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Abstract

Recently, a number of interesting relations have been déised be-
tween generalised Paiidirac groups and certain finite geometries. Here,
we succeeded in finding a general unifying framework for ladise rela-
tions. We introduce gradually necessary anffisient conditions to be met
in order to carry out the following programme: Given a grdapwe first
construct vector spaces over Q¥;(p a prime, by factorisings over ap-
propriate normal subgroups. Then, by expressing @bk terms of the
commutator subgroup @, we construct alternating bilinear forms, which
reflect whether or not two elements Gfcommute. Restricting tp = 2,
we search for “refinements” in terms of quadratic forms, \Wwhiapture the
fact whether or not the order of an elemeni®fs < 2. Such factor-group-
generated vector spaces admit a natural reinterpretatitimei language of
symplectic and orthogonal polar spaces, where each patoinies a “con-
densation” of several distinct elements®f Finally, several well-known
physical examples (single- and two-qubit Pauli groupshlibe real and
complex case) are worked out in detail to illustrate the finég of the for-
malism.
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1 Introduction

The purpose of this paper is to establish the most generakiiaetting for refor-
mulating, whenever possible, basic properties of groupsrms of vector spaces,
alternating bilinear forms, quadratic forms and assodigejective and polar
spaces. As far as we know, the first outline of such an anatgsisbe tracked
back in the textbook of Hupperf][1], when addressing theated extra-special
groups however, the assumptions made there were rather spedifiocimite ge-
ometry was explicitly mentioned. Another treatment of th&uie, with important
physical applications, was given by Shaw and his collalbosg2], [3]. [8], [B].
[Al, [F- These papers deal with tti@rac groupsand their relationship to projec-
tive spaces over GF(2). They include also a detailed diatypfrom group theory
to finite geometry andice versasee also[]8]). Being unaware of these develop-
ments, Planat and Saniga and others set up a similar progedBim{I0], [I1],
[£2), (T3], [3], [@3], [8]. [7] 8], [3)]. [29]. [21]. (2. (see also[[33]), and
discovered various kinds of finite geometry behind the gaissd Pauli groups
of specific finite-level quantum systems, their results §giat into a more gen-
eral context by Koen Tha$ [R4p(= 2) and [25] p > 2); these works, however,
focussed uniquely on symplectic case (alternating bilif@ans), leaving the im-
portance of quadratic forms simply unnoticed. In what felove shall not only
fill this gap, but develop the theory to such an extent thatitiies between the
above-mentioned approaches become clearly visible artieatame time, dif-
ferences between some closely related finite groups (e2gnelen the real and
complex two-qubit Pauli groups) will be revealed and propenderstood.

2 Preliminaries

We first collect some notions which will be used throughoetplaper:
Let (G, -) be a group with neutral elemeatGiven a seM C G we denote by
(M) the subgroup ofs generated by. Also, we let

M™M= (x| xe M} forall me Z. (1)

The commutator ofi, b € G is written as §, b] := abalb™t. The commutator
group (derived group)3, G] =: G’ is the subgroup o0& which is generated by all
commutators. The centre Gfis written asZ(G).

Furthermore, lep be a fixed prime. We denote the Galois field wijitel-
ements by GRf) = Z/(Zp). We shall always use,Q,...,p—1 € Z as rep-
resentatives for the elements of @lr( Vector spaces over Gp) have a series
of rather simple, but nevertheless noteworthy propertie€hvare not shared by



vector spaces over arbitrary fields. f ¢) is vector space over Gp) then

mv=v+v+---+Vv forall me GF(p), ve V. (2)
N~——— —

m

So the additive group +) or, more preciselyy as aZ-module, determines the
structure as a vector space over @HA auniqueway. In particular, we have

V+V+---+v=o0 forall veV, (3)
N’
p

whereo denotes the zero element\df Consequently, any subgroupéfis also
a (vector) subspace. Furthermore, any additive mappingectfov spaces over
GF(p) is also linear; see, among othefs][26] and [27]. Converaatommutative
group {, +) satisfying [B) can be turned into a vector space overgpby defining
the product ofn € GF(p) andv € V by (2).

3 Vector spaces ovefGF(p)

We aim at constructing vector spaces over @y factorisingG modulo appro-
priate normal subgroups.

Let N < G, i. e., N is a normal subgroup o&. The factor groupG/N is
commutative if, and only ifG’ < N. FurthermoreG/N is isomorphic to the
additive group of a vector space over @Hf, and only if, it satisfies the following
condition:

Condition 1. N is a normal subgroup d& which contains the commutator sub-
groupG’ and the seG™® of pth powers.

Remarkl. Let N < G be asubgroupof G satisfyingG’ < N. We recall thatN

is anormal subgroumf G in this case, since for all € N and allx € G we have
xax! = [x,ala € N. This means that Conditidi 1 can be relaxed by omitting the
word “normal”.

Remark2. The complex produds’GP = {xy| x e G, y € G} is easily seen to
be a subgroup dB. Thus, by Remark]1, we have

GGP =(GuGM) <G (4)

Remark3. The casep = 2 deserves particular mention. Here Conditipn 1 can
be further relaxed by deleting the conditi@ < N, becaus&s® < N implies
that all elements of5/N have order one or two, which in turn guarantees the
commutativity ofG/N.f|

1A group of prime exponenp > 2 need not be commutative. For example, the set of upper
triangular 3x 3 matrices over GH) with 1s along the diagonal is a non-commutative group of
exponentp under matrix multiplication fop > 2.
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We assume until further notice that Conditign 1 holds. Theret
(V. +) := (G/N,), ()

