to three independent determinations of the relaxation time.
System sizes between L = 6 and L = 36 with L*/4 charged
particles. There were 6 X 10° sweeps per simulation for a total
simulation time of three days on a AMD Athlon computer.

where in the Coulomb gauge divA = 0. There is a rather
close analogy between our dynamic scheme of solving for
the constraint equations with certain methods of quanti-
zation in the Coulomb gauge: In Dirac’s quantization of
the electrodynamic field Gauss’s law is a weak identity
[14] dependent on the choice of the initial wave function.
In our simulation Gauss’s law is the result of a restricted
choice of possible moves in the Monte Carlo algorithm to-
gether with a special initial condition.

What are the advantages of the present method over di-
rect integration of Maxwell’s equations which are also an
example of an O(N) algorithm? Monte Carlo algorithms
are particularly easy to implement and have good stabil-
ity with large step sizes. In addition, we have checked
that the fast equilibration of the electric degrees of free-
dom in Fig. 2 allows one to perform field updates far more
rarely than particle updates leading to additional accel-
eration of the algorithm. Such multiple time step ideas
have been applied to conventional electrostatic solvers but
in molecular dynamics are sometimes prone to numerical
instabilities [6].

In the implementation of the algorithm we were
inspired by recent work on hydrodynamic interactions
(varying as 1/r) via a Lattice-Boltzmann algorithm in
simulations of polymer solutions [15]. Another analogous
problem to ours has been treated by Car and Parrinello
who have shown [16] that introduction of a fictitious
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dynamics leads to much improved efficiencies in solving
for constraints; our work differs in that the constraint of
Gauss’s law is solved exactly at each simulation step,
whereas a Car-Parrinello algorithm leads to a simulated
annealing treatment of Eq. (4).

Finally let us note that other functionals do exist for
the electric potential in the presence of sources [17]. In
particular, the functional

f[%(%)z - pqﬂdf’r (13)

seems, at first sight, particularly simple and attractive. Un-
fortunately, the minimum of this functional is minus the
correct electrostatic energy. It cannot be used as a func-
tional for both the field evolution and the particle motion.
Applications of the algorithm to large atomistic systems
remain to be tested, but our method provides an alternative
to existing treatments of Coulomb interactions.

We thank R. Everaers for many crucial discussions in
the formulation of this work, in particular for his remarks
on the importance of dielectric effects.
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