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Abstract

We present quantitative analysis of various (syntactic and behavioral)
properties of random A-terms. Our main results are that asymptotically all
the terms are strongly normalizing and that any fixed closed term almost
never appears in a random term. Surprisingly, in combinatory logic (the
translation of the A-calculus into combinators), the result is exactly oppo-
site. We show that almost all terms are not strongly normalizing. This
is due to the fact that any fixed combinator almost always appears in a
random combinator.

Keywords: A-calculus, strong normalization, randomness, combinatory
logic.

1 Introduction

Since the pioneering works of Church, Turing et al., more than 70 years ago, a
wide range of computational models has been introduced. It turns out that they
are all equivalent in sense of computational power. However, this equivalence
says nothing about what typical programs or machines of each of these models
do.
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This paper addresses the following question. Having a (theoretical) program-
ming language and a property, what is the probability that a random program
satisfies the given property? In particular, is it true that almost every random
program satisfies the desired property.

We concentrate on functional programming languages and, more specifically,
on the A-calculus, the simplest such language (see [0, [, [[§] for similar works on
other models of computation). The only work that we have found on this subject
is some experiments made by Jue Wang (see [[9]). Most interesting properties of
terms are those concerning their behavior. However, to analyze them, one has to
consider some syntactic properties as well.

As far as we know, no asymptotic value for the number of A-terms of size
n is known. We give (see Section []) upper and lower bounds for this (super-
exponential) number. Although the gap between the lower and the upper bound
is big (exponential), these estimations are sufficient for our purpose.

We prove several results on the structural form of a A-term. In particular, we
show that almost every closed A-term begins with “many” A’s (the precise mean-
ing is given in Theorem [B7). Moreover, each of them binds “many” occurrences
of variables (Theorems B9, {1l and [i). Finally, given any fixed closed A-term,
almost no A-term has this term as a subterm (Theorem [7).

We also give a result on the behavior of terms, our original motivation. We
show that a random term is strongly normalizing (SN for short) with asymptotic
probability 1. Remember, that, in general, being SN is an undecidable question.

Combinatory logic is another programming language related to the A-calculus.
It can be seen as an encoding of A-calculus into a language without variable
binding. Moreover, there are translations, in both directions, which, for example,
preserve the property of being SN. Surprisingly, our results concerning random
combinators are very different from those for the A-calculus. For example we
show that, for every fixed term ¢y, almost every term has ¢y as subterm and this,
of course, implies that almost every term is not SN. The difference of results
concerning strong normalization between A-calculus and combinatory logic might
come from the large increase of size induced by the coding of bound variables in
combinatory logic. This is discussed in Section B.

Our interest in statistical properties of computational objects like lambda
terms or combinators is a natural extension on similar research on logical objects
like formulas or proofs. This paper is a continuation of the research in which we
try to estimate the properties of random formulas in various logics. Especially
the probability of truth (or satisfiability) for random formulas. For the purely
implicational logic with one variable, (and at the same time simple type systems)
the exact value of the density of true formulas have been computed in the paper
of Moczurad, Tyszkiewicz and Zaionc [[J] and [[7. Quantitative relationship
between intuitionistic and classical logics (based on the same language) has also
been analyzed. The exact value describing how big fragment of the classical logic



with one variable is intuitionistic has been determined in Kostrzycka and Zaionc
[[T]. For the results with more then one variable, and other logical connectives

consult [[,[B],HI-

2 JA-calculus and combinatory logic

2.1 M-calculus

We start with presenting some fundamental concepts of the A-calculus, as well as
with some new definitions used in this paper.

Definition 1. Let V be a countable set of variables. The set A of A-terms is
defined by the following grammar:

ti= V| AVE | ().

We denote by A the set of all closed A-terms. We write ¢y t5 .. .t, without
parenthesis for (... (t; t2) ... t,).

As usual, A-terms are considered modulo the a-equivalence, i.e. two terms
which differ only by the names of bound variables are considered equal.
Let us observe that A\-terms can be seen as rooted unary-binary trees.

Definition 2. By lambda tree we mean the following rooted tree. There are two
kinds of internal nodes labeled by @ and by A. Nodes labeled by @ have two
successors left and right. Nodes labeled with A have only one successor. Leaves
of the tree are either labeled by variables or are connected with the one of A
nodes above it.

Definition 3. With every lambda term ¢ we associate the lambda tree G(¢) in
the following way:

e If x is a variable then G(z) is a single node labeled with x.

e Tree G(PQ) is a tree with the new root labeled with @ and two subtrees
left G(P) and right G(Q).

e Tree G(Az.P) is obtained from G(P) by four steps:
— Add new root node labeled with A
— Connect new root with G(P)

— Connect all leaves of G(P) labeled with x with the new root.

— Remove all labels z.
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Figure 1: The lambda tree representing the term A\z.(Au.zu)((Au.uy)z)

Observation 4. IfT is a lambda tree then T = G(M) for some lambda term M.
Terms M and N are a convertible iff G(M) = G(N).

We often use (without giving the precise definition) the classical terminology
about trees (e.g. path, root, leaf, etc.). A path from the root to a leaf is called a
branch.

Definition 5. Let ¢ be a A-term.
1. A term t' is a subterm of t (denoted as t' <) if

e cither t =1/,
e or t = A\r.u and t’ < u,
eort=(uw)and (' <wort <w).

2. Let u = Az.a be a subterm of t. We say that Az is binding if = has a free
occurrence in a.

3. The unary height of a term ¢ is the maximal number of A\’s on a path from
the root to some leaf of ¢ in lambda tree of t.

4. Two N's in t are called incomparable if there is no branch in the lambda
tree containing both of them. The A-width of ¢ is the maximal number of
pairwise incomparable binding \’s.

5. We say that ¢t has k head \'s if its lambda tree starts with k unary nodes.

Definition 6. e A term of the form (Az.P)Q is called a § redex. A lambda
term is in normal form if it does not contain § redex sub-terms. The least
relation > on terms satisfying (Ax.P)Q > Pz := @] and closed by context
is called (8 reduction.

e A term M is (weakly) normalizing if there is reduction sequence starting
from M and ending in a normal form N.
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e A term M is strongly normalizing if all reduction sequences are finite. By
SN we mean all terms which are strongly normalizing. We denote by 1(M)
the length of the longest reduction starting from M if M is SN. The fact
that such a longest reduction exists follows from Konig’s lemma. If M is
not SN, n(M) = +o0.

As an example we can see lambda tree representation of redex which is a
subterm of some lambda tree. Therefore [ conversion can be seen as a operation
on lambda trees.

Figure 2: -reduction scheme

Definition 7. The size of a term (denoted by size(-)) is defined recursively as
follows:

(i) size(x) =0, if x is a variable,
(i) size(Ax.t) =1 + size(t),
(iii) size(t u) = 1+ size(t) + size(u).
As we can see, size(t) is the number of internal nodes of lambda tree G(t).

Notation 8. Let n be an integer. We denote by A,, the set of closed terms of
size n. Obviously the set A,, is finite. We denote its cardinality by L,.

As far as we know, no asymptotic analysis of the sequence L,, has been done.
Moreover, typical combinatorial techniques do not seem to apply easily for this
task.

2.2 Fair and safe )\ terms

This part is devoted to Proposition [§ and concerns only A-calculus. Nevertheless,
for Fact [L]] see [l and for similar proof techniques, see [f, f].

Definition 9.



1. Let t be a term of width 1. We say that ¢ is fair if there is no binding A on
the left branch of ¢ (this includes the root node of t).

2. Let t be a term of width 2 and let (u v) be the smallest subterm of ¢ of
width 2. By definition, v and v have width 1. We say that ¢ is safe if at
least one of the terms u and v is fair.

