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Abstract
Recently, a number of interesting relations have been discovered be-

tween generalised Pauli/Dirac groups and certain finite geometries. Here,
we succeeded in finding a general unifying framework for all these rela-
tions. We introduce gradually necessary and sufficient conditions to be met
in order to carry out the following programme: Given a groupG, we first
construct vector spaces over GF(p), p a prime, by factorisingG over ap-
propriate normal subgroups. Then, by expressing GF(p) in terms of the
commutator subgroup ofG, we construct alternating bilinear forms, which
reflect whether or not two elements ofG commute. Restricting top = 2,
we search for “refinements” in terms of quadratic forms, which capture the
fact whether or not the order of an element ofG is ≤ 2. Such factor-group-
generated vector spaces admit a natural reinterpretation in the language of
symplectic and orthogonal polar spaces, where each point becomes a “con-
densation” of several distinct elements ofG. Finally, several well-known
physical examples (single- and two-qubit Pauli groups, both the real and
complex case) are worked out in detail to illustrate the fine traits of the for-
malism.

Mathematics Subject Classification (2000):20-xx – 51A50 – 81R05
Key-words:Groups – Symplectic and Orthogonal Polar Spaces – Geometry
of Generalised Pauli Groups
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1 Introduction

The purpose of this paper is to establish the most general formal setting for refor-
mulating, whenever possible, basic properties of groups interms of vector spaces,
alternating bilinear forms, quadratic forms and associated projective and polar
spaces. As far as we know, the first outline of such an analysiscan be tracked
back in the textbook of Huppert [1], when addressing the so-calledextra-special
groups; however, the assumptions made there were rather specific and no finite ge-
ometry was explicitly mentioned. Another treatment of the issue, with important
physical applications, was given by Shaw and his collaborators [2], [3], [4], [5],
[6], [7]. These papers deal with theDirac groupsand their relationship to projec-
tive spaces over GF(2). They include also a detailed dictionary from group theory
to finite geometry andvice versa(see also [8]). Being unaware of these develop-
ments, Planat and Saniga and others set up a similar programme [9], [10], [11],
[12], [13], [14], [15], [16], [17] [18], [19], [20], [21], [22], (see also [23]), and
discovered various kinds of finite geometry behind the generalised Pauli groups
of specific finite-level quantum systems, their results being put into a more gen-
eral context by Koen Thas [24] (p = 2) and [25] (p > 2); these works, however,
focussed uniquely on symplectic case (alternating bilinear forms), leaving the im-
portance of quadratic forms simply unnoticed. In what follows we shall not only
fill this gap, but develop the theory to such an extent that thelinks between the
above-mentioned approaches become clearly visible and, atthe same time, dif-
ferences between some closely related finite groups (e.g., between the real and
complex two-qubit Pauli groups) will be revealed and properly understood.

2 Preliminaries

We first collect some notions which will be used throughout the paper:
Let (G, ·) be a group with neutral elemente. Given a setM ⊆ G we denote by

〈M〉 the subgroup ofG generated byM. Also, we let

M(m) := {xm | x ∈ M} for all m ∈ Z. (1)

The commutator ofa, b ∈ G is written as [a, b] := aba−1b−1. The commutator
group (derived group) [G,G] =: G′ is the subgroup ofG which is generated by all
commutators. The centre ofG is written asZ(G).

Furthermore, letp be a fixed prime. We denote the Galois field withp el-
ements by GF(p) = Z/(Zp). We shall always use 0, 1, . . . , p − 1 ∈ Z as rep-
resentatives for the elements of GF(p). Vector spaces over GF(p) have a series
of rather simple, but nevertheless noteworthy properties which are not shared by
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vector spaces over arbitrary fields. If (V,+) is vector space over GF(p) then

mv= v+ v+ · · · + v
︸           ︷︷           ︸

m

for all m∈ GF(p), v ∈ V. (2)

So the additive group (V,+) or, more precisely,V as aZ-module, determines the
structure as a vector space over GF(p) in auniqueway. In particular, we have

v+ v+ · · · + v
︸           ︷︷           ︸

p

= o for all v ∈ V, (3)

whereo denotes the zero element ofV. Consequently, any subgroup ofV is also
a (vector) subspace. Furthermore, any additive mapping of vector spaces over
GF(p) is also linear; see, among others, [26] and [27]. Conversely, a commutative
group (V,+) satisfying (3) can be turned into a vector space over GF(p) by defining
the product ofm ∈ GF(p) andv ∈ V by (2).

3 Vector spaces overGF(p)

We aim at constructing vector spaces over GF(p) by factorisingG modulo appro-
priate normal subgroups.

Let N E G, i. e., N is a normal subgroup ofG. The factor groupG/N is
commutative if, and only if,G′ ≤ N. Furthermore,G/N is isomorphic to the
additive group of a vector space over GF(p) if, and only if, it satisfies the following
condition:

Condition 1. N is a normal subgroup ofG which contains the commutator sub-
groupG′ and the setG(p) of pth powers.

Remark1. Let N ≤ G be asubgroupof G satisfyingG′ ≤ N. We recall thatN
is anormal subgroupof G in this case, since for alla ∈ N and allx ∈ G we have
xax−1 = [x, a]a ∈ N. This means that Condition 1 can be relaxed by omitting the
word “normal”.

