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Fault Detection and Diagnosis in a Set
“Inverter–Induction Machine” Through
Multidimensional Membership Function

and Pattern Recognition
Olivier Ondel, Guy Clerc, Member, IEEE, Emmanuel Boutleux, and Eric Blanco

Abstract—Nowadays, electrical drives generally associate in-
verter and induction machine. Thus, these two elements must be
taken into account in order to provide a relevant diagnosis of these
electrical systems. In this context, the paper presents a diagnosis
method based on a multidimensional function and pattern recog-
nition (PR). Traditional formalism of the PR method has been
extended with some improvements such as the automatic choice
of the feature space dimension or a “nonexclusive” decision rule
based on the k-nearest neighbors. Thus, we introduce a new mem-
bership function, which takes into account the number of nearest
neighbors as well as the distance from these neighbors with the
sample to be classified. This approach is illustrated on a 5.5 kW
inverter-fed asynchronous motor, in order to detect supply and
motor faults. In this application, diagnostic features are only ex-
tracted from electrical measurements. Experimental results prove
the efficiency of our diagnosis method.

Index Terms—Data standardization, diagnosis, induction ma-
chine, inverter, membership function, nonexclusive decision rule,
pattern recognition (PR), reliability index.

I. INTRODUCTION

THE MONITORING and diagnosis of induction machines
have been under focus for at least 20 years [1]–[3].

These motors present numerous advantages due to their ro-
bustness and their power–weight ratio. Thus, they are widely
used in industry. Most electric motor failures interrupt a pro-
cess, reduce production, and can damage other related machin-
ery. In some factories, a very expensive scheduled maintenance
is performed in order to prevent sudden motor failures. There-
fore, there is a great demand to reduce maintenance costs and
prevent unscheduled downtimes for electrical drive systems. In
the past two decades, there has been research in order to provide
new monitoring techniques for ac induction motors based on
analyzing vibration signals [4]–[8], or signals other than cur-
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rents [9], [10]. However, the vibration sensors are delicate and
expensive. Most of the recent research has been directed toward
electrical monitoring of the motor, in particular, on inspect-
ing the stator current. At this time, the motor current signature
analysis (MCSA) was the first attempt to detect electrical and
mechanical faults with the so-called semiinvasive and low-cost
sensors [11]–[13].

These methods are rather effective when the motor is supplied
by the three-phase main network. However, in more and more
industrials applications, the asynchronous motor supply is done
by converters. Thus, the currents are affected by the multiple
harmonics of the switching frequency. Thus, it becomes very
difficult to detect faulty modes by current signature analysis.

To our knowledge, there is no recent statistical study on the
static converters breakdowns. It was shown that the components
showing the highest failure rate are generally the electrolytic
capacitors [14]. This study had been carried out for a dc/dc
forward converter. The author had shown that the capacitors
were responsible for three-fourth of the breakdowns.

For these reasons and assuming that this study is applicable
to others static converters, we limited ourselves, during our
application, with the influence of the capacitors failures on the
converter itself and also on the possible interactions with the
induction machine.

In this context, this paper presents a diagnosis method, used
to detect and localize failures in a set inverter–induction motor.
This method is based on a pattern recognition (PR) approach.
Starting from the traditional formalism of PR, we have devel-
oped an automatic supervision system for the diagnosis of pro-
cess (inverter–induction machine). To improve this technique,
we integrated some specificities as the choice of feature di-
mension space or a new decision rule that allows associating a
membership degree to the classification realized.

The aim is to automatically identify the operating conditions
(faulty or not) of the system and differentiate if the failing op-
eration is due to the inverter (power supply) or the induction
machine.

In Section II, an introduction to diagnosis by PR is done.
The PR method is divided into two phases. The first one, named
training phase, consists in determining the pattern vector (deter-
mination of the features sensitive to the faults), the feature space
by features selection methods, the decision space (the classes),
and in developing a decision rule. The classification varies ac-
cording to the choice of feature subset and also with the choice
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of the number of features, which makes the optimal pattern
vector. To determine this number of features, i.e., the feature
space dimension, we optimize a criterion based on separability
and compactness of the various classes. This technique is de-
veloped in Section II and the results are shown in Section VI.
The second step, named decision phase, consists in associating
an unknown pattern with one of the defined classes, according
to the decision rule.

Sections III and IV are devoted to the development of a new
decision rule being based on a well-known decision rule, the
k-nearest neighbors (k-nn). Thus, a membership function spec-
ifying the membership degree of a new observation to each class
is implemented. In order to minimize the errors of classification,
we used two reject options (distance and ambiguity), which al-
low avoiding automatic assigning of an unknown pattern to one
of the classes.

