
HAL Id: hal-00372035
https://hal.science/hal-00372035v2

Preprint submitted on 9 Oct 2009 (v2), last revised 22 Oct 2012 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some properties of random lambda terms
René David, Christophe Raffalli, Guillaume Theyssier, Katarzyna Grygiel,

Jakub Kozic, Marek Zaionc

To cite this version:
René David, Christophe Raffalli, Guillaume Theyssier, Katarzyna Grygiel, Jakub Kozic, et al.. Some
properties of random lambda terms. 2009. �hal-00372035v2�

https://hal.science/hal-00372035v2
https://hal.archives-ouvertes.fr

Some properties of random λ-terms∗

René David, Christophe Raffalli, Guillaume Theyssier†,
(Université de Savoie)

Katarzyna Grygiel, Jakub Kozik, Marek Zaionc‡

(Jagiellonian University)

October 9, 2009

Abstract

We present quantitative analysis of various (syntactic and behavioral)
properties of random λ-terms. Our main results are that asymptotically all
the terms are strongly normalizing and that any fixed closed term almost never
appears in a random term. Surprisingly, in combinatory logic (the translation
of the λ-calculus into combinators) the result is exactly opposite. We show
that almost all terms are not strongly normalizing. This due to the fact that
any fixed combinator almost always appears in a random combinator.

Keywords: λ-calculus, strong normalization, randomness, combinatory logic.

1 Introduction

Since the pioneering works of Church, Turing et al., more than 70 years ago, a wide
range of computational models have been introduced. It turns out that they are
all equivalent in what they can compute. However, this equivalence says nothing
about what do typical programs or machines of each of these models.

This paper addresses the following question. Having a (theoretical) program-
ming language and a property, what is the probability that a random program
satisfies the given property? In particular, is it true that almost every random
program satisfies the desired property.

We concentrate on functional programming languages and, more specifically, on
the λ-calculus, the simplest such language (see [9, 11, 14] for similar works on other
models of computation). The only work that we have found on this subject is some
experiments made by Jue Wang (see [16]). Most interesting properties of terms are
those concerning their behavior. However, to analyze them, one has to consider
some syntactic properties as well.

As far as we know, no asymptotic value for the number of λ-terms of size n is
known. We give (see Section 6) upper and lower bounds for this (super-exponential)
number. Although the gap between the lower and the upper bound is big (expo-
nential), these estimations are sufficient for our purpose.

∗This work was supported by by the research project funded by the French Rhône-Alpes region
and initiated by Pierre Lescanne and by grant number N206 376137 funded by Polish Ministry of
Science and Higher Education

†Laboratoire de Mathématiques de l’Université de Savoie, Campus Scientifique,
73376 Le Bourget-du-Lac, France, email: {rene.david, christophe.raffalli,

guillaume.theyssier}@univ-savoie.fr
‡Theoretical Computer Science, Jagiellonian University, Lojasiewicza 6, Kraków, Poland, email:

{Katarzyna.Grygiel, Jakub.Kozik, zaionc}@tcs.uj.edu.pl

1

We prove several results on the structural form of a λ-term. In particular, we
show that almost every closed λ-term begins with “many” λ’s (the precise meaning
is given in Theorem 14). Moreover, each of them binds “many” occurrences of
variables (Theorems 15, 16 and 17). Finally, given any fixed closed λ-term, almost
no λ-term has this term as a sub-term (Theorem 21).

We also give a result on the behavior of terms, our original motivation. We
show that a random term is strongly normalizing (SN for short) with probability
1. Remember, that, in general, being SN is an undecidable question.

Combinatory logic is another programming language related to the λ-calculus.
It can be seen as an encoding of λ-calculus into a language without variable binding.
Moreover, there are translations, in both directions, which, for example, preserve
the property of being SN . Surprisingly, our results concerning random combinators
are very different from those for the λ-calculus. For example we show that, for
every fixed term t0, almost every term has t0 as sub-term and this, of course,
implies that almost every term is not SN . The different of results concerning
strong normalization between λ-calculus and combinatory logic might come from
the large increase of size induced by the coding of bound variables in combinatory
logic. This is discussed in Section 9.