Remark2. The complex productG′G(p) = {xy | x ∈ G′, y ∈ G(p)} is easily seen to
be a subgroup ofG. Thus, by Remark 1, we have

G′G(p) = 〈G′ ∪ G(p)〉 E G. (4)

Remark3. The casep = 2 deserves particular mention. Here Condition 1 can
be further relaxed by deleting the conditionG′ ≤ N, becauseG(2) ⊆ N implies
that all elements ofG/N have order one or two, which in turn guarantees the
commutativity ofG/N.1

1A group of prime exponentp > 2 need not be commutative. For example, the set of upper
triangular 3× 3 matrices over GF(p) with 1s along the diagonal is a non-commutative group of
exponentp under matrix multiplication forp > 2.
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We assume until further notice that Condition 1 holds. Then we let

(V,+) := (G/N, ·), (5)

i. e., the composition inV will be written additively, and we considerV as a vector
space over GF(p) in accordance with (2).

It is an easy exercise to express notions form the vector space V (like linear
dependence, dimension, etc.) in terms of the factor groupG/N. For example, a
linear combination

∑k
i=1 mivi with mi ∈ GF(p), vi = xi N andxi ∈ G translates into

xm1
1 xm2

2 · · · x
mk
k N. The factors in this product may be rearranged in any order. The

set of all subspaces ofV is precisely the set

{S/N | N ≤ S ≤ G}. (6)

The factor spaces ofV have the formV/(S/N), with S as above. There exists the
canonical isomorphism (of vector spaces)

G/S→ (G/N)/(S/N) : xS 7→ (xN)(S/N) (7)

by the homomorphism theorem. Therefore, up to the canonicalidentification

G/S ≡ (G/N)/(S/N) = V/(S/N), (8)

the set of all factor spaces ofV is precisely the set

{G/S | N ≤ S ≤ G}. (9)

The identification (8) will frequently be used in the sequel.If V is finite then
#V = pd, andd is the dimension ofV. Hence in this case the dimension ofV can
be found by a simple counting argument.

We close this section with a complete description of all vector spaces arising
from our previous construction.

Theorem 1. Let G be any group. Then the following assertions hold:

(a) The subgroupN0 := G′G(p) is normal inG and meets the requirements of
Condition1. Hence it yields the vector space V0 := G/N0 overGF(p).

(b) The set of vector spacesG/N, whereN E G is subject to Condition1, is
precisely the set of all factor spaces of V0, up to the canonical identification
G/N ≡ V0/(N/N0) from (8).

Proof. Ad (a) This is clear by Remarks 1 and 2.
Ad (b) A subgroupN ≤ G satisfies Condition 1 if, and only if,N0 ≤ N. Under

these circumstances the canonical identification from (8) can be applied toG/N.
This establishes the result. �
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The previous result can be rephrased as follows: Our construction yields (to
within isomorphism) precisely the homomorphic images of the vector spaceV0.

Of course, in Theorem 1 the trivial caseN0 = G may occur so thatV0 turns
out to be the zero vector space over GF(p). Take, for example,G as a cyclic group
of prime order, p. At the other extreme, ifG is a commutative group of indexp
thenN0 = {e}.

4 The underlying field

For our construction of an alternating bilinear form in Section 5, we shall need
an interpretation of the Galois field GF(p) within the groupG in terms of the
commutator groupG′. The (multiplicative) groupG′ is isomorphic to the additive
group of the Galois field GF(p) precisely when the following is satisfied:

Condition 2. The commutator groupG′ has orderp.

This is due to the fact that any two groups of orderp are cyclic and hence
isomorphic. Condition 2 is very restrictive, in sharp contrast to Condition 1.

Remark4. Condition 2 implies thatG is anon-commutative group, sinceG′ has
to have more than one element.

Let us assume until the end of this section that Condition 2 holds. For each
generatorg of G′ (viz. each elementg ∈ G′ \ {e}) the mapping

ψg : (G′, ·)→
(

GF(p),+
)

: gm 7→ m with m∈ {0, 1, . . . , p− 1} (10)

is an isomorphism of groups. Given a generator ˜g ∈ G′ there exists an element
k ∈ {1, 2, . . . , p− 1} such thatg = g̃k, whence

(ψg̃ ◦ ψ
−1
g )(m) = km for all m∈ GF(p). (11)

Therefore, loosely speaking,G′ could be identified with GF(p) up to a non-zero
scalar k∈ GF(p). In fact, Condition 2 just guarantees thatG′ is a one-dimensional
vector space over GF(p), but it does not provide a unique way to identifyG′ with
GF(p) unlessp = 2. Examples of groups satisfying Condition 2 will be exhibited
in Section 9.

Remark5. If Conditions 1 and 2 are satisfied then, taking into accountψ−1
g (m) =

gm andv = xN for somem ∈ GF(p) and somex ∈ G, onemust notcalculate
the productmv in terms of the factor groupG/N as (gmN)(xN) = gmxN. For
example,m= 0 andv , o (zero vector) yield 0· v = o , butg0xN = xN = v , o.
Observe that this applies even in the casep = 2, where there is just one possibility
for choosing an isomorphismψg.
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5 An alternating bilinear form

Given a groupG and a normal subgroupN E G satisfying Condition 1, we want
to turn the commutator mapping [·, ·] : G × G → G′ into a function which is well
defined onV×V. This amounts to requiring that for allx, y ∈ G their commutator
[x, y] does not change ifx is replaced by any element from the cosetxN and
likewise fory. For anya ∈ N we have [x, y] = [xa, y] if, and only if,

xyx−1y−1 = xaya−1x−1y−1

or, equivalently,ay = ya. Since herey ∈ G is arbitrary, this holds precisely when
a ∈ Z(G). We are thus lead to the following:

Condition 3. The normal subgroupN is contained in the centre ofG.

