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Intelligent adaptive monitoring for cardiac surveillance

Lucie Callens' and Guy Carrault 2 and Marie-Odile Cordier 3 and Elisa Fromont 4
and Frangois Portet® and René Quiniou °

Abstract. Monitoring patients in intensive care units is a critical
task. Simple condition detection is generally insufficientliagnose
a patient and may generate many false alarms to the clinapan
erator. Deeper knowledge is needed to discriminate amaagnal
those that necessitate urgent therapeutic action. We geogo in-
telligent monitoring system that makes use of many artifioi!lli-
gence techniques: artificial neural networks for tempdoatraction,
temporal reasoning, model based diagnosis, decision adedisys-
tem for adaptivity and machine learning for knowledge asigjoin.
To tackle the difficulty of taking context change into acchume
introduce a pilot aiming at adapting the system behavioebpnfig-
uring or tuning the parameters of the system modules. A typéo
has been implemented and is currently experimented andateal
Some results, showing the benefits of the approach, are.given

1 INTRODUCTION

Monitoring means to process incoming data (signals) resmbitaly
sensors in order to recognize alarming conditions. Sucltegwnay
generate alarms in huge volume that can overwhelm an opevhto
has to validate the alarms and take therapeutic actionst ivdap-
erator really needs is a decision support system that caifdhim
decide whether an alarm needs some action or can be skipfedd sa

characteristic of some rhythm problem. Their recognitiorao input
stream is based on efficient processing of temporal constneit-
works [4]. This makes chronicles good candidates for moinigo

One of the main challenge of temporal abstraction in irgefiit
monitoring systems is to closely couple signal processasggs and
higher level tasks involved in diagnosis. One source of dliffy
is that, generally, recorded data are highly dynamic angestio
changes. For example, the patient may move letting someoisens
transmit very noisy data. Also, the patient state may evqlyiekly
due to the effect of some drug or disease evolution. We pmpms
introduce a central module called a pilot that analyzesicoatisly
the monitoring context, i.e. the nature and quality of sigres well
as the hypotheses devised by the diagnosis module. The aine of
pilot is to select the best signal processing algorithmsthedight
abstraction level for data abstraction. The pilot makesafsgeci-
sion rules in order to bring high flexibility for taking intaceount
new monitoring conditions or new monitoring domains.

The major bottleneck of knowledge based approaches is knowl
edge acquisition and maintenance. Machine learning hasdmbe-
cated for this task. Since monitored diseases have a tefmedtaa
tional dimension, first order models are good candidate&riowl-
edge representation. This is why we have used InductivecLiBg-
gramming [16] for learning chronicles. Devising decisiates for

In the 1980's the concept of kwnowledge based system emergetthe pilot could also be tedious and time consuming [17]. Weeha

with the aim to associate deep knowledge to diagnosis. Aailiint
gent monitoring system integrates such a knowledge-bagsdrns
into a monitoring system.

The first step of intelligent monitoring is temporal abstiet.
This means transforming numerical time series into synsbalent
sequences. There is a huge literature in this domain (fegarsee
[26, 12]), e.g. in the cardiac domain. The second step istdevio
the reasoning task. Among proposals, model-based diagfi®si3]
has the main avantage of using an explicit model that can &é us
to diagnose the series of events observed during monitasngell
as giving comprehensible explanations to the operator.igesades
have an important temporal dimension, we have proposedte+e
sent them by sets of events linked by temporal constrainthein
occurrences. Such sets of events are called chronicle$l@}; can
model (a faulty model, in this case) the evolution of a disedsr-
ing time or local typical temporal phenomena, e.g. typicavevse-
quences of an electrocardiogram (ECG) that representatabdiats
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proposed decision tree learning for inducing decisionsrflem the
performance of algorithms in a representative set of cositex
Stacey and McGregor’s survey [26] lists many intelligentnino
toring systems that share several objectives and featuthsowrs.
To cite a few,RESUME [25], VIE-VENT [13] and its successors like
ASGAARD [24] have introduced general knowledge representation
paradigms for temporal abstraction with a deep integraifatomain
knowledge VIE-VENT could process data streams wherrasUME
was limited to databases. For efficiency reasons, instelagiing gen-
eral, our work focusses on cardiac knowledge in order t@ektich
information from ECG or pressure signals online. From tinederal
reasoning and diagnosis point of vieME0-GANESH [5] shares the
concept of temporal patterns, called scenarios, with oprageh. In
addition, we have proposed a supervised method to learnteuth
poral patterns automatically from annotated temporal.datd 1], a
self-adaptive software is introduced to modify the protesshain
according to some predefined events such as sensor losshiBut t
approach does not deal with high-level goals as temporabreag
which is crucial for monitoring evolving systems. ASGAARD [23],
the data abstraction module focusses on specific input eswac-
cording to a contextual plan which can be adapted when the pro
cessed inputs contradict expected values. However, dateaation
subtasks are scheduled in rigid sequences and diagnamimation
is not used for adapting the current system.



