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DIFFUSION BY OPTIMAL TRANSPORT IN HEISENBERG

GROUPS

NICOLAS JUILLET

Abstract. We prove that the hypoelliptic diffusion of the Heisenberg group
Hn describes, in the space of probability measures over Hn, a curve driven
by the gradient flow of the Boltzmann entropy Ent, in the sense of optimal
transport. We prove that conversely any gradient flow curve of Ent satisfy the
hypoelliptic heat equation. This occurs in the subRiemannian Hn, which is not
a space with a lower Ricci curvature bound in the metric sense of Lott–Villani
and Sturm. Heisenberg group and optimal transport theory and gradient flow

Introduction

For some years there has been an alternative representation for the evolution
of probability densities. Beside the probabilistic diffusion point of view and the
Dirichlet energy approach, one may now also consider this evolution as a curve in
terms of optimal transport. The more representative class of examples is certainly
given by the heat equation and its transformations. In different papers, covering
different frameworks (see for instance [2, 11, 12, 20, 21, 27, 33, 36, 37, 42, 47]) it has
been proved that curves of probability measures (µt)t≥0 with a density satisfying the
adequate heat equation are exactly the curves with a speed equal to the opposite
of the gradient of the relative Boltzmann entropy Ent, in the sense of optimal
transport. Hence, we have the formal paradigm

“µ̇t = −∇Ent(µt) ⇐⇒ ρ̇t = ∆ρt”(1)

where ρt on the right-hand side denotes the density of µt. Let us give a more precise
description. At the origin of this stream is the seminal paper by Jordan, Otto
and Kinderlehrer [24] where the Wasserstein space over Rd, i.e. the space P2(R

d)
of probability measures with a covariance matrix, is considered for the first time,
formally as an infinite dimensional Riemannian manifold. This approach sometimes
called “Otto calculus” as in [47, Chapter 15] made Otto and his coauthors realize
that, at least at a formal level, the solutions of the heat equation are densities of
measures that describe special curves in P2(R

d). The Boltzmann entropy1 (with
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1The correct name would be “H functional of Boltzmann” because the entropy is actually the

opposite, −
∫
ρ ln ρ. A similar remark concerns the sign in front of the gradient in (1): we want

to make a potential decrease, as in physics.
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respect to a reference measure L, in Rd the Lebesgue measure), defined by

Ent(µ) =







∫

ρ ln ρ dL ∈]−∞,+∞] if µ = ρL

+∞ if µ is not absolutely continuous,
(2)

is a function on P2(R
d) because one has

∫

(ρ ln ρ)− < +∞ if ρL ∈ P2(R
d). The

entropy is relevant because the diffusion curve evolves with speed and direction de-
termined by the gradient of this functional, formally identified with the vector field
“∇ρ
ρ ”. This discovery initiated many studies on gradient flows of different func-

tionals in the Wasserstein space over different spaces. Otto obtained for instance a
representation of the porous medium equation [38] thanks to the Rényi entropy in
P2(R

d). We have already stressed how successful the optimal transport approach
was in representing the heat equation on various metric spaces (X, d,L). Those dif-
ferent contributions may adopt different degrees of generality, some of them giving
rise to a precise variational analysis of metric spaces. For instance not only smooth
curves are possible gradient flow curves, but also curves that are only absolutely
continuous. Similarly the slope of Ent at µ is not only the maximal slope along
regular curves starting at µ but rather the slope obtained from sequences converg-
ing to µ. The most documented book on gradient flows over Wasserstein spaces is
certainly the book by Ambrosio, Gigli and Savaré [2] (one can also see [6] that is a
kind of simplified version). Another important reference is the book by Villani [47,
Chapters 23–25].

There seems to be a central ingredient in the proofs of paradigm (1). Namely,
the displacement convexity of Ent (roughly speaking the geodesic convexity of Ent
with respect to the metric structure of P2(X)), or its general version as the K-
displacement convexity of Ent (for some K ∈ R), offer a particularly good control
on the modulus of continuity of the slope of Ent. This condition is so useful that
it appears as a hypothesis of a theorem on the stability of gradient flows when
the space is varying [19] and it is also the framework of a theory of gradient flows
over very general spaces proposed by Ambrosio, Gigli and Savaré [3, 4]. The dis-
placement convexity of Ent has a geometric interpretation: as it has been proved
in the papers by Lott and Villani [32, 31] and Sturm [45, 46] (see also [47] for a
complete account), one can consider the spaces where Ent is displacement convex
as spaces of non-negative Ricci curvature (in a weak sense because Ricci curvature
is a Riemannian notion) and those where it is K-displacement convex as spaces
with Ricci curvature bounded by K from below. It is not surprising that curvature
plays a role in the metric spaces for which paradigm (1) has been established up
to now. For instance (1) has been proved for measures on Riemannian manifolds
with Ricci curvature bounded from below [11] (– the condition coincides with the
weak one by Lott–Villani and Sturm), and on Alexandrov spaces [36, 21, 20]: these
spaces are considered as the metric spaces with sectional curvature bounded from
below (a condition stronger than the displacement convexity of Ent, see [40, 48]).

Unfortunatly the Wasserstein space P2(Hn) over the Heisenberg group does not
satisfy the convexity of the entropy. This space Hn may appear as the simplest Lie
group after the Euclidean spaces because it involves only a few non-commutativity
and its Lie algebra only presents n non-trivial relations (that can be interpreted in
quantic physic as the uncertainty principle). The subRiemannian distance, called
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Carnot-Carathéodory distance dc provides an exotic structure that still allows ele-
mentary computations. The corresponding metric space (Hn, dc) is much studied
(see e.g., [17] for geometric measure theory, [28] for conformal geometry, [10] for
embedding problems). We will prove that the gradient flow of Ent corresponds to
the solutions of the adequate “heat equation”, which is the hypoelliptic diffusion
provided by ∆H, the subRiemannian “sum of square” operator (also called Kohn
operator). Notice that the hypoellipticity of this operator is ensured by a famous
theorem of Hörmander [23] about “sum of square” operators. In the case of the
Heisenberg group, a probabilistic description of the heat distribution is available
[18] because it appears in R2n+1 as the joint distribution of n planar Brownian
motions with the sum of their Lévy areas.

We want to prove paradigm (1) on Hn. A formal proof using an adapted Otto
calculus could be done easily (and can be found over this paper, see also Remark
5.1 on [27]) but we want to get an equivalence in precise terms, comparable to those
of Ambrosio, Gigli and Savaré in [2]. It is not possible to mimic exactly the proof of
these authors because of the lack of control on the Ricci curvature. Indeed, it was
proved in [26] that the Heisenberg group Hn is not a space with “Ricci curvature
bounded from below” in the sense of Lott, Sturm and Villani. Nevertheless in the
present article, we will obtain the complete equivalence between solutions of the
“heat equation” in Hn and the gradient flow of Ent in P2(Hn). It seems that this
is the first exotic example of a metric space without a “lower Ricci bound” where
one can prove (1). See Remark 5.2 for a more precise discussion on this topic.

We give now some elements of our strategy. The direct inclusion (heat diffusion
is a gradient flow) is more or less the result of a direct computation. The more
tricky part consists in proving the opposite inclusion. The Heisenberg group has
a classical Riemannian approximation, Hεn with a lower bound −1

2ε2 on the Ricci
curvature (see for instance [25] for the computation). In this paper, we will gather
all the informations on P2(H

ε
n), a space where results on Ent, the locally absolutely

continuous curves and their interactions are already known. This will be useful
because Hεn and Hn are the same topological space and they have the same reference
measure. A key result will be Proposition 3.4 (see also Proposition 3.2): it is proved
that at points µ with a finite slope for Ent in P2(H

ε
n), the slope of Ent at µ in P2(Hn)

(that is also finite) equals the maximal slope along regular curves going through
µ, which corresponds classically to the square root of the Fisher information of µ.
This allows to obtain an important estimate (a strong upper gradient estimate) for
regularized curve (µ∗

t )t∈[0,T [ of a gradient flow (µt)t∈[0,T [. The measures µ∗
t depend

on a parameter υ > 0 and are points of finite slope for Ent in P2(H
ε
n). We obtain

the result by letting υ go to 0.
The paper is organized as follows: in the first part we introduce the Heisenberg

group, the optimal transport theory and state the definition of curves driven by the
gradient flow of Ent.

In the second part we review some propositions on the relations between Ent
and the Wasserstein distance on the approximating Riemannian manifolds Hεn.

In part three we study the speed of the curves in P2(Hn) (Proposition 3.1) as well
as the slope of Ent in this space (Proposition 3.2 and Proposition 3.4). For proving
these propositions we use the results of Section 2. In particular, Proposition 3.4 is
obtained by approximation using Proposition 2.1 from Section 2.
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In the fourth part we prove the theorem (see Section 1 for the definitions, espe-
cially Definition 1.7 for the notion of gradient flow of Ent):

Theorem 0.1. Let T be a positive or infinite time and (µt)t∈[0,T [ a locally absolutely
continuous curve in P2(Hn). The following two statements are equivalent

• For any t ∈]0, T [, µt has a density ρt with respect to the Lebesgue measure
and (ρt)t∈]0,T [ is a solution of the hypoelliptic heat equation of Hn,

∆Hρt = ∂tρt,

where ∆H =
∑n

k=1 X
2
k +Y2

k.
• The curve (µt)t∈[0,T [ is a gradient flow of the entropy Ent in the sense of
optimal transport.

The strategy of the proof relies on two approximations. First Hn is compared
to the Riemannian manifold Hεn, then we convolve the curve (µt)t∈[0,T [ in order to
apply what we know on P2(H

ε
n) to the measures µ∗

t , which is not possible directly
for µt.

1. Definitions

1.1. Heisenberg groups. Let n be a positive integer. The Heisenberg group Hn

is a Lie group that can be represented by R2n+1 = Cn × R with the multiplicative
structure

(z, u) · (z′, u′) =
(

z + z′, u+ u′ − 1

2

n
∑

k=1

ℑ(zkz̄′k)
)

where z writes (z1, · · · , zn) = (x1 + iy1, · · · , xn + iyn) and ℑ is the imaginary part
of a complex number. A basis for the Lie algebra of left-invariant vector fields is
given by (X1,Y1, · · · ,Xn,Yn,U) where

Xk = ∂xk
− yk

2
∂u and Yk = ∂yk +

xk
2
∂u for k ∈ {1, · · · , n}

and U = ∂u. It is possible to define two metric structures on Hn. For any ε > 0, we
note (Hεn, dε) the Riemannian manifold with (X1,Y1, · · · ,Xn,Yn, εU) as orthonor-
mal basis in any point. The metric space (Hn, dc) will denote the Heisenberg group
with the subRiemannian metric with orthonormal frame (X1,Y1, · · · ,Xn,Yn).
The reference measure of the two spaces is the Lebesgue measure L2n+1. It is
up to a constant the Haar measure of the group (both left- and right-invariant).
Up to a constant it is for Hεn the Riemannian volume and the 2n+ 2-dimensional
Hausdorff measure for Hn. We will simply denote it by L.