By virtue of this condition, we have indeed [x, y] = [xa, yb] for all x, y ∈ G
and all a, b ∈ N. However, there does not seem to be an obvious meaning of
the commutator groupG′ for our vector spaceV. Hence we assume until further
notice that Conditions 1, 2, and 3 hold. Therefore

G′G(p)
E N E Z(G) ⊳ G (12)

is satisfied. Also, we choose an isomorphismψg according to (10). This allows to
define a mapping

[·, ·]g : V × V → GF(p) : (v,w) = (xN, yN) 7→ ψg([x, y]), (13)

wherex, y ∈ G. We collect now several basic properties of this mapping.

Theorem 2. Suppose that the groupG and the normal subgroupN E G satisfy
Conditions1, 2, and3. Also, let g be a generator of the commutator groupG′.
Then the following assertions hold:

(a) The mapping[·, ·]g given by(13) is an alternating bilinear form on the vec-
tor space V= G/N.

(b) Two elements x, y ∈ G commute if, and only if, the corresponding vectors
v = xN,w = yN ∈ V are orthogonal with respect to[·, ·]g, i. e.,[v,w]g = 0.

(c) The bilinear form[·, ·]g is non-zero and has the radical V⊥ = Z(G)/N.
Consequently, this form is non-degenerate if, and only if,N coincides with
the centre ofG.
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Proof. Ad (a): Givenx, y ∈ G we letv := xN andw := yN. Then

[v, v]g = ψg([x, x]) = ψg(e) = 0 (14)

and
[w, v]g = ψg([y, x]) = ψg([x, y]−1) = −[w, v]g. (15)

Also, we obtain

[v1 + v2,w]g = ψg((x1x2)y(x1x2)
−1y−1)

= ψg(x1x2yx−1
2 x−1

1 y−1)

= ψg(x1 (x2yx−1
2 y−1)

︸       ︷︷       ︸

∈G′

x−1
1 x1yx−1

1 y−1) (16)

= ψg((x2yx−1
2 y−1)(x1yx−1

1 y−1))

= ψg
(

[x2, y] · [x1, y]
)

= [v1,w]g + [v2,w]g.

Here we used thatG′ is fixed elementwise under the inner automorphism given
by x1 due to (12). The last equality follows, because Condition 2 forcesG′ to be
commutative. From (15) and (16), the function [·, ·]g is biadditive and therefore
also bilinear. Hence the assertion follows.

Ad (b): This is immediate from the definition of [·, ·]g.
Ad (c): We noted already in Remark 4 thatG is a non-commutative group.

Consequently, the bilinear form [·, ·]g is non-zero. Its radical is

V⊥ = {v ∈ V | v ⊥ w for all w ∈ V}. (17)

We read off from (b) thatV⊥ = Z(G)/N and the rest is clear. �

Observe that the bilinear form [·, ·]g has to be degenerate when dimV is an odd
integer. See Examples 1 and 2 in Section 9.

The previous result (b) about commuting elements does not depend on the
choice of the isomorphismψg. Replacingg by any generator ˜g of the commutator
groupG′ changes the bilinear form [·, ·]g by a non-zero factork ∈ GF(p), that is
[·, ·]g̃ = k[·, ·]g. But the orthogonality relations with respect to these two forms
are identical. We could even rule out the isomorphismψg by considering the
mappingV × V → G′ : (xN, yN) 7→ [x, y]. The proof of Theorem 2 shows that
this is a non-zero alternating bilinear mapping of vector spaces over GF(p). The
interpretation of our results in terms of projective geometry will also eliminate the
explicit choice of an isomorphismψg. See Section 7.

We end with a complete description of all vector spaces and all alternating
bilinear forms arising from our construction from the above; cf. Theorem 1.
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Theorem 3. Let G be a group such that Condition2 holds. Furthermore, let
at least one of the normal subgroups ofG satisfy Conditions1 and 3. Choose
g ∈ G′ \ {e}. Then the following assertions hold:

(a) The subgroupN0 = G′G(p) is normal inG and meets the requirements of
Conditions1 and 3. It yields the vector space V0 = G/N0 overGF(p), the
alternating bilinear form[·, ·]g,0 on V0, and the radical V⊥0 .

(b) The set of vector spacesG/N, whereN is subject to Conditions1 and3, is
precisely the set of factor spaces V0/S , where S is any subspace of V⊥0 , up
to the canonical identification from(8).

(c) In terms of the identification from(8) the alternating bilinear form[·, ·]g on
any vector spaceG/N ≡ V0/S as in(b) is inherited from the bilinear form
[·, ·]g,0 on V0.

Proof. Ad (a): By the hypotheses of the theorem,N0 ≤ Z(G) holds, whence (a) is
fulfilled.