This article summarizes the work done during several yeaigna
active collaboration with experts in biological signal gessing and
the department of cardiology of the local hospital and whethto
the implementation of an experimental platform called €#liSec-
tion 2 describes the medical applicative context. In Sec8p an
overall overview of the system architecture is given. Intbes 4
and 5, we present the temporal abstraction and diagnosisod®et
In Section 6, a solution to adaptation to context change tsilée.
Learning chronicles and decision rules are presented itidBet.
We provide some evaluation results in Section 8 before colimf.

2 APPLICATION DOMAIN: MONITORING
CARDIAC PATIENTS

Several areas in medicine require monitoring and managemen
temporary paralysis of the respiratory center in the branal dam-
age, surgical anesthesia or myocardial infarction. In ldtier case,
our concern, intensive care units were initiated in the @frsmon-
itoring the vital functions of a patient after a serious tacchttack.
The main goal was to prevent, detect and control lethal #irhias
by therapeutic actions. ECG signals are displayed to aratgresnd
analyzed in real time: the trends of the main parameter$, asi¢the
cardiac frequency, are computed and alarms are generalietthisA
information assists the operator who is in charge of anatyzhe
situation, validating the alarms and deciding what acteoperform.

The main problem is to abstract the signal observation tdtzopa
logical state through several steps [15]: signal procegssitarm han-
dling, therapy advising. To solve this it, intelligent smgsion sys-
tems appeared in the 90's. Their aim was to integrate seseuates
of observation (numerical or symbolic) and several typesnefl-
ical knowledge (surface and deep knowledge). Surface letyd
relies on the use of the so-called experiential knowledgievaeep
knowledge corresponds to a complete theory about a paatisub-
ject, from which all valid statements can be derived.

Temporal
abstraction

Arrhythmia
recognition

event atrgm

signal arrhythmias

hierarchical

Patient context

Figure 1: The architecture of the online part of the adaptimitoring
system Calicot.

are the relevant chronicles. Moreover, these two decisioasot in-
dependent: it can be the case that input signals are so raisit ts
useless to try to detect P-waves, for example. Consequehtign-
icles that contain P-wave events can'’t be recognized andldHwe
removed from the candidate set. Also, in the context of aqdar
disease, some types of event could be absent from the sehdif ca
date chronicles and so it is useless to execute costly Jigoetssing
algorithms for detecting their related waves. Thus, lowr{al pro-
cessing) and high (chronicle recognition) level compotatishould
be tightly coupled. This is why we opt for an adaptive arattitee.
On the one hand, a signal processing library containing nsagyy
nal processing algorithms was built. Their performanceehagen
assessed in many contexts to determine when and how to nm the
On the other hand, a chronicle abstraction hierarchy wasetfi
more abstract chronicles contains less event types arefsrelvent
attributes which makes them more relevant to more noisyestt
More specific chronicles are relevant for situations whbeeedetec-
tion of particular events could improve the diagnosis aacyr

