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DIFFUSION BY OPTIMAL TRANSPORT IN THE HEISENBERG

GROUP

NICOLAS JUILLET

Abstract. We prove that the hypoelliptic diffusion of the Heisenberg group
Hn describes in the space of probability measures over Hn a gradient flow of
the Boltzmann entropy Ent∞ in the sense of optimal transport. We prove
that conversely any gradient flow of Ent∞ that satisfy a further derivability
assumption satisfy the hypoelliptic heat equation.

Introduction

The Heisenberg group Hn is apparently one of the meeting point of various
mathematical and scientifical domains. This can be partially explained by the fact
that the first Heisenberg group appears as the less elaborated Lie group after the
Euclidean spaces. It includes only a few non-commutativity and its Lie algebra
presents a unique non-trivial relation (that can be interpreted in quantic physic
as the uncertainty principle). That is a reason why it is occuring so much in dif-
ferent domains. The subRiemannian distance, called for Hn Carnot-Carathéodory
distance dc provides an exotic structure that still allows elementary computations.
It makes of Hn one of the spaces aimed by some theory on metric spaces (see e.g.
[12] for geometric measure theory, [19] for conformal geometry, [6] for embedding
problems). This paper is devoted to a metric approach of the hypoelliptic diffusion
in the Heisenberg group. We will consider in the main theorems (Theorem 0.1
and Theorem 0.2) some curves of P2(Hn)– a space of probability measures called
Wasserstein space –that are defined as the gradient flow of the Boltzmann entropy
with respect to the Wasserstein metric structure on P(Hn). We prove that these
curves correspond to the solutions of the hypoelliptic heat equation provided by
∆H, the subRiemmannian “sum of square” operator, the so-called Kohn operator.
The hypoellipticity of this operator is the consequence of a famous theorem by
Hörmander [14] about “sum of square” operators. Roughly speaking we give a
metric way to characterize the classical diffusion of the Heisenberg group by using
a gradient flow in the Wasserstein space P2(Hn).

We say now a little more about the origin of this approach. The breakthrough
on this topic are the seminal papers of Otto ([15, 24] the first one with Jordan
and Kinderlehrer) where the Wasserstein space P2(R

n) is considered for the first
time formally as an infinite dimensional Riemannian manifold. This approach is
sometimes called “Otto calculus” as in [28]. Otto and his coauthors realized that
the solutions of the heat equation are densities of measures describing a special
curve on P2(R

n) and justify it at the formal level. The Boltzmann entropy (with
1
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respect to L), defined by

Ent∞(µ) =







∫

ρ ln ρdL if µ = ρL

+ ∞ if µ is not absolutely continuous,
(1)

can be regarded as a function on the formal manifold P2(R
n) and the diffusion

curve moves with a speed and direction determined by the gradient of this function
(the vector field ∇ρ

ρ ). This discovery initiated the study of the gradient flow of

different functionals in the Wasserstein spaces starting with the relative Rényi en-
tropy recovering the porous medium equation [24]. People continued this approach
in various spaces (X, d), following various definitions of the gradient flow on P2(X),
sometimes with numerical aspirations [1, 7, 9, 18, 23, 28, 26]. Nowadays, the most
documented book on this subject is probably the book by Ambrosio, Gigli and
Savaré [1] where this theory is developed in fine analysis for Hilbert spaces. An
interesting topic is to study the gradient flows of the entropy in P2(X) (relatively
to a reference measure LX) considering it as the definition for the heat equation
in non-smooth settings. Our results show that this point of view is valuable in
(Hn, dc), a metric space where it is quite unequivocal what the “heat diffusion”
shall be.

With the “Otto calculus” on P2(Hn) our results are formally true. Actually the
gradient of Ent∞(ρL) is formally the vector field ∇Hρs/ρs and this observation
leads to a weak form of the hypoelliptic heat equation. The difficulty lies in the
execution : for any K ∈ R the Boltzmann entropy is not K-convex along the
geodesics of P2(Hn) [16]. This property on P2(M) is equivalent for Riemannian
manifolds M to having a Ricci curvature bounded below by K. In this case studied
by Erbar [7], Savaré [26] and Villani [28], a gradient flow of Ent∞ is solution of
the Riemannian heat equation ∆Mρs = ∂

∂sρs or conversely solutions of the heat
equation are gradient flows. For manifolds without bounds, nothing is known yet
because the convexity of Ent∞ is necessary in the today’s proofs. Our approach of
the gradient flow is based on the approximation of our space by the Wasserstein
spaces, P2(H

ε
n), of approximating Riemannian manifolds Hε

n. The manifolds Hε
n

have bounds on the Ricci curvature but these bounds tends to −∞ when ε goes to
0. Hence it is not possible to apply directly a stability theorem about the existence
of a gradient flow for a limit of metric spaces with gradient flows (see [26]).

We will present the results as follow. In the first part we will introduce the
Heisenberg group, the optimal transport theory and will state the definition we
adopt for a gradient flow. In the second part, we will review what we need about
the variations of the entropy in the Wasserstein space P2(H

ε
n) of the approximating

manifolds. This part states for Riemannian the results that we hope to have for Hn

and that seem to be very difficult to obtain directly, that is without any reference
to the approximating manifolds. In part three and four we study the speed of the
curves in P2(Hn) as well as the slope of Ent∞ in this space. In the fifth part we
prove the theorems: (the notations and terminology are given in this paper)

Theorem 0.1. Let (ρs)s∈]0,+∞[ be a solution of the hypoelliptic heat equation

{

∆Hρs = ∂sρs

ρ0dL = µ0



DIFFUSION BY OPTIMAL TRANSPORT IN THE HEISENBERG GROUP 3

in Hn where µ0 has a compact support. The curve (µs)s≥0 of measures ρsdL = µs
is a gradient flow of the entropy Ent∞.

Theorem 0.2. Let (µs)s∈I be a gradient flow of Ent∞ in P2(Hn). Assume that for
almost every s ∈ I, there exists a weak derivative Tρs and a function wT

s ∈ L2(µs)
such that Tρs = wT

s ρs. Then the density (ρs)s∈I satisfies the “hypoelliptic heat
equation”

∂sρs = ∆Hρs.