We now make precise what is the Carnot-Carathéodory distance, the subRie-
mannian distance of Hn. The functions ‖ · ‖ε and ‖ · ‖H are defined by

∥

∥

∥

∥

∥

(

n
∑

k=1

akXk + bkYk

)

+ cU

∥

∥

∥

∥

∥

ε

=

√

√

√

√(
n
∑

k=1

a2k + b2k) +
c2

ε2

∥

∥

∥

∥

∥

n
∑

k=1

akXk + bkYk + cU

∥

∥

∥

∥

∥

H

=

{

√

∑n
k=1 a

2
k + b2k if c = 0,

+∞ otherwise.

The distance dc is obtained by minimizing the subRiemannian length between two
points. This length lc(γ) is defined for locally absolutely continuous curves γ in
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R2n+1 as the limit of lε(γ), the length computed in Hεn when ε tends to 0. Precisely
if for almost every t,

γ̇(t) =

n
∑

k=1

(ak(t)Xk(γ(t)) + bk(t)Yk(γ(t)) + c(t)U(γt),

then

lc(γ) =

∫

‖γ̇(t)‖H dt

=

{

∫
√
∑n

k=1(a
2
k + b2k)(t) dt if c = 0 for almost every t (*),

+∞ otherwise.

The curves satisfying condition (*) are called horizontal. Their speed vectors are
contained in THn := Vect(X1,Y1, · · · ,Xn,Yn), that is the horizontal subspace.
The distance dc is finite because of the so-called Hörmander condition [23] (see
also [35]): the horizontal subspace and the vector fields that it generates using the
Lie bracket span the whole tangent space. Here we have simply [Xk,Yk] = U.
Hence any two points of Hn can be connected by a horizontal curve. Moreover
there exists geodesics, i.e. curves minimizing the length between two points. As
in Riemannian geometry one can even consider an exponential map expH (see e.g.
[9], or [5, 26, 15]). For p ∈ Hn, ϑ ∈ R and V a horizontal vector of TpHn, the
point expHp (V, ϑ) is the end of a local geodesic, γ : t 7→ expHp (tV, tϑ), of length
‖V ‖H starting in p tangentially to V . The main difference with the exponential
map of Riemannian geometry is that there are several such geodesics ; they are
parametrized by ϑ. More precisely the projection on Cn of the local geodesic
describes an arc of circle of angle ϑ (up to a multiplicative constant depending on
the authors). Note that expH is smooth.

Another important consequence of the Hörmander condition is the hypoelliptic-
ity of the operators ∆H :=

∑n
k=1(X

2
k+Y2

k) and ∆H−∂t, which in particular means
that distributional solutions of the heat equation on Hn×]0,+∞[,

∂tρt = ∆Hρt,

are smooth. In the precise case of the group Hn, more is known about the solutions
of this equation. For a regular initial condition µ0 (a probability measure with
finite second moment for instance), Gaveau [18] proved that the solutions are given
by the convolution with a fundamental solution ht (depending on the dimension n).
An explicit expression of ht is

ht(z, u) =
2

(4πt)n+1

∫

R

exp

(

λ

t
(iu− |z|2

4
cothλ)

)(

λ

sinhλ

)n

dλ.

In fact ht is the density of X0
t = (B1√

2t
, . . . , Bn√

2t
, L√

2t) where the (Bkt )t≥0 are

n independent planar Brownian motions Bk = Bk,1 + iBk,2 and Lt is the sum

Lt = L1
t + · · · + Lnt of the Lévy areas Lkt = 1

2

∫ t

0
(Bk,1s dBk,2s − Bk,2s dBk,1s ). Hence

ht is positive on Hn×]0,+∞[. Note also that ht(z, u) = 1
tn+1h1(z/

√
t, u/t). An

expression for ρt is

ρt(p) = (ρ0 ∗ ht) (p) =
∫

Hn

ht(q
−1 · p) dµ0(q),(3)
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which is the distribution of the product Xt = X0 ·X0
t with independent terms, X0

having probability law µ0. Again ρt is positive and
∫

ρt(p) dL2n+1(p) = 1 so that
(ρtL)t≥0 is a curve in the space of measures (as noticed after Proposition 1.4, it is
even in P2(Hn) as soon as µ0 is in this space).

1.1.1. Some additional estimates. We give here some general estimates and geo-
metric relations on Hn and ht that we will need in this article.

Lemma 1.1. Let p = (z, u) ∈ Hn = Cn×R be a point of the Heisenberg group and
ε > 0. Then

dε ≤ dc ≤ dε + 4πε

and

max(|z|, c(|z|+ |u|1/2)) ≤ dc(p, 0) ≤ C(|z|+ |u|1/2)
for some positive constants c and C depending only on n.

Proof. Any horizontal curve has the same length in Hn and H
ε
n so that dε ≤ dc.

For a curve γ from 0 to p with γ̇(t) =
∑n

k=1 (ak(t)Xk(γ(t)) + bk(t)Yk(γ(t)), the
projection on Cn connects 0C to z and has speed vector

∑n
k=1 ak(t)∂xk

+ bk(t)∂yk .
These two curves have the same length (the first one in Hn and the second in Cn).
Thus |z| ≤ dc(p, 0).

The proof of the equivalence between dc and N : (z, u) 7→ (|z|+ |u|1/2) is classical
(see [16]) and follows the same lines as the equivalence of norms in a finite vector
spaces. One compares those functions on a “sphere” (for instance {(z, u) ∈ Hn |
|z|+ |u|1/2 = 1}). With the compactness one can define c and C as the minimum
and maximum of dc. The inequality can be extended to Hn using dilations, a special
feature of the Heisenberg group: for any λ ≥ 0 the distance from 0 to (λz, λ2u) is
λdc(0, p) and N has the same homogeneity.

The last estimate is a little less usual and its proof requires the study of geodesics
in Hεn, for instance through the minimization of the energy of a curve (instead of
its length). Details can be found in [5] or [25, subsection 1.6.4]. The analysis of
the geodesics shows that there is a point p′ = (z, u′) with the same z-coordinates
as p and |u − u′| ≤ 2πε2 such that dε(0, p

′)2 = dH(0, p)
2 + dε(p, p

′)2, which is a
Pythagorean triple. It follows |dH(0, p)−dε(0, p′)| ≤ dε(p, p

′). But the usual triangle
inequality of Hεn is |dε(0, p) − dε(0, p

′)| ≤ dε(p, p
′) so that |dH(0, p) − dε(0, p)| ≤

2dε(p, p
′). But dε(p, p

′) ≤ 2πε because there is a vertical path in direction U of
length smaller than 2πε connecting p = (z, u) to p′ = (z, u′). �

The Heisenberg group is not Abelian but we will need some commutativity re-
lations in the rest of the paper.

Lemma 1.2. The center of Hn is L = {(z, u) ∈ Hn | z = 0}. For l ∈ L we have
dc(p.l, p

′.l)) = dc(p, p
′) and dε(p.l, p′.l) = dε(p, p

′).
If V ∈ {X1,Y1, · · · ,Xn,Yn,U} and f and g are two regular functions (for

instance of class C∞
c (R2n+1)), then V (f ∗ g) = f ∗ V g. If now g is a measure

concentrated on L, then V (f ∗ g) = V f ∗ g also holds.

Proof. the first part of this lemma simply relies on the definition of the multiplica-
tive structure and the fact that dc and dε are left-invariant. The definition of the
convolution in Hn appears in (3) and in this formula a differentiation under the
integral sign justifies V (f ∗ g) = f ∗V g. The last point is a consequence of the two
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previous one. Indeed if g is a measure concentrated on L one has f ∗ g = g ∗ f and
V f also commutes with g. �

The last estimates of this paragraph concerns ht and its derivatives close to
infinity. The best results presently available on this topic seem to be the estimates
of H.-Q. Li [30]. Less recent results may be also sufficient for Proposition 1.3. For
the third assumption see [29, p 376] by the same author.

Proposition 1.3. Let k be an integer, t > 0 and Vj ∈ {X1,Y1, · · · ,Xn,Yn} for
every j ∈ {1, · · · , k}. One has

• the function (V1 · · ·Vk)ht is in Lq for any q ∈ [1,+∞] and it is also true
for p 7→ maxt∈[a,b](V1 · · ·Vk)ht(p) where a, b > 0,

• for every polynomial function P (z, u), the product P (z, u).(V1 · · ·Vkht)(z, u)
is an integrable function,

• the integral
∫ (Uht)

2

ht
dL is finite.

1.2. Wasserstein spaces. Let (X, d) be a Polish metric space. Then the Wasser-
stein distance of two Borel probability measures µ0 and µ1 is defined as

W (µ0, µ1) = inf
π

√

∫

X×X
d2(p, q) dπ(p, q)(4)

where the infimum is taken over all couplings π of µ0 and µ1, i.e. over all probability
measures π over X×X such that p̄#π = µ0 and q̄#π = µ1. Here p̄ (resp. q̄) stands
for the first (resp. second) coordinate map and # is the push-forward symbol. The
function W defines a distance on the so-called “Wasserstein space”, that is,

P2(X) = {µ ∈ P(X) |
∫

d(p, p0)
2 dµ(p) < +∞}

where p0 is some point of X (the space does not depend on the choice of p0 ∈ X).
For any Polish space X , there exist minimizing couplings π in (4). In the case

of P2(H
ε
n) and P2(Hn), it has been proved in [34] (with [13]) and [5] that if µ0

is absolutely continuous, (4) is achieved by an unique π and this coupling can be
expressed by π = (Id⊗T )#µ0 for a µ0-almost everywhere uniquely defined map T .
Moreover these authors prove that in these two geodesic spaces a geodesic between
p and T (p) is µ0-almost surely unique. We denote it by (Tt(p))t∈[0,1] such that in
particular T0 = Id and T1 = T . Thence, [47, Corollary 7.23] ensure that there
exists a unique geodesic (µt)t∈[0,1] between µ0 and µ1, defined by µt = (Tt)#µ0.
Still under the assumption that µ0 is absolutely continuous, the measures µt for
t < 1 are absolutely continuous as well (see [14, 15]).

A related result [47, Corollary 10.44 and Theorem 13.5] states that on a manifold
if µ0 is absolutely continuous, for Ut in a form that we will precise, µt = (Ut)#µ0

is also absolutely continuous for t small enough. It is actually sufficient that Ut
writes p → expp(tV (p)) where expp is the usual exponential map of Riemannian
geometry and V is a smooth vector field with compact support. This proposition
of course applies to H

ε
n for any ε but there is also an adapted version for Hn in [25,

Section 2.2.3] with a similar proof. We state this result here:

Proposition 1.4. Let ϑ be in C∞
c (R2n+1), V be a smooth horizontal vector field of

compact support and µ0 an absolutely continuous measure on Hn. Define

Ut(p) = expHp (tV (p), tϑ(p)) and µt = (Ut)#µ0.
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There is a t0 > 0 such that for any t < t0, Ut is injective, smooth and the Jacobian
determinant Jac(Ut) is not zero. In particular µt is absolutely continuous.