Definition 10.

e A substitution ¢ is a partial map from variables to terms such that the
domain of o is finite. Let ¢ be a term and let o be a substitution such that
all variables from the domain of o are free in ¢. By t[o] we denote the term
obtained from ¢ by replacing all free occurrences of variables x by o(z).

e A context is a A\-term with a unique hole denoted [|. Traditionally, contexts
are defined by a BNF grammar. If F is an arbitrary context, it is given by
the following BNF grammar:

E:=[ | e.E|(E A)| (A E) where A denote arbitrary terms.

e When FE is a context and ¢ is a term, E[t] denotes the result of replacement
of the hole in E by t allowing capture: the A\’s in £/ can bind variables in ¢.

e For a context E, n(E) = n(E[z]) and size(E) = size(E[z]) where x is an
arbitrary variable not captured by FE.

e In a few cases, we need contexts with multiple holes. In this case, we write

Elty,...,t,] when E is a context with exactly n holes and Elty, ..., t,]
denotes the term where the holes of E are substituted from the leftmost to
the rightmost by ¢4, ..., %, in this order.

In some proofs in this section we use the following basic fact on lambda terms
and strong normalisation:

Fact 11. A lambda term can be written in one of the following forms:

o t=(xty ... 1t,) withn >0. In this case n(t) = n(ty) +---+n(t,) andt is
SN if and only if t1,...,t, are SN.

o t = Ax.u. In this case n(t) = n(u) and t is SN if and only if u is SN.

ot =((Azw)vty ... t,) withn > 0. tis SN if and only if v and (ulx :=
vty ... t,) are SN and, in this case, n(t) > n(u[x = v]t; ... t,) and
n(t) > nv) +n(ta) + - +9(tn).

Remark
The previous fact is well known (see for example [[[]). Also note that, if ¢ is a
term and z is a variable, then ¢ is SN if and only if (¢ z) is SN.
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Lemma 12. The set of terms of width at most 1 is closed under B-reduction.

Proof. If a term is of width 0, then no substitution or reduction can change the
width, since all variables in the term are free.

Let t be a term be of width 1. First, let us remark that all binding A’s in ¢
occur on the same branch. We consider a S-reduction: ¢ = E[(Azx.u) v]> Efu|x :=
v]] = t/. There are two cases: either z is not bound in w and ¢ = E[u] or it is
bound in v and v must have width 0, which means that all the variables of v are
free in ¢ or bound by the context E. In both cases, it is clear the ¢’ is still of
width 1 because the binding A’s remain on one branch. O

Lemma 13. Ift is a term of lambda width at most 1, then t is SN.

Proof. Let Ny(t) and Ny(t) denote the numbers of, respectively, non-binding and
binding lambdas in term t. Let us introduce the lexicographic order on pairs
(N1(t), No(t)). Let t be of width at most 1. Then, performing a S-reduction on
t decreases the pair (Ni(t), No(t)) while keeping the width at most 1 by Lemma
[[3. To prove this, we consider a S-reduction: ¢t = E[(Az.u) v]> Elulx :=v]] =t'.
If = is not bound in wu, then N;(t) is non-increasing (it is decreasing if v contains
some binding A’s) and Ny(t) is decreasing (we erase at least one non-binding \).
If x is bound in u, then v is of width 0 and contains no binding A\, which means
that we erase one binding A and only duplicate non-binding A’s. Therefore, N;(t)
is decreasing. O

Lemma 14. If u has width 0 and tq,...,t, are SN terms, then the term t =
(uty ... t,) is SN.

Proof. By induction on size of u, we distinguish three cases:
o If u =z, the result is trivial by Fact [[T].

e If u = (u/v), v has width 0 and is SN because of Lemma [[3. We conclude
by induction on u’.

o If u = Azvu/. If n = 0, the result follows from Lemma [[J. Otherwise,
by Fact [[1], it is enough to show that the head reduct of ¢ is SN. But,
since u has width 0, this reduct is (v’ t3 ... t,) and the result follows by
induction. O

Lemma 15. Lett € SN be a term and o be a substitution such that, for each x,
there is k such that o(x) = (uvy ... vg) where u has width 0 and vy ... vy are
SN. Then, tlo] € SN.

Proof. By induction on (n(t), size(t)). We consider the following cases:

o Ift =Xatyorift=(xt; ... t,) with  not in the domain of o. In this
cases, it is enough to prove that for all i, ¢;[o] is SN. This follows from the
induction hypothesis because n(t;) < n(t) and size(t;) < size(t).
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o Ift = ((Az.u) vty ... t,) we show that v[o] and (u[z :=v|t; ... t,)[o] are

SN. This follows from the induction hypothesis because n(v) < n(t) and
size(v) < size(t) for the first point and because n(ulx = v]t; ... t,) <
n(t) for the second.

o Ift = (zt; ... t,) where z is in the domain of o. Then, we have t[o] =
(o(x) ti][o] ... t,[o]) which is SN by Lemma [[4 because t1[0], .. ., t,[o] are
SN by induction hypothesis and o(z) = (v vy ... vg) where u has width 0
and vy ... vy are SN. [

Definition 16. We define the set of contexts of width 1 by the following BNF
grammar (where Ay denotes the set of A-terms of width 0):

E:=[ | \e.B | (E Ao) | (A E).

This definition means that all the binding A\’s are on the path from the root
to the hole of the context. This justifies the name of such a context.

Lemma 17. Let E be a context of width 1 and uw € SN be a term. Then
Elu] € SN.

Proof. By induction on size(E). Cases E = [| or E = A\z.E; are trivial (in the
second case, since size(E;) < size(F), the proof goes by induction).

If E = (FE; v), where v € Ay, then Efu] = (E;[u] z)[z := v] where x is a fresh
variable and Fi[u] is SN by induction hypothesis because size(E;) < size(E).
Therefore (Ey[u] x) is SN by Fact [l and finally (Ei[u] z)[z := v] is SN by
Lemma [[5.

The case E = (v Ej) is symmetric. O

Proposition 18. Let t be a safe term of width at most 2. Then t is SN.

Proof. If t has width at most one, the result follows directly from Lemma [[3. If ¢
has width 2, let (¢; t2) be the smallest subterm of ¢ of width 2. This means that
t can be written E[(t; t2)] where E is a context of width at most 1 and ¢; and ¢,
are both of width 1. By Lemma [[7, it is therefore enough to show that (¢; ts) is
SN.

We know that t is safe. This means that either ¢; or ¢, is fair. If ¢; is fair, it
can be written F[(u v)] where u has width 0, v has width 1 and F is a context
defined by the following BNF grammar:

F:=[|\..F | (F Ay) where A_ denotes non-binding A’s and A¢ terms of width 0

The context F'is defined precisely to denote the beginning of the left branch
until we reach an application node whose argument is of width 1. The definition
of fair term together with the definition of width 1 ensures the existence of such
an application node on the left branch.



This means that (¢; to) can be written (F[(u v)] t2) (resp. (t; F[(u v)])). Let
us define ¢’ = (F[x] t3) (resp. t' = (t; F[z])).

Therefore in both cases, (t1 t2) = t'[x := (u v)], because the context F' cannot
bind variables. Thus, we can conclude by Lemma [l because u has width 0 and
because ¢’ and v are SN (by Lemma [[3, since they have width 1). O

2.3 Combinatory logic

Combinatory logic is a theoretical model of computation introduced by Moses
Schonfinkel in [[4] and many years later rediscovered and deeply studied by
Haskell Curry in [f]. For the main reference on the subject we propose Barendregt
M. A very intelligible approach towards this subject can be found in [[J]. It is
a well known fact that both models, the lambda calculus and the combinatory
logic, are equivalent in sense of expression power. It turns out, however, that
those two models differ radically as concerns the behavior of random terms.

Definition 19. Combinatory logic

1. The set F of combinatory logic terms, combinators, is defined by the fol-
lowing grammar:

F=K|S|1I|(FF).