I. e., the composition iv will be written additively, and we consid¥&fas a vector
space over G in accordance with{2).

It is an easy exercise to express notions form the vectorespdtike linear
dependence, dimension, etc.) in terms of the factor gfeuUd. For example, a
linear combinatiorﬁ!‘=1 myv; with m € GF(p), vi = x;N andx; € G translates into
XX - - % “N. The factors in this product may be rearranged in any ordee. T
set of all subspaces df is precisely the set

{SIN|N <S<G} (6)

The factor spaces of have the fornv/(S/N), with S as above. There exists the
canonical isomorphism (of vector spaces)

G/S— (G/N)/(S/N) : xS - (xN)(S/N) (7)
by the homomorphism theorem. Therefore, up to the canomeatification
G/S=(G/N)/(S/N) = V/(S/N), (8)
the set of all factor spaces Wfis precisely the set
{G/SIN<S<G}L 9

The identification [{8) will frequently be used in the sequ#l.V is finite then
#V = pY, andd is the dimension o¥. Hence in this case the dimension\btan
be found by a simple counting argument.

We close this section with a complete description of all @espaces arising
from our previous construction.

Theorem 1. Let G be any group. Then the following assertions hold:

(a) The subgrougNg := G’'GP is normal inG and meets the requirements of
Conditionfl. Hence it yields the vector spacg ¥+ G/Ng over GF(p).

(b) The set of vector spac&/N, whereN < G is subject to Conditioffl, is
precisely the set of all factor spaces @f Up to the canonical identification
G/N = Vy/(N/Ng) from @).

Proof. Ad () This is clear by Remark$ 1 afid 2.

Ad (B) A subgroupN < G satisfies Conditiofi 1 if, and only iflp < N. Under
these circumstances the canonical identification frigm &8)twe applied t&/N.
This establishes the result. O



The previous result can be rephrased as follows: Our carigiruyields (to
within isomorphism) precisely the homomorphic images efthctor spac¥j.

Of course, in Theorer) 1 the trivial cadk = G may occur so tha¥, turns
out to be the zero vector space over @F-(Take, for exampleG as a cyclic group
of prime order# p. At the other extreme, I is a commutative group of indgx
thenNg = {€}.

4 The underlying field

For our construction of an alternating bilinear form in $&c{3, we shall need
an interpretation of the Galois field Gbj(within the groupG in terms of the
commutator grouss’. The (multiplicative) grouf>’ is isomorphic to the additive
group of the Galois field GF) precisely when the following is satisfied:

Condition 2. The commutator grouf®’ has ordep.

This is due to the fact that any two groups of orgeare cyclic and hence
isomorphic. Conditiofi]2 is very restrictive, in sharp castrto Conditiorj]1.

Remark4. Condition[R implies thaG is anon-commutative groygsinceG’ has
to have more than one element.

Let us assume until the end of this section that Condifjonl@shoFor each
generatog of G’ (viz. each elemerd € G’ \ {€}) the mapping

Yy (G,) = (GF(p).+): g" — m with me {0,1,...,p-1} (10)

is an isomorphism of groups. Given a generajar G’ there exists an element
ke{l,2,...,p—- 1} suchthag = §*, whence

(g © ygH)(m) = km for all me GF(p). (11)

Therefore, loosely speakin@’ could be identified with GKy) up to a non-zero
scalar ke GF(p). In fact, Conditior R just guarantees tl@itis a one-dimensional
vector space over GBJ, but it does not provide a unique way to ident®y with
GF(p) unlessp = 2. Examples of groups satisfying Conditign 2 will be exrebit
in SectiornP.

Remarkb. If Conditions[]l and]2 are satisfied then, taking into acc@gﬁ(m) =
g™ andv = xN for somem € GF(p) and somex € G, onemust notcalculate
the productmv in terms of the factor grou/N as @"N)(xN) = g"™xN. For
examplem = 0 andv # o (zero vector) yield Ov = o, butg®xN = xN = v # o.
Observe that this applies even in the cpse 2, where there is just one possibility
for choosing an isomorphisth,.



5 An alternating bilinear form

Given a groupG and a normal subgrould < G satisfying Conditiorf]1, we want
to turn the commutator mapping{ : G x G — G’ into a function which is well
defined oV x V. This amounts to requiring that for adly € G their commutator
[x,y] does not change ik is replaced by any element from the cos#t and
likewise fory. For anya € N we have k, y] = [xa y] if, and only if,

xyxtyt = xayalxty?

or, equivalentlyay = ya. Since heregy € G is arbitrary, this holds precisely when
a e Z(G). We are thus lead to the following:

Condition 3. The normal subgroupl is contained in the centre @.

By virtue of this condition, we have indeed, |y] = [xa yb] for all X,y € G
and alla,b € N. However, there does not seem to be an obvious meaning of
the commutator grou’ for our vector spac¥. Hence we assume until further
notice that Conditiong I] 2, afifl 3 hold. Therefore

GGP aN<Z(G) <G (12)

is satisfied. Also, we choose an isomorphiggraccording to[(7]0). This allows to
define a mapping

[ ]g 1 VXV = GF(p) : (v,W) = (XN, yN) - yg([x Y1), (13)
wherex,y € G. We collect now several basic properties of this mapping.

Theorem 2. Suppose that the group and the normal subgroupl < G satisfy
Conditiondfl, @, and@. Also, let g be a generator of the commutator grds(p
Then the following assertions hold:

(@) The mapping-, -4 given by(@3)is an alternating bilinear form on the vec-
tor space V= G/N.

(b) Two elements,y € G commute if, and only if, the corresponding vectors
v=XN,w=yN eV are orthogonal with respect {o, ], i. e.,[v,W]g = 0.

(c) The bilinear form[-,]4 is non-zero and has the radical*V= Z(G)/N.
Consequently, this form is non-degenerate if, and onlM i€oincides with
the centre ofG.