Ad (b): A subgroupN ≤ G satisfies Conditions 1 and 3 if, and only if,N0 ≤

N ≤ Z(G) which in turn is equivalent to

N0 ≤ N and S = N/N0 ≤ Z(G)/N0 = V⊥0 . (18)

Ad (c): The bilinear form [·, ·]g,0 induces a well defined bilinear form onV0/S
for any subspaceS ≤ V⊥0 via (v + S,w + S) 7→ [v,w]g,0. This induced form
coincides with [·, ·]g by its definition. �

6 A quadratic form

We let p := 2 throughout this section. We exhibit a groupG and a normal sub-
groupN satisfying Conditions 1 and 2, but we do not yet assume Condition 3 to
be fulfilled. SoG′ = {e, g}, say, andg = g−1

, e. Hence the vector spaceV = G/N
and the (only) isomorphismψg : (G′, ·) →

(

GF(2),+
)

are at our disposal. In the
sequel the group

K := {x ∈ Z(G) | x2 = e} ≤ Z(G) (19)

will play an important role.
Our first aim is merely to define a mappingG → GF(2) by the assignment

x 7→ ψg(x2). This is possible if, and only if, the following holds:

Condition 4. G is a group such that all its squares belong to its commutator group,
i. e.,G(2) ⊆ G′.
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Remark6. We note that Conditions 2 and 4 imply

G(2) = G′, (20)

since otherwiseG(2) = {e} would forceG to be commutative, a contradiction to
Remark 4.

We continue by demanding that also Condition 4 is satisfied. Our second aim
is to find necessary and sufficient conditions for the mapping2

Q : V → GF(2) :v = xN 7→ ψg(x
2) (21)

to be well defined. This is the case if, and only if,

x2 = xaxa for all x ∈ G and all a ∈ N. (22)

Let us consider first of all the particular casex = e which yields the necessary
conditiona2 = e for all a ∈ N. As N = {e} is impossible due toe , g ∈ N, we
continue by assuming the following to be true:

Condition 5. The normal subgroupN E G has exponent 2.

Now, returning to the general case, we can use Condition 5 to rewrite (22) in
the form

x2 = x2(x−1a−1xa) for all x ∈ G and all a ∈ N, (23)

becausea = a−1. Cancellingx2 shows that (23) holds precisely whenN is in the
centre ofG. Hence, we also have to impose Condition 3 to be valid.

Conversely, with all five conditions at hand we obtain that the mappingQ in
(21) is indeed well defined. We notice that under these circumstances

{e} = N(2)
, {e, g} = G′ = G(2)

E N E K E Z(G) ⊳ G (24)

is satisfied. We are now in a position to describe the mappingQ in detail.

Theorem 4. Suppose that the groupG and the normal subgroupN E G satisfy
Conditions1–5for p = 2. Then the following assertions hold:

(a) The mapping Q: V → GF(2)given by(21) is a quadratic form.

(b) The polar form of Q equals to the alternating bilinear form given in(13).
Consequently, Q is non-zero.

2We refrain from writingQg, since there is only one choice forg, even though we maintain the
notation [·, ·]g from the previous section.
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(c) The restriction of Q to the radical V⊥ is a linear form V⊥ → GF(2) with
kernelK/N ≤ V⊥. Hence eitherK/N = V⊥ or K/N is a hyperplane of V⊥.

Proof. Ad (a) and (b): In order to show thatQ is a quadratic form, we have to
verify two conditions. Firstly,Q(kv) = k2Q(v) for all k ∈ GF(2) and allv ∈ V.
This follows fromQ(o) = ψg(e2) = 0 for k = 0 and is obviously true fork = 1.
Secondly, it remains to establish that the mapping

V × V → GF(2) : (v,w) 7→ Q(v+ w) − Q(v) − Q(w) (25)

is biadditive and hence bilinear. Lettingv = xN, w = yN with x, y ∈ G gives

(xy)2x−2y−2 = x−2(xy)2y−2 = x−1yxy−1 = [x−1, y]. (26)

Here the first equation sign holds, becauseG(2) is a commutative group by Re-
mark 6, which allows to rearrange squares. Application ofψg permits us to express
(26) as

Q(v+ w) − Q(v) − Q(w) = [−v,w]g = [v,w]g. (27)

Since [·, ·]g is non-zero, so isQ. This completes the proof of (a) and (b).
Ad (c): The restriction ofQ to the radicalV⊥ = Z(G)/N is additive by (27).

HenceQ|V⊥ is a linear form in GF(2). By its definition,Q|V⊥ vanishes precisely
on the setK/N, which is therefore allV⊥, or one of its hyperplanes. �

Our final result of this section is in the spirit of Theorems 1 and 3:

Theorem 5. Let G be a group such that Conditions2 and 4 hold for p = 2.
Furthermore, let at least one of the normal subgroups ofG satisfy Conditions1,
3, and5. Then the following assertions hold:

(a) The normal subgroupN0 = G′G(2) = G′ = G(2)
E G meets the requirements

of Conditions1, 3, and5. It yields the vector space V0 = G/N0 overGF(p),
the quadratic form Q0 on V0, and the subspaceK/N0 ≤ V⊥0 .

(b) The set of vector spacesG/N, whereN is subject to Conditions1, 3, and5,
is precisely the set of factor spaces V0/S , where S is any subspace ofK/N0,
up to the canonical identification from(8).