1. Definitions

1.1. Heisenberg groups. Let n be a positive integer. The Heisenberg group Hn

is a Lie group that can be represented by R2n+1 = Cn × R with the multiplicative
structure

(z, t) · (z′, t′) = (z + z′, t+ t′ − 1

2

n
∑

k=1

ℑ(zkz̄′k))

where z writes (z1, · · · , zn) = (x1 + iy1, · · · , xn + iyn) and ℑ is the imaginary part
of a complex number. A basis for the Lie algebra of left-invariant vector field is
given by (X1,Y1, · · · ,Xn,Yn,T) where

Xk = ∂xk
− yk

2
∂t and Yk = ∂yk

+
xk
2
∂t for k ∈ {1, · · · , n}

and T = ∂t. It is possible to define two metric structures on Hn. For any ε > 0, we
note (Hε

n, dε) the Riemannian manifold defined from (X1,Y1, · · · ,Xn,Yn, εT) as
orthonormal basis in any point. The metric space (Hn, dc) will denote the Heisen-
berg group with the subRiemannian metric obtained from (X1,Y1, · · · ,Xn,Yn).
The functions ‖ · ‖ε and ‖ · ‖H are then defined by

∥

∥

∥

∥

∥

(

n
∑

k=1

akXk + bkYk

)

+ cεT

∥

∥

∥

∥

∥

ε

=

√

√

√

√(

n
∑

k=1

a2
k + b2k) + c2

∥

∥

∥

∥

∥

n
∑

k=1

akXk + bkYk + cT

∥

∥

∥

∥

∥

H

=

{

√
∑n

k=1 a
2
k + b2k if c = 0,

+∞ otherwise.

The Lebesgue measure L2n+1 is up to a constant the Haar measure of the group.
Up to a constant it is for Hε

n the Riemannian volume and the 2n+ 2-dimensional
Hausdorff measure for Hn.

We precise that the Carnot-Carathéodory distance dc, the subRiemannian dis-
tance of Hn is obtained by minimizing the subRiemannian length between two
points. This length l(γ) is defined for absolutely continuous curve γ of Hn as the
limit of lε(γ), the length computed in Hε

n when ε tends to 0. Precisely if for almost
every s, γ̇(s) =

∑n
k=1 (ak(s)Xk(γ(s)) + bk(s)Yk(γ(s)) + c(s)T(γs), then

l(γ) =

∫

‖γ̇(s)‖Hds =

{

∫ √
∑n
k=1(a

2
k + b2k)(s)ds if c = 0 for almost every s (*),

+∞ otherwise.

(2)

The curves satisfying condition (*) are called horizontal. They are contained in
the horizontal subspace, that is THn := Vect(X1,Y1, · · · ,Xn,Yn). The distance
dc is finite because of the so-called Hörmander condition [14] (see also [22]): the
horizontal subspace and the vector fields that it generates using the Lie bracket
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span the whole tangent space. Here we have simply [Xk,Yk] = T. From there
any two points of Hn can be connected by an horizontal curve. There are actually
geodesics, i.e. curve minimizing the length between two points. As in Riemannian
geometry one can also consider an exponential map expH (a variant of the ones
in [2, 16]). For p ∈ Hn, ϑ ∈ R and V an horizontal vector of TpHn, the point
expH

p (V, ϑ) is the end of a local geodesic of length ‖V ‖H starting in p tangentially to
V . The only difference with the exponential map of Riemannian geometry is that
there are several such geodesics ; they are parametrized by ϑ.

An other important consequence of the Hörmander condition is the hypoelliptic-
ity of the operators ∆H :=

∑n
k=1(X

2
k+Y2

k) and ∆H −∂s which in particular means
that weak solutions of the heat equation on Hn×]0,+∞[

∂sρs = ∆Hρs(3)

are also solutions in the classical meaning. In the precise case of the group Hn,
more is known about the solutions of this equation. For an intitial condition ρ0,
Gaveau [13] proved that the solution is given by the convolution with a fundamental
solution hs (depending on the dimension n). This hs is non negative, smooth in
time s and space p and is given by the formula

hs(z, t) =
2

(4πs)n+1

∫

R

exp

(

λ

s
(it− |z|2

4
cothλ)

)(

λ

sinhλ

)n

dλ.(4)

Then

ρs(p) = (ρ0 ∗H hs) (p) =

∫

Hn

hns (q−1 · p)ρ0(q)dL(q).(5)

There is a stochastic equation attached to this diffusion such that it is not difficult
to see that if ρ0 is the density of a probability measures,

∫

ρs(p)dL2n+1(p) is 1
too. Then (ρsdL)s≥0 is a curve in the space of measure. In this paper we consider
the solutions of (3) as a curve in the Wasserstein space, the space of probability
measures adapted to the distance of optimal transport.

1.2. Wasserstein spaces. Let (X, d) be a Polish metric space. Then the Wasser-
stein distance of two Borel probability measures µ0 and µ1 is given by

WX(µ0, µ1) = inf
π

√

∫

X×X
d2(p, q)dπ(p, q)(6)

where the infimum is taken over all couplings π of µ0 and µ1, i.e. over all probability
measures π over X ×X such that p#π = µ0 and q#π = µ1. Here p (resp. q) stand
for the first (resp. second) coordinate map and # is the push-forward symbol. The
infimum in (6) is not always finite. The Wasserstein space P2(X) is the space of the
measures with finite Wasserstein distance to the Dirac measures. On this space,
WX is finite thanks to the triangle inequality. Also because of this inequality,
P2(X) can be defined as

P2(X) = {µ ∈ P(X) |
∫

d(p, p0)
2dµ(p) < +∞}

for any p0 ∈ X .
For any Polish space X , there exists minimizing couplings π in (6). In the case

of P2(H
ε
n) and P2(Hn), it has been proved in [21] and [2] that if µ0 is absolutely

continuous, (6) is achieved by an unique π and this coupling can be expressed
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by π = (Id⊗T )#µ0 for a µ0-almost everywhere uniquely defined map T . Moreover
these authors prove that in these two geodesic spaces a geodesic between p and T (p)
is µ0-almost surely unique. We denote it by (Ts(p))s∈[0,1] such that in particular
T0 = Id and T1 = T . From there usual theorems in optimal transport [1, 28]
ensure that there exists a unique geodesic (µs)s∈[0,1] between µ0 and µ1, defined
by µs = (Ts)#µ0. Still under the assumption that µ0 is absolutely continuous, the
measures µs for s < 1 are absolutely continuous as well [10, 11].

A related result [28, Corollary 10.44 and Theorem 13.5] states that on a manifold
if µ0 is absolutely continuous, for Us in a form that we will precise, µs = (Us)#µ0 is
absolutely continuous too for s small enough. It is actually sufficient that Us writes
p → expp(s∇ϕ(p)) where expp and ∇ are the usual exponential map and gradient
of Riemannian geometry and ϕ is a smooth function with compact support. This
proposition of course apply to H

ε
n for any ε but there is also a adapted version for

Hn [17, Section 2.2.3] with a quite similar proof. We state this result here (∇H is
defined in (8)):

Proposition 1.1. Let ψ, ϑ ∈ C∞
c (R2n+1) and µ0 an absolutely continuous measure

on Hn. Define Us(p) = expH
p (s∇Hψ(p), sϑ(p)) and µs = (Us)#µ0. There is a s0 > 0

such that for any s < s0, Us is injective, smooth and Jac(Us) 6= 0. It follows that µs
is absolutely continuous . These results is also true (for an other s0) if we replace
∇Hψ by a smooth horizontal field V with compact support.