For the necessity of the application, in Section V, data stan-
dardization according to the value of the first harmonic of each
measured signal is developed. It will allow freeing the data from
the machine load level. Thus, one operating mode is represented
by only one class.

In Section VI, we apply our diagnosis method on an asyn-
chronous motor supplied by an inverter in order to differentiate
the appearance of the faults occurring on the inverter from these
on the machine.

II. DIAGNOSIS BY PATTERN RECOGNITION

The aim of statistical PR is to classify objects (patterns) by
comparing with reference patterns gathered into classes (clus-
ters) [15]. Such a decision system based upon PR requires an
a priori knowledge of the studied process in order to define
objects and classes. In statistical PR, an object is a set of d
features (x1 , x2 , . . . , xp , . . . , xd) represented as a point in
the d-dimensional real space issued from these features. This
space is named feature space. Thus, a pattern i (i = 1 to
n, n being the total number of objects composing the initial
database), is characterized by a pattern vector (or a signature)
Xi = [xi1 , xi2 , . . . , xid ] belonging to �d . The classes or clus-
ters (Ω1 ,Ω2 , . . . , Ωc , . . . , ΩM ) are subspaces of �d including
similar reference patterns. The principle of recognition is to
determine with which class, among the M known classes, to
associate a new observed pattern Xu = [xu1 , xu2 , . . . , xud ].

The PR method is made in two phases. The first one, named
training phase, consists in determining the feature space (a pat-
tern vector), the decision space (the clusters), and developing a
decision rule that produces borders between classes. The second
one, named decision phase, consists in associating an unknown
pattern with one of the defined clusters, according to the decision
rule. This method is more precisely described in [16] and [17].
The accuracy of PR is based on the choice of features contained
in this vector. Thus, in the following section, the features used
to detect failures on our system are described.

A. Relevant Signatures for Induction Machine Fault Monitoring

A complete study made by [18] on failures location in a
medium-power induction machine has given the following re-

Fig. 1. Bearing sizes marked.

sults: more than 50% of faults affect the bearings; about 16% of
faults are localized on the stator winding; finally, 5% and 2.5%
of faults affect the rotor and the shaft, respectively.

Currents can provide very rich information on rings, misalign-
ment, and eccentricities or broken bars [19], [20]. The following
paragraphs present the main signatures, which can be observed
on the current spectrum.

1) Eccentricities: The stator currents are affected by the
variation of the air gap length. Therefore, they present har-
monics at the frequencies given by

fecc = fs ·
[
(Nr ± nd)

(
1 − g

p

)
± nw

]
(1)

where fs is the supply frequency, Nr is the number of rotor
bars, p is the number of pole pairs, and nw is an odd integer.
The quantity g is called per unit slip. The integer nd equals zero
for the static eccentricity, and one for the dynamic eccentricity.

2) Bearing Faults: The current harmonics due to the bearing
faults are given in [19] and [21]

fbng = fs ± Nb · fi,o (2)

where Nb is the number of balls. The frequencies fo and fi (3)
are related to the inner and outer race, respectively,

f0 =
fr

2

[
1 − BD

PD
cos β

]
and fi =

fr

2

[
1 +

BD
PD

cos β

]
(3)

where BD and PD are, respectively, the ball diameter and the
pitch diameter, and β is the contact angle between the balls and
the ball bearing rings (see Fig. 1).

3) Rotor Faults: Broken bars and end-rings induce the same
harmonic in the stator currents. In presence of these faults, the
stator currents are modulated in amplitude by the slip frequency
(2gfs).

This modulation increases according to the severity of the
fault. In the current spectrum, the harmonics due to the fault can
be found at the following characteristic frequencies:

fb = fs · (1 ± 2 · n · g). (4)

4) Stator Winding Faults: Stator winding failures are dan-
gerous damages. By using a three-phase models and experi-
mental studies, it has been shown by [22] and [23] that turn-
to-turn short circuits create electrical unbalance on the currents.
This asymmetry was quantified through the inverse impedance
by [24].
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Throughout this synthesis, it appears that most of the faults
produce different sensitive frequency harmonics. Thus, 25 har-
monics are computed and integrated in the feature vector.