Recent developments have led to knowledge-based temgmral a The decisions are taken by a central monitor (that we callod)pi

straction (KBTA) where machine learning techniques are tisex-

tract the most discriminating patterns which can be idexttifih nor-
mal and several pathological states. There is a wide litexabout
temporal abstraction in medical domains [12, 26]. The @algys-
tem [1], dedicated to cardiac arrhythmias detection, aadtie pro-
posed by Guimaraes [9] which is focused to sleep-relatqairegery

disorders are two examples. Collaborative knowledge sesgoap-
proaches exploiting the properties of multi-agent syst@pen char-
acter, autonomy of its components) have been proposedthgd&n

for the exploration of mechanical ventilation asynchrsnie

3 ARCHITECTURE

Calicot has two execution modes: offline and online. Thenenli
mode, depicted in Fig. 1, is devoted to monitoring and adapts
pattern-matching approach: multivariate signals aredivstracted in
series of symbolic timestamped events and then a matclesntt
to recognize, on the fly, instances of chronicles in the syinise-
ries. A chronicle associated to some cardiac disease is potam
signature of this disease. The offline mode is dedicatedamieg
and updating the decision rule base and the chronicle base.
Contextual information is of great importance for monitgyi On
the one hand, by taking the signal quality (noise) into antone can
decide more accurately which is the most relevant signalgssing
algorithm to use in the current situation. On the other hagpdaking
the patient state into account one can decide more acouralbéth

which analyzes continuously the signal and the patientestrb

determine the best signal processing task and algorithixettuge as
well as the related chronicle abstraction level. A cerzealicontrol
was adopted because it was simpler to specify via decisies.ru

4 DATA ABSTRACTION

The temporal abstraction step transforms the numericé@ssarto
symbolic event sequences that are easier to process fotdvighdi-
agnosis. In coronary care units, the main problem comes flam
presence of different kinds of noise (slow baseline drifgghhfre-
guency noise, impulsive noise) and from the great varighili pa-
tient dependent patterns and which can change over timexaon-
ple, multiform premature ventricular beats can combind \pérma-
nent or intermittent left or right bundle branch block. Tleenporal
abstraction level achieves two main tasks: QRS complextifeetar
activity) and P wave (auricular activity) detection and Q&&ssi-
fication. Many methods have been proposed for detecting ehe v
tricular activity, i.e. QRSs. Each one fails in specific attans and
each reacts differently to the many different QRS wavefotience
we retain several algorithms. The proposed approach i©metge
the decisions of several algorithms but to select, on lihe,most
promising detector according to its performance in singlamtexts.
Actually, seven algorithms were selected [17].

Once a QRS has been detected it is labeled and a symbolic event
is generated. The generation of its attribute values ischasethe



fact a beat can be efficiently represented by a compactlycsteap
wavelet base [21]. Each QRS is then represented by a glotrahex
at each decomposed level. The QRS classification consistiseting
the beats into two mains classes, normal or abnormal. A pilidtic
neural network (PNN) based on radial basis function has beed.

P wave detection is very hard because it has a weak amplitdie a
a variable morphology. We retain the QRS-T interval camatielh
technique to overcome the limitations window techniquesi¢tvas-
sumes that a P wave always occurs before some QRS) and nainly
facilitate the detection of the P wave even for arrhythmiéb W-V
dissociation. The proposed approach [22] mostly relies)dpRS-T
interval detection and cancellation based on wavelet dposition,
i) a statistical analysis of the residue for detecting P @gwnot as-
sociated to a QRS, iii) an artificial neural network classifereject
false detection which frequently occur in P wave detection.

5 DIAGNOSIS BY CHRONICLE
RECOGNITION

In model-based diagnosis, a model of either normal or faadtyav-
ior is used to detect and identify faults or diseases [19f &normal
behavioral model is used, the values reflecting the pasistdte are
fed into the model and the diagnoser generates an alarmiifidioke|
outputs are different from the values observed on the patiith
a faulty model, the diagnoser reasons abductively to genelia-
ease hypotheses that could have produced the actual ofisesva
Sometimes, such a model can be compiled into sets of disaimhi
patterns that can be efficiently searched for on the inpe&str This
method is very suited to online monitoring: the input stréarana-
lyzed continuously and an alarm is emitted in case a set oftgvieat
can be related to a disease have been observed in some tich@wvin

In many situations, such as in the case of dynamic systems,isi
crucial [2]. The events related to the course of a diseas¢ mappen
in a specific order and have to respect delay constraintsedier,
sometimes it is easier to describe a disease by a set of sieces
synchronous events respecting temporal constraints thamttact
discriminant features from a vector of values recorded bgrse sen-
sors. This is true in the cardiac domain: the symptom reletedme
disease, e.g. bigeminy, is described more naturally by tbeepties
of several cardiac beats than by the particular features QR8.
Such temporal patterns can be easily represented by chesnitg.
2 shows an example of chronicle related to bigeminy and ampbea
of match on two types of signal.