(c) In terms of the identification from(8) the quadratic form Q on a vector
spaceG/N ≡ V0/S as in(b) is inherited from the quadratic form Q0 on V0.

Proof. Ad (a): By the hypotheses of the theorem and (24),G′ = G(2) = N0 E K E
Z(G), whence (a) is fulfilled.
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Ad (b): A subgroupN ≤ G satisfies Conditions 1, 3 and 5 if, and only if,
N0 ≤ N ≤ K which in turn is equivalent to

N0 ≤ N and S = N/N0 ≤ K/N0. (28)

Ad (c): The quadratic formQ0 induces a well defined quadratic form onV0/S
for any subspaceS ≤ K/N0 via v + S 7→ Q0(v), becauseQ0(v + s) = Q0(v) +
Q0(s) + [v, s]g0 = Q0(v) for all s ∈ S. This induced form coincides withQ by its
definition. �

Under the assumptions of Theorem 5 suppose thatK < Z(G). Then there
exists a subgroupN with K < N ≤ Z(G), whence Condition 5 is violated, whereas
Conditions 1–3 are satisfied. This means that the vector space G/N is endowed
with an alternating bilinear form by Theorem 3, but there exists no quadratic form
on G/N as in Theorem 5; see Examples 1 and 2 in Section 9.

7 Symplectic polar spaces

Our results from the preceding sections allow a natural interpretation in terms of
projective geometry. LetV be an (n + 1)-dimensional3 vector space over a field
F, wheren ≥ −1. Recall that thepointsof theprojective spaceon V are its one-
dimensional subspaces (“rays through the origin”). We write P(V) for the set of
all such points. Likewise, each subspaceS of V gives rise to a setP(S) of points.
If dim S = k + 1 thenP(S) ⊆ P(V) is called ak-flat or k-dimensional projective
subspace. In particular,P(V) is the onlyn-flat, i. e., its projective dimension is
n. We use the familiar terminology for low-dimensional flats:lines, planes, and
solidshave projective dimension 1, 2, and 3, respectively.Hyperplanesof P(V)
are those flatsP(S) whereS has codimension 1 inV.

Assume now that
(

V, [·, ·]
)

is asymplectic vector space. So it is endowed with
a non-degenerate alternating bilinear form [·, ·], andn+ 1 =: 2r is even. For each
subsetW ⊆ V we denote byW⊥ its orthogonal subspace, i. e. the set of all vectors
in V which are orthogonal to every vector inW. In particular,v⊥ is a subspace
with codimension 1 for each vectorv ∈ V \ {o}. In projective terms we obtain a
null polarity4, i. e. the mapping which assigns to each pointFv its null hyperplane
P(v⊥). More generally, one can associate with eachk-flat P(S) the (n− k− 1)-flat
P(S⊥); it equals to the intersection of all hyperplanesP(v⊥), asFv ranges over all
points ofP(S). A subspaceS ≤ V is calledtotally isotropicif S ≤ S⊥. We use the
same terminology for the flatP(S). Thesymplectic polar spaceassociated with

3We restrict ourselves to the finite-dimensional case even though several results from below
could be carried over—mutatis mutandis—to spaces of infinite dimension.

4Other names for this mapping aresymplectic polarityandnull system.
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(

V, [·, ·]) is the point setP(V) together with the set of all totally isotropic flats. All
maximal totally isotropic flats have projective dimensionr − 1. It is common to
denote this polar space byW2r−1(F) and, in particularW2r−1(q) if F = GF(q) is
a Galois field. For eachr and eachF there is a unique symplectic polar space to
within isomorphisms; see [28], [29], and the references therein.

Two (not necessarily distinct) pointsFv, Fw ofW2r−1(F) are said to beconju-
gateif v ∈ w⊥ (or w ∈ v⊥). In other words: Two points are conjugate if one of them
is in the null hyperplane of the other. Two distinct points are conjugate precisely
when they are on a common totally isotropic line. Each point is self-conjugate.

It is now a straightforward task to establish a neat connection between our
previous results and symplectic polar spaces:

Theorem 6. Suppose that a groupG and its centre Z(G) =: N satisfy Condi-
tions1–3 for some prime number p. Furthermore, let V:= G/Z(G) be finite and
let an alternating bilinear form[·, ·]g be defined as in(13). Then the following
hold:

(a)
(

V, [·, ·]g
)

gives rise to a finite symplectic polar spaceW2r−1(p).

(b) The totally isotropic flats ofW2r−1(p) have the formP
(

C/Z(G)
)

, whereC
ranges over the set of all commutative subgroups ofG which contain the
centre Z(G). In particular, the points ofW2r−1(p) have the formC/Z(G),
whereC := 〈x〉Z(G) and x∈ G \ Z(G).

(c) Two elements x, y ∈ G \ Z(G) commute if, and only if, the corresponding
points ofW2d−1(p) are conjugate.

Proof. Ad (a): By Theorem 2 (c), the form [·, ·]g is non-degenerate. Therefore
dimV =: 2r is even and the assertion follows.