However, some faults (stator faults) require more investiga-
tions. Some other features are based on:

1) the Park’s transformation of currents Isα , Isβ and voltages
Vsα , Vsβ ;

2) the estimation of the positive sequence components of the
line voltages and currents.

a) Park vector components: Currents and the voltages
modulus, Isα,β and Vsα,β , can be expressed by


Isα,β =

∥∥∥−−−→Isα,β

∥∥∥ =
√

I2
sα + I2

sβ

Vsα,β =
∥∥∥−−−→Vsα,β

∥∥∥ =
√

V 2
sα + V 2

sβ .
(5)

The active and reactive powers (P and Q respectively) are
directly calculated with these currents and voltages [25]:

P = Vsα · Isα + Vsβ · Isβ

Q = Vsβ · Isα − Vsα · Isβ . (6)

Reactive and active powers are normalized by the rms value
of apparent power modulus S =

√
P 2 + Q2 and are denoted

Q′ and P ′.
Three features are extracted from these analyses.
1) The variation of the apparent power called ζ.
2) The mean values of P ′ and Q′, called mp and mq .
Let mp,q be the center of the characteristic [P ′Q′] and sk one

point of the set, respectively,

sk = [P ′(k) Q′(k)] (7)

mp,q = [mp mq ]. (8)

Thus, the variation of the apparent power is the scalar defined
by

ζ =
Np∑
k=1

(sk − mp,q )(sk − mp,q )
T (9)

where Np is the number of points in the signals.
Five more features are calculated from the currents.
1) The peak-to-peak values of Isα and Isβ :

δα = |max(Isα ) − min(Isα )| and δβ

= |max(Isβ ) − min(Isβ )| . (10)

2) The standard deviations of Isα , Isβ , and the modulus
Isα,β , called σα , σβ , and σs , respectively.

These are the eight first features calculated for the pattern
vector building.

b) Positive sequence components: Other features are cal-
culated from a unique expression of the three-phase voltages
and currents: their positive sequence components. The complex
positive sequence components for the currents and voltages are

I1 =
1
3
·
(
Isa + aIsb + a2Isc

)
(11)

V1 =
1
3
·
(
Vsa + aVsb + a2Vsc

)
, with a = ej (2π/3) .

Furthermore, two other features are defined with the help of
the positive sequence approach.

1) The mean power of the current’s (P1):

P1 =
1

Np

Np∑
k = 1

‖I1(k)‖2 . (12)

2) The positive sequence impedance (Z1) at the supply fre-
quency [24] and [26]:

Z1 =
‖V1‖
‖I1 ‖ f = fs = 50 Hz.

(13)

Finally, 35 features are determined. This set represents a list
of indicator of multiple faults (electrical and mechanical faults).
They are summarized in [16].

Unfortunately, either some of these features are not really
relevant, or they are correlated. Furthermore, the high number
of features involves an increasing of CPU time during the clas-
sification.

To correct these drawbacks and to obtain the appropriate
signature for the induction motor, we must keep only the most
representative features for the studied faults [27]–[31].

B. Reducing the Feature Space

To reduce the number of features without loosing any in-
formation, selection methods must be used. The objective is to
seek, among d initial features, a subset of d′ features giving most
of the information. The features subset will have to maximize a
criterion taking into account:

1) a weak dispersion of the points in each class, which sug-
gests minimal intraclass dispersion;

2) a maximum distance between the various classes; there-
fore, maximum interclasses dispersion.

The criterion is based on within-class scatter SW and the
between-class scatter SB matrices whose expressions are as
follows, respectively,

SW =
1
n

M∑
c=1

nc∑
v=1

(Xcv − mc) (Xcv − mc)
T (14)

SB =
1
n

M∑
c=1

(mc − m) (mc − m)T (15)

where M is the number of classes, nc number of samples in the
class Ωc , n the total number of samples, mc the gravity center
of class Ωc , Xcv the vth sample of class Ωc , and m the general
gravity center of the initial training set.

The objective is to define a new space maximizing the in-
terclasses dispersion and maintaining intraclass dispersion. The
eigenvectors of S−1

w SB can be used, with (n − M ) and M higher
than d, in order to define the features selection criterium:

J1 = trace
(
S−1

W · SB

)
. (16)

The Fisher ratio can also be applied as criterion, for the fea-
tures selection. The idea is successively to consider each feature
contained in the initial pattern vector (dimension d) and to cal-
culate the criterion J2 for this feature.
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For a problem with M classes, the criterion is expressed, for
the feature α, as

J2(α) =
M∑

c=1

M −1∑
r=1

mc(α) − mr (α)
ncσ2

c (α) − nrσ2
r (α)

(17)

with mc(α), gravity center of the class Ωc by considering only
the feature α

mc(α)
c=1,M

=
1
nc

nc∑
v=1

Xcv (α) (18)

with Xcv the vth sample of the class Ωc , nc the number of
samples in the class Ωc , and σc(α) the variance of the component
α of the sample of the class Ωc :

σ2
c (α) =

1
nc

nc∑
v=1

[Xcv (α) − mc(α)]2 . (19)

The numerator of expression (17) represents the separation of
the classes (interclasses dispersion). The denominator reflects
the compactness of the classes (by analogy with the intraclass
dispersion).