Proof. Ad (B): Givenx,y € Gwe letv := XN andw := yN. Then

[V, Vlg = ¢g([% X]) = yg(€) =0 (14)
and
[W, VIg = (LY, X)) = ¢g([% Y1) = —[w, Vg (15)
Also, we obtain
[Vi+Vvowlg = Yg((aX)y(aX2) 'y )
= Yg(XaxeyX Xty )
= Yg(xa (y6TyY ) Xt xayxgty ) (16)
eG

= YOy Hxayx'y ™)
= Yy([%2, Y] - [X2, Y1)
= [vi, W[g + [V2, W]g.

Here we used tha®’ is fixed elementwise under the inner automorphism given
by x; due to [IR). The last equality follows, because Condifjonr2dsG’ to be
commutative. From[(15) and {16), the function]j is biadditive and therefore
also bilinear. Hence the assertion follows.

Ad (B): This is immediate from the definition of [],.

Ad (d): We noted already in Remafk 4 th@tis a non-commutative group.
Consequently, the bilinear form {]4 is non-zero. Its radical is

Vt={veV|vLwforallwe V. (17)

We read @& from () thatvV+ = Z(G)/N and the rest is clear. |

Observe that the bilinear form []4 has to be degenerate when dirs an odd
integer. See Examples 1 and 2 in Secfipn 9.

The previous resulf{b) about commuting elements does nuérdkon the
choice of the isomorphismy. Replacingg by any generatog 6f the commutator
groupG’ changes the bilinear form, f]4 by a non-zero factok € GF(p), that is
[.-ls = K[-,"]g- But the orthogonality relations with respect to these taoris
are identical. We could even rule out the isomorphiggnby considering the
mappingV x V — G’ : (xN,yN) — [x,y]. The proof of Theoreni]2 shows that
this is a non-zero alternating bilinear mapping of vectacgs over GKyf). The
interpretation of our results in terms of projective geamiill also eliminate the
explicit choice of an isomorphisg,. See Section 7.

We end with a complete description of all vector spaces ahdlt@rnating
bilinear forms arising from our construction from the abjasfe Theoren{]l.
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Theorem 3. Let G be a group such that Conditidg holds. Furthermore, let
at least one of the normal subgroups®fsatisfy Conditiongl] andB. Choose
g € G’ \ {e}. Then the following assertions hold:

(a) The subgroupNy, = G'G® is normal inG and meets the requirements of
Conditiondl] and. It yields the vector spacey\= G/Ng over GF(p), the
alternating bilinear form(-, -]g0 on Vo, and the radical .

(b) The set of vector spac&/ N, whereN is subject to Conditionf] andf, is
precisely the set of factor spaceg/$8, where S is any subspace ¢f,\ip
to the canonical identification froifg).

(c) Interms of the identification frorffd) the alternating bilinear fornj-, -]4 on
any vector spac&/N = Vy/S as in(f) is inherited from the bilinear form
[, -]go ON V.

Proof. Ad (B): By the hypotheses of the theorely, < Z(G) holds, whencd]a) is
fulfilled.

Ad ([@): A subgroupN < G satisfies Conditiong 1 arjgl 3 if, and only N <
N < Z(G) which in turn is equivalent to

No<N and S=N/Ng<Z(G)/No = V¢. (18)

Ad (B): The bilinear form{, -]40 induces a well defined bilinear form &f/S
for any subspac& < Vy via (v+ S,w+ S) = [v,W]go. This induced form
coincides with {, -]4 by its definition. |

6 A quadratic form

We let p := 2 throughout this section. We exhibit a groGpand a normal sub-
group N satisfying Condition§]1 angd 2, but we do not yet assume Ciomdg to
be fulfilled. SoG’ = {e, g}, say, and) = g~* # e. Hence the vector spate= G/N
and the (only) isomorphismyg : (G,-) — (GF(2) +) are at our disposal. In the
sequel the group

K:={xeZ(G)|x=¢ <Z(G) (19)

will play an important role.
Our first aim is merely to define a mappi® — GF(2) by the assignment
X > Yg(X?). This is possible if, and only if, the following holds:

Condition 4. Gis a group such that all its squares belong to its commutatong
i.e,G@cG.



Remark6. We note that Conditiong 2 affl 4 imply
G@ =@, (20)

since otherwis&®@ = {e} would forceG to be commutative, a contradiction to
Remark{}.

We continue by demanding that also Conditipn 4 is satisfiad. ¥8cond aim
is to find necessary and figient conditions for the mappifig

Q:V — GF(2) :v=xN - yy(x%) (21)
to be well defined. This is the case if, and only if,
x? = xaxa forall xe G andallae N. (22)

Let us consider first of all the particular case= e which yields the necessary
conditiona? = efor alla € N. As N = {e} is impossible due te # g € N, we
continue by assuming the following to be true:

Condition 5. The normal subgroupl < G has exponent 2.

Now, returning to the general case, we can use Condition éviate (22) in
the form
x? = x*(xtalxa) forall xe G andallae N, (23)

because = a*!. Cancellingx? shows that[(23) holds precisely whahis in the
centre ofG. Hence, we also have to impose Conditibn 3 to be valid.

Conversely, with all five conditions at hand we obtain that thappingQ in
(1) is indeed well defined. We notice that under these cistantes

©=N@2{eg)=G =GPaN<K<Z(G) <G (24)
is satisfied. We are now in a position to describe the mapRingdetail.

Theorem 4. Suppose that the group and the normal subgroupl < G satisfy
Conditiong]-{for p = 2. Then the following assertions hold:

(a) The mapping Q V — GF(2)given by(E1) is a quadratic form.

(b) The polar form of Q equals to the alternating bilinear fornve in ([L3).
Consequently, Q is non-zero.