1.3. Absolutely continuous curves. A curve (γs)s∈I in a metric space (X, d) is
said to be absolutely continuous on I if there exists a m ∈ L1(R) such that for any
a < b in I,

d(γ(a), γ(b)) ≤
∫ b

a

m(s)ds.

It is proved in [4] that if γ is absolutely continuous, for almost every s ∈ I the
metric derivative

|γ̇s| := lim
|h|→0

d(γs+h, γs)

|h|
exists and

l(γ) =

∫ b

a

|γ̇s|ds(7)

equals the classical metric length of the curve γ between a and b. In a geodesic
space l(γ) ≥ d(a, b). If l(γ) = d(a, b), some reparametrizations of γ are (constant-
speed) geodesics. We denote the space of absolutely continuous curves by AC(X).
Let AC2(X) ⊂ AC(X) be the subspace of absolutely continuous curves such that
|γ̇s|2 is locally integrable.

1.4. Gradient flow. In this paper, curves will take values in the Wassertein spaces
P2(Hn) and P2(H

ε
n). We will study the slope of the functional entropy Ent∞

introduced in (1). Note that P2(Hn) = P2(H
ε
n) because dε ≤ dc ≤ dε + πε as is

proved in [17, Subsection 3.5.2]. The slope of Ent∞ is defined as

SlopeX(Ent∞)(µ) = max

(

0, lim sup
ν→µ

Ent∞(µ) − Ent∞(ν)

WX(µ, ν)

)

.

This quantity is positive and quantify how much the entropy can locally decrease.
In P2(Hn) we will denote the slope and the Wasserstein distance by Slope and
W . In P2(H

ε
n) we use the notations Slopeε and W ε. As dc ≥ dε we have for the



6 NICOLAS JUILLET

Wasserstein spaces W ≥W ε where W ε. So Slopeε(Ent∞)(µ) ≥ Slope(Ent∞)(µ) in
every µ of finite entropy.

We will use in this paper a very metric definition for the gradient flow of the
entropy. It refers to v) in Theorem 5.3 of [3] or to ii) of Proposition 23.2 of [28]. A
curve of the Wasserstein space (µs)s∈I is said to be a gradient flow of Ent∞ if

• it is an absolutely continuous curve of P2(X) and for almost every s ∈ I,

|µ̇s| = Slope(Ent∞)(µs),

• the function E(s) = Ent∞(µs) is absolutely continuous and for almost every
s ∈ I,

Ė(s) = − Slope(Ent∞)(µs) · |µ̇s|.
This definition has to be understood as the decomposition of a formal “µ̇s =
−∇Ent∞(µs)” into the norm equality and the indication of the direction.

Remark 1.2. Of course then Ė(s) = −|µ̇s|2 for almost every s, but in the first
formulation it is easier to recognize a chain rule derivation where it appears that
the curve falls off in the direction of the slope. Nevertheless it follows from this
remark that (µs)s∈I is in AC2(X).

1.5. Functional spaces, tangent spaces. The vector spaces we will introduce
now are defined using weak formulations that require test functions. In the se-
quel the space of test functions will be C∞

c (R2n+1), the space of smooth functions
of R2n+1 with a compact support. For any k ∈ {1, · · · , n} and f a function of
L1

loc(Hn) (a L-locally integrable function on Hn), we will note Xkf , Ykf and Tf
the distributional derivatives of f if these distributions are functions of L1

loc(Hn).
We explicitate the defining relation for T:

∀ψ ∈ C∞
c (R2n+1),

∫

(Tf)ψdL +

∫

f(Tψ)dL = 0

Note that these notations are coherent with the the usual ones when f is smooth.
Actually in this case, fψ is a test function. Then (this time for Xk)

∫

Xk(fψ)dL =

∫

(∂xk
− 1

2
y∂t)(fψ)dL

=

∫

∂xk
(fψ)dL − 1

2

∫ (∫

(yk∂t)(fψ)dt

)

dxdy = 0

But the first integral is also
∫

(Xkf)ψdL +
∫

f(Xkψ)dL as we want.
We say that f has a gradient ∇Hf if it has a weak derivative Uf for any U ∈

{X1,Y1, · · · ,Xn,Yn}. Then we can define the H-gradient ∇Hf by

∇Hf :=

n
∑

k=1

(XkfXk + YkfYk) .(8)

If moreover f has a weak T-derivative, we can define the ε-gradient ∇εf ,

∇εf := ∇Hf + (εT) f (εT) .

We note W 1,1
loc (Hn) the space of locally integrable functions f with a H-gradient

∇Hf . Let W 1,1
loc (Hε

n) ⊂ W 1,1
loc (Hn) be the subspace of the functions f with a weak

derivative Tf .
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For a given absolutely continuous measure µ, we define TanH(µ), the tangent
space at µ ∈ P2(Hn) as the smallest Hilbert space that contains the vector fields
∇Hψ for a test function ψ. Precisely

TanH(µ) = {∇Hψ | ψ ∈ C∞
c ( R2n+1)}L

2
H
(µ)

with L2
H
(µ) = {ξ ∈ Γ(THn) |

∫

Hn

‖ξ‖2
H
< +∞}. Similarly at µ ∈ P2(H

ε
n), the

tangent space Tanε(µ) is defined by

Tanε(µ) = {∇εψ | ψ ∈ C∞
c (R2n+1)}L

2
ε
(µ)

where L2
ε(µ) = {ξ ∈ Γ(THε

n) |
∫

Hε
n

‖ξ‖2
ε < +∞}.

2. Some results concerning the approximating manifolds and their

Wasserstein spaces

We state here, for the approximating manifolds Hε
n a proposition that Erbar [8,

Proposition 4.3.] proved for Riemannian manifolds. It is the translation of the
same statement for Euclidean spaces by Ambrosio and Savaré [3, Theorem 4.16].
The proof of Erbar also strongly relies on Theorem 23.14 of [28] whose proof is long
and difficult.

Proposition 2.1. Let ε > 0 and dµ = ρdL a probability measure. Then the
following statements are equivalent:

(i) Slopeε(Ent∞)(µ) < +∞
(ii) ρ ∈ W 1,1

loc
(Hε

1), ∇ερ = ρwε L-almost surely for some wε ∈ L2
ε(µ).