In the experimental part (Section VI), the Fisher ratio (17)
is used to define the capacity of discrimination of each feature
compared to the studied training set and the expression J1 (16)
is used as criterion in the feature selection method. It will be
noted as J .

The maximization of the criterion gives the optimal features
subset. Let us note V = (α1 , α2 , . . . , αj , . . . , αd) the initial
pattern vector, composed of d features. Thus, it is possible to
seek a subset V ′ composed of d′ relevant features so that

J(V ′) = Max
h=1,...,np

[
J

(
V

(h)
d ′

)]
(20)

with np the number of studied combinations (of d′ features

among d) and V
(h)
d ′ the hth combination of d′ features for which

the selective function value is calculated.
In [32], the authors present the advantages and drawbacks of

the selection methods. According to the author, the sequential
backward selection (SBS) is one of the most simple feature
selection methods. This method consists in deleting, at each
step, the feature that penalizes the aforementioned criterion. This
method requires knowing the partitioning of patterns contained
in the initial training set in various clusters. The SBS algorithm
is based on the following process.

At step k, we calculate the criterion for the subsets Vk,j of
dimension d − k. These subspaces result from the subspace
Vk−1 by eliminating the feature αj

Vk−1 ⊃ Vk,j = {Vk−1 − αj} . (21)

Thus, the subspace Vk that is taken into account for the fol-
lowing step optimizes the criterion:

J(Vk ) = Max
j=1,d−k

[J (Vk,j )] . (22)

Fig. 2 illustrates this method with d = 5 and d′ = 2. At each
stage, we select the features subset for which the criterion is
maximum. The numbers represent the position of the features
in the initial pattern vector. The selected features are α1 and α4 .

Fig. 2. General diagram of the features selection by method SBS, with d = 5
and d’ = 2.

Fig. 3. Choice of the feature space dimension.

Thereafter, the classification of a new observation, i.e., the
diagnosis of the system state, strongly depends on the selected
features and can also strongly depend on the feature space di-
mension. The ideal would be to simultaneously determine the
best features and also the best dimension. For that, the criterion
evolution used in SBS method according to the different values
of d′ is looked at.

Fig. 3 shows an example of the criterion evolution. It allows
determining the feature space dimension. Indeed, starting from
a given dimension, the addition of a feature does not bring any
more information. Clearly, on Fig. 3, “b” appears as the best
dimension because the slope of the criterion evolution became
almost equal to zero.

C. Decision Phase: “k-Nearest Neighbors” (k-nn) Rule

The feature space being now defined (the choice of relevant
features and the definition of clusters), it is necessary to decide
in which cluster to assign a new observation Xu , collected at
a given moment on the system. The decision rule developed
is based on the k-nearest neighbors (k-nn) rule. It is easy to
implement and offers good results of classification. The princi-
ple is to assign a new observation Xu in the best-represented
class among its k-nearest neighbors. The simplest way to work
out this rule is to measure the Euclidean distance dE (23) be-
tween the new observation Xu and each sample of the training
set Xi (X1 ,X2 , . . . , Xn ) (with i = 1 to n, n being the total
number of samples composing the training set):

dE (Xu,Xi) =
[
(Xu − Xi) · (Xu − Xi)

T
]1/2

. (23)
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Fig. 4. Classification according to the distance by the traditional k-nn rule.

Fig. 5. Distance rejection threshold from not very distant classes.

In order to reduce the error of classification, two rejects op-
tions [33], which allow avoiding the systematic classification of
unknown patterns, are defined.

The ambiguity reject threshold can be related to the value of
k [34], [35] by fixing a minimal number of neighbors (k′) for
observation Xu{

Xu → Ωo , if kc = max
r=1,M

kr < k′

Xu → Ωc , if kc = max
r=1,M

kr ≥ k′ (24)

where kc is the number of neighbors of Xu , which are found in
the class Ωc . This minimal value can be defined especially for
each class [36].

The distance reject rule can be established by comparing the
distance between the new sample and its assigned class with a
threshold Tc . In this study, this threshold is

Tc = 2 · max
v=1,nc

[dE (Xcv ,mc)] (25)

where mc , Xcv , and nc are, respectively, the center of gravity,
the vst sample, and the total number of samples of the class Ωc .

This traditional k-nn rule (exclusive) assigns a new ob-
servation to the class mainly represented among its near-
est neighbors. This can be summarized in the following
way (cf. Fig. 4).

However, two or several classes contained in our ini-
tial training set Xa may not be sufficiently distant.
Their distance rejection thresholds can intersect as Fig. 5
shows it.