2We refrain from writingQyg, since there is only one choice fgreven though we maintain the
notation f, -]4 from the previous section.



(c) The restriction of Q to the radical Vis a linear form \* — GF(2) with
kernelK/N < V+. Hence eitheKK/N = V+ or K/N is a hyperplane of V.

Proof. Ad (8) and [p): In order to show th& is a quadratic form, we have to
verify two conditions. FirstlyQ(kv) = k?Q(v) for all k € GF(2) and allv € V.
This follows fromQ(0) = y4(€?) = 0 for k = 0 and is obviously true fok = 1.
Secondly, it remains to establish that the mapping

VXV - GF(2):V,w) — Q(v+w)— Q(Vv) — Q(w) (25)
is biadditive and hence bilinear. Letting= XN, w = yN with x,y € G gives
(xY)?x2y 2 = x2(xy)Py 2 = xtyxy ™t = XLyl (26)

Here the first equation sign holds, beca®® is a commutative group by Re-
mark[®, which allows to rearrange squares. Applicatiapiggiermits us to express
(28) as
Qv +w) — Q(v) — QW) = [V, W]g = [V, W]g. (27)

Since [, -] is non-zero, so i. This completes the proof of](a) ar{d (b).

Ad (B): The restriction ofQ to the radicaV+ = Z(G)/N is additive by [(2]7).
HenceQ|V+* is a linear form in GF(2). By its definitiorQ|V+ vanishes precisely
on the seK/N, which is therefore al/+, or one of its hyperplanes. O

Our final result of this section is in the spirit of Theorefhanti@:

Theorem 5. Let G be a group such that Conditiors and f hold for p = 2.
Furthermore, let at least one of the normal subgroup&afatisfy Conditiong,
B, andB. Then the following assertions hold:

(@) The normal subgrouply = G'G® = G’ = G@ < G meets the requirements
of Conditiondl], B, andB. It yields the vector spacey\= G/ Ny overGF(p),
the quadratic form Qon 4, and the subspadé/Ny < Vy.

(b) The set of vector spac& N, whereN is subject to Conditionf, @, andp,
is precisely the set of factor spaceg/8, where S is any subspacegfNg,
up to the canonical identification fro().

(c) In terms of the identification fror) the quadratic form Q on a vector
spaceG/N = Vy/S as in(f) is inherited from the quadratic form¢®n .

Proof. Ad (8): By the hypotheses of the theorem and (B4 G? = Ng < K <
Z(G), whencel[(a) is fulfilled.
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Ad (B): A subgroupN < G satisfies Conditionf 1I[] 3 arjél 5 if, and only if,
No < N < K which in turn is equivalent to

No <N and S = N/Ng < K/No. (28)

Ad (B): The quadratic forn@Q induces a well defined quadratic form ¥gy/'S
for any subspac& < K/Ngviav+ S — Qu(V), becauseo(v + s) = Qp(V) +
Qo(s) + [V, Slg, = Qo(v) for all se S. This induced form coincides witl by its
definition. O

Under the assumptions of Theor¢in 5 suppose khat Z(G). Then there
exists a subgroup with K < N < Z(G), whence Conditiofi5 is violated, whereas
Conditiong [LH3 are satisfied. This means that the vectorespal is endowed
with an alternating bilinear form by Theordin 3, but theresexno quadratic form
onG/N as in Theoren}]5; see Examp[és 1 §hd 2 in Seglion 9.

7 Symplectic polar spaces

Our results from the preceding sections allow a naturarpmétation in terms of
projective geometry. Le¥ be an @ + 1)-dimensiondl vector space over a field
F, wheren > —1. Recall that thg@ointsof the projective spacenV are its one-
dimensional subspaces (“rays through the origin”). Weeng{lv) for the set of
all such points. Likewise, each subsp&ef V gives rise to a se&(S) of points.
IfdimS = k+ 1 thenP(S) € P(V) is called ak-flat or k-dimensional projective
subspace In particular,P(V) is the onlyn-flat, i. e., its projective dimension is
n. We use the familiar terminology for low-dimensional flalisies, planes and
solidshave projective dimension 1, 2, and 3, respectiveélyperplanesof P(V)
are those flat®(S) whereS has codimension 1 iX.

Assume now thagV, [+, -]) is asymplectic vector spac&o it is endowed with
a non-degenerate alternating bilinear form|[andn + 1 =: 2r is even. For each
subseW C V we denote byV+ its orthogonal subspagce e. the set of all vectors
in V which are orthogonal to every vector W. In particular,v* is a subspace
with codimension 1 for each vectore V \ {o}. In projective terms we obtain a
null polarityfl, i. e. the mapping which assigns to each pé&inits null hyperplane
P(v*+). More generally, one can associate with eldlat P(S) the ( — k — 1)-flat
P(S*); it equals to the intersection of all hyperplari¥s*), asFv ranges over all
points ofP(S). A subspac& <V is calledtotally isotropicif S < S*. We use the
same terminology for the fla&(S). Thesymplectic polar spacassociated with

3We restrict ourselves to the finite-dimensional case eveagh several results from below
could be carried over-mutatis mutandis-to spaces of infinite dimension.
40ther names for this mapping asgmplectic polarityandnull system
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(V,[-,] is the point seP(V) together with the set of all totally isotropic flats. All
maximal totally isotropic flats have projective dimension 1. It is common to
denote this polar space by ,_,(F) and, in particularW,_,(q) if F = GF(q) is
a Galois field. For eachand eaclF there is a unique symplectic polar space to
within isomorphisms; se¢ [R8], [R9], and the referenceseine

Two (not necessarily distinct) poinksy, Fw of ‘W,,_;(F) are said to beonju-
gateif ve w* (orw € v*). In other words: Two points are conjugate if one of them
is in the null hyperplane of the other. Two distinct points aonjugate precisely
when they are on a common totally isotropic line. Each pa@s&lf-conjugate.