In this case wε ∈ Tanε(µ) and Slope(Ent∞)(µ) = ‖wε‖L2
ε
(µ).

Remark 2.2. The vector field wε is sometime simply written “∇ερ/ρ”. Actually as
µ = ρL, the function ρ is µ-almost surely non-zero such that ∇ερ/ρ makes sense in
L2
ε(µ). It shows that there is a unique possible wε ∈ L2

ε(µ). However, in order to
avoid bad interpretations of this quotient we will rather use wε.

Remark 2.3. If statement (ii) is true for some ε, it also holds for other ε′ > 0. It
follows that if the slope is finite in P2(H

ε
n), it is also finite in the other Wasserstein

spaces P2(H
ε′

n ) even for ε′ > ε.

We state now a mixing of a propositions by Villani [28, Theorem 23.14] and by
Erbar [8]. In fact the second point (10) is not in [28, Theorem 23.14]. It is obtained
from it, approximating vεs′ by the gradient of c-convex functions and using [8,
Lemma 2.7]. The first point is a mixing of Proposition 2.5 of [8] and [28, Theorem
13.8]. It is proved exactly in the same way as we will prove Proposition 3.1. Finally
(11) corresponds to [28, Remark 23.16]. It seems to be very hard to prove Theorem
23.14 of [28] for spaces without assumption on the Ricci curvature. Nevertheless
in this paper we need this type of result for Hn. Our strategy is to state weaker
relations for H

ε
n in Proposition 2.4 and obtain the corresponding relations for Hn

using the approximation.

Proposition 2.4. Let ε > 0 and (µs)s∈I an AC2-curve of P2(H
ε
n). Assume that

for almost every s ∈ I, the slope Slopeε(Ent∞)(µs) is finite. Let wεs ∈ L2
ε(µs) be

the corresponding vector with respect to Proposition (2.1). Then there is a subset
I ′ε ⊂ I of full-measure such that for any s′ ∈ I ′ε there is a vector field vεs′ ∈ Tanε(µs′)
satisfying the two following statements



8 NICOLAS JUILLET

• For every test function ψ ∈ C∞
c ,

∂

∂s
µs(ψ)(s′) =

∫

〈vεs′ | ∇εψ〉εdµs′ ,(9)

• the entropy evolves in a way such that

Ent∞(µs) ≥ Ent∞(µs′) +

∫

〈(s− s′)vεs′ | wεs′〉εdµs′ + o(|s− s′|),(10)

when s goes to s′.

Moreover for any µ and ν in P2(H
ε
n) such that Slopeε(Ent∞)(µ) < +∞,

Ent∞(ν) ≥ Ent∞(µ) −W ε(µ, ν)

√

∫

‖wε‖2
εdµ− 1

2 · 2ε2W
ε(µ, ν)2.(11)

Remark 2.5. Here dµs = ρsdL. In the proposition it is possible to change L in
volε, the Riemannian volume of Hε

1 and ρs in ρεs, the density with respect to this
volume. Then vεs′ must be multiplied by the same constant. This form is closer to
the standard statement for the Riemannian manifolds.

Remark 2.6. For Riemannian manifolds M for which K is a lower bound of Ric(p)
for any p ∈M , the bound −1

2·2ε2 in (11) should be replaced by 1
2K.

In Proposition 3.1 we will prove a similar statement to (9) for the “true” Heisen-
berg group Hn. In Section 4 we will let ε go to zero in (11) and get a result on
the slope of the entropy in P2(Hn), the Wasserstein space of the “true” Heisenberg
group. Inequality (10) will also be interpreted in the context of P2(Hn).

3. Speed and velocity

Equality (9) in Proposition 2.4 shows that for the AC2-curves (µs)s∈I of the
Wasserstein spaces P2(H

ε
n) (where it is known that there is a metric speed |µ̇s|)

it is possible to define a velocity (speed and direction) thanks to a vector field vεs.
We show that there is a similar velocity for P2(Hn), the Wasserstein space of the
Heisenberg group. The next proposition will appear in the proof of Theorem 0.2
where we will apply it to gradient flows of Ent∞.

Proposition 3.1. Let (µs)s∈I be an AC2-curve of (P2(Hn),W ). Then there is
a subset I ′ ⊂ I of full measure such that in any s′ ∈ I ′ there is a vector field
vs′ ∈ TanH(µs′ ) so that

∂s′µs′ + divH(vs′µs′) = 0(12)

in a the weak sense. It means that for every function ψ ∈ C∞
c (R2n+1),

(

∂

∂s

∫

ψdµs

)

|s′=
∫

〈∇Hψ|vs′〉Hdµs′ .

Moreover, ‖vs′‖L2
H
(µ

s′
) ≤ |µ̇s′ | for any s′ ∈ I ′.

Proof. Let ψ ∈ C∞
c (R2n+1). We assume also that ψ it is a 1-Lipschitz function of

(Hn, dc). Then for s < t in I, by using an optimal transport plan with respect to
the 1-Wasserstein cost (the L1 version of (6) raising the distance W1), we get

∣

∣

∣

∣

∫

H

ψdµs −
∫

H

ψdµt

∣

∣

∣

∣

≤W1(µs, µt) ≤W (µs, µt).
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Then ζψ(s) :=
∫

H
ψdµs is an absolutely continuous function. It is derivable for

almost every s ∈ I. Let πs,t be an optimal transport plan between µs and µt. We
define now Ψ by

Ψ(x, y) =

{ |ψ(p)−ψ(q)|
dc(p,q)

if p 6= q

‖∇Hψ(p)‖H else.

Then Ψ is bounded above by 1 and it is upper semi-continuous. Let s′ ∈ I such
that ζψ is differentiable and the metric derivative |µ̇s′ | exists. We get

∣

∣

∣

∣

d

ds

∫

ψdµs

∣

∣

∣

∣

(s′) ≤ lim inf
ε↓0

1

ε

∣

∣

∣

∣

∫

ψdµ′
s −

∫

ψdµs′+ε

∣

∣

∣

∣

≤ lim inf
ε↓0

1

ε

∫

|ψ(q) − ψ(p)|dπs′,s′+ε(p, q)

≤



lim inf
ε↓0

√

∫

Ψ(p, q)2dπs′,s′+ε(p, q)

√

∫

d(p, q)2dπs′,s′+ε

ε





≤
(

lim inf
ε↓0

√

∫

Ψ(p, q)2dπs′,s′+ε(x, y)
W (µs′ , µs′+ε)

ε

)

≤
(

|µ̇s′ | lim inf
ε↓0

√

∫

Ψ(p, q)2dπs′,s′+ε(p, q)

)

.