The notational conventions concerning parentheses are the same as for
lambda terms that is t; 5 . . .t, without parenthesis for (... (t; t2) ... t,).

2. The reduction on combinators is performed according to the following rules:

Kuvp>u Suvw>uw (vw) I upu.

Let us observe that combinatory logic term can be seen as rooted binary tree.
Leaves are labeled by combinators K, S and [ and binary internal nodes are
labeled by an application operation. Therefore every combinatory logic term ¢
can be associated uniquely with the combinatory logic tree G(t). Accordingly
every reduction rule can be seen as a transformation of combinatory logic tree.

Definition 20. The least relation > on combinatory logic terms satisfying re-
duction rules is called reduction. A combinatory logic term is in normal form if
no reduction can be performed. A term M is normalizing if there is reduction
sequence starting from M and ending in a normal form N. A term M is strongly
normalizing if all reduction sequences are finite. By SN we mean all terms which
are strongly normalizing.

Definition 21. Subterm and size

1. A combinator v is a subterm of v if either v = v or v is of the form v; vy
and w is a subterm of vy or vs.



2. The size of a combinator is defined by the following rules:

size(S) = size(K) = size(I) =0 and size(u v) = 1+ size(u) + size(v).

As we can see size(t) is the number of internal nodes of combinatory logic
tree G(t).

Notation 22. Let n be an integer. We denote by F,, the set of combinatory
logic terms of size n. Obviously the set F,, is finite. We denote its cardinality by
F,.

3 Combinatorial results

The following standard notions will be used throughout the whole paper.

Definition 23. Let f,g: N — R.

(i) Functions f and g are said to be asymptotically equal iff lim,, fn) — 9,

g9(n)
We denote it by f ~ g.

(ii) The asymptotic inequality f 2 g holds iff there exists a function h: N — R
such that h ~ g and f(n) > h(n) for any n.

(iii) A function f is said to be of the smaller order than g iff lim,, fn) .

g9(n)
We denote it by f € o(g).

Z

(iv) A function f is said to be subexponential in n iff there exists h: N — R such
that h € o(n) and f(n) = 2",

(v) If z is a real number we denote by |z | (resp. [z]) the largest (resp. smallest)
integer n such that n < x (resp. x < n)

Notation
When an unknown function f is, for example, asymptotically equal to an
explicit function (say for example n In(n)) we will write f ~ n In(n) or sometimes

f(n) ~nln(n).

3.1 Generating function method

Many questions concerning the asymptotic behavior of sequences of real positive
numbers can be efficiently resolved by analyzing the behavior of the generating
function of the sequence. This is the approach we take to determine the asymp-
totic fraction of certain combinatory logic trees of the given size.

a

The main tool for finding limits of the fraction {*, when generating functions

for sequences a,, and b, satisfy certain conditions of simplified Szego Lemma can
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be found in Theorem 22 of [I§]. From this theorem we can derive techniques
summarized in Theorem P4 which is useful for finding limits of the proportion
between two sequences of known generating functions. In this part of the section
we present the method of finding asymptotic densities for the classes of lambda
trees or combinatory logic trees for which the generating functions are already
calculated. Also the generating functions method will be used to calculate asymp-
totics in Proposition P6. The next theorem is a well-known result in the theory of
generating functions. Its proof can be found e.g. in [[§]. We denote by [2"]{v(2)}
the coefficient of 2" in the expansion of v.

Theorem 24. Let v, w be functions satisfying the following conditions:

(i) v,w are analytic in |z| < 1 with z = 1 being the only singularity on the
circle |z| =1,

(i1) v, w have the following expansions in the vicinity of z = 1:

v(z) =Y vl =27, w(z) =Y wy(l—2)"/?

p=>0 p>0

where wy # 0.
Let v and w be defined by v(v/1 — z) =v(z) and w(v/1 — 2) = w(z). Then
["{v(2)} v (©)(0)

lim S T

n—oo [2"{w(z)}  wr  (w)(0)

3.2 Catalan numbers

We denote by C(n) the Catalan numbers, i.e. the number of binary trees with n

inner nodes. We use the following classical result (see, for example, [d]).

Proposition 25. C'(n) ~ nngn\ﬁ and thus, for n large enough, we have

C(n) > 77;43—72 for some constant 0 < v < 1.

3.3 Large Schroder numbers

We denote by M (n, k) the number of unary-binary trees with n inner nodes and
k leaves. Let M(n) = >",o, M(n, k) denote the number of unary-binary trees
with n inner nodes. These numbers are known as the large Schréder numbers.
Note that, since in this paper the size of variable is 0, we use them instead of
the so-called Motzkin numbers, which enumerate unary-binary trees with n inner
and outer nodes. We use the following proposition.

Proposition 26. 1. M(n, k) = C(k — 1)(2&;)

11



2. M(n) ~ (27) 7

Proof. (1) Every unary-binary tree with n inner nodes and k leaves has k — 1
binary and n — k 4+ 1 unary nodes. We have C'(k — 1) binary trees with k, leaves.
Every such a tree has 2-k— 1 nodes (inner nodes and leaves). Therefore there are
(ZJ_FZ:) possibilities of inserting n — k + 1 unary nodes (we can put unary node
above every node of a binary tree). (2) The asymptotics for M (n) is obtained by

using standard tools of the generating function (for this sequence it is equal to

m(z) = Lme=v1=brtes W) For more details see [[j. 0

4 Densities

4.1 Main notations

To attribute a precise meaning to sentences like “asymptotically all lambda terms
have a property P” we use the following definition of asymptotic density. For
any finite set A we denote by #A the number of its elements.

Definition 27. Let B C A be a set containing terms of every size. For A C B if
the following limit

L #HANA)
nooe #(BNA,)

exists, then we call it the asymptotic density of A in B and denote it by dg(A).

Remarks and notations

e The number dg(A) if it exists is an asymptotic probability of finding a
lambda term from the class A among all lambda terms from B or it can be
interpreted as the asymptotic density of the set A in the set B.

e [t can be seen immediately that the density dg is finitely additive so if A;
and A, are disjoint classes of lambda terms such that dg(A;) and dg(As)
exist then dg(A; U Ag) also exists and dg(A; U Ay) = dp(A;) + dp(As).

e [t is straightforward to observe that for any infinite B and finite set A
the density dp(A) exists and is 0. Dually for co-finite sets A the density
dp(A) = 1.

e The density dp is not countably additive so in general the formula
dp (U Ai> => dp (A)
i=0 i=0

12



is not true for all pairwise disjoint classes of sets {4;},.y. A good coun-
terexample for the equation is to take B = A and A; the singleton of i-th
lambda term from our language under any natural order of terms. On the
left hand side of the equation we get dy (A) which is 1 but on right hand
side dy (A;) = 0 for all i € N and so the sum is 0.

e Let P be a property of lambda terms. If d({t € A | ¢ satisfies P}) = a, we
say that the density of terms satisfying P is a. By an analogy to researches
on graphs and trees, whenever we say that “a random term satisfies P” we
mean that “the density of terms satisfying P is 17.

5 Proofs using calculus

In this section we state a few theorems which provide bounds for L,, (the number
of lambda terms of size n). We also find a lower bound for the unary height in a
random term.

5.1 Lower bound for L,
The estimation for L,, we provide is very rough but sufficient in further consid-
erations.

Theorem 28. For any € € (0,4) we have

Proof. Let LB(n, k) denote the number of A-terms of size n with k& head \’s
and no other A below. Since the lower part of the term is a binary tree with
n — k inner nodes and each leaf can be bound by k lambdas, we have LB(n, k) =

C(n — k)k" 1. Clearly, L, > LB(n, k) for all k = 1,...,n. Let k = L(Ln)]
Then we get:

o) n—[ ey |1
~ . (L n )-D by Proposition P§
n

R n
(77, B ln(n)) \/7_T (

4 . n— ln?n) ]_
> ( " ) —_— for some positive polynomial p

In(n) p(n)

(4— &)\ " . 4 \"mn
> =7 >
> ( — since (— > p(n).