It is now a straightforward task to establish a neat conoadbetween our
previous results and symplectic polar spaces:

Theorem 6. Suppose that a grou@® and its centre Z5) =: N satisfy Condi-
tions[J]-{3 for some prime number p. Furthermore, let¥ G/Z(G) be finite and
let an alternating bilinear forn{-, -] be defined as ifL3). Then the following
hold:

(@) (V[ ]g) gives rise to a finite symplectic polar spag,_i1(p).

(b) The totally isotropic flats ofi’5_1(p) have the fornP(C/Z(G)), whereC
ranges over the set of all commutative subgroup& athich contain the
centre 4G). In particular, the points ofW, _1(p) have the fornC/Z(G),
whereC := (x)Z(G) and xe G\ Z(G).

(c) Two elements,y € G\ Z(G) commute if, and only if, the corresponding
points of Wy4_1(p) are conjugate.

Proof. Ad 8): By Theoren{]2[{c), the form,[]4 is non-degenerate. Therefore
dimV =: 2r is even and the assertion follows.

Ad ([): By (@), any subspace &f has the fornS/Z(G) with Z(G) < S< G
andvice versa The subspac&/Z(G) is totally isotropic if, and only if, { ]q
vanishes identically 06/Z(G). This holds precisely when the subgrdsijs com-
mutative. The points ofi,_1(p) are the one-dimensional subspace¥/of. e.
the subgroups 06/Z(G) which are generated by a single elem&#{G) with
x € G\ Z(G). Hence they have the asserted form.

Ad (@): This holds according to our definition of {4 and the definition of
conjugate points. O

The structure of the spac®’,_;(p) from above “is” the structure of commut-
ing elements of5. Note that any € G\ Z(G) clearly commutes with all powers
of x and with all elements aZ(G). It is therefore natural to “condense” the com-
mutative subgrougx)Z(G) < G to a single entity—a point a/,_;(p). Also, it
is natural that all elements from the cen#i@) have no meaning fol/,_1(p),
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as they commute with every element@f We add in passing that the polar space
W _1(p) does not depend on the choice of the genemtfrG’ which is used to
define [, ]q.

Remark7. The results from Theoref} 6 can be easily generalised to thiage
of Theorem[R. Under these circumstances the factor sgaée together with
the alternating bilinear form, which is inherited frow takes over the role of the
symplectic vector space from above. This means that oneagstsiplectic polar
space in the projective spaBév/V+). A k-flat of P(V/V+) has, by definition, the
form P(S/V+*) with V+ < S < V and dim§/V+) = k+ 1. It will be convenient
to identify this flat with the flaP(S) of the projective spac®(V). From this point
of view the flats ofP(V/V+) are the flats oP(V) which containP(V+). Note that
such a flat now haswvo projective dimensionsts dimension with respect ®(V)
is dimS — 1, while its dimension with respect ®(V/V+) is dim(S/V+) — 1; see
Exampld]L.

8 Orthogonal polar spaces

In view of Section[p we adopt the following: L&t be an 6 + 1)-dimensional
vector space over a field with characteristic 2. Le® : V — F be a quadratic
form and [, -] be its (alternating bilinear) polar form. We assu@do be non-
singular, which means tha@(v) # 0 for all non-zero vectors in the radicdl-. A
subspacé& < V is said to besingularif Q vanishes identically os. We use the
same terminology for the fl&(S). The singular points aP(V) constitute anon-
singular quadrioQ of P(V). Theorthogonal polar spacassociated with\{ Q) is
the point sefQ together with all singular flats[(JR8][ [R9]). This orthogampolar
space mirrors the “intrinsic geometry” of the quadggcsince the singular flats are
precisely those flats which are entirely containeQinFor our purposes also the
“extrinsic geometry”, i. e. the points of the ambient sp&¢¥) off the quadric,
will be important.

All maximal singular flats o have the same projective dimension 1, but
the integemr > O depends heavily on the ground fidid the dimension oW,
and the quadratic forn@. We need here only the case= GF(2). It is well
known that to within projective transformations only théldaing cases occur

(2§, p. 58], [30, pp. 121-126]:

n | r—1| Symbol | # Pointset | Name

2k k—1|Qx(2) |2*-1 parabolic
2k+1|k Q5 1(2) | 2%+ 4+ 25— 1 | hyperbolic
2k+1| k=1 @, @) | 22+ -2~ 1 | elliptic
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Forn = 2k the polar form ofQ is degenerate, div* = 1. HenceV+* is a
distinguished point, calleducleusin the ambient projective space @(2), but
itis not a point 0fQx(2). Otherwise the polar form @ is non-degenerate. Below
we useR(2) to denote any of the quadrics from the above table.

Theorem 7. Suppose that a grouf® and its subgrougK =: N given by([@9)
satisfy Conditiongl-{Bfor p = 2. Furthermore, let V:= G/K be finite and let a
quadratic form Q be defined as {@1). Then the following hold:

(&) Q gives rise to a non-singular quadr@(2) of P(V).

(b) The totally singular flats of(2) have the fornP(T/K), whereT ranges
over the set of all subgroups & which have exponer#t and containk.
In particular, the points 0®(2) have the fornT /K, whereT := (x)K with
xe G\ Kand X =e.

Proof. Ad (8): By Theorenj}4[{c), the restriction of the quadratiavid® to V+ =
Z(G)/K has the kerneK/K. This is the zero-subspace ¥f, so thatQ is non-
singular.