Ad (b): By (6), any subspace ofV has the formS/Z(G) with Z(G) ≤ S ≤ G
and vice versa. The subspaceS/Z(G) is totally isotropic if, and only if, [·, ·]g

vanishes identically onS/Z(G). This holds precisely when the subgroupS is com-
mutative. The points ofW2r−1(p) are the one-dimensional subspaces ofV, i. e.
the subgroups ofG/Z(G) which are generated by a single elementxZ(G) with
x ∈ G \ Z(G). Hence they have the asserted form.

Ad (c): This holds according to our definition of [·, ·]g and the definition of
conjugate points. �

The structure of the spaceW2r−1(p) from above “is” the structure of commut-
ing elements ofG. Note that anyx ∈ G \ Z(G) clearly commutes with all powers
of x and with all elements ofZ(G). It is therefore natural to “condense” the com-
mutative subgroup〈x〉Z(G) ≤ G to a single entity—a point ofW2r−1(p). Also, it
is natural that all elements from the centreZ(G) have no meaning forW2r−1(p),
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as they commute with every element ofG. We add in passing that the polar space
W2r−1(p) does not depend on the choice of the generatorg of G′ which is used to
define [·, ·]g.

Remark7. The results from Theorem 6 can be easily generalised to the settings
of Theorem 2. Under these circumstances the factor spaceV/V⊥ together with
the alternating bilinear form, which is inherited fromV, takes over the role of the
symplectic vector space from above. This means that one getsa symplectic polar
space in the projective spaceP(V/V⊥). A k-flat of P(V/V⊥) has, by definition, the
form P(S/V⊥) with V⊥ ≤ S ≤ V and dim(S/V⊥) = k + 1. It will be convenient
to identify this flat with the flatP(S) of the projective spaceP(V). From this point
of view the flats ofP(V/V⊥) are the flats ofP(V) which containP(V⊥). Note that
such a flat now hastwo projective dimensions. Its dimension with respect toP(V)
is dimS − 1, while its dimension with respect toP(V/V⊥) is dim(S/V⊥) − 1; see
Example 1.

8 Orthogonal polar spaces

In view of Section 6 we adopt the following: LetV be an (n + 1)-dimensional
vector space over a fieldF with characteristic 2. LetQ : V → F be a quadratic
form and [·, ·] be its (alternating bilinear) polar form. We assumeQ to benon-
singular, which means thatQ(v) , 0 for all non-zero vectors in the radicalV⊥. A
subspaceS ≤ V is said to besingular if Q vanishes identically onS. We use the
same terminology for the flatP(S). The singular points ofP(V) constitute anon-
singular quadricQ of P(V). Theorthogonal polar spaceassociated with (V,Q) is
the point setQ together with all singular flats ([28], [29]). This orthogonal polar
space mirrors the “intrinsic geometry” of the quadricQ, since the singular flats are
precisely those flats which are entirely contained inQ. For our purposes also the
“extrinsic geometry”, i. e. the points of the ambient spaceP(V) off the quadric,
will be important.

All maximal singular flats ofQ have the same projective dimensionr − 1, but
the integerr ≥ 0 depends heavily on the ground fieldF, the dimension ofV,
and the quadratic formQ. We need here only the caseF = GF(2). It is well
known that to within projective transformations only the following cases occur
[28, p. 58], [30, pp. 121–126]:

n r − 1 Symbol # Point set Name

2k k− 1 Q2k(2) 22k − 1 parabolic
2k+ 1 k Q+2k+1(2) 22k+1 + 2k − 1 hyperbolic
2k+ 1 k− 1 Q−2k+1(2) 22k+1 − 2k − 1 elliptic
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For n = 2k the polar form ofQ is degenerate, dimV⊥ = 1. HenceV⊥ is a
distinguished point, callednucleus, in the ambient projective space ofQ2k(2), but
it is not a point ofQ2k(2). Otherwise the polar form ofQ is non-degenerate. Below
we useQ(2) to denote any of the quadrics from the above table.

Theorem 7. Suppose that a groupG and its subgroupK =: N given by(19)
satisfy Conditions1–5 for p = 2. Furthermore, let V:= G/K be finite and let a
quadratic form Q be defined as in(21). Then the following hold:

(a) Q gives rise to a non-singular quadricQ(2) of P(V).

(b) The totally singular flats ofQ(2) have the formP
(

T/K), whereT ranges
over the set of all subgroups ofG which have exponent2 and containK.
In particular, the points ofQ(2) have the formT/K, whereT := 〈x〉K with
x ∈ G \ K and x2 = e.

Proof. Ad (a): By Theorem 4 (c), the restriction of the quadratic form Q to V⊥ =
Z(G)/K has the kernelK/K. This is the zero-subspace ofV⊥, so thatQ is non-
singular.

Ad (b): By (6), any subspace ofV has the formS/K with K ≤ S ≤ G and
vice versa. The subspaceS/K is singular if, and only if,Q vanishes identically
on S/K. This holds precisely when the subgroupS has exponent 2. The points of
Q(2) are the one-dimensional subspaces ofV, i. e. the subgroups ofG/K which
are generated by a single elementxK with x ∈ G \ K andx2 = e. Hence they have
the asserted form. �

The structure of the polar space which is based on the quadricQ(2) from above
“is” the structure of elements with order 2 of the groupG. Note that for any
x ∈ G\K with order 2 the complex product〈x〉K is a subgroup ofG with exponent
2. It is therefore natural to “condense” the subgroup〈x〉K ≤ G to a single entity—
a point ofQ(2). In our further discussion we have to distinguish two cases:

If n = 2k+ 1 is odd then the polar form ofQ is non-degenerate which implies
K = Z(G). So the results of Theorems 6 and 7 can be merged immediately. We
obtain a symplectic polar space which is “refined” by an orthogonal one. The fact
that subgroups of exponent 2 are commutative is mirrored in the fact that singular
subspaces are totally isotropic.