A new observation Xu located in the membership area of two
classes (cf. Fig. 5) will be assigned to the class mainly repre-
sented among its nearest neighbors. This can be summarized in
the following way (cf. Fig. 6).

Using an exclusive classification (0 or 1) does not allow defin-
ing a membership degree of the new observation in two (or
several) classes. Thus, we will consider that Xu belongs com-
pletely to one class. However, when a new observation is located

Fig. 6. Classification according to the number of neighbors by the traditional
k-nn rule.

between two or several classes, it is often due to the appearance
of an unknown operating mode of Xa .

For these reasons, we create a “nonexclusive” decision rule.
Thus, the membership to a class could be modulated and the
proximity or distance concepts quantified.

III. MEMBERSHIP FUNCTION

In order to take into account the uncertainty of classification,
a membership function, which characterizes the degree of com-
patibility between the observation Xu and the class Ωc (c = 1
with M ) must be introduced [37], [38]. This function is noted
as µΩ(Xu ). Compared to the traditional set theory, where the
membership function, named characteristic function, can take
only values 0 or 1, µΩ(Xu ) introduces the concept of gradual
membership since it is a continuous function with values in the
interval [0,1]. This gradation of the membership allows defining
classes where the borders are not so stiff.

There is not a general method for building the membership
function associated with a given set. The pattern of this function
is closely related to the context.

In our case, we must determine a function that applies the
following.

1) A total membership when the new observation Xu is lo-
cated between the center of gravity mc of the class Ωc and
the sample, which is the most far away from this center.

2) A soft decrease when Xu is located between the previous
limit and the rejection threshold Tc (cf. Fig. 7).

To fulfill these constraints, the adopted solution defines a
membership function using a multidimensional function π. This
membership function is described by the following formulation:

if 0 ≤ d(Xu,mc) ≤ dsc

µΩc(Xu ) =
[
1 − (1 − η)

(
d(Xu,mc)

dsc

)g]

if dseuilc ≤ d(Xu,mc) ≤ β · dseuilc

µΩc(Xu ) = η

(
β

β − 1

)g (
β · dsc

− d(Xu,mc)
β · dsc

)g

0, otherwise. (26)

1) The term d (Xu,mc) is the distance between an observa-
tion Xu and the center of gravity mc of the class Ωc .

2) The term dsc
is the parameter that defines the position

of the inflexion points. It corresponds to the maximum

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:21 from IEEE Xplore.  Restrictions apply.



436 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 2, JUNE 2009

Fig. 7. Schematic representation of the membership function in the exclusive
and nonexclusive case.

distance between the center of gravity of the class Ωc
and the sample further from this same class dsc

=
max

v=1,nc

[d (Xcv ,mc)].

3) µΩi(Xu ) = η if d (Xu,mc) = dsc
.

4) The variable η is the parameter being used to fix the con-
stant part of the π function.

5) The variable β is a parameter (β ∈ �+∗ > 1) that allows
defining the bandwidth of the π function (stop points of
the π function).

6) The variable g is a parameter allowing to adjust the slope
of the function.

With this π function, we take into account the position of an
observation in relation with the classes defined in the training set.
It brings information about the level of the gradual membership.
This estimation decreases as we move away from the center of
gravity of the classes. It allows obtaining a classification with a
certain degree of membership.

Moreover, it would be worth, for a new observation, to take
into account not only the distance with different center of gravity
from each class but also the number of nearest neighbors within
the classes.

For example, if we suppose that k nearest neighbors are
all resulting from the same class, the degree determined by
the membership function must be equal to the maximum
1 if d (Xu,mc) ≤ dsc

and ranging between [0,1] if dsc
≤

Fig. 8. Membership function of Xu according to the distance and the nearest
neighbors.

d (Xu,mc) ≤ β · dsc
. Equation (26) then becomes

if 0 ≤ d(Xu,mc) ≤ dsc

µΩc(Xu ) =
[

1
Nc

−
(

1
Nc

− η

)(
d(Xu,mc)

dsc

)g]
.kc

if dseuilc ≤ d(Xu,mc) ≤ β · dseuilc

µΩc(Xu ) = η

(
β

β − 1

)g (
β · dsc

− d(Xu,mc)
β · dsc

)g

.kc

0, otherwise (27)

where nc is the number of samples contained in the class Ωc
and kc is the number of k nearest neighbors resulting from the
class Ωc .

Fig. 8 represents the evolution of the membership function of
Xu at the class Ωc according to the distance between Xu and
the center of gravity of this class and of the number of neighbors
among k nearest neighbors contained in this class.