Since Ψ is upper semi-continuous and πs′,s′+ε weakly converges to (Id⊗ Id)#µs′

(see [28, Theorem 5.19]) when ε ↓ 0, we get

∣

∣

∣

∣

d

ds

∫

ψdµs

∣

∣

∣

∣

≤ |µ̇s|
√

∫

|Ψ(x, x)|2dµs(x)

= |µ̇s|
√

∫

‖∇Hψ(x)‖2
H
dµs(x).(13)

This is the key estimate of the proof. We have assumed that ψ is 1-Lipschitz. The
estimate also holds without this assumption.

We already know that for any ψ ∈ C∞
c (R2n+1), the function ζψ is differentiable

at almost every s ∈ I. We will now prove that for almost every s ∈ I, every function
ζψ is differentiable. We use the fact that there is sequence (ψk)k∈N of test functions
such that ∇Hψk is dense in TanH(µs). Moreover, one assume that the sequence
(∇Hψk)k∈N is dense in

{

∇Hψ | ψ ∈ C∞
c (R2n+1)

}

for the norm of L∞(TH1). The

functions ζψk =
∫

ψkdµs are countable and derivable in almost every s ∈ I. Thus
there is a set I ′1 ⊂ I with full measure in I such that in each s′ ∈ I ′1, the metric
derivative |µ̇s′ | exists and the ζψk are differentiable.

For s′ ∈ I ′1 thanks to (13) we define the bounded operator Ts′ on {∇Hψk | k ∈ N}
by Ts′(∇Hψk) = d

dsζ
ψk(s′). This set is dense in TanH(µs′) so that we can extend

Ts′ on TanH(µs′) and represent it by a vector field vs′ ∈ TanH(µs′ ):

Ts′(w) =

∫

〈w|vs′ 〉Hdµs′ .
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We show now that for any ψ ∈ C∞
c (R2n+1),

Ts′(∇Hψ) = lim
ε→0

ζψ(s′ + ε) − ζψ(s′)

|ε| .

For every k ∈ N

lim sup
ε→0

∥

∥

∥

∥

∥

Ts′(∇Hψ) −
ζψs′+ε − ζψs′

ε

∥

∥

∥

∥

∥

≤‖Ts′(∇Hψ) − Ts′(∇Hψk)‖

+

∥

∥

∥

∥

∥

Ts′(∇Hψk) −
ζψk

s′+ε − ζψk

s′

ε

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

ζ
(ψk−ψ)
s′+ε − ζ

(ψk−ψ)
s′

ε

∥

∥

∥

∥

∥

.

As the curves ζ
(ψk−ψ)
s are absolutely continuous, by using the estimate (13) its

differentiability set we can estimate the previous expression by

‖Ts′(∇Hψ) − Ts′(∇Hψk)‖ +

∥

∥

∥

∥

∥

Ts′(∇Hψk) −
ζψk

s′+ε − ζψk

s′

ε

∥

∥

∥

∥

∥

+
1

ε

√

∫ s′+ε

s′
|µ̇s|2ds

√

∫ s′+ε

s′
‖∇H(ψk − ψ)‖2

L2(µs)ds.

For a given k, we let ε go to 0 and we obtain

lim sup
ε→0

∥

∥

∥

∥

Ts′(∇Hψ) − ζs′+ε − ζs′

ε

∥

∥

∥

∥

≤ 2|µ̇s′ | · ‖∇H(ψk − ψ)‖∞

on {s′ ∈ I ′1 | s′ is a Lebesgue points of s→ |µ̇s|2}. Using the density of {∇Hψk | k ∈ N}
in L∞(TH1), we have the first part of the proposition.

We will now prove ‖vs′‖L2(µ
s′

) ≤ |µ̇s′ |. For s′ ∈ I ′, we consider Ts′(∇Hψk)
where (∇Hψ

′
k)k∈N is a sequence tending to vs′ in TanH(µs′). On the one hand this

sequence tends to

lim
k→∞

∫

〈vs′ | ∇Hψ
′
k〉Hdµs′ =

∫

‖vs′‖2
H
dµs′ .

On the other hand, from estimate (13) it is smaller than

|µ̇s′ | lim
k→∞

√

∫

‖∇Hψ′
k‖2

H
dµs′ = |µ̇s′ |

√

∫

‖vs′‖2
H
dµs′ .

Then ‖vs′‖L2(µ
s′

) is smaller than |µ̇s′ |.
�

Remark 3.2. If one carefully read the proof, the set I ′ in Proposition 3.1 can
be chosen as the intersection of the following sets: the set where |µ̇s| exists, the

differentiation set of the functions ζψk and the Lebesgue points of s→ |µ̇s|2.

4. Slope

After the previous Section we can represent the velocity of (µs)s∈I by a vector
field of TanH(µs′). Proposition 4.1 makes the picture more precise and permits to
identify “the gradient of the entropy” as a vector field. For this proof we will not
only assume that the slope of the entropy in P2(Hn) is finite but also that the slope
of Ent∞ is finite in P2(H

ε
n) for some ε. Proposition 4.1 has to be read in relation

with Proposition 2.1.
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Proposition 4.1. Let µ be an absolutely continuous probability measure of density
ρ and ε > 0. Assume that Slope(Ent∞)(µ) < +∞. Then there is an horizontal
vector field wH ∈ L2

H
(µ) such that L-almost everywhere ∇Hρ = ρwH. Moreover, the

two following statements are equivalent

(i) Slopeε(Ent∞)(µ) < +∞,
(ii) The weak gradient Tρ exists and there is wT ∈ L2(µ) such that Tρ = ρwT

(L-almost everywhere).

If these assumptions hold, there is actually as in Proposition 2.1 a vector field
wε ∈ Tanε(µ) such that ∇ερ = ρwε and Slopeε(Ent∞)(µ) = ‖wε‖L2

ε
(µ). Moreover,

wH ∈ TanH(µ), wH + εwT(εT) = wε and

Slope(Ent∞)(µ) = ‖wH‖L2
H
(µ).

Remark 4.2. As in Remark 2.2, wH could be written “∇Hρ/ρ” and wT should be
understood as “Tρ/ρ”.

Remark 4.3. Contrarily to Proposition 2.1, we are not able to state that the exis-
tence of wH implies that the slope is finite. Namely in Proposition 2.1 the implica-
tion ii) ⇒ i) is a consequence of Theorem 23.14 of [28].