If n = 2k is even thenK , Z(G). The pointV⊥ = Z(G)/K is the nucleus
of the quadricQ2k(2). We have here the orthogonal polar space given byQ2k(2)
and the symplectic polar spaceW2k−1(2) which is defined inP(V/V⊥) according to
Remark 7. It is well known that these two spaces are isomorphic. An isomorphism
is given by “joining the quadric with its nucleus”: IfP(S) is a singular subspace
of Q2k(2) then its join with the pointV⊥, i. e. P(S + V⊥), is a totally isotropic
subspace ofP(V/V⊥) andvice versa. In algebraic terms this gives the following
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bijection from the set of all subgroupsT with exponent 2 andK ≤ T ≤ G onto the
set of all commutative subgroupsC with Z(G) ≤ C ≤ G:

T 7→ C := TZ(G). (29)

9 Illustrative examples from quantum theory

Example 1. We consider thecomplex Pauli matrices

σ0 :=

(

1 0
0 1

)

, σx :=

(

0 1
1 0

)

, σy :=

(

0 −i
i 0

)

, σz :=

(

1 0
0 −1

)

. (30)

The matricesiασβ with α ∈ {0, 1, 2, 3} andβ = {0, x, y, z} constitute thePauli
group of order 16, which is now ourG. It acts on the two-dimensional com-
plex Hilbert space of a single qubit. In our terminology (with p := 2) we have
Z(G) = {±σ0,±iσ0}, G′ = G(2) = K = {±σ0} andg = −σ0. The groupG satisfies
Conditions 2 and 4.

The normal subgroupK = N0 satisfies Conditions 1, 3, and 5. The factor
groupG/K has 23 elements; it gives rise to a three-dimensional vector spaceV0

over GF(2) as in Theorem 2 (a) with a degenerate alternating bilinear form [·, ·]g,0.
The projective spaceP(V0) is theFano plane; see Figure 1. The points of the Fano
plane fall into three classes: The threedark-shadedpoints form a non-degenerate
quadricQ2(2) (i. e. a conic). They correspond to those elements ofG \ K whose
square isσ0 (i. e. Hermitian matrices). The threelight-shadedpoints represent
the elements ofG \ K whose square is−σ0 (i. e. skew-Hermitian matrices). The
remaining point, which is depicted by adouble circle, is the only point ofP(V⊥0 )
or, in other words, the nucleus ofQ2(2). It represents the matrices ofZ(G) \
K, which are also skew-Hermitian. The three lines through thenucleus (bold-
faced) are to be identified with the three “points” of the symplectic polar space
P(V0/V⊥0 ) � W1(2) (Figure 2), which has projective dimension one. Its null-
polarity is the identity mapping. Two operators ofG \ K commute if, and only if,
their corresponding points are on a common line through the nucleus.

The normal subgroupZ(G) satisfies Conditions 1 and 3, but not 5. The fac-
tor groupG/Z(G) has 22 elements; it gives rise to a two-dimensional symplectic
vector spaceV over GF(2) and the symplectic polar spaceW1(2) = P(V); see
Figure 2. The factor spaceV0/V⊥0 from above andV are isomorphic (as symplec-
tic vector spaces). Each point ofW1(2) is totally isotropic. We have no quadratic
form onV. Two operators ofG\Z(G) commute if, and only if, their corresponding
points are identical.

Example 2. We exhibit the group comprising the Kronecker productsiασβ ⊗ σγ

with β, γ ∈ {0, x, y, z}; cf. (30). This group acts on the four-dimensional Hilbert
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±σ1 ±iσ3 ±σ2

±iσ0

±iσ2 ±iσ1

±σ3

Figure 1: The fine structure of the
complex single-qubit Pauli group in
terms of the Fano plane.

±σ1, ±σ3, ±σ2,
±iσ1 ±iσ3 ±iσ2

Figure 2: A coarser representa-
tion,W1(2), aka the projection
from the nucleus of the conic.

space of two qubits. In contrast to Example 1, the symbolG denotes now this
group of order 64. In our terminology (withp := 2) we haveZ(G) = {±σ0 ⊗

σ0,±iσ0⊗σ0}, G′ = G(2) = K = {±σ0⊗σ0}, andg = −σ0⊗σ0. Up to a change of
dimensions, the situation here completely parallels that of the preceding example:

The factor groupG/K gives rise to a four-dimensional projective spaceP(V0)
over GF(2) and a non-degenerate quadricQ4(2). We are not familiar with any
neatly arranged picture of this projective space with its 31points and 155 lines.
However, the 15 points and 15 singular lines ofQ4(2), together with its nucleus
and several points/lines of its ambient space, can be illustrated as in Figure 3.
There are 15 lines joining the nucleusP(V⊥0 ) with the points of the quadricQ4(2);
these lines become the “points” of the factor spaceP(V/V⊥) �W3(2).