With the notations of the Proposition 1.4, a disintegration of measure argument
shows that if µ0 ∈ P2(Hn), the measure µt is also in this space, principally because
the displacement by Ut is bounded. Similarly a consequence of Proposition 1.3 is
that ht is in P2(Hn) so that for any µ0 ∈ P2(Hn), the measure µt = µ0 ∗ht is also in
this space. We also notice with Lemma 1.1 that P2(Hn) and P2(H

ε
n) are the same

topological spaces whatever ε > 0 is.
Consider now Ent, the central functional of the present paper. It is not clear

whether in definition (2), the function ρ ln(ρ) is integrable. On P2(Hn), at least
the negative part is.

Lemma 1.5. If µ ∈ P2(Hn) has a density ρ with respect to the Haar (and also
Lebesgue) measure L, then

∫

(ρ ln ρ)− dL < +∞ so that Ent is well-defined on
P2(Hn). It is a functional with values in ]−∞,+∞].

Proof. It suffices to notice that this is true for ρL ∈ P2(H
ε
n). As it is a Lie group

with an invariant metric, Hεn is a Riemannian manifold with its Ricci curvature
bounded from below (in fact with lower bound − 1

2ε2 ). In this case it is proved in [11,

Lemma 4.1] that
∫

[(ρ/aε) ln(ρ/aε)]
− d(aεL) < +∞ where aεL is the Riemannian

volume of Hεn. Thus
∫

[ρ ln(ρ)]− dL ≤
∫

[ρ ln(ρ/aε)]
− dL+

∫

[ρ ln(aε)]
− dL < +∞

Notice that the proof could also be directly adapted from [11] because the volume
of the balls of radius r of Hn is well-known. Up to a multiplicative constant it is
r2n+2.

�

1.3. Absolutely continuous curves. A curve (γt)t∈I defined on an interval I in
a metric space (X, d) is said to be locally absolutely continuous on I if there exists
a function m element of L1

loc(I) such that for any a < b in I,

d(γ(a), γ(b)) ≤
∫ b

a

m(t) dt < +∞.

It is proved in [2, Theorem 1.1.2] that if γ is locally absolutely continuous, for
almost every t ∈ I the metric derivative

˙|γt| := lim
|h|→0

d(γt+h, γt)

|h|
exists ( ˙| | is a notation for the metric speed) and

l(γ) =

∫ b

a

˙|γt| dt

equals the classical metric length of the curve γ between a and b. In any metric space
l(γ) ≥ d(γ(a), γ(b)). If l(γ) = d(γ(a), γ(b)), γ is a geodesic, up to reparametriza-
tions a constant-speed geodesic. We denote the space of locally absolutely continu-
ous curves by AC(X). Let AC2(X) ⊂ AC(X) be the subspace of locally absolutely
continuous curves such that t 7→ |γ̇t|2 is locally integrable. Up to reparametrizations
AC(X)-curves are in AC2(X).
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1.4. Gradient flows. In this paper, curves will take values in the Wasserstein
spaces P2(Hn) and P2(H

ε
n). We will study the slope of the functional entropy Ent

introduced in (2). The slope of Ent is defined as

Slope(Ent)(µ) =

{

+∞ if Ent(µ) = +∞,

max
(

0, lim supν→µ
Ent(µ)−Ent(ν)

W (µ,ν)

)

otherwise.

This quantity is positive and quantify how much the entropy can locally decrease.

We keep the notations Slope, W and ˙| | for the slope, the Wasserstein distance and

the metric speed of P2(Hn). In P2(H
ε
n), we use the notations Slopeε, W ε and ˙| |ε.

As dc ≥ dε (recall Lemma 1.1) we have for the Wasserstein distances W ≥ W ε

and Slopeε(Ent)(µ) ≥ Slope(Ent)(µ) in every µ. We have also ˙|µt| ≥ ˙|µt|ε if these
metric speeds make sense.

Remark 1.6 (About infinite slope). Note that the definition Slope(Ent)(µ) = +∞ if
Ent(µ) = +∞ is not only a convenient convention, at least if the metric space is Hn
or Hεn. In fact any measure µ is the limit of measures νn obtained by convolution
with approximate identity (for instance with (ht)t>0). These measures are in the
corresponding Wasserstein space so that Ent(νn) makes sense and is in ]−∞,+∞].
It is not +∞ because the density of νn is bounded from above.

We will use in this paper a metric definition for the gradient flow of the entropy.
It can be compared to v) in Theorem 5.3 of [6] or to ii) of Proposition 23.1 of [47].
This definition has to be understood as the decomposition of “µ̇t = −∇Ent(µt)”
in (1) into the norm equality and the indication of the direction.

Definition 1.7. Let I be an interval. A curve in the Wasserstein space (µt)t∈I is
said to be a gradient flow of Ent if

• it is a locally absolutely continuous curve in P2(X) and for almost every
t ∈ I,

˙|µt| = Slope(Ent)(µt),

• the function E(t) = Ent(µt) is non-increasing and for almost every t ∈ I,

Ė(t) = − Slope(Ent)(µt) · ˙|µt|.

Remark 1.8. With the notations of Definition 1.7, the function E is differentiable
at almost every t ∈ I because non-increasing functions are of bounded variation.

Moreover Ė(t) = − ˙|µt|
2
for almost every t, so that t 7→ ˙|µt|2 has a finite integral

on [t0, t1] provided that both E(t0) and E(t1) are finite. This condition holds if
X = Hn and t0, t1 > inf(I) as is proved in Lemma 4.2 (or see directly Remark 1.9
and Lemma 1.5). Moreover it will be proved in Proposition 4.5 that E is locally
absolutely continuous on ]0, T [.

Remark 1.9 (About infinite entropy and infinite slope in gradient flows). The
entropy can not be +∞ on an interval greater than a single time. Indeed if

Ent(µt) = +∞, for every t ∈ [a, b] with a < b, we have also ˙|µt| = +∞. This
contradicts the fact that µt is an AC-curve in P2(X). Therefore if (µt)t∈[0,T [ is a
gradient flow of the entropy, Ent(µt) is finite for t > 0. In particular µt admits a
density function ρt for any t > 0.
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1.5. Functional spaces, tangent spaces. The vector spaces we will introduce
now are defined using weak formulations that require test functions. In the sequel,
the space of test functions is C∞

c (R2n+1), the space of smooth functions of R2n+1

with a compact support. For any k ∈ {1, · · · , n} and f a function of L1
loc(Hn) (a

L-locally integrable function on Hn), if the distributional derivatives of f through
Xk, Yk and U are functions of L1

loc(Hn) we will note them Xkf , Ykf and Uf . We
state for instance the defining relation of Uf :

∀ψ ∈ C∞
c (R2n+1),

∫

(Uf)ψdL +

∫

f(Uψ) dL = 0

Note that these notations are coherent with the usual ones when f is smooth.
Actually in this case, fψ has a compact support. Then (this time for Xk because
it is less obvious than for U)

∫

Xk(fψ) dL =

∫

(∂xk
− 1

2
yk∂u)(fψ) dL

=

∫

∂xk
(fψ) dL− 1

2

∫
(
∫

(yk∂u)(fψ) du

)

dxdy = 0

But the first integral is also
∫

(Xkf)ψdL+
∫

f(Xkψ) dL as we want.
We say that f has a gradient ∇Hf if it has a weak derivative V f for any V ∈

{X1,Y1, · · · ,Xn,Yn}. Then we can define the H-gradient ∇Hf by

∇Hf :=
n
∑

k=1

(XkfXk +YkfYk) .

If moreover f has a weak U-derivative, we can define the ε-gradient ∇εf ,

∇εf := ∇Hf + (εU) f (εU) = ∇Hf + (ε2Uf)U.

We note W 1,1
loc (Hn) the space of locally integrable functions f with a locally inte-

grableH-gradient∇Hf . LetW
1,1
loc (H

ε
n) ⊂W 1,1

loc (Hn) be the subspace of the functions
f with a weak derivative Uf .

We note div the simple divergence operator of R2n+1. One can check that for V =
∑n
k=1 akXk+

∑n
k=1 bkYk+ cU, div V can be written

∑

Xak+
∑

Ybk+Uc.Hence
we have the following integration by part where ψ ∈ C∞

c (R2n+1) and V is smooth,
∫

〈V | ∇εψ〉ε dL = −
∫

ψ div(V ) dL,

for any ε > 0, and if V is horizontal
∫

〈V | ∇Hψ〉H dL = −
∫

ψ div(V ) dL.

Note that if V = ∇Hϕ, the function div V is ∆Hϕ. Later div will also be used in
the distributional sense, especially in the continuity equations (5) and (8).

For a given absolutely continuous measure µ, we define TanH(µ), the tangent
space at µ ∈ P2(Hn) as the smallest Hilbert space that contains the vector fields
∇Hψ for a test function ψ. Precisely

TanH(µ) = {∇Hψ | ψ ∈ C∞
c (R2n+1)}L

2
H
(µ)
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with L2
H
(µ) = {ξ ∈ Γ(THn) |

∫

Hn

‖ξ‖2
H
dµ < +∞}. Similarly at µ ∈ P2(H

ε
n), the

tangent space Tanε(µ) is defined by

Tanε(µ) = {∇εψ | ψ ∈ C∞
c (R2n+1)}L

2
ε
(µ)

where L2
ε(µ) = {ξ ∈ Γ(THεn) |

∫

Hε
n

‖ξ‖2εdµ < +∞}. See [2, Chapter 12] or [47,

Chapter 13 and 15] and the references therein for the identification of these “tangent
spaces”. The good reasons for this appelation became first apparent with the
geometric formalism introduced by Otto [38].

2. Some results on the “Riemannian” Wasserstein spaces P2(H
ε
n)

We state here, for the approximating manifolds Hεn a proposition that Erbar [11,
Proposition 4.3.] proved for Riemannian manifolds. It is the translation of the
same statement for Euclidean spaces by Ambrosio and Savaré [6, Theorem 4.16].
The proof of Erbar also strongly relies on Theorem 23.14 of [47] whose proof is long
and difficult. Note that these results can be applied to Hεn because it has Ricci
curvature bounded from below by − 1

2ε2 (see for instance [9]).

Proposition 2.1 (On the slope of Ent). Let ε > 0 and µ ∈ P2(H
ε
n) that has a

density ρ. Then the following statements are equivalent:

(i) Slopeε(Ent)(µ) < +∞,

(ii) ρ ∈ W 1,1
loc (H

ε
n), and ∇ερ = ρwε L-almost everywhere for some wε ∈ L2

ε(µ).

In this case wε ∈ Tanε(µ) and Slopeε(Ent)(µ) = ‖wε‖L2
ε
(µ).

Remark 2.2. The vector field wε can be simply written “∇ερ/ρ”. Actually as
µ = ρL, the function ρ is µ-almost surely non-zero such that ∇ερ/ρ makes sense
in L2

ε(µ). The interpretation of this vector field in the Otto calculus is “∇Ent”.
Note moreover that if condition (ii) is satisfied {ρ = 0} ∩ {∇ερ 6= 0} has Lebesgue
measure zero. We will use both the notations wε and ∇ερ/ρ for the same vector
field. Nevertheless when ρ is positive as in paragraph 4.1 about the heat curve, the
second notation will be used more frequently.