In contrary to fuzzy methods, the sum of the membership
functions of a new observation to the classes defined in Xa ,
µΩc(Xu ) (c = 1 to M ) is not necessarily equal to 1. Indeed,
only the classes having samples among the nearest neighbors
are taken into account allowing reducing the computing times.
Thus, the membership degree to the other classes is null. The
membership degree of Xu varies within [0, 1] for each selected
classes.

IV. EXTENSION OF THE k-nn RULE BY ASSOCIATION OF A

NONEXCLUSIVE MEMBERSHIP FUNCTION

The new membership function is associated to the traditional
k-nn rule. Now, the decision problem must be considered in
terms of nonexclusive membership to the classes. The member-
ship function values µΩc(Xu ) relating to the various classes Ωc
(c = 1, M ) can be used for this purpose. Moreover, to decrease
the risk of bad classification, it is necessary to define new rules
of nonexclusive decision integrating the various reject options
(ambiguity and distance).

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 21, 2009 at 15:21 from IEEE Xplore.  Restrictions apply.



ONDEL et al.: FAULT DETECTION AND DIAGNOSIS IN A SET “INVERTER–INDUCTION MACHINE” 437

A. Membership Reject

A sample being located far from a class must have a small
membership degree to this class. The concept of distance rejec-
tion can be expressed in term of membership.

An observation is rejected in membership if its membership
to all the possible classes is lower than a membership threshold
noted as Tra :

Xu ∈ Ωd , if max
c=1,M

(µΩc (Xu )) ≤ Tra . (28)

B. Ambiguity Reject

This rejection is carried out only if the k nearest neighbors re-
sults from at least two different classes. Thus, a new observation
is rejected in ambiguity.

If the difference between the membership degrees of the phys-
ically closest classes (i.e., containing closer neighbors) is lower
or equal to an ambiguity threshold Tne (for example, for Tne

= 0.05, if Xu has a membership of 0.25 to the class Ωc and
a membership of 0.22 to the class Ωr), then this observation is
rejected because 0.25–0.22 < Tne .

The equations governing this rejection are

If µΩc (Xu )
c=1,M


= 0, then

Xu ∈ Ωo , if µΩc (Xu )
c=1,M

−µΩr (Xu )
r=1,M
r 
=c

≤ Tne .

(29)

Finally, the nonexclusive k-nn rule including the two reject
options can be formulated in the following way.

1) Xu ∈ Ωc , if µΩc (Xu ) = Max
r=1,M

(µΩr (Xu )) and

µΩc (Xu ) ≥ Tra and (29) is right.
2) Xu ∈ Ωd , if max

c=1,M
(µΩc (Xu )) ≤ Tra .

3) Xu ∈ Ω0 , if µΩc (Xu )
c=1,M

−µΩr (Xu )
r=1,M
r 
=c

≤ Tne . (30)

The gradation of the membership function allows quantifying
the reliability of classification and following the evolution of the
new observations in the feature space.

The operating modes can depend on several variables that
naturally vary. For instance, the representation of an operating
mode can depend of the load level. Thus, if some of these vari-
ables are used to represent these modes in the feature space, the
same operating mode can be represented by several classes. So,
a new observation located between two classes can correspond
in an intermediate state of this mode (variation of load level).
By using the nonexclusive decision rule with the reject options,
the observation can be rejected. It is thus necessary to take into
account the evolution of various operating modes from the sys-
tem due to the load variation. This is developed in the following
section.

V. DATA STANDARDIZATION

To make the decision phase easier and more effective, we
standardized the raw data. By standardizing operating modes,

Fig. 9. General diagram of the diagnosis procedure by PR.

Fig. 10. Motor 5.5 kW coupled with load (powder brake).

i.e., by freeing them from their level of load, they will be repre-
sented by only one class, gathering all the load variations. For
that, the data are standardized starting from the value of the
fundamental amplitude of each measured signal. This standard-
ization allows avoiding classification errors, and thus, improving
the diagnosis. Indeed, the training set cannot be exhaustive. If
we consider an operating mode, it is impossible to have mea-
surements for all the levels of load. So without standardization,
when a new measurement is carried out on the system for this
operating mode and the level of load is not defined in Xa , then
this measurement is rejected. The advantage of standardization
becomes very clear here. For any level of load, this operating
mode is just represented by only one class, new measurement
will be affected and not rejected.

Finally, the various phases making a PR system, the training
and the decision phases, can be represented in Fig. 9.

VI. APPLICATION TO THE CLASSIFICATION

A specific experimental setup has been designed in order to
perform the methodology of rotor and stator faults detection
(cf. Fig. 10). Three voltage sensors and three current sensors are
used to monitor the set inverter–induction machine operation.
A powder brake, which can be tuned by means of a control unit
has been used to simulate the shaft load.