O
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5.2 Number of )\’s in a term

In this part we focus on the number of unary and binary nodes in random lambda
terms. We need the following lemma:

Lemma 29. Let n > 1. The function f(p) = p" Pt is

3n
In(n)

(i) decreasing on [=2"~;n],

(i) increasing on [0; 31n(n)]

Proof. Let us start with computing the derivative of the function f:

n— n— n / n— n n—p-+ 1
f/(p) — (p p+1)’ _ (e( p+1)1 (p)) — e(n=p+1)In(p) ( ; _ ln(p)) )

(i) We want to show that f'(p) < 0 for any p € [m?)(—%’ n] This is equivalent
to the following inequality: n + 1 < p(In(p) + 1). The expression on the
right reaches the minimum in the considered interval at p = T thus it is

sufficient to prove that

nt1< 1n3(7;) (m <1j(2)) + 1) .

But the right expression is equal to

an
() (In(n) —In(In(n)) + In3 + 1)
=2n+ ln7(1n) (In(n) —3In(In(n)) +31n 3 + 3)
>n—+1,

which finishes the proof.

(ii) We want to show that f’(p) > 0 for any p € [O, ST

to the following inequality: n + 1 > p(In(p) + 1). The expression on the
right reaches the maximum in the considered interval at p = ( L thus it

is sufficient to prove that
n n
1 1.
s (" () 1)

But the right expression is equal to
sty (In(n) —In(In(n)) —In3+1) =n — g7 (In(In(n)) +2In 3 — 1)
<n+1,
which finishes the proof. O

. This is equivalent

n+1>

14



The next theorem shows that the typical proportion of unary nodes over
binary ones in lambda terms is far from the typical proportion in ordinary unary-
binary trees, in which case it tends to a positive constant.

Notation 30. Let A denote the class of closed terms ¢t € A that satisfy all the
following conditions:

3size(t)
In(size(t))’

(i) the number of lambdas in ¢ is at most

size(t)

(ii) the number of lambdas in # is at least 53—~ NEROE

size(t)

(iii) the unary height of ¢ is at least g3 = NETEO)R

Theorem 31. The density of A in A is 1.

Proof. Let us consider terms of size n with exactly p lambdas. Such terms have
exactly n — p + 1 leaves and each of them can be bound by at most p lambdas.
Since the number of unary-binary trees of size n and with n—p-+1 leaves is equal
to M(n,n—p+1) (see B-3), we obtain the following upper bound for considered
terms: M(n,n —p+1)-pn P

Now, we show that each of properties (i)—(iii) characterizing the class A is
valid for random terms.

(i) Let P, denote the number of terms of size n containing more than 7 )\ S.
We have P, <7 » su M(n,n —p+1)-p" P+,

—ln(

By Lemma P9 the function p — p"P*! is decreasing in the interval [T }
Thus,

p>

ln(n)

By the lower bound for L,, from p.]] and the computations above, we get

n+1—
7 3n ln(n)
Pn < (TL) (1n(n)>

Ln ~ ( (476)n> n—ﬁ
In(n)

To get the result it remains to show that for some € € (0, 4) this expression
tends to 0.

15



By Proposition g, M(n) ~ (3_;\/5) 5. Then for n large enough and

\/_ 2
for some constant v > 1, we obtain
(i) (i)™
L o A32v2) A
L ~ n——2_
n (4 5) In(n)
TL? ( In(n) )
() ()
< s-2v2 o) since < n?
((4—a)n)"*1n<n> In(n)
In(n)
~(inam) i)™ ()™
C\(d-9)(3-2v2) In(n) In(n)
B < 3 )" (33(4 —¢) ln2(n)) T
1—oB-2v) n?
Notice that for any a, (n2=%)" "™ = MME-ORE — c@-an  Thys, we

obtain

55‘5Q4—@@fz¢®éc)n<y%4‘@mzp)ﬁ%'

Let o and ¢ be positive and small enough so that 3 < (4 —¢)(3 —2v/2)e?~
Then the whole expression tends to 0 as n tends to infinity.

(ii) Let R, denote the number of terms of size n containing less than 3%(11)
lambdas. We have R, <> _ M(n,n—p+1)-p" P

P< 3 ln(n)

By Lemma PJ the function p — p" P!

Thus,

is increasing in the interval [0, 3T"(n)} .

" n n+1—31+(n)
n < ) 167 1)-
2 Mun—p+1) <mmm)

b=3 In(n)

<M n_\"me
< M(n) 3 1n(n) '

16



By the lower bound for L,, from p.1 and the computations above, we get

" n+1f#(n)
M<n) (3 In(n) )

B _ n
L, ™ ((4—e)n)”’m
In(n)
( 1 >"< N >n+1—31&n>
_ 31n(n
<7- 22 ()7L for some v > 1
nd ((4 e)n )" In(n)
In(n)
() (5m) ™"
< s-2v2 i since — 10 < n}

((4—a)n)"_m<nn> 31n(n)

In(n)

(i) Cae)

B <3<4 =5 <;_ zﬁ)) ( <(4<n>€>)23) T e s e

For € > 0 small enough the whole expression tends to 0, what finishes the

proof.
(iii) Let S, be the number of terms of size n with more than 3m(ny lambdas and
with the unary height less than ( A’s.

Such a term has at most n — 3T(n) +1 leaves and each of them can be bound
by at most 53~ ( lambdas. Therefore, we have

n nfﬁ("ﬁrl
Sn < M(n) 31n(n) '

Dividing it by the lower bound for L, and performing exactly the same
calculations as in the proof of (ii), we obtain the desired result. O

5.3 Upper bound for L,

Now we are ready to provide the upper bound for L,,. Once again, this estimation
is very rough, however, it turns out to be sufficient for our main goal.

Lemma 32. The function n — (2?,?{1) 18 subexponential.

In(n)

Proof. By applying the Stirling formula

n! ~V2mn (E>
e

17



we obtain, for some positive constant ~,
(Qn + 1) 2n + 1 (2n)!

3n

2n
< In(n) (2n)
~ g\ (g, | W
(2’[’L - 1n(n)> (ln(n))
2n
< 2
~ 3n

MRy (5 \ W
(2~ wt) (=)

Let us compute the logarithm of the expression above:

. (%: ) s~ (20 g (2 s ) e ™ ()

After some simplifications we obtain that In (*3/") < Bn% +o (n ln(ln("”) :
In(n)

SO

2 ]_ In In(n)
< n3n+ ) < 5e® T for some 8§ > 0. O
In(n)

Theorem 33. For any € > 0 we have

L < (12 +e)n\ "~ 50@
"~ U In(n) '

Proof Let T}, be the number of terms of size n with less than * ( ) and more than
3ln(n AN’s. According to Theorem BI we have L, ~ T,,. In A-terms enumerated
by T, the number of binary nodes is at most n — 37 ( ) and the number of leaves
is at most by one greater. We compute the upper bound for 7,, in the following
way:

e first, we consider binary trees built on at most n — % binary nodes —

31n
their number does not exceed Catalan number C (n — L?;ln(n)J + 1)

e then, we insert in such trees at most 13(") (the maximal number of lambdas)
unary nodes — this can be done in less than (32 "ffl) ways (2n+1 is an upper

In(n)

bound for number of possible places for insertions in a binary tree of size
"= 3hy T 1),

e finally, we have at most n+ 1 leaves in such trees and each of them

31:(11)
can by bound by at most ( lambdas — thus the number of possible

. . ntl— SIn(n)
labelings is not greater than (W) :

18



Thus, we get

n 2n +1 3n \ " IR
T, <C - 1 )
~ <” {3 1n<n>J ’ ) ( s ) (ln<n>)

Using the asymptotic expansion of Catalan numbers (Proposition P5), we

obtain
S\ 3\
n ln n) Jr ( )3/2 In(n)

3lnn
n— n(n)
(i) )
In(n)

< ((A2+¢e)n " 31"(”).
~ In(n)

The last line follows from the fact that (Z?,il) is subexponential (by Lemma
In(n)

B2). O

5.4 Comparison between the lower and the upper bounds

The ratio between the lower and upper bounds, which is equal to

4_8 n731r?(n)
12+¢ ’

is exponential. But, since L,, is super-exponential itself, our estimations are not
too bad.