Remark 2.3. The quantity ‖wε‖2L2
ε
(µ) =

∫ ‖∇ερ‖2
ε

ρ dL is traditionally called the

Fisher information of µ = ρL. In the Riemannian manifold Hεn, one will represent it

by Iε(µ). Thus according to Proposition 2.1, if it exists
√

Iε(µ) = Slopeε(Ent)(µ).

Remark 2.4. If statement (ii) is true for some ε, it also holds for other ε′ > 0. It
follows that if the slope is finite in P2(H

ε
n), it is also finite in the other Wasserstein

spaces P2(H
ε′

n ) even for ε′ > ε.

We state now a mix of propositions by Villani [47, Theorem 23.14 and Particular
Case 23.15] and by Erbar [11, Proposition 2.5].

Proposition 2.5. Let ε > 0 and I be an open interval. Let (µt)t∈I be an AC2-
curve in P2(H

ε
n). Assume that for almost every t ∈ I, the slope Slopeε(Ent)(µt) is

finite. Let wεt ∈ L2
ε(µt) be the corresponding vector field given by Proposition 2.1.

Then there is a subset I ′ ⊂ I of full-measure such that for any t ∈ I ′ the speed ˙|µt|ε
is finite and there is a vector field vεt ∈ Tanε(µt) with ‖vεt ‖ε = ˙|µt|ε that satisfies
the two statements (5) and (6) below. The vector field vεt can be chosen to be Borel
measurable as a function (t, p) 7→ vεt (p).
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• One has d
dtµt + div(vεtµt) = 0, i.e. for every test function ψ ∈ C∞

c ,

d

dt

∫

ψ dµt =

∫

〈vεt | ∇εψ〉ε dµt,(5)

• along the curve the entropy satisfies

Ent(µs) ≥ Ent(µt) +

∫

〈wεt | (s− t)vεt 〉ε dµs + o(|s− t|),(6)

when s goes to t.

Moreover as a complement to (6), for any µ and ν in P2(H
ε
n) such that Slopeε(Ent)(µ) <

+∞,

Ent(ν) ≥ Ent(µ) − ‖wε‖L2
ε
(µ)W

ε(µ, ν)− 1

2 · 2ε2W
ε(µ, ν)2.(7)

Proof. The space (Hεn, dε) is a complete Riemannian manifold with Ricci curvature
uniformly bounded from below by K = −1/2ε2. We can apply Proposition 2.5 of
[11] and we obtain a measurable vector field vεt of I×Hεn satisfying vεt ∈ Tanε(µt) for
almost every time and the space-time version of (5) for test functions ψ of compact
support in I×Hεn. In order to localize the continuity equation for times in a set of full
measure I ′ we first consider “rectangular” test functions of type (t, p) 7→ g(t)ψ(p)
where g(t) approximates the indicator of a segment. We deduce that t 7→

∫

ψdµ(t)
has a derivatives on a set of full measure. In order to cancel the dependance of
this set with respect to ψ we take a countable family of test functions, following
the same method as at the end of [47, proof of Theorem 13.8] (see also the end of
Proposition 3.1). Note that we obtain (5) with a slightly different normalization but
it does not matter (see Remark 2.6). Another way to obtain directly (5) would be
to follow the proof of Theorem 13.8 replacing the Lipschitz curve by an absolutely
continous curve as suggested in [47, Remark 13.9]. However it would be not clear
how to conclude that (t, p) 7→ vεt (p) is Borel measurable up to a null set.

The equation (6) is obtained as an easy consequence of Particular Case 23.15 in
[47] by using Lemma 2.7 of [11]. This lemma permits to approximate the optimal
transport vector field vε(µt, µs) that relates optimally µt to µs. Precisely for almost
every t ∈ I we have the Taylor expansion

vε(µt, µs) = (s− t)vεt + o(|s− t|),
in L2

ε(µt).
In the Riemannian manifold Hεn we can apply Particular Case 23.15 and Remark

23.16 of [47]. For almost every t, according to the hypothesis and Proposition 2.1,

we have µt ∈ W 1,1
loc as we need for this particular case. Thus we obtain (7) in a

slightly different normalization (see Remark 2.6). �

Remark 2.6. The different quantities ρt, Ent, v
ε
t , w

ε
t in Proposition 2.5 may depend

on the choice of the reference measure, L or volε. We have ρt = c−1
ε ρεt where cε

is the constant defined by L = cε volε. The vector field wεt = ∇ρεt/ρεt is simply wt
and the entropy with respect to volε is Ent(µt) + ln(cε). Like wεt , the vector field
vεt is not modified. Finally the inequalities of the proposition are equivalent with
L or volε as reference measure. The form with volε in the Riemannian manifold
(Hεn, dε, volε) are actually the original statements of (5), (6) and (7) that can be
found in [11] and [47].
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Remark 2.7. The type of inequality like (7) is called a HWI inequality. It was
established the first time by Otto and Villani [39]. On a Riemannian manifold it

can be written H(ν) ≥ H(µ)−W ε(µ, ν)
√

Iε(µ) +
1
2K ·W ε(µ, ν)2, where H stands

for Ent (it is the “H-functional of Boltzmann”) and Iε is the Fisher information
(see Remark 2.3). The real K is an uniform lower bound on the Ricci curvature.
In Hεn the greatest possible bound is −1

2ε2 . Note that it tends to −∞ as ε goes to 0.

We state a result from [11, Proposition 3.6] (see also [2, Definition 1.2.1. and
Corollary 2.4.10.]) for the special Riemannian manifolds Hεn. Contrarily to the
estimates of Proposition 2.5 it is an integrated and not a pointwise estimate. For
this statement one usually says that Slopeε(Ent) is an upper gradient of Ent in
{µ ∈ P2(H

ε
n), Ent(µ) < +∞}.

Proposition 2.8 (Upper gradient estimate). Let I be an open interval and (µt)t∈I
an AC2-curve in P2(H

ε
n). Assume moreover that Ent(µt) < +∞ for every t and for

any t0, t1 ∈ I the integral
∫ t1
t0
[Slopeε(Ent)(µt)] · ˙|µt|εdt is finite. Then t 7→ Ent(µt)

is locally absolutely continuous with

|Ent(µt1)− Ent(µt0)| ≤
∫ t1

t0

[Slopeε(Ent)(µt)] · ˙|µt|εdt

for any t0, t1 ∈ I.

In Proposition 3.1 we will prove a similar statement to (5) for the “true” Heisen-
berg group Hn. In subsection 3.2 we will let ε go to zero in (7) and get results on
the slope of the entropy in P2(Hn), the Wasserstein space of the “true” Heisenberg
group. Inequality (6) will also be interpreted in the context of P2(Hn) at the end
of paragraph 4.2. With Proposition 2.8, for ε going to 0 we will obtain successively
Proposition 4.5 and Proposition 4.6, two major results of the proof-paragraph 4.2.

3. Speed of curves and slope of Ent in P2(Hn)

3.1. Speed and velocity. Equality (5) in Proposition 2.5 shows that for the AC2-

curves (µt)t∈I in P2(H
ε
n) (where a metric speed ˙|µt|ε is available) it is possible to

define a velocity (speed and direction) thanks to a vector field vεt . We show that
there is a similar velocity for P2(Hn). The next proposition will appear in the
paragraph 4.2 on the proof of Theorem 0.1 where we will apply it to the curves
driven by the gradient flow of Ent.

Proposition 3.1. Let I be an open interval and (µt)t∈I an AC2-curve in P2(Hn).
Then there is a subset I ′ ⊂ I of full measure such that in any t ∈ I ′ there is a
vector field vt ∈ L2

H
(µt) so that

d

dt
µt + div(vtµt) = 0(8)

in the weak sense. It means that for every function ψ ∈ C∞
c (R2n+1),

d

dt

∫

ψ dµt =

∫

〈∇Hψ|vt〉H dµt.

The vector field vt can be chosen to be Borel measurable as a function (t, p) 7→ vt(p).

Moreover, ‖vt‖L2
H
(µt) ≤ ˙|µt| for any t ∈ I ′.

Converserly if (vt)t∈I is a Borel vector field satisfying the continuity equation and
∫ t1
t0

‖vt‖2L2
H
(µt)

dt < +∞ for every t0 < t1, one has ˙|µt| ≤ ‖vt‖L2
H
(µt) for almost every
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t ∈ I. Hence for the vector field introduced in the first part, I ′ can be restricted so

that ‖vt‖L2
H
(µt) =

˙|µt| for any t ∈ I ′.

Proof. As (µt)t∈I is an AC2-curve in P2(Hn), it is also in AC2(P2(H
ε
n)) for any

ε > 0. Note that for ψ ∈ C∞
c (R2n+1), the map µ ∈ P2(H

ε
n) 7→

∫

ψ dµ is Lipschitz
continuous with Lipschitz constant equal to the Lipschitz constant of ψ in Hεn. Thus
t 7→

∫

ψdµt is locally absolutely continuous and according to Proposition 2.5 there
are Borel vector fields vεt ∈ L2

H
(µt) such that for any t0 < t1,

∫

ψ dµt1 −
∫

ψ dµt0 =

∫ t1

t0

∫

〈∇εψ | vεt 〉ε dµtdt(9)

and
∫

‖vεt ‖2ε dµt ≤ ˙|µt|
2

ε ≤ ˙|µt|
2

for almost every t ∈ [t0, t1] with moreover ˙|µt| ∈ L2
loc(I). This last estimates writes

(‖vε,Ht ‖H)2 +
1

ε2

∫

(vε,Ut )2dµt ≤ ˙|µt|
2

(10)

where vε,Ht +vε,Ut U = vε,Ht + 1
εv
ε,U
t εU is the decomposition of vεt into the horizontal

frame and the U vector. By weak compactness of balls in Hilbert spaces and a
Cantor diagonalization argument, we can find a sequence vεi with εi ↓ 0 and a
Borel vector field v, such that for any compact interval K = [t0, t1] ⊂ I, the vector
field vεi converges to v in L2

1(µ̄K). Here µ̄K is the measure on Hn ×K with time
marginals the measures µt. The norm of a vector w in the Hilbert space L2

1(µ̄K) is

‖w‖ =

√

∫ t1

t0

∫

‖wt‖21 dµtdt

where 1 stands for ε = 1. From (10) we learn that vεi,Ut tends to 0 as i goes to
infinity. It follows that v is horizontal (for a.e. t, vt is horizontal) because the norm
of its U coordinate has to be smaller than the lower limit of the corresponding
norms in the sequence. But for any i ∈ N and almost every t ∈ I,

∫

〈∇εiψ | vεit 〉εi dµt =

∫

〈

∇Hψ | vεi,Ht

〉

H

dµt +
1

ε2i

∫

vεi,Ut ε2iUψ dµt

=

∫

〈

∇Hψ | vεi,Ht

〉

1
dµt +

∫

vεi,Ut Uψ dµt.