In order to test the validity of the new decision rule, we used
the measurements carried out on a three-phase asynchronous
squirrel-cage motor 5.5 kW, 11.4 A, four poles, and 28 bars
with the rotor. The machine is supplied through a converter
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Fig. 11. Inverter used for the experiment.

Fig. 12. Input filter of the inverter.

(three-phase inverter). The wide spectrum of the signal makes
the detection of the faulty modes more difficult. The experiments
are realized for open-loop drives. The control of inverter is a
symmetric vector pulse width modulation (PWM).

For each functional state, 20 acquisitions of 5 s, at 20 kHz,
have been made in order to check the signature robustness (10+5
for the training step and test set, 5 for the validation). The total
number of operating conditions is 4: one for the healthy machine,
one for the rotor having three broken bars, one for healthy
inverter, and one for faulty inverter (ageing of capacitors). The
rotor bars were broken by boring the conductors of the squirrel
cage.

The ageing of the capacitors constituting the input filter LC is
characterized by the increase of the equivalent series resistance
(ESR) [40]. This increase is due to internal heating of capacitors.

To carry out a failure, we removed part of these capacitors.
This step simulates an increase of the ESR and causes the in-
crease of the input voltage ripple. Fig. 11 shows the inverter and
the capacitors of the input filter.

The input filter voltage is obtained from a full-wave recti-
fier. This rectifier is supplied by the three-phase main network.
The input filter consists of a smoothing inductor of 100 mH
and eight capacitors assembled in series–parallel. The charac-
teristics of these capacitors are 3300 µF, 400 V, 10.1 A, and
85 ◦C. Fig. 12 schematically represents the input filter of the
inverter.

The ESR of each capacitor was characterized using a bridge
resistive–inductive–capacitive (RLC) at a frequency 10 KHz.
The values are presented in Table I.

From these values, it is possible to define the value of the
total ESR, ESRtot , formed by the set of these capacitors:

ESRtot(healthy) = 14.6 mΩ. (31)

TABLE I
ESR VALUE FOR EACH CAPACITORS OF THE INPUT FILTER

TABLE II
COMPOSITION OF TRAINING SET Xa AND TEST SETS WITH STANDARDIZED

DATA

Generally, the manufacturer recommends a change of the
capacitors when the value of the ESR is twice the initial value.
In practice, to accelerate this ageing, it is necessary to place
the capacitors in a climatic chamber at high temperatures but
this operation is long before obtaining a representative ageing.
Consequently, to simulate this fault, we removed four capacitors
over the eight present (only remainder C11 , C12 , C21 , and C22).
So, the total ESR is increased by a factor 2:

ESRtot(aged) =29.12 mΩ. (32)

Finally, Xa is constituted by four operating modes, repre-
sented by four classes. Each one made up of 20 samples (ten by
load level) distributed in the following way.

Each test set is composed of five samples by level of load.
Finally, there are ten samples by operating mode; so, 40 test
samples (Table II). These 40 samples were not used to carry out
the training set. In this way, the training set and test sets are
always disjoined.

The first and the second steps are, respectively, the pattern
vector determination and the creation of the decision space, i.e.,
the set of all possible clusters. This second step is realized by
an expert because the SBS method used implies it being in su-
pervised mode (knowledge of the distribution of the samples in
classes). The pattern vector is composed initially of 35 features
(d = 35) [16].

Before using the selection method SBS, it is interesting to de-
termine the capacity of discrimination of each feature providing
the initial pattern vector compared to the training set Xa . For
that, the Fisher ratio (17) is calculated for each feature. In order
to illustrate the capacity of each one, the following histogram
shows the criterion variation for the 35 calculated features.

The Fisher ratio shows that there are three features
[α8 , α33 , α31 ], which, taken separately, have a discriminating
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Fig. 13. Variation of the Fisher ratio for each feature.

TABLE III
NUMBERS OF TEST SAMPLES BADLY AFFECTED ACCORDING TO VARIOUS

DIMENSIONS OF PATTERN VECTOR

capacity. Fig. 13 clearly shows that the feature α8 has very
strong capacity of discrimination compared to the others. How-
ever, this result does not mean that it is necessary to limit the
size of the pattern vector to one dimension. Indeed, this one
must be defined on the basis of collective contribution of the
discriminating features.

Thus, according to the result of Fig. 13, the pattern vector
dimension and thus feature space can be made from 1 to 3
elements.

In another way, the optimal features can be selected by the
SBS algorithm, which used the eigenvalues of S−1

w SB as the
criterion. It represents an indicator of the ratio between the
interclasses and intraclasses dispersion (16).

The initial space is the set of the calculated features. At each
step of the procedure, the subspace that maximizes the crite-
rion is taken into account. We preserve the subset that provides
the best feature space according to the desired dimension. For
that, at each step k of the selection, the subspace Vk , taken
into account for the following step, is the one with the optimal
criterion.