The following corollary shows that we know the first two terms of the asymp-
totic expansion of In(L,,), but we do not know the linear factor yet.

Corollary 34. For any € € (0,4) and for n large enough
nln(n) —nln(In(n)) +nln(4 —¢) —n
<In(L,)
<nln(n) —nln(In(n)) + nln(12+¢) — g

6 Proofs using coding

In this section we prove theorems about random lambda terms using the following
scheme. First, we consider a set A,,(P) of terms of size n satisfying some property
P and we aim at proving that this property is not satisﬁed by random terms.
Next, we define an injective and size-preserving function ¢ : A, (P) — A,, (called
a codmg) such that its image has density 0 among all closed lambda terms.
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Lemma 35. Let A, be a sequence of set of terms and P be a property. Let
(Ani)ier, be a partition of A,. Let B, (resp. B,;) be the set of elements of
A, (resp. A,.) satisfying P. Let ay, (resp. b, ani, bn;) be the cardinality of

A, (resp. By, A, Bni). Assume Z’” tends to 0 uniformly in i as n tends to
infinity, formally:

n,%

b .
Ve >0,IN,Yn>N,Vic I, : =% < ¢
an,i

Then Z—Z tends to 0 as n tends to infinity.

Proof. Let € > 0. Let N be the corresponding integer guaranteed by the uniform
convergence and let n be any integer with n > N. We have:

b_” — 721'6[” n.i - E bn,i . Onii < E € - On,i <e.
ap ap an,i ap ap

i€l i€l,

We have shown lim b—n = 0. O
n—o0 A,

6.1 The number of \’s in head position

We start with showing that a random term starts with a long chain of lambdas.

Notation 36. Let g: N — N be a function such that g € o(y/n/In(n)). Let us
define BY as the class of terms ¢ such that

1. te A,
2. t has at least g(size(t)) head lambdas.

Additionally, we denote by B9 = A\ BY the complement of the set B9 in A and
by B the set of terms from B9 of size n.

Theorem 37. Let g: N — N be a function such that g € o(y/n/In(n)). The
density of BY in A is 1.

Proof. Let us fix g € o(y/n/In(n)). Our aim is to construct a family of injec-
tive and size-preserving functions (codings) ©5: By — A,, such that the fraction
#B (B_ﬂ> /L, tends to 0 as n tends to infinity.

We first define a partition (B_ﬁ(?, £)> on BY as follows. Let 7 be a non

70
empty sequence of terms (not necessarily closed) such that each of the e_l)ements of
t starts with a A and let £ > 1 be an integer such that 0 < n—/{—size( t') < g(n),
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where size( ¢ ) denotes the sum of sizes of its components. We define Bj( ¢, ¢)
as the set of terms u of the form:

U= ATy ... AT [t . .. Ty
where v is a purelif> applicative context with multiple holes, 7= (t1,...,1t;) and
p=n—{—size(t).

First, it is clear that sets B_?L( t', ¢) form a partition of BY: they are pairwise
disjoint by definition and any u € BJ belongs to A so it contains some A not
in the chain of head lambdas, therefore it belongs to some BY( ¢, ¢) for some
non-empty 7 and some ¢>1.

Terms from B_Z(?, ¢) differ only by applicative contexts, so the cardinality of
B_ﬂ(?, ?) is less than the number of all binary trees of size ¢ in which each leaf is
either labeled with a variable (for which we have at most g(n) — 1 possibilities)

or is an empty place where some sub-term can be plugged. Thus, we have:

4BI(T,0) < P(L,n) == C(0)(g(n))" .

/\Il
/\1’2 %

Figure 3: A term from B_%(?, () where 7 = (Azaug, ...y Azouy)

Fort € B_Z(?, () we define ¢ ,(t) as follows. Let 7= (t1,...,1x) for some
k > 1 and v be the the purely applicative context in the decomposition of . We
can write t; = Az.u; (see Figure [J). Consider the term

tl = )\Z)\.Tl Ce )\xp.(ul (Ug ( .. (uk,1 uk) .. )))
which is of size

n—¢=n —1/ — k +1 +k-1
—~  ~ =~ =

v removed Az removed head Az applicative nodes

Let Ay.s denote the term rooted at the leftmost deepest A of term ' and let V'
be the set of variables introduced by the lambdas occurring on the path from the
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the root to A\y. Since the unary height of ¢ is the same as of ¢, by Theorem B1|(iii)
there are at least 3%@ elements in V.

Let U be the set of purely applicative (therefore not closed) terms of size £ — 1
whose variables are chosen from V. There are at least

¢
n
—C(—1
Q) =cte-1) (57
elements in U.
We can see that for all £ > 1 the expression

PZ,n

Q[,n
infinity. Therefore, for n large enough, there exists an injective function h which

assigns to any purely applicative context v of size ¢ an element from U.

For any u € U, let p(t', u) be the term obtained by substituting the subterm
Ay.s in ¢’ with Ay.(u s).

Let ¢, 7 ,(t) = p(t', h(v)) (see Figure fl). It is easy to check that the size of
Cp7eisn and that, by the injectivity of A, ¢, 7 1s injective, too.

tends to 0 as n tends to

Let ¢f = U&? ¢, 7. The function ©B is an injection because co-domains

of the ¢ =, are all disjoint by the construction. Since the sets By ( ¢, ¢) form a
Pn,l
Qn,Z

partition of BY, therefore it is enough to show, by means of Lemma B3, that

tends uniformly in [ to 0 as n tends to infinity.

Let ¥(n, ¢) = ggzg By the assumption on g, there is a function ¢ such that

41
lim ¢(n) =0 and P(n, () < C({) ( = e(n)) . Therefore, we have

n—00 In(n)

1—¢

) (o N
vn.0 < 5= () T e

1—¢
For ¢ > 1, <M(Ln)) * s decreasing in ¢ and since

that ¥ (¢, n) tends to 0 uniformly in /.

% is bounded it follows

O

6.2 Head )\’s bind “many” occurrences

Now we are ready to present some theorems showing that in a random term head
lambdas are “useful”; i.e. they really bind some variables. The first result shows
that in a random term many of head lambdas are binding.

Notation 38. Let g: N — N be a function such that g € o(y/n/In(n)). By D9
we denote the class of terms such that ¢ € DI iff

1. t € B9, where g + 1 is the function n — g(n) + 1,

2. each of first g(size(t)) head lambdas in ¢ is binding.
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Figure 4: The term 5(t) from Theorem

Additionally, we denote by DY = Bot! \ DY the completion of the class DY in
B9+ and by Dj the set of terms from D9 of size n.

Theorem 39. Let g: N — N be a function such that g € o(y/n/In(n)). The
density of DI in A is 1.

Proof. Let us fix g € 0( n/ ln(n)). We construct a family of codings ¢2: DI —
A, such that their images are negligible in A,,, so that the fraction ¢Z(D9)/L,
tends to 0 as n tends to infinity. o

Let t = Azy ... Zg(m)11.u be a term from Dj and let ¢ < g(n) be the smallest
integer such that the i-th head A in ¢ does not bind any variable. Take

(pg(t) = )\l‘l e ZL‘i_1{Ei+1.(ZL‘Z‘+1 ()\ZL‘H_Q RN xg(n)+1.u)).