Because the horizontal part of vεi weakly converges to the horizontal part of v (that

is v itself) and vεi,Ut to 0, it follows

lim
i→+∞

∫

〈∇εiψ | vεit 〉εi dµt =

∫

〈∇Hψ | vt〉1 dµt =

∫

〈∇Hψ | vt〉H dµt

This occurs for almost every t ∈ [t0, t1]. In (9), we put the limit under the integral
sign and can use the Lebesgue dominated convergence because

∫

〈∇εψ | vεt 〉ε dµt ≤
‖∇εψ‖ε · ˙|µt|. But (µt)t∈I is an AC-curve in P2(Hn) and ‖∇εψ‖2ε = ‖∇Hψ‖2H +
ε2(Uψ)2 is smaller than ‖∇1ψ‖21 as soon as ε ≤ 1.

It follows that ζψ : t 7→
∫

ψdµt is almost everywhere differentiable and this

derivative is
∫

〈∇Hψ|vt〉H dµt. The estimate ‖vt‖L2
H
(µt) ≤ ˙|µt| has been proved

during the proof as a limit of (10). Observe that the proof is not totally complete.
Actually we do not have a correct set I ′ as in the statement because C∞

c (R2n+1)
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is uncountable. A way to get over this problem is to consider a family (ψk)k∈N

with (∇Hψk)k∈N dense in the set {∇Hψ | ψ ∈ C∞
c (R2n+1)} for the uniform norm.

Hence it is dense in TanH(µt) for any t. Let I ′ be the set of points t such that all
functions ζk : t 7→

∫

ψk dµt are differentiable with derivative
∫

〈∇Hψk|vt〉H dµt at

t. But ζk(t) is ζk(t) = ζk(t0) +
∫ t

t0

(∫

〈∇Hψk|vs〉H dµs
)

ds. Let ψ be in C∞
c (R2n+1)

and assume without loss of generality that (∇Hψk)k∈N converges to ∇Hψ. Hence
∫

〈∇Hψk|vs〉H dµs converges pointwise to
∫

〈∇Hψ|vs〉H dµs and moreover
∣

∣

∣

∣

∫

〈∇Hψ|vs〉H dµs −
∫

〈∇Hψk|vs〉H dµs

∣

∣

∣

∣

≤ ‖∇H(ψ − ψk)‖∞ · ˙|µs|.

This difference is locally integrable because (µt)t∈I is an AC-curve in P2(Hn).
Hence the derivative of ζψ exists at any t ∈ I ′ and it is the limit of ζ′k(t), i.e.
∫

〈∇Hψ|vt〉H dµt.
For the converse part, let (vt)t∈I be a Borel vector field satisfying the conti-

nuity equation and
∫ t1
t0

‖vt‖2L2
H
(µt)

dt < +∞ for every t0 < t1. This also means
∫ t1
t0

‖vt‖2L2
1
(µt)

dt < +∞ because vt is horizontal (here ε = 1). Hence one can apply

Theorem 5.8 in [7] in the setting of the continuity equation on Riemannian mani-
folds. We obtain a probability measure Π on C(I,H1

n), the space of curves over H1
n

with the Borel sigma-field, satisfying the conditions:

• Π is concentrated on AC2(H
1
n).

• the curve γ is Π(γ)-almost certainly an integral curve of the vector field vt,
so that it is a horizontal curve.

• for every t ∈ I, the law of the point γ(t) with respect to Π is µt.

The following computation will conclude the proof of the converse part.

W (µs, µt)
2 ≤

∫

C(I,Hn)

dc(γs, γt)
2dΠ(γ) ≤

∫

C(I,Hn)

(
∫ t

s

‖γ̇(τ)‖H dτ

)2

dΠ(γ)

≤ (t− s)

∫∫ t

s

‖vt(γ(τ))‖2H dτ dΠ(γ) ≤ (t− s)

∫ t

s

∫

‖vt‖2H dµτ dτ.

Thus ‖vt‖L2
H
(µt) =

˙|µt| holds for almost every t ∈ I. �

3.2. Slope. After the previous part we can represent the velocity of (µt)t∈I by a
vector field. Propositions 3.2 and 3.4 makes the picture more precise and allow
to identify “the gradient of the entropy” as a vector field, at least at some points
µ ∈ P2(Hn).

Proposition 3.2 (On the slope of Ent, 2). Let ε > 0 and µ ∈ P2(H
ε
n) that has

a density ρ. Assume moreover Slope(Ent)(µ) < +∞. Then there is a horizontal
vector field wH ∈ L2

H
(µ) such that L-almost everywhere ∇Hρ = ρwH.

Moreover,

‖wH‖L2
H
(µ) =

√

∫ ‖∇Hρ‖2H
ρ

dL ≤ Slope(Ent)(µ).

Proof. Let V be a smooth horizontal vector field with compact support and ϑ ∈
C∞
c (R2n+1) We consider then Ut(p) = expHp (tV (p), tϑ(p)). Because of Proposition

1.4 for t small enough the map Ut is smooth, one-to-one and Jac(Ut) does not
vanish. Note that V (p) is the speed vector of t → Ut(p) at time t = 0 and that
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this curve is a geodesic of (constant) speed ‖V (p)‖H. Then the metric speed of
((Ut)#µ)t>0 is smaller than ‖V ‖L2

H
(µ). The derivative in time of Ent(µt) can be

classically computed using the fact that (p, t) → Ut(p) is the flow of a smooth
vector field corresponding to V in t = 0. Hence we have

dEnt(µt)

dt
|t=0= −

∫

ρ div(V )dL.

Note that if the entropy grows, which we want to avoid, we can replace V by −V .
Therefore the following inequality with slope and speed on the right hand-side
holds:

∣

∣

∣

∣

∫

ρ div(V )dL
∣

∣

∣

∣

≤ Slope(Ent)(µ) · ‖V ‖L2
H
(µ).

But Slope(Ent)(µ) is finite too. Hence the Riesz representation theorem provides
a horizontal vector field wH ∈ L2

H
(µ) with ‖wH‖L2

H
(µ) ≤ Slope(Ent)(µ) such that for

any V ∈ Γ(THn) with compact support,

−
∫

ρ div(V )dL =

∫

〈wH | V 〉Hdµ.

Thence one observes that ρ ∈W 1,1
loc (H) with ∇Hρ = ρwH. �

Remark 3.3. As in Remark 2.2, wH can be written “∇Hρ/ρ” and as in Remark 2.3

one will say that IH(µ) =
∫ ‖∇Hρ‖2

H

ρ dL is the Fisher information of µ in Hn. An

important issue of this paper is to find out if Slope(Ent)(µ) equals
√

IH(µ), which
is a sort of “maximal slope of Ent along regular curves starting from µ”.

Contrarily to Proposition 2.1, we were not able to state that the finiteness of
Slope(Ent) is equivalent to the existence of a wH ∈ L2

H
(µ) and that these condi-

tions imply wH ∈ TanH(µ). Nevertheless this can be established under a further
condition.

Proposition 3.4 (On the slope of Ent, 3). Let µ ∈ P2(Hn) with a density ρ and
such that Slopeε(Ent)(µ) < +∞ for some (or any) ε > 0. Then Slope(Ent) is also
finite in µ and

‖wH‖L2(H) =

√

∫ ‖∇Hρt‖2H
ρt

dL = Slope(Ent)(µ).

Moreover wH ∈ TanH(µ).

Proof. Let µ ∈ P2(Hn) with finite entropy and such that Slopeε(Ent)(µ) < +∞ for
some (or any, see Remark 2.4) ε > 0. As W ε ≤ W , we have also Slope(Ent)(µ) ≤
Slopeε(Ent)(µ) < +∞. From Proposition 3.2 we know that ρ has a weak deriv-
ative ∇H and that there is wH ∈ L2

H
(µ) such that ρwH = ∇Hρ and ‖wH‖L2

H
(µ) ≤

Slope(Ent)(µ). The fact that the slope of Ent is also finite in P2(H
ε) means that

∇ερ is also well defined and that there exists wε ∈ L2
ε(µ) such that ρwε = ∇ερ.

Thus the weak derivative Uρ is well-defined and satisfies ε(Uρ)εU = ∇ερ −∇Hρ.
Moreover the function wU defined by εwU(εU) = wε − wH is in L2(µ). In fact
ρwU = Uρ L-almost everywhere.

We can show wH ∈ TanH(µ) from the fact that wε ∈ Tanε(µ). Indeed, it is
possible to approach wε in L2(Hε) by a sequence (∇εψk)k∈N where every ψk is a
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function of C∞
c (R2n+1). It follows that (∇Hψk)k∈N tends to the horizontal part of

wε. Hence wH is in the tangent space TanH(µ).
We already know the inequality ‖wH‖L2

H
(µ) ≤ Slope(Ent)(µ), we will prove the

opposite inequality thanks to inequality (7) in Proposition 2.5. In this inequality,
we first replace every W ε(µ, ν) by W (µ, ν). It is allowed because the second is
greater. Then we take ε as a function of ν with ε =W (µ, ν)1/4. But

‖wH‖L2
H
(µ) ≤ ‖wε‖L2

ε
(µ) ≤

√

‖wH‖2
L2

H
(µ)

+ (ε‖wU‖L2(µ))2

≤ ‖wH‖L2
H

+
1

2

(ε‖wU‖L2(µ))
2

‖wH‖L2
H
(µ)

because the graph of
√

is under the tangent line in ‖wH‖2
L2

H

. It follows

Ent(ν) ≥Ent(µ)−
[

‖wH‖L2
H

+
W (µ, ν)1/2

2‖w‖L2
H

‖wU‖2L2(µ)

]

·W (µ, ν)

− (1/4)W (µ, ν)3/2

≥Ent(µ)− ‖wH‖L2
H

·W (µ, ν)−O(W (µ, ν)3/2).

when ν tends to µ. Thus Slope(Ent)(µ) ≤ ‖wH‖L2
H
(µ) and the equality follows. �

Remark 3.5. In the previous proof, we have established a HWI inequality (see
Remark 2.7) for the subRiemannian Hn. Nevertheless it only holds for the points
µ such that Iε(µ) is finite. Note that this condition is different from IH(µ) < +∞.

4. Proof of the Theorem

In this section, we prove Theorem 0.1 in two parts, corresponding to the two
inclusions. In paragraph 4.1 we prove the direct inclusion and in paragraph 4.2 the
indirect inclusion.