Ad (B): By (8), any subspace &f has the formS/K with K < S < G and
vice versa The subspac8&/K is singular if, and only if,Q vanishes identically
on S/K. This holds precisely when the subgraBpas exponent 2. The points of
Q(2) are the one-dimensional subspace¥ of. e. the subgroups db/K which
are generated by a single elema&Ktwith x € G\ K andx? = e. Hence they have
the asserted form. |

The structure of the polar space which is based on the qu@jdrom above
“is” the structure of elements with order 2 of the groGp Note that for any
x € G\ K with order 2 the complex produ¢x)K is a subgroup o6 with exponent
2. Itis therefore natural to “condense” the subgroxiyK < G to a single entity—
a point ofQ(2). In our further discussion we have to distinguish twoesas

If n= 2k + 1is odd then the polar form & is non-degenerate which implies
K = Z(G). So the results of Theoreris 6 aid 7 can be merged immediately
obtain a symplectic polar space which is “refined” by an agthwal one. The fact
that subgroups of exponent 2 are commutative is mirroreldridact that singular
subspaces are totally isotropic.

If n = 2k is even therK # Z(G). The pointV+ = Z(G)/K is the nucleus
of the quadrioc?x(2). We have here the orthogonal polar space give@ky2)
and the symplectic polar spa@€,._;(2) which is defined if?(V/V+) according to
RemarKJ7. Itis well known that these two spaces are isomorptn isomorphism
is given by “joining the quadric with its nucleus”: K(S) is a singular subspace
of Qx(2) then its join with the poinV+, i. e. P(S + V4), is a totally isotropic
subspace oP(V/V+) andvice versa In algebraic terms this gives the following
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bijection from the set of all subgroufswith exponent 2 an&k < T < G onto the
set of all commutative subgroufswith Z(G) < C < G:

T C:=TZ(G). (29)

9 lllustrative examples from quantum theory

Example 1. We consider theomplex Pauli matrices

o

The matrices®o with o € {0,1,2,3} andgB = {0, x,y, z} constitute thePauli
group of order 16, which is now ou6G. It acts on the two-dimensional com-
plex Hilbert space of a single qubit. In our terminology (wjt := 2) we have
Z(G) = {xoy, tiog), G = G@ = K = {+0(} andg = —o. The groupG satisfies
Conditiong R andi]4.

The normal subgrou = N satisfies Condition§ I] 3, af¢l 5. The factor
groupG/K has 2 elements; it gives rise to a three-dimensional vector spgce
over GF(2) as in Theorefi § (a) with a degenerate alternatimgar form [, -]40.
The projective spac®(Vy) is theFano plane see Figur¢]1. The points of the Fano
plane fall into three classes: The thdsrk-shadegoints form a non-degenerate
quadricQ,(2) (i. e. a conic). They correspond to those elements K whose
square isrg (i. €. Hermitian matrices). The thréight-shadedpoints represent
the elements o6 \ K whose square iso (i. e. skew-Hermitian matrices). The
remaining point, which is depicted bydmuble circle is the only point of?(V;)
or, in other words, the nucleus @k(2). It represents the matrices @{G) \

K, which are also skew-Hermitian. The three lines throughniheleus (bold-
faced) are to be identified with the three “points” of the syeofic polar space
P(Vo/Vy) = W1(2) (Figure[R), which has projective dimension one. Its null
polarity is the identity mapping. Two operators@f\ K commute if, and only if,
their corresponding points are on a common line through tioéens.

The normal subgrou@(G) satisfies Condition 1 ardl 3, but rjdt 5. The fac-
tor groupG/Z(G) has 2 elements; it gives rise to a two-dimensional symplectic
vector spacé/ over GF(2) and the symplectic polar spaté,(2) = P(V); see
Figure[2. The factor spad&/Vy from above and/ are isomorphic (as symplec-
tic vector spaces). Each point®¥,(2) is totally isotropic. We have no quadratic
form onV. Two operators o6\ Z(G) commute if, and only if, their corresponding
points are identical.

Example 2. We exhibit the group comprising the Kronecker produtts; ® o,
with 8,y € {0, Xy, z}; cf. (BQ). This group acts on the four-dimensional Hilbert

15



I+
9
w

H

071, 03, 072,
+lo1 lo3 +lop

Figure 1: The fine structure of the Figure 2: A coarser representa_
complex single-qubit Pauli group in tion, ‘W4(2), aka the projection
terms of the Fano plane. ' ’ .

P from the nucleus of the conic.

space of two qubits. In contrast to Examp]e 1, the syntbalenotes now this
group of order 64. In our terminology (with := 2) we haveZ(G) = {0 ®

o0, £ioo®0q}, G = G@ = K = {+0® 0}, andg = —oo® . Up to a change of
dimensions, the situation here completely parallels thdteopreceding example:

The factor groups/K gives rise to a four-dimensional projective sp&¢e)
over GF(2) and a non-degenerate quadli€2). We are not familiar with any
neatly arranged picture of this projective space with it98ihts and 155 lines.
However, the 15 points and 15 singular linesch{2), together with its nucleus
and several pointsnes of its ambient space, can be illustrated as in Figure 3.
There are 15 lines joining the nucleB@/;") with the points of the quadriQ.(2);
these lines become the “points” of the factor spa@&'V+) = Ws3(2).

The factor groupds/Z(G) yields a four-dimensional symplectic vector spate
and the symplectic polar spadé#’;(2) with P(V) as set of points. It is depicted
in Figure[4 which is known as thdoilyfl. We have no quadratic form on. Two
operators ofz \ Z(G) commute if, and only if, their corresponding points are on a
totally isotropic line.