Proof. Let V be a smooth horizontal vector field with compact support and ϑ ∈
C∞
c (R2n+1) We consider then Us(p) = expH

p (sV (p), sϑ(p)). Because of Proposition
1.1 for s small enough the map Us is smooth, one-to-one and Jac(Us) does not
vanish. Note that V (p) is the speed vector of s → Us(p) at time s = 0 and that
this curve is a geodesic of (constant) speed ‖V (p)‖H. Then the metric speed of
((Us)#µ)s>0 is smaller than ‖V ‖L2

H
(µ). The derivate in time of Ent∞(µs) can be

classicaly computed using the fact that (p, s) → Us(p) is the flow of a smooth vector
field coresponding to V in s = 0. Hence we have

dEnt∞(µs)

ds
|s=0= −

∫

ρ divH(V )dL.

Note that if the entropy grows, which we want to avoid, we can replace V by −V .
Therefore the following inequality with slope and speed on the right hand-side
holds:

∣

∣

∣

∣

∫

ρ divH(V )dL
∣

∣

∣

∣

≤ Slope(Ent∞)(µ) · ‖V ‖L2
H
(µ).

Because Slope(Ent∞)(µ) is finite, the Riesz representation theorem provides an
horizontal vector field wH ∈ L2

H
(µ) with ‖wH‖L2

H
(µ) ≤ Slope(Ent∞)(µ) such that for

any V ∈ Γ(THn) with compact support,

−
∫

ρ divH(V )dL =

∫

〈wH | V 〉Hdµ.

From there, one observes that ρ ∈W 1,1
loc (H1) with ∇Hρ = ρwH.

For the second part of the proposition it is clear from Proposition 2.1 that (ii) is
a consequence of (i). For the inverse implication, we assume that the weak gradient
Tρ exists and that there is wT ∈ L2(µ) such that Tρ = ρwT. With the first part

of the proposition, ρ ∈W 1,1
loc (Hε) and wε := wH + εwT(εT) ∈ L2

ε(µ) satisfy

ρwε = ρwH + ρεwT(εT) = ∇Hρ+ εTρ(εT) = ∇ερ.

Then Proposition 2.1 states that Slopeε(Ent∞)(µ) < +∞ and wε ∈ Tanε(H1) such
that (ii) implies (i).
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Therefore if these statements are true it is possible to approach wε in L2(Hε
1) by

a sequence (∇εψk)k∈N where every ψk ∈ C∞
c (R2n+1) . It follows that (∇Hψk)k∈N

tends to the horizontal part of wε. Hence wH is in the tangent space TanH(µ).
We already know the inequality ‖wH‖L2

H
(µ) ≤ Slope(Ent∞)(µ), we will prove the

opposite inequality thanks to inequality (11) in Proposition 2.4. In this inequality,
we first replace every W ε(µ, ν) by W (µ, ν). It is allowed because the second is
greater. Then we state ε as a function of ν with ε = W (µ, ν)1/3. But

‖wH‖L2
H

≤ ‖wε‖L2
ε
≤
√

‖wε‖2
L2

ε

+ (ε‖wT‖L2(µ))2 ≤ ‖wH‖L2
H

+
1

2

(ε‖wT‖L2(µ))
2

‖wH‖L2
H

because the graph of
√

is under the tangent line in ‖wH‖2
L2

H

. It follows

Ent∞(ν) ≥Ent∞(µ) −W (µ, ν)

[

‖wH‖L2
H

+
W (µ, ν)2/3

2‖w‖L2
H

‖wT‖2
L2(µ)

]

−W (µ, ν)4/3

≥Ent∞(µ) −W (µ, ν)‖wH‖L2
H

−O(W (µ, ν)4/3).

when ν tends to µ. Thus Slope(Ent∞)(µ) ≤ ‖wH‖L2
H

and the equality follows. �

5. Heat equations on the Heisenberg group

In this section we prove two theorems that justify the belief that the gradient
flows of the entropy in the Heisenberg group are exactly the solutions of the hy-
poelliptic diffusion, equation (3). Before that we say more about these solutions.
For this purpose we present asymptotic estimates of hs and its derivative that we
need in the proof of Theorem 0.1. From the relation hs(z, t) = 1

sn+1 h1(
z√
s
, ts), we

state for hs two theorems by Li [20] initially stated for h1.

Theorem 5.1. Let k ∈ N and (α1, · · · , αk) ∈ Nk a multi-index. For j ∈ {1, · · · , k}
let Uj ∈ {X1,Y1, · · · ,Xn,Yn}, then there is a C > 0 only depending on n and

|α| =
∑k
j=1 αj such that for any s > 0,

|Uα1

1 · · ·Uαk

k hs|(p) ≤
C

√
s
|α|

(

1 +
dc(p)√
s

)|α|
hs(p).

Theorem 5.2. There is constant A ≥ 1 depending on n such that for any s > 0,

A−1Ps(n, |z|, dc(z, t)) ≤ hs(z, t) ≤ APs(n, |z|, dc(z, t))
where dc(z, t) = dc(0, (z, t)) and

Ps(n, r, d) =
e−d

2/(4s)

sn+1
√

1 + rd/s

(

1 + d2/s

1 + rd/s

)n−1

.

A further estimate related to these theorems is the fact that

Ths ≤ As−1Ps(n, |z|, dc(z, t)) ≤ A2s−1hs(14)

where we can consider that A is the same as before. This can be easily proved using
the same remarks as in [20, Theorem 2] that principally relies on [5].

If we now assume that the support of ρ0 is compact and included in a ball of
center 0H and radius d0 we get new rough estimates for the decays of ρs, |Tρs|,
|∇Hρs| and |∆Hρs| by simply considering that ρs is given by a convolution (5) and
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using Theorem 5.1, Theorem 5.2, and (14) for the decay of hs and its derivatives.
In the next estimates, we chosed to reduce some factors in the exponential factor
by using the well-known fact that |z| ≤ dc(z, t). For s > 0 and η ∈]0, 1[ there is a
constant Cη such that

C−1
η exp

(

− (dc(z, t) + d0)
2

4s
(1 + η)

)

s−(n+1)

≤ |ρs|

≤ Cη exp

(

− (dc(z, t) − d0)
2

4s
(1 − η)

)

s−(n+1),(15)

|Tρs| = |ρ0 ∗H (Ths)| ≤ ρ0 ∗H |Ths|

≤ C exp

(

− (dc(z, t) − d0)
2

4s
(1 − η)

)

s−(n+2),(16)

|∇Hρs| = |ρ0 ∗H (∇Hhs)| ≤ ρ0 ∗H |∇Hhs|

≤ Cη exp

(

− (dc(z, t) − d0)
2

4s
(1 − η)

)

s−(n+(3/2)),(17)

|∆Hρs| = |ρ0 ∗H (∆Hhs)| ≤ ρ0 ∗H |∆Hhs|

≤ Cη exp

(

− (dc(z, t) − d0)
2

4s
(1 − η)

)

s−(n+2).(18)

5.1. Proof of Theorem 0.1. Although our definition of gradient flow in Subsec-
tion 1.4 is just metric and does not even tell what is the “gradient”, ∇Hρs/ρs is
morally the gradient of Ent∞ in ρsdL. We will show that −∇Hρs/ρs satisfy (12) in
the place of vs. From there it will be easier to compute first the speed of (µs)s∈I ,
then Slope(Ent∞)(µs) and finally the derivative of E(s) = Ent∞(µs).