4.1. Heat diffusion is a gradient flow of Ent. Let (µt)t∈[0,T [ be a curve in
P2(Hn) such that µt = ρtL = µ0 ∗ ht for any t ∈]0, T [. We will show that both
the curve (µt) and E : t ∈]0, T [ 7→ Ent(µt) are locally absolutely continuous and

compute Ė. We will also compute the slope of Ent at µt and estimate the metric
speed of µt. We will obtain











































Ė(t) = −
∥

∥

∥

∥

∇Hρt
ρt

∥

∥

∥

∥

2

L2
H
(µt)

Slope(Ent)(µt) =

∥

∥

∥

∥

∇Hρt
ρt

∥

∥

∥

∥

L2
H
(µt)

˙|µt| ≤
∥

∥

∥

∥

∇Hρt
ρt

∥

∥

∥

∥

L2
H
(µt)

(11)

at almost every t ∈]0, T [. But because of the differentiability properties of E(t), we
have the chain rule estimate

|Ė(t)| ≤ Slope(Ent)(µt) · ˙|µt|(12)

at almost every t. Comparing with system (11), we see that inequality (12) is an
equality for almost every t ∈ [0, T [.
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Assuming (11) we have proved that t 7→ µt is a gradient flow of Ent on ]0, T [.
For the result on [0, T [, according to Definition 1.7 it is sufficient to prove that
the curve is locally absolutely continuous on [0, T [. In fact if µ0 is a Dirac mass

we have ˙|µt| =
√

∫ ‖∇Hht‖2
H

ht
=
√

1
t

√

∫ ‖∇Hh1‖2
H

h1
so that

∫ t1
0

˙|µt| dt < +∞ for every

t1 > 0. For general µ0 the estimate ˙|µt| ≤
√

1
t

√

∫ ‖∇Hh1‖2
H

h1
holds as well. Actually

for t0, t1 > 0 a coupling πt0,t1 between µt0 and µt1 can be defined as P#(µ0 ⊗ π0)
with the map P : (p, (q0, q1)) ∈ Hn× (Hn)

2 7→ (p ·q0, p ·q1) and an optimal coupling
π0 between ht0L and ht1L. It follows

W (µt0 , µt1) ≤W (ht0L, ht1L) ≤
∫ t1

t0

√

∫ ‖∇Hht‖2H
ht

dLdt.

4.1.1. Computation of Ė. We start with the formal computation of Ė. It shows
the different steps of the rigorous computation. Setting H(ρ) = ρ ln(ρ),

“
d

dt
Ent(µt) =

∫

dH(ρt)

dt
dL

=

∫

(1 + ln(ρt))∆Hρt

=

∫

〈−∇H(1 + ln(ρt)) | ∇Hρt〉H

= −
∫ ‖∇Hρt‖2H

ρt
dL.”

There are several problems. Among them the vector field (1+ln(ρt))∇Hρt does not
have a compact support so that it is not sure that the full integral of its derivatives
is zero, which is what we need for an integration by parts. Another difficulty is
about the regularity of E : t 7→ Ent(µt) and the possibility to differentiate under the
integral sign. We will avoid those technical problems by defining an approximation
of Ent by some functionals

∫

Hk(ρ) where the functions Hk are defined thanks to
cut-off functions.

For any k ≥ 3, let ψk : R+ → [0, 1] be a cut-off function defined by

ψk(x) =

{

1 if x ∈ [1/k, k]

0 if x /∈ [1/(k + 1), k + 1].

We consider H ′
k(x) =

∫ x

1/k ψk(u)
1
udu+1− ln(k) and Hk(x) =

∫ x

0 H
′
k(u)du. We will

see that Hk pointwise converges to H : x 7→ x ln(x). We start with a few remarks:
note that Hk(0) = H(0) = 0, that Hk is convex but less convex than H because
H ′′(x) = 1

x ≥ ψk(x)
1
x = H ′′

k (x). Note also that H ′(x) = H ′
k(x) on [1/k, k]. Let

x > 0 be a real number and k great enough to have x ∈ [1/k, k] so that H and Hk

are “parallel” on this interval. Then Hk(x)−H(x) = Hk(1/k)−H(1/k). But

1

k
ln(1/k) = H(1/k) ≤ Hk(1/k) ≤ 0,

because H ′(u) ≤ H ′
k(u) ≤ 0 for any u ≤ 1/k. All these terms tend to 0 so that we

have the pointwise convergence.
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Let us now prove a domination property. The non-negative function

K : x 7→
{

|x ln(x)| if x ≤ 1/3

1 + |x ln(x)| if x > 1/3.

uniformly dominates the functions |Hk| because on [0, 1/3], Hk(x) is negative and
Hk(x)−H(x) = Hk(x)− x ln(x) ≥ 0 and on [1/3,+∞[ we have Hk(x)− x ln(x) ≤
ln(k)
k ≤ 1 and Hk ≥ −e−1 > −1. Moreover if ρ is the density of some µ ∈ P2(H)

satisfying Ent(µ) < +∞, we have
∫

K(ρ)dL < +∞ because
∫

|ρ ln(ρ)|dL <∞ and
∫

{ρ>1/3} 1 dL < 3. Thus using the dominated convergence theorem one has

lim
k→+∞

∫

Hk(ρ)dL =

∫

ρ ln(ρ)dL = Ent(µ).

The cut-off functions ψk give us the possibility to make the former formal compu-
tation correct.

d
dt

∫

Hk(ρt) =

∫

dHk(ρt)

dt
dL(13)

=

∫

H ′
k(ρt)∆Hρt

= −
∫

ψk(ρt)
‖∇Hρt‖2H

ρt
dL.(14)

Let us see the justifications. For (13) we do not have to much difficulties because
Hk(ρt) has derivative H

′
k(ρt)∆Hρt and absolute value gt = |H ′

k(ρt)(ρ0 ∗∆Hht)|, the
functions H ′

k and ∆Hht are bounded and ρ0 is integrable. That together proves that
gt is integrable. Moreover x 7→ supt∈I gt(x) is also integrable for compact intervals I
included in ]0,+∞[ (the supt∈I |∆Hht| is integrable, see Proposition 1.3). It follows
that t 7→

∫

Hk(ρt) is in C1(]0,+∞[). Let us now justify the integration by part
(14). In fact we have already shown that H ′

k(ρt)∆Hρt is integrable. But we will see
that div(H ′

k(ρt)∇Hρt) is also integrable and thanks to Lemma 4.1 that this integral

is 0, which will justify the integration by part (14). But ψk(ρt)
‖∇Hρt‖2

H

ρt
≤ (k +

1) sup
(

‖∇ht‖2
)

χρt≥ 1
k+1

. This is enough for the integrability of div(H ′
k(ρt)∇Hρt).

Observe that (z, u) ∈ Hn 7→ (1 + ‖z‖Cn)(H ′
k(ρt)∇Hρt)(z, u) is also integrable for

similar reasons (H ′
k is bounded, µ ∈ P2(Hn), ∇Hρt = ρ0 ∗ ∇Hht and Proposition

1.3). Hence we just need to apply Lemma 4.1 to V = H ′
k(ρt)∇Hρt because for any

smooth ρ, ‖∇Hρ‖R2n+1(z, u) ≤ 4n2(1 + |z|).‖∇Hρ‖H.

Lemma 4.1. Let V a smooth horizontal vector such that ‖V ‖R2n+1 ∈ L1(Hn).
Suppose also that div V is integrable. Then

∫

div V = 0.

Proof. Let B(r) and S(r) be the Euclidian balls and spheres of radius r and center
0 in R2n+1. Then |

∫

B(r) div V | ≤
∫

S(r) ‖V ‖ where the norm is the one of R2n+1.

But
∫∫

S(r) ‖V ‖dσdr =
∫

‖V ‖ < +∞. Hence there is a sequence (rn) with rn → +∞
and

∫

S(rn)
‖V ‖ → 0. It follows

∫

div V = 0. �

Hence
∫

Hn(ρt0)−
∫

Hn(ρt1) =

∫ t1

t0

(
∫

ψn
‖∇Hρt‖2H

ρt
dL
)

dt.
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The last step is to let n go to ∞ and use the monotone convergence theorem.

Ent(µt0)− Ent(µt1) =

∫ t1

t0

(
∫ ‖∇Hρt‖2H

ρt
dL
)

dt.(15)

Note that in (15) the entropies are finite. Actually, from Lemma 1.5, we have
Ent > −∞ and ρt is bounded from above by sup ht, so that ρt ln ρt ≤ Cρt for some
positive constant C. This implies Ent(µt) ≤ C < +∞. Hence E : t 7→ Ent(µt) is
locally absolutely continuous and for almost every t,

−Ė(t) =
∫ ‖∇Hρt‖2H

ρt
dL < +∞.

4.1.2. Computation of the slope of Ent. We will apply Proposition 3.4 to µt for

almost every t. We have already proved in (15) that
∫ ‖∇Hρt‖2

H

ρt
dL is finite. Consider

the Cauchy-Schwarz inequality

(ρ0 ∗ |Uht|)2 =

(

ρ0 ∗ (
|Uht|√

ht

√

ht)

)2

≤
(

ρ0 ∗
|Uht|2
ht

)

(ρ0 ∗ ht) .

Finally

|Uρt|2
ρt

≤
(

(ρ0 ∗ |Uht|)2
ρ0 ∗ ht

)

≤ ρ0 ∗
( |Uht|2

ht

)

.

After integrating one obtains
∫ |Uρt|2

ρt
≤
∫ |Uht|2

ht
,

because L is translation-invariant. Proposition 1.3 and Proposition 3.4 gives us

Slope(Ent)(µt) =
√

∫ ‖∇Hρt‖2
H

ρt
dL.

4.1.3. Computation of the speed of (µt). Let us finally consider the speed of (µt)t∈[0,T [.

Let ψ ∈ C∞
c (R2n+1). We recall that ρt is positive, smooth in space and time for

t > 0. Moreover, ψ∇Hρt has a compact support. Then

d

dt

∫

H

ψρt dL =

∫

H

ψ∂tρt dL =

∫

H

ψ∆Hρt dL

=

∫

H

〈∇Hψ | −∇Hρt〉H dL =

∫

H

〈∇Hψ | −∇Hρt
ρt

〉H dµt.

Hence ∂t(µt)+div
(

−∇Hρt
ρt

µt

)

= 0 holds for every t. Recall from (15) that −∇Hρt
ρt

is

in L2
H
(µt) and

∥

∥

∥

∇Hρt
ρt

∥

∥

∥

2

L2
H
(µt)

is locally integrable on ]0, T [. Using now the converse

part of Proposition 3.1 we can conclude that ˙|µt| ≤
∥

∥

∥

∇Hρt
ρt

∥

∥

∥

L2
H
(µt)

holds at almost

every time.
Thus we have computed the speed of µt, the slope of Ent at µt and Ė. See the

beginning of the subsection for the end of the proof.
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4.2. Gradient flows of Ent are heat diffusions. We want to prove that gradient
flows (µt)t∈[0,T [ of Ent in P2(Hn) are solutions of the hypoelliptic heat equation.
We will state two important propositions, Proposition 4.5 and Proposition 4.6, that
are based on the following assumption:

∫ t1

t0

‖wH

t ‖L2
H
(µt) · ˙|µt| dt is finite.(16)

with the conventions ‖wH
t ‖L2

H
(µt) = +∞ each time Slope(Ent)(µt) is infinite and

˙|µt| = +∞ if the metric derivative of (µt)t in P2(Hn) does not exist at t. Before we
prove that gradient flows of Ent satisfy (16), let us stress that we do not need these
conventions in the case of a gradient flow, because Ent(µt) is finite (except maybe

at one time) and ˙|µt| = Slope(Ent)(µt) is finite for almost every t. Furthermore
‖wH

t ‖L2
H
(µt) < +∞ by Proposition 3.2.