Figure 2: ECG (top) and pressure (bottom) signals of a biggmpisode.
The graph in the middle shows a bigeminy chronicle modelaRdst for a P
wave event occurrence, QRS for a QRS complex, D for a digs$dler a
systole. Quoted QRSs represent abnormal ones. Dottedridieste

possible event matches that satisfy the temporal contgrain

transition, decisions concerning parameter settings lamdhoice of
tasks and algorithms to execute next are postponed to renfifre
goal of such software, is to monitor and control themseliregur
case, the system can be viewed as a metamonitor: a monigyéng
tem, the pilot, monitors a monitoring system. The goal iditam the
best performance by reconfiguring the system operatioesjgaly
choosing alternate algorithms and chronicles sets. To paudess-
ing module, algorithm or chronicle set, is associated argsgm
which describes the way this module can be used. For exatopde,
signal processing algorithm is associated the task thahiechieve,
the objects (types of events) that it can deliver and featdescribing
the contexts in which it should ensure the best performance.
The pilot receives continuously two kinds of contextuabimha-
tion: signal context, mainly related to the signal quaktyd recogni-
tion information, related to the diagnosis state. Noisetgpd level,
event detection rate and distribution are used to estinmateignal
quality (signal analyzer in Fig. 1). Chronicle recognitiate, types
of chronicles recognized so far and their distribution,eotpd pa-
tient state, etc. are used to estimate the diagnosis qafityythmias

Since the input data streams can be huge, recognizing ehronanalyzer in Fig. 1). From this contextual information thiophas to

cles on the fly must be very efficient. We have used a systeradcall
CRS (Chronicle Recognition System) [6] which manages dhlen
models, chronicle instances and temporal constraintsdstwvents
from these instances. CRS tries to associate each inconeng\with
some uninstantiated event of a chronicle instance whidbfiest the
temporal constraints. It generates also new chroniclafsts con-
taining an event that can match the observed event. Manyiciheo
instances can be generated in such a way. One strength of GRS i
ability to prune instances, as early as possible, whenevertem-
poral constraint could not be satisfied by assessing whathevent
occurence time has elapsed. This makes it particularlytaddior
applications where the detection of critical situationedgsential.

6 ADAPTATION

The architecture of Calicot shares many features with sklptve
systems [20]. Since it is impossible to anticipate evenyagibn and

decide whether the context has changed notably and a reomafig
tion is needed. In this case, the pilot must select the bgstitims
and tune their parameters as well as choose the right clhecaiie
stration level and the set of chronicles to be recognized.

To ensure a maximal flexibility and modularity, the pilot sskeci-
sion rules to decide when and how to perform reconfiguratidiese
follows two examples of decision rules. The first one selaastec-
tion algorithm, the second one selects the abstractioh fiesemust
be used for chronicles:
if pacedA noiseType=musculak noiseLevel< 0 dBthen algo df2
if PWaveDetection is active QRSClassification is activihen ab-
stractionLevel=4

7 MACHINE LEARNING

In our approach machine learning is used at two stages, &on-e
ing chronicles and for learning decision rules for the pitatdule.
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Figure 3: The graphical interface of Calicot showing theogggtion of
bigeminy and trigeminy episodes.