Let ψ ∈ C∞
c (R2n+1). We recall that ρs is smooth in space and time for s > 0.

Moreover, ψρs is in C∞
c (R2n+1) and its support is in the support of ψ. Then

d

ds

∫

H

ψρsdL =

∫

H

ψ∂sρsdL =

∫

H

ψ∆HρsdL

=

∫

H

〈∇Hψ | −∇Hρs〉HdL =

∫

H

〈∇Hψ | −∇Hρs
ρs

〉Hdµs.(19)

Hence

∂s(µs) + divH

(

−∇Hρs
ρs

µs

)

= 0(20)

holds for every s. We prove now that −∇Hρs

ρs
is in L2

H
(µs). Indeed the integral

∫ ‖∇Hρs‖2
H

ρs
dµs is finite because we can estimate the numerator from above with (17)

and the denominator from below with (15). Moreover, the domination is such that

‖∇Hρs

ρs
‖L2

H
(µs) is continuous on I.

Starting from (20) because of the Mass Conservation Formula [28, Chapter 1]
there is a probability measure Π on C(I,Hn), the space of curves over Hn with the
Borel sigma-field, satisfying two conditions:
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• the curve γ is Π(γ)-almost certainly is an integral curve of the smooth
vector field −∇Hρs/ρs,

γ̇s = −∇Hρs
ρs

• the law of the point γ(s) with respect to Π is µs.

Then

W 2(µs, µt) ≤
∫

C(I,Hn)

d2
c(γs, γt)dΠ(γ)

≤
∫

C(I,Hn)

(

(t− s)

∫ t

s

∥

∥

∥

∥

∇Hρτ
ρτ

(γτ )

∥

∥

∥

∥

2

H

dτ

)

dΠ(γ)

≤ (t− s)

∫ t

s

(

∫

Hn

∥

∥

∥

∥

∇Hρτ
ρτ

∥

∥

∥

∥

2

H

dµτ

)

dτ

≤ (t− s)2 sup
{τ∈[s,t]}

‖∇Hρτ/ρτ‖2
L2

H
(µτ ).

Hence (µs)s∈I is locally Lipschitz and therefore this curve is absolutely continuous.
The norm ‖∇Hρs/ρs‖L2

H
(µτ ) is continuous such that letting t go to s we get

|µ̇s| ≤ ‖∇Hρs/ρs‖L2
H
(µs).(21)

It is not enough to obtain |µ̇s| = ‖∇Hρs/ρs‖L2
H
(µs) but (21) will be sufficient for the

proof.
We now compute the Slope of Ent∞. Actually by using (15) and (16) one get

that

‖∇ερs/ρs‖L2
ε
(µs) =

√

‖∇Hρs/ρs‖2
L2

H
(µs)

+ ε2
∫ (

Tρs
ρs

)2

ρsdL

is finite. But this quantity is Slopeε(Ent∞)(µs) such that condition (ii) of Proposi-
tion 4.1 is satisfied and as ρs does not vanish the vector field wH

s of Proposition 4.1
is ∇Hρs/ρs. From there in the Wasserstein space of the “true” Heisenberg group
we have Slope(Ent∞)(µs) = ‖∇Hρs/ρs‖L2

H
(µs).

Finally we compute Ė(s) where E(s) = Ent∞(µs) as in Subsection 1.4. Firstly

|∂s(ρs ln(ρs))| = |(1 + ln(ρs))∂sρs| = |(1 + ln(ρs))∆Hρs|.(22)

Using (15) and (18) we see that about every time s0 > 0, (22) is dominated inde-
pendently of s by a function of L1(Hn) (use for instance |1+ ln(X)| < X+X−1/2).
Therefore it is allowed to derivate in s under the integral sign and we obtain

Ė(s) =

∫

(1 + ln(ρs))∆Hρs.

We want now to justify the partial integration

Ė(s) = −
∫

〈∇H(1 + ln(ρs)) | ∇Hρs〉(23)

which is less obvious as the one in (19) because the supports of 1 + ln(ρs), Xρs
and Yρs are not compact. However, if for a smooth function f we integrate Xf =
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∂xf − y
2∂tf on [−R,R]3, we get
∣

∣

∣

∣

∣

∫

[−R,R]3
XfdL

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

{x=R}×[−R,R]2
f −

∫

{x=−R}×[−R,R]2
f

−1

2

∫

[−R,R]2×{t=R}
yf +

1

2

∫

[−R,R]2×{t=−R}
yf

∣

∣

∣

∣

∣

≤ R

∫

∂[−R,R]3
|f |

where ∂[−R,R]3 is the border of [−R,R]3. We are interested in f = (1+ln(ρs))Xρs.
As we have (15) and because dc is Lipschitz-equivalent to the Korányi-Reimann
distance (see [17, Subsection 1.1.3]), the previous integral tends to zero when R

goes to infinity. A similar computation holds for
∣

∣

∣

∫

[−R,R]3
Y((1 + ln(ρs))Yρs)

∣

∣

∣. It

also tends to zero when R goes to infinity. From there the partial integration in
(23) is justified. It follows

Ė(s) = −
∫ 〈∇Hρs

ρs
| ∇Hρs

ρs

〉

H

ρsdL = −
∫
∥

∥

∥

∥

∇Hρs
ρs

∥

∥

∥

∥

2

dµs = −
∥

∥

∥

∥

∇Hρs
ρs

∥

∥

∥

∥

2

L2
H
(µs)

.

Because of the differentiability properties of E(s), we have

Ė(s) ≤ Slope(Ent∞)(µs) · |µ̇s|(24)

in almost every s ∈ I. However, in this proof we have shown that at almost every
s ∈ I











































|µ̇s| ≤
∥

∥

∥

∥

∇Hρs
ρs

∥

∥

∥

∥

L2
H
(µs)

Slope(Ent∞)(µs) =

∥

∥

∥

∥

∇Hρs
ρs

∥

∥

∥

∥

L2
H
(µs)

Ė(s) = −
∥

∥

∥

∥

∇Hρs
ρs

∥

∥

∥

∥

2

L2
H
(µs)

such that inequality (24) is an equality for almost every s ∈ I. Thus (µs)s∈I is a
gradient flow of Ent∞.