Lemma 4.2. Let T be a finite or infinite time. Gradient flows (µt)t∈]0,T [ of Ent
in P2(Hn) are AC2-curves on the open set ]0, T [ and they satisfy condition (16) for
any positive bounds t0, t1.

Proof. As (µt)t∈[0,T [ is a gradient flow of Ent in P2(Hn) we have

0 ≤ Ent(µt0)− Ent(µt1) < +∞
for any 0 < t0 < t1 < T . Indeed because of Lemma 1.5 , Ent(µt) > −∞ and it can
also not be +∞ as explained in Remark 1.9. Therefore, as E : t 7→ Ent(µt), that is
a non-increasing function, has bounded variations we obtain

∫ t1

t0

[Slope(Ent)(µt)] · ˙|µt| = −
∫ t1

t0

Ė ≤ E(t0)− E(t1) < +∞.

But ‖wH
t ‖L2

H
(µt) ≤ Slope(Ent)(µt) so that

∫

‖wH
t ‖L2

H
(µt) · ˙|µt| < +∞.

The curve t 7→ µt is an AC2-curve on ]0, T [ in P2(Hn) because it satisfies ˙|µ|2 =

[Slope(Ent)(µt)] · ˙|µt|, which is integrable on any [t0, t1] ⊂]0, T [. �

We will prove a result similar to Proposition 2.8 for the Heisenberg group in the
two propositions of this paragraph. For that, we will use two kinds of approxima-
tions: the first one is the comparison of Hn with Hεn and the second one is the
approximation of measures µt by some others µ∗

t in the following way: the mea-
sure µ∗

t is obtained by convolution with a measure ξυ concentrated on the center

L = {(z, u) ∈ Hn, | z = 0} and with density u 7→ ξ(u/υ)
υ where ξ is a function of

support [−1, 1] ⊂ L that differs from

u 7→ e
−1

1−u2

only by a normalization constant. We will simply write µ∗
t even if it depends on

υ > 0. While in the proofs ε > 0 is a fixed parameter, µ∗ depends in fact on
υ > 0 and µ∗ tends to µ while this parameter goes to 0. Recall Lemma 1.2 on
the possibility to differentiate one or the other term of the convolution in µ∗

t . The
convolution of a measure on Hn with an horizontal vector field has to be understood
in the sense of left- or right- translation of vectors ; for ξυ because of Lemma 1.2
left or right means the same and the convolution with functions or vector fields is
the same as the convolution in R

2n+1.
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We will apply many times the following lemma with one of the measures ξυ or
µt in the role of ν.

Lemma 4.3. Let µ be a probability measure on RN with density ρ and f a µ-
measurable function. Let also ν be a probability measure. Define F = ρf . Then

‖F ∗ ν/µ ∗ ν‖L2(µ∗ν) ≤ ‖F/µ‖L2(µ) = ‖f‖L2(µ).

Moreover if νn converges in law to the Dirac mass in 0 and ‖f‖L2(µ) < +∞, the
sequence ‖F ∗ νn/µ ∗ νn‖L2(µ∗νn) converges and has limit ‖f‖L2(µ).

Proof. The result is trivial if f is not in L2(µ). So we assume that it belongs to
this space. Hence it is also in L1(µ) so that one can identify F with fµ, a finite
Radon measure. The wanted estimate relies on the Cauchy-Schwarz inequality.

(|F | ∗ ν)2 =

(( |F |√
ρ

√
ρ

)

∗ ν
)2

≤
( |F |2

ρ
∗ ν
)

(ρ ∗ ν).

But |F ∗ ν| ≤ |F | ∗ ν, then
∫ |F ∗|2

ρ∗
dL ≤

∫ |F |2
ρ

dL.

For the second part we consider the fact that F ∗νn and µ∗νn weakly* converges
to F and µ respectively. Moreover f ∈ R 7→ f2 ∈ R is superlinear. Hence we have
gathered the assumptions for Theorem 2.34 of [1] and can apply it as in Example
2.36 of the same book. More precisely the theorem is applied to the finite Radon
measures F ∗ and F . It follows that

lim inf
υ↓0

∫ |F ∗|2
ρ∗

dL ≥
∫ |F |2

ρ
dL.

�

Remark 4.4. The first part of Lemma 4.3 comes from the Cauchy-Schwarz inequal-
ity. Alternatively it follows from the Blachman–Stam inequality [8, 43] or the Jensen
inequality as in [6, Lemma 2.13 and Lemma 2.14].

We can now start with the two propositions.

Proposition 4.5. Let T be a positive or infinite time and (µt)t∈]0,T [ be an AC2-
curve in P2(Hn). Let us assume that Ent(µt) is finite for any t and that for any
t0, t1 > 0, condition (16) is satisfied:

∫ t1

t0

‖wH

t ‖L2
H
(µt) · ˙|µt| dt < +∞.

(About this condition recall also the convention ‖wH
t ‖ = +∞ if the slope of Ent in

µt is not finite.) Then t 7→ Ent(µt) is locally absolutely continuous. Moreover

|Ent(µt1)− Ent(µt0)| ≤
∫ t1

t0

‖wH

t ‖L2
H
(µt) · ˙|µt|dt

for any t0, t1 > 0.
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Proof. We will apply Proposition 2.8 to the curves (µ∗
t )t∈]0,T [ built as explained

above from (µt)t∈]0,T [. First we are indeed mostly interested in the fact that E∗ :
t 7→ Ent(µ∗

t ) is locally absolutely continuous. We will prove this by using the theory
on P2(H

ε
n) where ε > 0 is chosen arbitrary. Note that ∇H(ρ ∗ ξυ) = (∇Hρ) ∗ ξυ and

∇ε(ρ ∗ ξυ) = (∇ερ) ∗ ξυ because of Lemma 1.2.
One thing we want to check in order to apply Proposition 2.8 is that t 7→ µ∗

t is
an AC2-curve in P2(H

ε
n). This is quite obvious because as explained in Lemma 1.2,

dε(p, q) = dε(p.l, q.l) for any l ∈ L. It follows W ε(µ∗
s , µ

∗
s′) ≤ W ε(µs, µs′) because

each transport plan π of µs and µs′ gives rise to a transport plan π∗ defined by
∫

φ(p, q)dπ∗(p, q) =
∫

φ(p.l, q.l) dπ(p, q)⊗ dξυ(l). Hence we have

W ε(µ∗
s, µ

∗
s′) ≤W ε(µs, µs′) ≤W (µs, µs′) ≤

∫ s′

s

˙|µt|dt.

Therefore t 7→ µ∗
t is locally absolutely continuous. Moreover it holds ˙|µ∗

t |ε ≤ ˙|µt|,
t-almost everywhere. Thus t 7→ µ∗

t is an AC2-curve in P2(H
ε
n).

Another fact that we have to check before applying Proposition 2.8 concerns the
slope of Ent at point µ∗

t in P2(Hε). In fact we will state
∫ ‖∇ερ

∗
t ‖2ε

ρ∗t
=

∫ ‖∇Hρ
∗
t ‖2H

ρ∗t
+ ε2

∫ |Uρ∗t |2
ρ∗t

≤
∫ ‖∇Hρt‖2H

ρt
+ ε2

∫ |Uξυ |2
ξυ

,(17)

with the convention that an integral is +∞ when the integrand is not well-defined.
Actually as Ent(µt) < +∞ the density ρt exists but the vectors of type ∇ρ/ρ may
not be well-defined as elements of some L2-space (recall Remark 2.2 and paragraph
3.2).

The equality in (17) is only the definition of ∇ε and the inequality is the con-

sequence of two estimates. For the first estimate we apply Lemma 4.3 to Uξυ
ξυ

and

µt, for the second estimate we apply the same lemma to the coordinates of ∇Hρt
ρt

and the measure ξυ. It follows
√

∫ ‖∇ερ∗t ‖2ε
ρ∗t

· ˙|µ∗
t |ε ≤

√

∫ ‖∇Hρt‖2H
ρt

· ˙|µt|+ ε

√

∫ |Uξυ |2
ξυ

· ˙|µ∗
t |ε.

Thence we can apply Proposition 2.8 because the last estimate shows that t 7→
Slopeε(Ent)(µ∗

t ) · ˙|µ∗
t |ε is integrable. Therefore E∗ is locally absolutely continuous.

We can now turn to the second part of the proposition because for almost every

t, the derivative of E∗ : t 7→ Ent(µ∗
t ) is smaller than SlopeH(Ent)(µ∗

t ) · ˙|µ∗
t |. But

because of estimate (17) and Proposition 3.4, SlopeH(Ent)(µ∗
t ) =

√

∫ |∇Hρ∗t |2
ρ∗
t

. It

follows

|Ent(µ∗
t1)− Ent(µ∗

t0)| ≤
∫ t1

t0

√

∫ ‖∇Hρ∗t ‖2H
ρ∗t

dL · ˙|µ∗
t |dt

≤
∫ t1

t0

√

∫ ‖∇Hρt‖2H
ρt

dL · ˙|µt|dt.

Letting υ go to 0 in the left-hand we obtain both results we wish: the absolute
continuity of E and the estimate. In fact if µC and (µt|z)z∈Cn (resp. (µ∗

t|z)z∈Cn)

are the marginal and the conditional measures of µt (resp. µ
∗
t ) in the projection
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(z, u) 7→ z, this disintegration provides

Ent(µ∗
t )− Ent(µt) =

∫

Cn

(

Ent(µ∗
t|z)− Ent(µt|z)

)

dµC

t (z),(18)

both for t = t1 and t = t0. By the dominated convergence theorem, this goes to 0
as υ tends to 0. �

Let us immediately improve the upper bound of Proposition 4.5.

Proposition 4.6. Let T be a positive or infinite time and (µt)t∈]0,T [ be an AC2-
curve in P2(Hn) and (vt)t∈]0,T [ be µt-measurable vector fields given by Proposition
3.1. Under the hypothesis that Ent(µt) is finite for any t and (16) holds for any
t0, t1 > 0, we have

Ent(µt0)− Ent(µt1) ≤
∫ t1

t0

∫
〈−∇Hρt

ρt
| vt
〉

H

dµtdt(19)

for any t0, t1 > 0.

Proof. We divide the proof in three steps.
Continuity equation (8) for (µ∗

t )t>0: Let (µt) be a locally absolutely continuous

curve such that
∫ t1
t0

√

∫ ‖∇Hρt‖2
H

ρt
dL · ˙|µt| dt is finite for any t0, t1 > 0. Observe that

both µt and µ
∗
t satisfy the assumptions of Proposition 4.5 as we have seen in the

proof of this proposition itself. Hence we know that E and E∗ are locally absolutely

continuous and wU,∗
t = Uρ∗t /ρ

∗
t is in L2(µ∗

t ). We will start to prove (19) for µ∗
t

together with the µ∗
t -measurable vector fields (v∗t )t∈I defined by v∗t ρ

∗
t := (ρtvt) ∗ ξυ

for any t ∈]0, T [. We first check that v∗t is a speed vector of µ∗
t in the sense of (8).