Example 3. The real orthogonal matriced, +X, +Y, +Z, where

I::(é 2) X::(g é) Y::(_Cl) é) Z::(é _g) (31)

constitute thereal Pauli groupG. It acts on the Hilbert spade? of a real single
qubit. In our terminology (withp := 2) we haveG’' = G® = K = Z(G) = {I}
andg = —I. Hence there is only one possibility for factorisation, eyG/Z(G).
This gives the symplectic polar spad&,(2) based on the projective line over

SAnother remarkable illustration of/3(2) exhibiting, like the doily, a pentagonal cyclic sym-
metry is the so-calle@remona-Richmond configuration

16



o*iog® op

Oii0'2®0'z

Figure 3:Q4(2), its nucleus, and  Figure 4: A coarser view in
a portion of its ambient space terms of W3(2); xy is a short-
as the geometry behind the com- hand for iy ® oy, a €

plex two-qubit Pauli group. {0, 1,2, 3}, etc.

GF(2) which we already encountered in Exanple 1. Howevew, this space is
refined by an orthogonal polar space based on a hyperbolurigu@; (2). The
two points of this quadric represent those matriceG inZ(G) whose square ik
(i. e. symmetric matrices), the remaining point corresggaiodmatrices irG with
square-1 (i. e. skew-symmetric matrices); see Fig[ire 5.

@@

Figure 5. Wi(2) and Q{(2) Figure 6: WS3(2) and @3(2)

(shaded) of the real single-qubit (shaded) of the real two-qubit

Pauli group. Pauli group. XY is a short-hand
for tX®Y, etc.

Example 4. Here we deal with the group comprising the Kronecker prasio€t
the matrices from Exampl¢ 3. We change notation as now toispgof order 32
is denoted byG. With p := 2 we haveG' = G® = K = Z(G) = (I ® |}. Upto a
change of dimensions, the situation here completely masahat of the preceding
example: The factor group/Z(G) gives rise to the symplectic polar spaié;(2)
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which is refined by an orthogonal polar space based on a hybeduadrioR; (2).
The nine points of this quadric represent matriceS \Z(G) whose square i1
(. e. symmetric matrices), the remaining points corresiformatrices irG which
square to-1 ® | (i. e. skew-symmetric matrices); see Fig[ire 6.

Example 5. Finally, we mention the{ = 3) case otwo-qutrit Pauli group (see
also [I9]). This grougs possesses’&lements, which can be written in the form
wXPYC ® X9Ye wherea, b, c,d, e € {0,1,2}, w is a primitive 3-rd root of unity,
andX andZ are so-called shift and clock operators given by

0 01 1 0 O
1 0 0 and|0 w O],
010 0 0 w?

respectively (see, e. g[,J14[,]18]). Its factor graBpZ(G) is of cardinality 3 =
81 and generates the symplectic polar spde(3) of 40 pointgines, with 4
points on each line and, dually, 4 lines through each poinis ase is noteworthy
in two crucial aspects. First, it is one of the simplest ins&s where a single
point of the associated polar space represents not onlygéesaperator (up to
complex multiples), but encompasses te distinct power®f an operator (up
to complex multiples). Second, it leads to far-reachinggutgl implications for
the so-called black-hole analogy (see, e. [g.] [31]). As perlatter fact, it has
recently been showrj [R2] that tHese Symmetric entropy formula describing
black holes and black strings D = 5 is intimately tied to the geometry of the
generalised quadrangle GQ@, where 27 black-hole charges correspond to the
points and 45 terms in the entropy formula to the lines of G@)2 And there
exists a very intimate connection betwe®f(3) and GQ(24) [B2]. Given any
point U of W5(3), we can “derive” GQ() as follows. The points of GQ(2)
are all the points ofW3(3) not collinear withU, whereas the lines of GQ(2)
are on the one side the lines 3(3) not containingJ and on the other hand
hyperbolic lines through) (natural incidence). Hence, this link between the two
finite geometries not only unveils the mystery whly= 5 black hole solutions
are related with qutrits, but knowing that each poinfi&k(3) comprises a couple
(p—1=3-1=2)of elements 06/Z(G), it also provides a straightforward recipe
for labelling the 45 members of the entropy formula in terrhalbelements of
the two-qutrit Pauli grou.

Following these examples the interested reader shouldlbe@bind out the
symplectic and orthogonal polar spaces behind any (medigldit Pauli group
as long as the rant of the qudit is a prime number.

18



Acknowledgements

This work was carried out in part within the “Slovak-Austri&cience and Tech-
nology Cooperation Agreement” under grants SK 07-2009 {#ars side) and
SK-AT-0001-08 (Slovak side), being also partially suppdrby the VEGA grant
agency projects Nos. /@09209 and 2701227. The final version was com-
pleted within the framework of the Cooperation Group “FenRrojective Ring
Geometries: An Intriguing Emerging Link Between Quanturfotmation The-
ory, Black-Hole Physics, and Chemistry of Coupling” at then@r for Interdisci-
plinary Research (ZiF), University of Bielefeld, Germaiiye authors are grate-
ful to Wolfgang Herfort (Vienna) for his suggestions.

References

[1] B. Huppert. Endliche Gruppen..l Die Grundlehren der Mathematischen Wissenschaften,
Band 134. Springer-Verlag, Berlin, 1967.

[2] R. Shaw. Finite geometries and &tird algebrasJ. Math. Phys.30(9):1971-1984, 1989.

[3] R. Shaw. Clitord algebras, spinors and finite geometriesGhoup theoretical methods in
physics (Moscow, 1990yolume 382 ofLecture Notes in Physpages 527-530. Springer,
Berlin, 1991.

[4] R. Shaw. Finite geometries and Etird algebras. Ill. IrClifford algebras and their appli-
cations in mathematical physics (Montpellier, 198@Iume 47 ofFund. Theories Phys.
pages 121-132. Kluwer Acad. Publ., Dordrecht, 1992.