The size of ¢P(t) is n. Terms from the set P (DY) have less than g(n) head
N's. By Theorem B7, the density of such terms in A is zero. Since the function
©P is injective, the density of Dj, is also zero. O

Notation 40. Let g, h: N — N be functions such that g € o(y/n/In(n)), g(n) >
3forallmnand h € o <log3 <1H(Ln))) By £9" we denote the class of closed terms
such that t € £9h iff

1. t €D,

2. the total number of occurrences of variables bound by first three lambdas in ¢
is greater than h(size(t)).
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Additionally, we denote by Eoh =D \ £9" the completion of the class £9" in DI

and by 5ﬂ’h the set of terms from E£9" of size n.

Theorem 41. Let g, h: N — N be functions such that g € o(y/n/In(n)), g(n) >

3 for alln and h € o (log3 (%)) The density of E9" in A is 1.

Proof. Let g and h be functions as in the assumptions of the theorem. We

construct a family of codings ¢f : E4™ — A, such that their images are negligible
in A,, as n tends to infinity.

Let us define an equivalence relation ~,, on the set of terms of size n in the
following way: u ~,, v iff u and v are equal after substituting all occurrences of
variables bound by first three A’s by the variable bound by the first A. Let us
denote by [u] the equivalence class of u.

Let t = Az \zo z3.u be a term from EZM There are at most 3™ elements
in the class [t].

Let t' = Azy.ulxy ==y, x5 := y, x3 := y]. The size of t' is n—1. Let us consider
Aa.v the subterm of ¢’ such that Aa is the leftmost deepest A in #’. Denote by
V (t) the set of variables introduced by A’s occurring in ¢’ on the path from Aa to
Ay. Note that the variable x does not occur neither in ¢ nor in V'(¢).

By Theorem BI|(iii), there are at least 3o — 2 such A’s. Since 2 < 5,

there are at least s elements in V(t). Ashe€o (log3 (%)), we have

h(n)
n—oo (GT(n))

Thus, we can find for each class [t] an injective function fj from [t] into the
set V(t).

We define ©%(t) as the term obtained from ¢’ by replacing the subterm Aa.v
with Aa.(w v), where w = fy(t).

All terms from the image @i(@) start with a A that binds no variable. By
Theorem B9 we know that such terms are negligible in A,,. Since ©f is injective,
the density of £9" is zero, as well. O]

Notation 42. Let k£ and ¢ be integers. Let g: N — N be functions such that
g € o(y/n/In(n)), g(n) > 3 for all n and let h(n) = L log, (ﬁ)J Notice

that h € o (log3 (ln(Ln))) By G9%* we denote the class of closed terms such that
t € GoRLiff

1. t € &0,

2. each of first £ lambdas in ¢ binds more than ¢ variables.
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Additionally, we denote by Gokt = £9h \ G9kt the completion of the class G9%*

in £9" and by G2 the set of terms from G9kL of size n.

Theorem 43. Let k and ¢ be integers. Let g: N — N be a function such that
g € o(y/n/In(n)) and g(n) >3 for all n. The density of Go** in A is 1.

Proof. Let g be a function as in the assumptions of the theorem and let us
fix integers k and ¢. Without loss of generality we can assume that £ > 3.
By Theorem [], the total number of occurrences of variables bound by first k

lambdas in terms from GJ** is greater than h(n) = { log; <1H(Ln))J

For m > h(n) let us denote by £%"(m, k) be the set of terms from £9" with

exactly m leaves bound by first & lambdas and let G5 (m) = G&* N ETH (m, k).

By the definition, terms from GJ**(m) have exactly m leaves bound by first k
lambdas and at least one of those lambdas binds at most ¢ variables.

Consider the equivalence relation ~,, on £9"(m, k) defined analogously as the
relation from the proof of Theorem [, but with respect to the first £ (instead of
three) head \’s.

Let t € £9"(m, k). By Theorem B9, each of first k£ head lambdas of ¢ are
binding. Let us label & leftmost leaves (out of m) differently. For each of m — k
other leaves we have k possibilities. Thus, we know that the cardinality of [t] is
greater than k™ *.

Now, let us estimate the upper bound for the cardinality of [t] N GI™(m).
In such terms there exists at least one lambda among first k£ ones which binds
at most ¢ leaves (we can chose them out of m ones) and the other leaves (their
number is at most equal to m — 1) can be bound by k£ — 1 lambdas. Thus, we
obtain the upper bound equal to k- (7) - (k — 1)™! < k-m'- (k- 1)™".
Therefore, the quotient of the two cardinalities is less than

s 1 m—1 _1 m—1 -1 h(n)—1
k-m k(yfk ) _ Lkt (kT) < kF(h(n))* (kT) for all m > h(n).

As n tends to infinity, the above quotient tends to 0 uniformly in m.
For t € A, and m > h(n) sets [{] N G*(m) form a partition of G&**. Now
Lemma BY finishes the proof. O

As a simple corollary of the above theorem, we obtain the following result.

Notation 44. Let k and ¢ be positive integers. Let g: N — N be a function such
that g € o(y/n/In(n)) and g(n) > 3 for all n. By H%** we denote the class of
terms such that ¢ € HI® iff

1. t € g9kt

2. there are no two consecutive non-binding lambdas in ¢.
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Additionally, we denote by Hok = GI*L\ H9*¢ the completion of the class HI**

in G9** and by 'H,g{k’e the set of terms from H9*-¢ of size n.

Lemma 45. Let k and { be positive integers. Let g: N — N be a function such
that g € o(y/n/In(n)) and g(n) > 3 for all n. The density of HO** in A is 1.

Proof. We define a family of injective and size-preserving functions ¢ from HIE
into the set of terms whose leading A\ binds only one occurrence of variable.

Let t be a term from gfl’k’g. Let t; be a subterm rooted at the highest occur-
rence of two non-binding lambdas, t; = Ax.A\y.u. We replace this subterm by the
application (z u), where z is a fresh variable. We obtain the term ¢’ of size n — 1
and, finally, we define ©*(t) = Az.t’. The thesis follows from Theorem [J. O

6.3 A random term avoids any fixed closed term

Notation 46. Let j be a positive integer and k(j) = >_,; L; (let us recall that
L; denotes the number of closed terms of size i). Let g: N — N be a function
such that g € o(y/n/In(n)), g(n) > 3 for all n and lim,_, g(n) = co. By 79
we denote the class of closed terms such that ¢t € 797 iff

1. t € HoHFEEG),

2. t does not contain any term from | J,.. A; as a subterm.

i<j
Additionally, we denote by T9:3 = HOFGH#G)\ 797 the completion of the class Z97

in HOF@OHFG) and by Z97 the set of terms from Z97 of size n.

Theorem 47. Let j be a positive integer and let g: N — N be a function such

that g € o(y/n/In(n)), g(n) > 3 for all n and lim, ., g(n) = co. The density of
799 4n A is 1.

Proof. Let us fix a positive integer j and a function g as in the assumptions of

the theorem. We construct a family of codings (Z: 797 — A, such that their
images are negligible in A,,.

There are k(j) = >_,; Li elements in J;; A;. Thus, there is a bijection f
between (J;o; Ai and {1,...,k(j)}. Let to € U;c; Ai and let f(to) = m, where
m < k(j).

Let n be an integer satisfying g(n) > k(j) and n > k(j) +j. Let t € 97 be a
term containing tq as a subterm. By Theorem B7 the term ¢ has more than k(j)
head \’s since k(j) < g(n) (see Figure f)).