5.2. Proof of Theorem 0.2. Let (µs)s∈I be a gradient flow of the entropy in
P2(Hn). This curve is absolutely continuous (even inAC2). Hence Slope(Ent∞)(µs) =
|µ̇s| is finite in almost every s ∈ I. With the assumption about wT we get that

Proposition 4.1 applies, in particular for any ε > 0 we have ρs ∈ W 1,1
loc (Hε

n) in
almost every s. Therefore Proposition 2.1 and Proposition 2.4 apply too. Indeed
(µs)s∈I is a gradient flow of Ent∞ such that with Remark 1.2 it is a AC2-curve of
P2(Hn). Consequently it is a AC2-curve of P2(H

ε
n) too.

From Proposition 4.1, we know that Slope(Ent∞)(µs) = ‖wH
s ‖L2

H

in almost

every s where wH
s ∈ TanH(µs) is the horizontal part of wεs ∈ Tanε(µs) with

Slopeε(Ent∞)(µs) = ‖wεs‖L2
ε
(µs). We fix now some s′ ∈ I ′ε ∩ I ′ with the nota-

tion of Proposition 2.4 and Proposition 3.1. Then we would like to interpret the
scalar product

∫

〈vεs′ | wεs′〉εdµs′ appearing in (10) of Proposition 2.4 in terms of the
Wasserstein space P2(Hn). First of all in the tangent space Tanε(µs) we approach
the vector field wεs′ by a sequence (∇εψk)k∈N where ψk ∈ C∞

c . Then because of
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Proposition 2.4, we see that
∫

〈wεs′ | vεs′〉εdµs′ is the limit of ∂
∂sµs(ψk)(s

′). But we

know from Proposition 3.1 that the previous derivative is also
∫

〈∇Hψk|vs′ 〉Hdµs′ .
From there the limit is simply

∫

〈wH

s′ | vs′ 〉Hdµs′ . Indeed (∇Hψk)k∈N tends to to the
horizontal part wεs.

Then in almost every s′ ∈ I, (10) writes

Ent∞(µs) − Ent∞(µs′) ≥ (s− s′)

∫

〈wH

s′ |vs′〉Hdµs′ + o(|s− s′|).

But (µs)s∈I is a gradient flow. It satisfies Ės′ = − (Slope(Ent∞)(µs′ )) · |µ̇s′ | where
|µ̇s′ | ≥ ‖vs′‖L2

H
(µ

s′
) and Slope(Ent∞)(µs′ ) = ‖wH

s′‖L2
H
(µs). Then because of the

Cauchy-Schwarz inequality, the only possibility is that vs′ and wH

s′ are negatively
collinear in TanH(µs′ ). Moreover, as the gradient flows satisfy Slope(Ent∞)(µs′) =
|µ̇s′ |, we have simply vs′ = −wH

s′ in almost every s′ ∈ I. Replacing vs′ , one can
therefore rewrite the continuity equation of Proposition 3.1:

∂s′µs′ + divH(−wH

s′µs′).

Because of relation ∇Hρs′ = ρs′w
H

s′ it is also

∂sµs + divH(−∇Hρs′dL)(25)

where ∇Hρs′ is the weak gradient of ρs′ . Remind that (25) means that for any
ψ ∈ C∞

c (R2n+1),
(

∂

∂s

∫

ψdµs

)

|s′=
∫

〈∇Hψ| − ∇Hρs′〉HdL.(26)

We know from the proof of Proposition 3.1 that the integral on the left-hand side,
namely ζψ is absolutely continuous in s. It follows that we can integrate (26) on
an intervall [σ, τ ] and obtain

∫

ψρτdL −
∫

ψρσdL = −
∫ τ

σ

∫

〈∇Hψ|∇Hρs′〉HdLds′

for any ψ ∈ C∞
c (R2n+1). We recognize a weak formulation of the “hypoelliptic heat

equation”. By using classical references about hypoelliptic operator as [25] or [27]
and the references therein, this concludes the proof.

5.3. Remarks.

Remark 5.3. It is also possible to make similar proofs in the Albanese torus Tn, a
compact quotient of the Heisenberg group approximating it by Tεn (see [17, Sub-
section 1.2] where it is presented for n = 1). The fact that Tn is compact change
small elements in the proofs. The partial integration is still right in this case and
one does not require rapid decay. Furthermore the assumption on the support of
µ0 in Theorem 0.1 is necessary satisfied. It follows that one can mix Theorem 0.1
and Theorem 0.2 in the following way

Theorem 5.4. Let (µs)s∈I be a curve of P2(Tn) and ρs the density curve of µs
with respect to LT, that is the quotient of the Lebesgue measure. Both statements
are equivalent

• The density curve (ρs)s∈]0,+∞[ is a solution of the hypoelliptic heat equation
of Tn,

∆Tρs = ∂sρs,

where ∆T =
∑n
k=1 X2

k,T + Y2
k,T.
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• The curve (µs)s∈I of measures with density ρs = dµs/dL is a gradient flow
of the entropy Ent∞ and the weak derivative Tρs exists with wT in L2

T

defined by wT

s ρs = Tρs.

Remark 5.5. In [18, Section 6], Khesin and Lee prove a similar result to Theorem
0.1. Their paper takes place in the wide class of bracket-generating distribution τ
on a connected and compact manifold M (it includes the Albanese torus). They
also approximate their metric space by Riemannian manifolds completing the hori-
zontal tangent space by the other directions. However, their result does not include
Theorem 0.1 because their result does not apply to the non-compact Hn. The proof
of Khesin and Lee is more algebraic than the proofs of this paper and the Wasser-
stein space they are considering is a “smooth” Wassersein space. It is restricted
to smooth measures and the distance is possibly different. Actually the authors
begin to give a tangential structure to P2(Mτ ) defining the length of curves on
the Wasserstein space and then defining the distance. From there the definition of
the gradient flow is different: the solution of the hypoelliptic equation goes in the
“smooth” direction with the greatest slope but a rough Slope(Ent∞) is not defined.
In [18], there is no analogous result to Theorem 0.2.
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[3] L. Ambrosio and G. Savaré. Gradient Flows of Probability Measures. In Handbook of differ-
ential equations, evolutionary equations, volume 3, pages 1–136. 2006.

[4] L. Ambrosio and P. Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.

[5] R. Beals, B. Gaveau, and P.C. Greiner. Hamilton-Jacobi theory and the heat kernel on
Heisenberg groups. J. Math. Pures Appl. (9), 79(7):633–689, 2000.

[6] J. Cheeger and B. Kleiner. Generalized differential and bi-Lipschitz nonembedding in L
1. C.

R. Math. Acad. Sci. Paris, 343(5):297–301, 2006.
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