[5] R. Shaw. Finite geometry and the table of realffolid algebras. IrClifford algebras and
their applications in mathematical physics (Deinze, 193®jume 55 ofFund. Theories
Phys, pages 23-31. Kluwer Acad. Publ., Dordrecht, 1993.

[6] R. Shaw. Finite geometry, Dirac groups and the table af @ifford algebras. IriClifford
algebras and spinor structuresolume 321 ofMath. Appl, pages 59-99. Kluwer Acad.
Publ., Dordrecht, 1995.

[7] R. Shaw and T. M. Jarvis. Finite geometries andffGid algebras. Il. J. Math. Phys.
31(6):1315-1324, 1990.

[8] N. A. Gordon, T. M. Jarvis, J. G. Maks, and R. Shaw. Comjasialgebras and PGt 2).
J. Geom,51(1-2):50-59, 1994.

[9] M. Planat, M. Saniga, and M. R. Kibler. Quantum entanglatrand projective ring geome-
try. SIGMA Symmetry Integrability Geom. Methods Apl066, 14 pp. (electronic), 2006.
(arXiv:quant-pki0605239).

[10] M. Saniga and M. Planat. Finite geometries in quantusoti: from Galois (fields) to
Hjelmslev (rings).Internat. J. Modern Phys. ,B0(11-13, part 2):1885-1892, 2006.

[11] M. Saniga and M. Planat. A projective line over the fimjteotient ring GF(2)k] /(x®—x) and
guantum entanglement: theoretical backgrourtkoret. and Math. Physl51(1):474-481,
2007. (arXiv:quant-pi9603051).

[12] M. Saniga, M. Planat, and M. Minarovjech. Projectiveeliover the finite quotient ring
GF(2)[x]/(x® - x) and quantum entanglement: the Mermin “magic” sqimeetagramThe-
oret. and Math. Phys151(2):625-631, 2007. (arXiv:quant/0B603206).

19



(13]
(14]

(15]

(16]

(17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

(32]

M. Saniga and M. Planat. Multiple qubits as symplecttap spaces of order twé\dv. Stud.
Theor. Phys.1(1-4):1-4, 2007. (arXiv:quant-g0612179).

H. Havlicek and M. Saniga. Projective ring line of a siieqqudit. J. Phys. A40(43):F943—
F952, 2007. (arXiv:0708.4333).

M. Saniga, M. Planat, P. Pracna, and H. Havlicek. Thelk@mnp space of two-qubits.
SIGMA Symmetry Integrability Geom. Methods Ap@t075, 7 pp. (electronic), 2007.
(arXiv:0704.0495).

M. Planat and A.-C. Baboin. Qudits of composite dimensimutually unbiased bases and
projective ring geometryd. Phys. A40(46):F1005-F1012, 2007.

M. Planat, A.-C. Baboin, and M. Saniga. Multi-line geetry of qubit-qutrit and
higher-order Pauli operators. Internat. J. Theoret. Phys.47(4):1127-1135, 2008.
(arXiv:0705.2538).

H. Havlicek and M. Saniga. Projective ring line of an itndry single qudit. J. Phys. A
41(1):015302, 12 pp., 2008. (arXiv:0710.0941).

M. Planat and M. Saniga. On the Pauli graphs\efudits. Quantum Inf. Comput8(1-
2):127-146, 2008. (arXiv:quant-fiy01211).

M. Saniga, M. Planat, and P. Pracna. Projective ring incompassing two-qubitSheoret.
and Math. Phys.155(3):905-913, 2008. (arXiv:quant/0611063).

P. Lévay, M. Saniga, and P. Vrana. Three-qubit opesatbe split Cayley hexagon of order
two and black holesPhys. Rev. D78(12):124022, 16 pp., 2008. (arXiv:0808.3849).

P. Lévay, M. Saniga, P. Vrana, and P. Pracna. Black éolmpy and finite geometrighys.
Rev. D 79(8):084036, 12 pp., 2009. (arXiv:0903.0541).

A. R. P. Rau. Mapping two-qubit operators onto projeetgeometries. Phys. Rev. A
79:042323, 6 pp., 2009. (arXiv:0808.0598).

K. Thas. Pauli operators &f-qubit Hilbert spaces and the Saniga-Planat conjectinaos,
Solitons, Fractalsin press.

K. Thas. The geometry of generalized Pauli operatorslafudit Hilbert space, and an
application to MUBs Europhys. Lett. EPL86:60005, 3 pp., 2009.

A. Kirsch. Beziehungen zwischen der Additivitat undrdHomogenitat von Vektorraum-
Abbildungen.Math.-Phys. Semesterhe?5(2):207-210, 1978.

U. Mayr. Zur Definition der linearen Abbildunddath.-Phys. Semesterbe26(2):216-222,
1979.

F. Buekenhout and P. Cameron. Projective afich@ geometry over division rings. In F.
Buekenhout, editoklandbook of Incidence GeometBisevier, Amsterdam, 1995.

P. J. Cameron. Projective and polar spaces. Lectur@snoavailable online:
httpy/www.maths.qgmw.ac.ykpjc/pps, September 2000.

J. W. P. Hirschfeld. Projective Geometries over Finite FieldsClarendon Press, Oxford,
second edition, 1998.

L. Borsten, D. Dahanayake, M. J. BuH. Ebrahim, and W. Rubens. Black holes, qubits and
octonions.Phys. Rep.471(3-4):113-219, 2009. (arXiv:0809.4685).

S. E. Payne and J. A. ThaEinite generalized quadranglegolume 110 oResearch Notes
in Mathematics Pitman (Advanced Publishing Program), Boston, MA, 1984.

20