Let us consider the term s which is obtained from the term ¢ by adding an
additional unary node (labeled with Az) at depth m. Let us define ©Z(¢) as the
term t' obtained by replacing the leftmost deepest subterm ¢y in s by the term
u=(z(x(...(xx)...))) ofsize j — 1 (see Figure f§). Thus, the size of ¢’ is equal
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Figure 5: Terms t € ﬁ and ¢ from Theorem [£7]

to n. The variable x is bound by the m-th A in the tree t'. Since f(to) = m, the
function Z is injective.

By Theorem [, each of k(j) head \’s in term from H9*W+0) of size n binds
more than k(j) variables. Terms from the image ¢Z(Z%7) do not have this prop-
erty, since the m-th A binds only j < k(j) variables. Thus, those terms are
negligible among all terms of size n. 0

6.4 The \-width of a term

Let us recall that lambda-width of a term is the maximal number of incomparable
binding lambdas in the term. In the following proposition we show that lambda-
width of typical lambda terms is small.

Notation 48. Let j be an integer greater than 3. Let g: N — N be a function
such that g € o(y/n/In(n)), g(n) > 3 for all n and lim, . g(n) = co. By J9

we denote the class of closed terms such that t € J97 iff
1. t €199,

2. the \-width of ¢ is at most than 2.

Additionally, we denote by J9J = 97 \J 9 the completion of the class J97 in

799 and by jﬁ”j the set of terms from J97 of size n.

Theorem 49. Let j be an integer greater than 3. Let g: N — N be a function

such that g € o(\/n/In(n)), g(n) > 3 for all n and lim,_. g(n) = oo. The
density of J97 in A is 1.
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Proof. Let us fix an integer 7 > 3 and a function g as in the assumptions of the

theorem. We construct a family of codings ¢ : J7 7 —y A, such that their images

are negligible in A,,. Let ¢ be an element of 77/, therefore the A-width of ¢ is at
least 3. Let us denote by Az, Ay and Az the three highest, pairwise incomparable
binding \’s (appearing in this order from left to right in ¢).

Aa

AL AYL Az Y

rTr Yy zz yy ay
Figure 6: The terms ¢ and ¢y (t) from Theorem [9

Let Az.u, Ay.v and Az.w be subterms rooted at those \’s (see Figure f). Let
u' = ufx := gy, let a be a new variable, let w’ be the term obtained from w by
replacing the leftmost occurrence of z with a and the others (possibly none) with
y. Let ¢/ (t) be the term obtained from ¢ by adding Aa at the root, substituting
both subterms A\z.u and A\z.w with a and replacing the leftmost occurrence of y in
v with term (v’ w’). We have size(¢? (t)) = size(t). Also note that since we chose
the highest three incomparable \’s no variable becomes free in the constructed
term.

We can reconstruct the term ¢ from ¢ (¢) by indicating places for Ay and the
subterm (v’ w'):

e Let v; (resp. v,) be the deepest node above the two leftmost (resp. right-
most) occurrences of a. Remark that since there is exactly 3 occurrences of
a, one of these two nodes is above the other. Let v be the deepest one. \y
is the first binding A on the path from the node v to the middle occurrence
of a;

e then, the application node (v w’) is the deepest node above the middle
occurrence of a and all the occurrences of y on the left of this middle
occurrence of a.

Since the image of ¢ contains only terms starting with a A which binds
only 3 occurrences of the corresponding variable, by Theorem [, the density of

07 (FJ97) is equal to zero. The injectivity of ¢ finishes the proof. O
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6.5 The density of strongly normalizable terms

From Theorem we know that almost all terms are of width at most 2. In
Section |l we introduced the notion of ’safeness’ for terms of width 2 with the
following property: safeness and A\-width at most 2 imply strong normalisation
(Proposition [[§).

Now we prove that the set of unsafe terms of width 2 has density 0.

Notation 50. Let j be an integer greater than 3. Let g: N — N be a function

such that g € o(y/n/1n(n)), g(n) > 3 for all n and lim,_, g(n) = co. By K97
we denote the class of closed terms such that t € K97 iff

1. te J97,
2. t is safe.

Additionally, we denote by K93 = J99\ K97 the completion of the class 9% in

J97 and by K$” the set of terms from K97 of size n. Note that terms from K97
are of A-width at most 2 and are unsafe.

Proposition 51. Let j be an integer greater than 3. Let g: N — N be a function

such that g € o(\/n/In(n)), g(n) > 3 for all n and lim,_. g(n) = oo. The
density of K99 in A is 1.

Proof. The root of the minimal subterm of width 2 of a term is called the branch-
ing node and is always binary. We show that the density of K97 in A is 0. Let

us divide the set K%’ into two disjoint subsets:

K% the set of terms of size n such that both the lengths of paths from the
branching node to the two highest incomparable binding lambdas is not greater
than In(n),

5.2 .. .
K7: the set of remaining terms of size n.

We can construct a family of codings from the set K%' into A,, in the following
two steps. First, remove two highest pairwise incomparable binding lambdas and
put one lambda, binding their variables, at the root of the whole term. The
size of the obtained term is smaller by 1 and the branching node is uniquely
determined. Second, insert one non-binding lambda between head lambdas of
the term. According to Theorem B7 we have more than g(n) > In(n)? head
lambdas. Therefore we can encode the lengths of the paths from the branching
node to the two highest binding lambdas as the position of this new lambda. By
Theorem BY the image of such transformation have density 0.

For the set K972 proceed as follows. First, choose the path (without loss of
generality we can assume it is the left path, the case of the right one is anal-
ogous) that is longer than In(n) and connects the branching node and one of
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two highest binding lambdas. Let ¢y, be the subterm rooted at this lambda. By
Lemma [ at least half of the nodes on this path are binary (since there are no
two consecutive lambdas in the tree). Let ty, . .., ¢ be the right subtrees rooted
at the consecutive binary nodes on the path (the path goes always to the left
since the term is unsafe). Secondly, chose some leaf v belonging to some subtree
ty, ..., t, and exchange it with the subterm t¢,. Independently of a choice of the
leaf, the encoding can be reversed since the position of ¢y is uniquely identifiable
as the highest binding lambda of the fair subtree below the branching node. The
encoding preserves size and the number of possibilities for the choice of a leaf v

exceeds In(n)/2. Therefore, terms from K57 are negligible in A, as n tends to
infinity. O

Main Theorem 52. The set of strongly normalizable terms has density 1.

Proof. First, by Theorem g, we can focus on terms of width at most 2. Propo-
sition p]] shows in addition that we can restrict to the following types of terms:

e terms of width at most 1,

e safe terms of width 2.

Proposition [L§ shows that they are all strongly normalizable. O

7 Combinatory logic

In this section we show that our main result about strong normalization of ran-
dom lambda calculus terms does not have an analog in the world of random
combinatory logic terms. On the contrary, a random combinatory logic term is
not strongly normalizing. The main technique used in this section is the theory
of generating functions.

As stated in section P we can look at combinatory logic terms as at rooted
binary trees whose leaves are labeled with combinators K, S and I. We denote
by F, the number of such trees with n inner nodes (see section B.3). Obviously
the set F,, is finite. We denote its cardinality by F},. It is trivial to notice that
F, = C(n)3"™! where C(n) is n — th Catalan number (see proposition B3).

Proposition 53. 1. The generating function f enumerating the set of combi-
nators (sequence F,,) is given by

1—-+v1-122

fe) = =

2. Let ty € Fn, be a combinator of size ng > 1 . The generating function f,
enumerating the set of all combinators having ty as a subterm is given by

—V/1 =122 + /1 — 122 4 4zno+1
fto(z): 22 °
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Proof. 1. F,, denotes the number of combinators of size n. Since there are three
combinators of size 0, we have Fyy = 3. Combinators of size n > 1 are built
of two combinators of sizes, respectively, i andn—i—1 (i =0,...,n—1),
thus F,, = E?_Ol F,F,_;_4. From this recurrence relation we obtain that

the generating function f for the sequence (F},) satisfies the equation
f(z) =3+2(f(2)"
Solving this equation in f(z) we get two solutions:

1—-+v1-122 and 1+v1—-12z2

2z 2z

We have Fy = 3, so lim,_,¢ f(z) = 3. Thus, the desired generating function
is given by the first solution.