The factor groupG/Z(G) yields a four-dimensional symplectic vector spaceV
and the symplectic polar spaceW3(2) with P(V) as set of points. It is depicted
in Figure 4 which is known as thedoily5. We have no quadratic form onV. Two
operators ofG \Z(G) commute if, and only if, their corresponding points are on a
totally isotropic line.

Example 3. The real orthogonal matrices±I ,±X,±Y,±Z, where

I :=

(

1 0
0 1

)

, X :=

(

0 1
1 0

)

, Y :=

(

0 1
−1 0

)

, Z :=

(

1 0
0 −1

)

, (31)

constitute thereal Pauli groupG. It acts on the Hilbert spaceR2 of a real single
qubit. In our terminology (withp := 2) we haveG′ = G(2) = K = Z(G) = {±I }
andg = −I . Hence there is only one possibility for factorisation, namely G/Z(G).
This gives the symplectic polar spaceW1(2) based on the projective line over

5Another remarkable illustration ofW3(2) exhibiting, like the doily, a pentagonal cyclic sym-
metry is the so-calledCremona-Richmond configuration.
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±iσ0 ⊗ σ0

±σz⊗ σz

±iσz⊗ σz

Figure 3:Q4(2), its nucleus, and
a portion of its ambient space
as the geometry behind the com-
plex two-qubit Pauli group.

xx yy zz

0z

z0

zy

0y

xy

x0

0x
y0

xz

yzyx

zx

Figure 4: A coarser view in
terms ofW3(2); xy is a short-
hand for iασx ⊗ σy, α ∈

{0, 1, 2, 3}, etc.

GF(2) which we already encountered in Example 1. However, now this space is
refined by an orthogonal polar space based on a hyperbolic quadric Q+1(2). The
two points of this quadric represent those matrices inG \ Z(G) whose square isI
(i. e. symmetric matrices), the remaining point corresponds to matrices inG with
square−I (i. e. skew-symmetric matrices); see Figure 5.

±X ±Y ±Z

Figure 5: W1(2) and Q+1 (2)
(shaded) of the real single-qubit
Pauli group.

XX YY ZZ

IZ

ZI

ZY

IY

XY

XI

IX
YI

XZ

YZYX

ZX

Figure 6: W3(2) and Q+3 (2)
(shaded) of the real two-qubit
Pauli group.XY is a short-hand
for ±X ⊗ Y, etc.

Example 4. Here we deal with the group comprising the Kronecker products of
the matrices from Example 3. We change notation as now this group of order 32
is denoted byG. With p := 2 we haveG′ = G(2) = K = Z(G) = {±I ⊗ I }. Up to a
change of dimensions, the situation here completely parallels that of the preceding
example: The factor groupG/Z(G) gives rise to the symplectic polar spaceW3(2)
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which is refined by an orthogonal polar space based on a hyperbolic quadricQ+3(2).
The nine points of this quadric represent matrices inG\Z(G) whose square isI ⊗ I
(i. e. symmetric matrices), the remaining points correspond to matrices inG which
square to−I ⊗ I (i. e. skew-symmetric matrices); see Figure 6.

Example 5. Finally, we mention the (p = 3) case oftwo-qutrit Pauli group (see
also [19]). This groupG possesses 35 elements, which can be written in the form
ωaXbYc ⊗ XdYe, wherea, b, c, d, e ∈ {0, 1, 2}, ω is a primitive 3-rd root of unity,
andX andZ are so-called shift and clock operators given by





0 0 1
1 0 0
0 1 0




and





1 0 0
0 ω 0
0 0 ω2




,

respectively (see, e. g., [14], [18]). Its factor groupG/Z(G) is of cardinality 34 =
81 and generates the symplectic polar spaceW3(3) of 40 points/lines, with 4
points on each line and, dually, 4 lines through each point. This case is noteworthy
in two crucial aspects. First, it is one of the simplest instances where a single
point of the associated polar space represents not only a single operator (up to
complex multiples), but encompasses thetwo distinct powersof an operator (up
to complex multiples). Second, it leads to far-reaching physical implications for
the so-called black-hole analogy (see, e. g., [31]). As per the latter fact, it has
recently been shown [22] that theE6(6) symmetric entropy formula describing
black holes and black strings inD = 5 is intimately tied to the geometry of the
generalised quadrangle GQ(2, 4), where 27 black-hole charges correspond to the
points and 45 terms in the entropy formula to the lines of GQ(2, 4). And there
exists a very intimate connection betweenW3(3) and GQ(2, 4) [32]. Given any
point U ofW3(3), we can “derive” GQ(2, 4) as follows. The points of GQ(2, 4)
are all the points ofW3(3) not collinear withU, whereas the lines of GQ(2, 4)
are on the one side the lines ofW3(3) not containingU and on the other hand
hyperbolic lines throughU (natural incidence). Hence, this link between the two
finite geometries not only unveils the mystery whyD = 5 black hole solutions
are related with qutrits, but knowing that each point ofW3(3) comprises a couple
(p−1 = 3−1 = 2) of elements ofG/Z(G), it also provides a straightforward recipe
for labelling the 45 members of the entropy formula in terms of all elements of
the two-qutrit Pauli groupG.

Following these examples the interested reader should be able to find out the
symplectic and orthogonal polar spaces behind any (multiple-)qudit Pauli group
as long as the rankd of the qudit is a prime number.
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