Our interest in statistical properties of computational objects like lambda terms
or combinators is a natural extension on similar research on logical objects like for-
mulas or proofs. This paper is a continuation of the research in which we try to
estimate the properties of random formulas in various logics. Especially the proba-
bility of truth (or satisfiability) for random formulas. For the purely implicational
logic with one variable, (and at the same time simple type systems) the exact value
of the density of true formulas have been computed in the paper of Moczurad,
Tyszkiewicz and Zaionc [13] and [15]. Quantitative relationship between intuition-
istic and classical logics (based on the same language) has also been analyzed. The
exact value describing how big fragment of the classical logic with one variable is
intuitionistic has been determined in Kostrzycka and Zaionc [10]. For the results
with more then one variable, and other logical connectives consult [4],[8],[7].

The case of and/or connectors received much attention – see Lefmann and Sav-
ický [12], Chauvin, Flajolet, Gardy and Gittenberger [2] and Gardy and Woods [6].
We refer to Gardy [5] for a survey on probability distribution on Boolean functions
induced by random Boolean expressions.

2 Organization of the paper

In Sections 3 and 4 we recall basic definitions of the λ-calculus and introduce the
notation used within the paper. Section 5 summarizes the basic combinatorial facts
that are useful in our development. Starting from Section 6 we present our results
for lambda calculus.

Section 8 contains results in combinatory logic, namely that every fixed term
appears in almost every term. Section 9 discusses the question of size, gives ex-
perimental results for questions for which we have no answers. It also gives open
questions and proposes future direction of research.

In the whole paper we do not aim at providing the best possible estimations for
the analyzed sequences. Most of the quantitative results can be easily improved. We
present estimations which are sufficient for our structural results, without sacrifying
the simplicity of proofs for better accuracy.

2

3 Generality on the λ-calculus

Definition 1. The set of λ-terms (or simply terms) is defined by the following
grammar (where V is a countable set of variables)

t, u := V | λV.t | (t u)

We denote by Λ the set of all closed λ-terms.

As usual, λ-terms are considered modulo the α-equivalence i.e. two terms which
differ only by the names of bound variables are considered equal. Note that λ-terms
can be seen as trees. For every term t, if we forget about variable binding we obtain
a unary-binary tree. We call it the structure of t. Removing from the structure the
unary nodes and connecting binary ones and leaves so that to preserve the original
connectivity, we obtain binary structure of t.

We often use (without giving the precise definition) the classical terminology
about trees (e.g. path, root, leaf, etc.). The paths from from the root to leafs are
called branches.

Definition 2. 1. t′ is a sub-term of t (denoted as t′ ≤ t) if

• t = t′,

• or t = λx.u and t′ ≤ u,

• or t = (u v) and (t′ ≤ u or t′ ≤ v).

2. Let t be a term and u = λx.a be a sub-term of t. We say that λx is binding
if x has a free occurrence in a.

3. The unary height of a term t is the maximal number of λ’s on a path from the
root to some leaf of t.

4. Let t be λ-term.

• Two λ’s in t are called incomparable if there is no branch containing both
of them.

• The λ-width of t is the maximal number of pairwise incomparable bind-

ing λ’s.

5. We say that a term has k head lambdas if its structure starts with k unary
nodes followed by a binary node or a leaf.

Definition 3. The size of a term t (denoted as size(t)) is defined by the following
rules.

- size(x) = 0 if x is a variable,
- size(λx.t) = size(t) + 1,
- size((t u)) = size(t) + size(u) + 1.

Definition 4. Let n be an integer. We denote by Λn the set of closed terms of size
n. Obviously the set Λn is finite. We denote by Ln its cardinality.

As far as we know, no asymptotic analysis of the sequence Ln has been made.
Moreover, typical combinatorial techniques does not seem to apply easily for this
task.

3

4 Main notations

To attribute a precise meaning to sentences like ”asymptotically all lambda terms
have property P” we use the following definition of asymptotic density. For any
finite set A we denote by #A the number of its elements.