2. Let t be a combinator having ¢y as a subterm. Then ¢ either is equal to g
or is of the form of application ¢t = t; t9, in which case either t; is a subterm
of t; but not of t5 or ty is a subterm of ¢5 but not of ¢; or, finally, ¢, is a
subterm of both ¢; and t5. We get the following equation:

fto(z) = 2" + 2th0(z) (f(z) - fto(z)) + Z(fto(z))Qa
which can be simplified to

fro(2) = 2" + 22+ fiy (2) - f(2) — 2(fio (2))*.

Solving this equation in f;, gives us two possible solutions:

—/1 =122 4+ /1 — 12z + 4zmo+1 d —/1 =122 — /1 — 122 + 4zno+!
an )
2z 2z

Since ng > 1, there is no term of size 0 having t;, as a subterm. Thus,
lim, o fi,(2) = 0. The first function satisfies this condition, so this is the
wanted generating function. O

The following theorem shows that the result similar to Theorem [[7 is not
valid in combinatory logic.

Theorem 54. Let ty be a combinator. The density of combinators having t, as
a subterm is 1.

Proof. We prove the thesis applying Theorem 4. We start with normalizing
functions f;, and f in such a way that the singularity located at z = 1 is the
closest one to the origin. Hence, we define functions f;,(2) := zf;,(2/12) and

f(2) :==2f(2/12). We get

_ JI—z l-z+4 ()™ _
Ful) = =¥ +¢ IR
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This representation reveals that the only singularity of f,,(z) and f(z) located
in |z] <1 isindeed at z = 1. We have to remember that the multiplication by z
and the change of a caliber of the radius of convergence for functions f;, and f
affect sequences represented by the new functions. Therefore, f,, and f enumerate
sequences (12)"~ ([z" " Y{ fy, (2)}) and (12)"~* ([z"Y{f(2)}), respectively.

Now, let us consider functions f and ﬁ; satisfying the following equations:

F(VT=2) = f(2) and };(\/1 —2) = f,,(2). They are defined in the following

way':
no+1
ft0<z):_§+ 2( = ) ) = :

The derivatives (ﬁ;)’ and (f) are the following:

(2 z—8(ng + 1)z (1};2)”0) N 1

(FY() =3

7 1
(fi)(2) = —= + |
2 4 (1 —22?) \/zz+4 (%)noﬂ

Finally, by computing the values of those derivatives at z = 0 we get (E)’ (0) =

—2 and (f)'(0) = —3.
To complete the proof we apply Theorem P4, obtaining:

G TG O
S FIFEY e @R ()

Main Theorem 55. The density of non-strongly normalizing combinators is 1.

Proof. Let Q@ =S 11 (S 1 I). The combinator 2 reduces to itself and thus is
not strongly normalizing. The thesis follows directly from Theorem B4, since the
density of combinators containing €2 as a subterm is 1. O

8 Discussion

The difference between Theorem [ in the A-calculus and Theorem Y in combi-
natory logic may be surprising since there are translations between these systems
which respect many properties (including strong normalization). However, these
translations do not preserve the size.

The usual translation, which we denote by 7, from combinatory logic to -
calculus is linear, i.e. there is a constant k such that, for all terms, size(7;(t)) <
k - size(t). Note that this translation is far from being surjective: its image has
density 0. The usual translation 73 in the other direction (see []) is not linear
but exponential. As far as we know, size(13(t)) is of order 35%°(). The point is
that 715 has to code the variable binding in some way and this takes place.
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8.1 Future work and open questions

We give here some questions for which it will be desirable to have an answer.

1. Give the asymptotics of L, or, at least, better upper and lower bounds.

2. Give the density of typable terms. Numerical experiments done by Jue
Wang (see [[d]) seem to show that this density is 0.

3. Compute the densities of strongly normalizing terms with other notions of
size (mainly by changing the size of variables, and eventually making it non
constant).

8.2 Possible applications

It is now popular to test programs written in functional languages using randomly
generated set of inputs [J]. For higher-order functional programs where inputs
are functions or algorithms for computing functions, this also means the ability
to generate typical functions under certain known distributions.

For many typed languages such as OCaml or Haskell, testing functional pro-
grams usually means the possibility of supplying random typed lambda terms
generated in compliance with theirs natural distribution, probably different for
different type.

For untyped languages such as LISP, problem of testing programs is very
close to capability of generating pure random A-terms. In our case, those terms
automatically enjoy important properties such as strong normalisation if they do
not use recursive definition. However, it would be nice to have a distribution
where terms with other computationally good properties have density one.

In light of our results, the distribution induced by the size of terms in com-
binatory logics is dramatically different because most term are not strongly nor-
malizable while the distribution for pure A-term with variables of size 0 enjoys
the density 1 of strong normalisation. One could argue that the width at most 2
is a negative result for testing (tuple of functions are common and encoded with
terms of arbitrary width).

Results presented in this paper are the starting point for the similar research
based on the other notion of sizes necessary for applications. Possible direction
of research is discussed in the next section.

8.3 Discussion on the various notion of sizes

The notion of sizes (which seems the most popular) where application, variables
and abstraction have the same size is in fact not always the most natural, intu-
itively because variables require less information than application and abstrac-
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tion. To illustrate this, here are two possible representations for terms: one in
OCaml, the other in C.

The following definition in OCaml gives a size of term which count 3 words
for application and abstraction and 2 words for each variable (because in OCaml
you have a “tag” word for each constructor):

type var = int
type term =
App of term * term
| Abs of var * term
| Var of var
let delta = Abs(0,App(Var 0, Var 0))

In C you may represent term using a pointer to a union type. We give here
the type, and functions to construct lambda-terms:

typedef union term_union *term;

union term_union {
struct { term first_arg ; term second_arg ; } app;
struct { unsigned int var; term fun_body ; } abs;

};

term make_variable(unsigned var) {
return (term) (4*var+1l);

}

term make_application(term t1, term t2) {
term t0 = (term) malloc(sizeof (union term_union));
if (1t0) { fprintf(stderr, "not enough memory"); }
tO->app.first_arg = tl; tO->app.second_arg = t2;
return(t0) ;

}

term make_abstraction(unsigned var, term t) {
term t0 = (term) malloc(sizeof (union term_union));
if (1t0) { fprintf(stderr, "not enough memory"); }
t0->abs.var = (4*var+3); tO->abs.fun_body = t;
return(t0) ;

Here, we use the fact that pointers in C are always even. So we represent
the variable numbered n by the integer 4n + 1 using a type cast. To distinguish
A from application, the binding occurrence of the variable n is represented by
4n + 3. In this representation, application and abstraction use two words and
variable use no word at all. This model is equivalent (up to a constant factor) to
the model for which we prove all our results.

Remark: If we reuse the same natural number for variable names whenever it
is possible (for instance when the variable does not appear), then, the smallest
term using the C representation, not representable in a 32 bits machine requires
230 1 1 abstractions followed by a sequence of applications with 23 nodes to
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make sure all the variables appear at least once. The total size is then 23! + 1.
Therefore, we can consider that our density results are probably applicable in
practice. To check this, we should check the speed of convergence of our density
results.

If you consider that the notion of size needs to be correct for arbitrary large
terms, then, the size of variable must be non constant (for instance, we could
consider logarithmic size in base 232 for variables) and we think that obtaining
result in this case requires a major breakthrough in combinatorics.
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