To establish accurate diagnoses efficiently the chrongtesild be
as discriminating as possible, i.e. they should clearl§irdisiish the
diseases. However, the specification of discriminatingwictes is
hard to do manually. Moreover, as first order (temporal}tiets are

concerned, we have chosen to use an ILP method. From exampl@?

describing symbolically signals related to disease egisptlLP in-
duces a set of first-order clauses that can discriminate ldgses
of the examples [16]. Fortunately, such a clause can belataxs
straightforwardly to a chronicle for CRS. By varying the daage
bias, i.e. the description language of examples and claasesus-
ing the related background knowledge, models at differbstrac-
tion levels can be learned. In addition, the model spaceptoed
efficiently by searching only the most promising parts. Weehaso
proposed a method for learning efficiently from multisouwleta [8].
The goal of decision rules is to aid the pilot module seleettbst
algorithm and chronicle set according to the current sigmal pa-
tient context. We have used two approaches to devise sueh e
first one made use of PCA (Principal Component Analysis) terde
mine the most informative context attributes [17] from penfiance
data obtained by executing a set of signal processing &hgaosiin
many situations with different kinds and level of noise aiftecent
diseases. Then, decision production rules conditionetdgelected
attributes were built manually by experts. The second nuetrszd
decision tree learning [18]. From a similar set of perforoedata,
decision trees were learnt. The nodes of such a tree repragam-
tition of the values of some attribute and the leaves repteselass,
here an algorithm. Every path from the root node to some leane
be translated into a decision rule having as conditionsdsis in the
path nodes and as conclusion the algorithm in the leavewoith-
noting that such learnt rules performed quite as well asrexples.

8 EVALUATION

The Calicot prototype has been implemented in Jalta graph-
ical interface displays monitored signals annotated witmglex
events related to recognized chronicles (see Fig. 3). Mapgre
ments were conducted in order to assess its monitoringty it
evaluate its performance. Calicot has been evaluated onlirgaal
data recorded in ICU but, until now, has not been used inadini
routine. This section gives some results concerning thi@peance
of the prototype on QRS detection, with and without piloting

“http://ww.irisa.fr/dreanf Calicot/

The implemented context analyser is based on a wavelet
decomposition-recomposition in three subbands to obteirtriplet
(Is,ms, hs) (low, medium, high subbands). This triplet together
with the annotated context attributes:, SN R (rhythm, noise type,
Signal-to-Noise Ratio) forms the context descriptor usgthk pilot
to decide which algorithm to use. Piloting rules have bedraeted
by decision tree learning from the performance results oRE@e-
tectors from the litterature [18]. Three decision treesenieduced:
D1 (using attributes x n x SNR x ls x ms x hs), D2 (using
r X ls x ms x hs) and D3 (using the subbands oribyx ms x hs).

Ten ECGs, lasting around 30 minutes each (containing about
18.000 QRSs in total) and including ten various ventriclidad
supra-ventricular arrhythmic contexts, were extractedfthe MIT-
BIH Arrhythmia database [14]. Real clinical noise, fromiB to
-15 dB, was introduced randomly in each ECG with probabili-
ties P(no-noise) = P(bw) = P(ma) = P(em) = 1/4 and
P(5dB) = 1/2, P(=5dB) = 1/3, P(—15dB) = 1/6 to repro-
duce difficult clinical ECG situations and to assess theesygper-
formance in specific contexts as well as when the contextggsan
The performance was evaluated from the standaRl(True Posi-
tive — correct result)F' N (False Negative — missed result) ahd®

(False Positive — false result): the sensitivily = 775, the
sitive predictivityP P = 71 and the F-measurB M () =

(1+82)xPPxSe
B2xPP+Se
computed.

To estimate the upper bound performance reachable by €alico
with the pilot, the best detector performance (i.e. aclddyethe de-
tector with maximal FM) for each chunck of ECG was also regdin
These results were used to define a gold standeedt(Choi ce).

Table 1 synthesizes the results of arrhythmia recognitidh-w
out the pilot and every QRS detector algorithrbgst Choi ce
(used as gold standard) and the different piloting rule. #stsord-
ing to FMpi | ot D2, outperforms all the other methods. The best
non piloted monitoring performance (FM=88.35%) is obtdinden
using algorithmkadanbe for temporal abstraction, followed by
af 2 (FM=86.67%), andbeni t ez (FM=85.25%). These three algo-
rithms outperform the others with an FM greater by 1.73%. Bémst
piloted monitoring performance is obtained by thiel ot D2 rule
set followed bypi | ot D1 andpi | ot D3.pil ot D1 performs
better than non pilotedf 2 but worst than non pilotedadanbe.
The upper bound that can be obtained is giverbbgt Choi ce as
FM=91.71%. This shows that the piloting strategy could by
improved with more accurate rules (at most by 3.36% of FM).