We mean that it satisfies the continuity equation (8). Let ψ ∈ C∞
c (R2n+1) be a test

function. Then
∫

ψ dµ∗
t =

∫

(ψ ∗ ξυ)dµt. As ψ ∗ ξυ ∈ C∞
c (R2n+1), the derivative of

this quantity is
∫

〈∇H(ψ ∗ ξυ) | vt〉H dµt =

∫

〈∇Hψ | (ρtvt) ∗ ξυ〉H dL =

∫

〈∇Hψ | v∗t 〉H dµ∗
t .

Because of Lemma 4.3 applied to the coordinates of ρtvt and ξυ, we have
∫

‖v∗t ‖2Hdµ∗
t ≤

∫

‖vt‖2Hdµt = ˙|µt|
2
(but we do not know whether

∫

‖v∗t ‖2Hdµ∗
t ≤ ˙|µ∗

t |
2
).

The curve (µ∗
t )t>0 satisfies (19): First notice in (16) that if vt = 0 for almost every

t, both Ė and Ė∗ are zero such that −Ė∗ ≤
∫

〈

−∇Hρ
∗

t

ρ∗
t

| v∗t
〉

H

dµ∗
t . Generally under

(16), Slope(Ent)(µt) and ‖wH
t ‖L2

H
(µt) are finite on {t ∈]0, T [, ˙|µt| 6= 0} for almost ev-

ery t. Thus at those times t we can apply Proposition 2.1 and Proposition 2.5 to µ∗
t

because wH
t = ∇Hρt/ρt is square-integrable. Indeed we have proved in Proposition

4.5 (especially estimate (17)) that this condition implies that ∇ερ
∗
t /ρ

∗
t is in L

2
ε(µt).

From there with Proposition 2.5, one has −Ė∗(t) ≤
∫

〈

−∇ερ
∗

t

ρ∗
t

| vε,∗t
〉

ε
dL for a

vector field vε,∗t as in (6). As wε,∗t = wH,∗
t +ε2wU,∗

t = ∇ερ
∗
t /ρ

∗
t is in L

2
ε(µ

∗
t ), accord-

ing to Proposition 2.1 it is also a vector field of Tanε(µ
∗
t ). Thence let (∇εψk)k∈N

be a sequence converging to wε,∗t in L2
ε(µ

∗) where the (ψk)k∈N are test functions.
Therefore the sequence (∇Hψk)k∈N tends to wH,∗ and the derivative of t 7→

∫

ψkdµ
∗
t

has two limits, the first one due to the theory in P2(H
ε
n), the other to the one in

P2(Hn). One obtains

lim
k→∞

d

dt

∫

ψkdµ
∗
t = lim

k→∞

∫

〈∇Hψk | v∗t 〉H dµ∗
t =

∫
〈∇Hρ

∗
t

ρ∗t
| v∗t
〉

H

dµ∗
t .
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and

lim
k→∞

d

dt

∫

ψkdµ
∗
t = lim

k→∞

∫

〈

∇εψk | vε,∗t
〉

ε
dµ∗

t =

∫
〈∇ερ

∗
t

ρ∗t
| vε,∗t

〉

ε

dµ∗
t .

Hence for the locally absolutely continuous E∗ we have

Ent(µ∗
t0)− Ent(µ∗

t1) =

∫ t1

t0

(−Ė∗) ≤
∫ t1

t0

∫
〈−∇Hρ

∗
t

ρ∗t
| v∗t
〉

H

dµ∗
tdt.(20)

The curve (µt)t>0 satisfies (19): We would like now to let the *-parameter υ go
to 0. This will be done if ‖w∗

t ‖L2
H
(µ∗

t
), ‖v∗t ‖L2

H
(µ∗

t
) and ‖w∗

t + v∗t ‖L2
H
(µ∗

t
) all three

converge to ‖wt‖L2
H
(µt), ‖vt‖L2

H
(µt) and ‖wt+vt‖L2

H
(µt) respectively, because it would

mean that
∫

〈

∇Hρ
∗

t

ρ∗
t

| v∗t
〉

H

dµ∗
t tends to

∫

〈

∇Hρt
ρt

| vt
〉

H

dµt. This is attested by the

equality part of Lemma 4.3 applied to the coordinates of vt, wt and vt + wt. We
conclude as in Proposition 4.5 for the left-hand side of (20). For the right-hand side

we dominate
∫

〈

∇Hρ
∗

t

ρ∗
t

| v∗t
〉

H

dµ∗
t by ‖wH

t ‖L2(H) · ˙|µt|H and let υ go to 0. (Indeed

‖wH
t ‖L2(H) ≥ ‖wH,∗

t ‖L2(H) because of Lemma 4.3) �

For the end of the proof, recall that Lemma 4.2 tells us that a gradient flow
(µt)t∈[0,T [ of Ent satisfies (16) and is an AC2-curve in P2(Hn) on ]0, T [. There-
fore one can apply Proposition 4.5 and Proposition 4.6 to (µt)t>0. Hence we put

the estimate of Ė obtained in (20) in equation (8). Considering that −Ė(t) =

Slope(Ent)(µt) · ˙|µt| ≥ ‖wH
t ‖L2(H) · ‖vt‖L2(H) must be smaller that

〈

−∇Hρt
ρt

| vt
〉

H

,

one can deduce vt = −wH
t = −∇Hρt/ρt. Replacing vt, one can therefore rewrite

the continuity equation of Proposition 3.1:

d

dt
µt + div(−wH

t µt).

Because of relation ∇Hρt = ρtw
H
t it is also

d

dt
µt + div(−∇Hρt dL)(21)

where ∇Hρt is the weak gradient of ρt. Remind that (21) means that for any
ψ ∈ C∞

c (R2n+1),

d

dt

∫

ψ dµt =

∫

〈∇Hψ| − ∇Hρt〉H dL.(22)

We know from the proof of Proposition 3.1 that ζψ =
∫

ψ dµt is locally absolutely
continuous on ]0, T [. It follows that we can integrate (22) on an interval [t0, t1] and
obtain

∫

ψρt0dL −
∫

ψρt1 dL = −
∫ t1

t0

∫

〈∇Hψ|∇Hρt〉H dLdt

for any ψ ∈ C∞
c (R2n+1). We recognize a weak formulation of the “hypoelliptic heat

equation”. By using classical references about hypoelliptic operator as [41] or [44]
and the references therein, this concludes the proof for (µt)t∈]0,T [. The continuity
of the curve in 0 states that (µt)t is the heat diffusion on the whole [0, T [.

Remark 4.7. We have proved that µt satisfies the hypoelliptic heat equation. But
∆H commutes with U so that µ∗

t is actually also driven by heat diffusion in Hn.
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5. Final remarks

In this final section, we compare the main theorem and our techniques to similar
results and other techniques.

Remark 5.1. In the last paragraph of their paper concerning a nonholonomic Moser
theorem [27, Subsection 6.3], Khesin and Lee prove a result similar to one of the
two inclusions of Theorem 0.1: “heat diffusion is a gradient flow of ∆H”. The paper
takes place in the wide class of bracket-generating distribution τ on a connected
and compact manifold M (it includes the Albanese torus, a compact quotient of
Hn). The authors also approximate the metric space by Riemannian manifolds
completing the horizontal tangent space by the other directions. However, their
result is different from the comparable inclusion in Theorem 0.1 because it does not
apply to the non-compact Hn. The proof of Khesin and Lee is more algebraic than
the proofs of the present paper and the Wasserstein space they are considering is a
“smooth” Wasserstein space, restricted to smooth probability measures. Actually
the authors begin to give the smooth tangential structure of P2(Mτ ), and define
the length of curves and the Wasserstein distance from there. Hence the definition
of gradient flows is different: the solution of the hypoelliptic equation goes in the
“smooth” direction with the greatest slope but a rough Slope(Ent) is not defined.

In [27], the other inclusion “gradient flows of Ent are heat diffusions of ∆H” is
not addressed.

We say a few words on the most recent results by Ambrosio, Gigli and Savaré.

Remark 5.2. In [3], Theorem 8.5 states in a very general metric setting that if
Slope(Ent) is both — i) a strong upper gradient, ii) lower semicontinuous on the
sublevels of Ent, the gradient flow of Ent exists and corresponds to the L2-gradient
flow of the suitable Dirichlet energy (the hypoelliptic semigroup for Hn). According
to Theorem 9.3 in [3], conditions i) and ii) are satisfied in metric spaces “with Ricci
curvature bounded from below”. In the paper, we have proved i) for the Heisenberg
group (Proposition 4.4) but I do not know whether ii) holds.

According to recent discussions with the authors, even the assumptions of The-
orem 8.5 in [3] could be impressively removed. Only the basic estimate (4.3) of this
paper – on the growth of balls – seems to be necessary. This growth estimate is
satisfied for Riemannian manifolds with a lower bound on the Ricci curvature and
for the Heisenberg groups as well.

The last remark of this paper concerns possible generalizations of our proof.

Remark 5.3. It is a natural question to ask whether the techniques of this paper
apply to more general subRiemannian structures. We would like to review some of
the key-points that seem to be necessary to make our proof of paradigm (1) work
and try to define a possible framework. A first natural assumption is to replace
Hn by a Carnot group G. These groups are isomorphic to vector spaces of finite
dimension with a polynomial multiplicative structure. The Lebesgue measure is
left- and right- invariant so that one has

∫

fV 2g dL+
∫

V f.V g dL = 0 for any left-
invariant vector field V and compactly supported and smooth f and g (see [22] on
Carnot groups). As I’m not aware of a Carnot group where estimates concerning the
diffusion are as well known as in the Heisenberg group, it is reasonnable to set up in
a compact space. Actually in a non-compact setting we would need estimates such
as those in Lemma 1.3 for the direct part of the proof corresponding to paragraph
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4.1. Hence we choose to work in a nilmanifold, that is the quotient manifold of G
by a cocompact subgroup.

In the indirect part of the proof, it will be necessary to know a lower bound of the
Ricci curvature for the approximating manifolds. This is necessary for establishing
an HWI inequality as in Proposition 3.4 at the measures µ that have a density
ρ with a square-integrable Riemannian gradient. The second important item is
the possibilty to replace a gradient flow curve (µt)t∈I by a curve made of more
regular measures µ∗

t obtained doing a convolution in the direction of the center
of G (the commutativity would unable the continuity of both the entropy and
the subRiemannian Fisher information during the 1-parameter convolution). This
operation aims to give the density ρ∗t a derivative in every direction, in other words
a Riemannian gradient. A consequence is that the operator ∆G should be defined
as
∑

i V
2
i where the left invariant vector fields Vi are linearly independant and span

the whole Lie algebra except the center (that can be more than 1-dimensional).
This is a sub-Laplacian if G is a 2-step Carnot group and another hypoelliptic
operator otherwise.
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