At each step k, a feature subset is selected, constituted of
d − k features. To define the best pattern vector (feature subset),
and consequently, the feature space dimension, we analyze the
vector that gives the best performances according to the numbers
of test samples (see Table III) badly affected.

The Table III gives the number of samples badly affected
for various configurations of pattern vector. These vectors are
obtained according to the results of Fig. 14. This analysis was
carried out using the k-nn rule with k = 5. The choice to take
k = 5 is arbitrary. The distance reject used is defined by (25).
The minimal number of neighbors k’ is fixed to k/2 (k equals
5, consequently k’ = 3).

TABLE IV
PRESENTATION OF THE VARIOUS OBSERVATIONS USED FOR THE VALIDATION OF

DECISION RULE

Fig. 14. Distribution of the new observations realized by the nonexclusive
k-nn rule.

For a pattern vector composed of d’ = 3 features, the num-
bers of test samples badly affected is the weakest. Then, when
dimension increases, this rate is constant and even tends to in-
crease.

So, classification varies according to the pattern vector di-
mension. However, while following the evolution of the crite-
rion value [cf. ( [16])], it is possible to automatically determine
the value of d’. In our case, d′ = 3 is the best compromise since
for a greater dimension, the criterion value does not decrease
any more to a significant degree. This break allows determin-
ing, without ambiguity, the choice of << d′ >>. Increasing the
value of << d′ >> will not bring any additional information
on classification.

This confirms the results obtained in Table III, the dimension
optimal is 3. Thus, the three features that composed the optimal
pattern vector are V1op = [α8 , α29 , α35 ].

The third step is the validation, i.e., the assignment given by
the decision rule for all new observations Xu . These observa-
tions (see Table IV) are perfectly disjoined of the training set
and test sets. Thus, they will be used to test the effectiveness of
the decision rules.

Fig. 14 gathers the assignment results and the membership
degree given by the nonexclusive k-nn rule (described in Sec-
tions III and IV) for all new healthy or faulty observations. The
membership function of each class is defined by (28). The ad-
justable parameters have the following values: g = 1, β = 2,
kc = 20, and η = 1/nc with nc , the number of samples in class
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Ωc , here η = 0.05. The membership and ambiguity rejects are
defined by (29) and (30), respectively.

All the observations are assigned to their operating mode
contained in the training set Xa . The mode “healthy inverter+1
broken bar” not being present in Xa , the observations Xu21 to
Xu25 are rejected in distance. These observations will have to
be treated to detect the possible appearance of a new class (new
operating mode). The membership degree for each observation
varies between 65% and 95%. That gives a good reliability to
classification carried out, no ambiguity is possible. Only the ob-
servation Xu18 has a degree smaller than the others (23%). That
is certainly due to an inaccuracy of measurements (equipment,
noises, etc.).

This result shows that the features allow a good identification
of the operating modes of the machine as well as a good differ-
entiation between the machine faults and the inverter faults.

VII. CONCLUSION

A diagnosis system based on PR was presented and applied
with success to the detection of various faults being which can
appear, either on the inverter or on the induction machine or
even on both. Starting from the traditional formalism of PR,
we added some specificity such as the automatic choice of di-
mension space, the data standardization, and a new decision
rule allowing defining a reliability index in the diagnosis re-
alized to improve the diagnosis system. The results show that
the criterion evolution tracking based on separability and com-
pactness of classes allows choosing effectively the feature space
dimension, and thus, obtaining a better classification. The data
standardization allows freeing the data from the level of load,
and consequently, reducing the numbers of acquisitions neces-
sary to form the initial training set. The classification method
based on the k-nn rule was improved by developing a member-
ship function associated with each class contained in the initial
training set. It allows in identifying the evolution of an oper-
ating mode toward another or the appearance of an unknown
operating mode. Thus, it is possible to predict the evolution of
process toward a dangerous operating mode. Finally, the whole
forms a supervision system dedicated to the diagnosis and al-
lows realizing a preventive maintenance and ensuring the safety
of the material and the person.

The PR approach is an original and effective way to provide
the diagnosis of a system that takes into account the power
supply used.
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Université de Lyon, Lyon. He is also with the Cen-
tre National de la Recherche Scientifique (CNRS),
Unités Mixtes de Recherche (UMR) 5005, Labora-

toire AMPERE, Villeurbanne, France, where he is engaged in research on control
and diagnosis of induction machines.

Emmanuel Boutleux was born on July 1970, in
France. He received the Ph.D. degree in system
control from the Heudiasyc Laboratory, Compiègne,
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