, Wheres = 1 (same weight foiSe and P P), were

detector sens(%) P+(%) FM(1) (%) switches
af 2 9259 8147 86.67 -
benitez 9591  76.72 85.25 -
df 2 80.64  86.61 83.52 -
gritzali 87.29  75.33 80.87 -
kadambex 9476  82.74 88.35 -
nobd 95.29  68.36 79.61 -
pan 79.66 85.70 82.57 -
best Choi ce 92.39 91.04 91.71 1486
pi l ot D1 95.09 82.01 88.06 741
pi l ot D2 94.74  82.92 88.43 294
pi l ot D3 93.30 8153 87.02 1478
pi | ot Dlx 91.32 80.74 85.70 443
pi | ot D2* 92.33  81.38 86.51 343
pi | ot D3x 94.69  81.20 87.42 1642

Table 1: Recognition results (on 15525 cardiac beats)



kadanbe associates wavelet analysis with heuristics for self- [5]
adaptating to the signal, thus, it can be considered as bgiloged”.
To asses the pilot more fairly, new piloting rulgsi, | ot D1=*,
pi |l ot D2* andpi | ot D3+*, were learned excludingadamnbe. 6]
The best performance of non piloted algorithms was obtafoed
af 2 followed bybeni t ez. The piloted rule sets exibited the best
performancepi | ot D3* with FM = 87.42% outperformed non 7]
piloted af 2 with FM= 86.67% improving FM by 0.75% which is
considered a good score in the QRS detection field. The nuofber
switches,best Choi ce, shows that the best possible performance
needs 1486 switchepi | ot D2 reached good scores with far less
switches (294). Without usingadanbe, pi | ot D3* has switched
1642 times showing that it uses the available algorithmsmmocre.
Compared tokadanbe, the advantage of using a pilot is that
it uses explicit declarative rules which can be easily updafhis
demonstrates the value of using a smart adaptation of QRStart (10]
algorithms according to both signal, patient and diagnosigext.

(8]

(9]

[11]
9 CONCLUSION
N . _ [12]
We have presented an approach to intelligent monitoring setf-
adaptive capabilities in the cardiac domain. Our propmsithsso-
ciates temporal abstraction, online diagnosis by chrenietogni-  [13]
tion, self-adaptation to the monitoring context and autiberianowl-
edge acquisition to learn chronicles and adaptation decisiles. A
prototype named Calicot has been implemented. [14]
Efficiency has been a constant concern during the conceatidn
implementation of Calicot, as it was intended to run onlifibus,
a temporal abstraction method taking advantage of the doarad [15]
data specificities has been proposed. Though they rephegeom-
plex event, chronicles can be efficiently recognized onipleldata  [16]
streams, one or two orders of magnitude less than real tinoiin
case. To enhance the performance we have also proposedhan ar(i 17]
tecture for self-adaptation, featuring a pilot which canorgigure
the processing chain or tune the module parameters whendhe m
itoring context changes. Finally, symbolic machine leagnis used, [18]
offline, to get discriminating patterns, on the one hand, adapta-
tion decision rules, on the other hand. Using a symbolic @eogr
for knowledge and (temporal) reasoning makes it possibpedeide [19]
understandable explanations to the user. This is very itapbin
medicine for letting clinician operators trust such system [20]

This research could not have been achieved without an active
and fruitful collaboration with the medical staff. Workimgth clin- [21]
icians in hospital is not always easy for computer sciesitistperts
are overbooked, getting data is sometimes difficult as pod$ofor
recording data are very strict, especially they should nobduce
any risk for the patient or any violation of data privacy. Bumn-
fronting ideas and views from different research, knowéedmnd
practice domains is particularly rewarding.

[22]

(23]
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