Definition 5. For a set of lambda terms A, we denote by d(A) the following limit
(if it exists):

lim
n→∞

#(A ∩ Λn)

#(Λn)
.

If the limit exists it is called asymptotic density of A.

Note that d is not a measure (e.g. it is not countably additive).
Let P be a property of lambda terms. If d({t ∈ Λ | P (t) holds}) = α, we say

that the density of terms satisfying P is α. By an analogy to researches on graphs
and trees, we abbreviate the sentence like ”the density of terms satisfying P is 1”
by ”random term satisfies P”.
The idea of proofs

In Section 6, a density 0 is proved by computing bounds for the cardinalities
of the sets we consider, and showing that the quotient tends to zero. The compu-
tations are quite standard. The computations have been checked by Maple. The
corresponding file, together with a pdf of it, can be found at the URL:

www.lama.univ-savoie.fr/∼david/ftp/limit
In Section 7 we show that a set A of terms has density 0 by defining an injective,

size preserving function ϕ from A into Λ (we call such functions codings). Then we
show that the image of ϕ has density 0. This is done either by using the fact that
it is included in a set, which is already known to have density 0, or by computing
an upper bound for the cardinality of this image.

The proofs concerning densities in the calculus of combinators are based on
analysis of generating functions enumerating considered sets of combinators.

Note about the statement of the theorems

1. Many of the following sub-sections use results of the previous ones. When, in
some section, we say “let t be a typical term”, this implicitly mean that we
restrict ourselves to terms having the properties for which we have seen, in
the previous sub-sections, that it has density 1. We also assume that its size
is big enough.

2. The statement of the theorems sometimes requires to give a name to the size
of terms. This size is always denoted by n. Thus a statement “the density of
terms satisfying P (t, n) is α” means that

lim
n→∞

#({t ∈ Λn | P (t, n)})
#(Λn)

= α.

5 Combinatorial results

5.1 Catalan numbers

We denote by C(n) the Catalan numbers i.e. the number of binary trees with n
inner nodes. We use the following proposition.

Proposition 6. C(n) ∼ 4n

n3/2
√

π
and thus, for large enough n, we have C(n) ≥

C 4n

n3/2 for some constant C > 0.

Proof. This is a classical result. See for example [3].

4

5.2 Large Schröder numbers

We denote by M(n, k) the number of unary-binary trees with n inner nodes and k
leaves. Let M(n) =

∑
k≥1 M(n, k) denote the number of unary-binary trees with n

inner nodes. These numbers are known as the large Schröder numbers. Note that,
since in this paper the size of variable is 0, we use them instead of the so-called
Motzkin numbers, which enumerate unary-binary trees with n total nodes. We use
the following proposition.

Proposition 7.

1. M(n, k) = C(k − 1)
(
n+k−1
n−k+1

)
.

2. M(n) ∼
(

1
3−2

√
2

)n
1√

πn3/2 .

Proof. (1) Every unary-binary tree with n inner nodes and k leaves has k − 1
binary and n − k + 1 unary nodes. We have C(k − 1) binary trees with k, leaves.
Every such a tree has 2 · k − 1 nodes (inner nodes and leaves). Therefore there are(
n+k−1
n−k+1

)
possibilities of inserting n − k + 1 unary nodes (we can put unary node

above every node of a binary tree). (2) The asymptotic for M(n) is obtained by
using standard tools of the generating function (for this sequence it is equal to

m(x) = 1−x−
√

1−6x+x2

2x). For more details see [3].

6 Proofs using calculus

6.1 Lower Bound for Ln

The asymptotic inequality f(n) & g(n) means that there exists h such that h(n) ∼
g(n) and f(n) ≥ h(n).

Theorem 8. For any ε > 0 we have

Ln &

(
(4 − ε)n

ln(n)

)n− n
ln(n)

Proof. Let LB(n, k) be the number of λ-terms of size n with k head λ’s and no other
λ below. Since the lower part of the term is a binary tree with n− k inner nodes,
and each leaf can be bound by k lambdas, we have LB(n, k) = C(n − k)kn−k+1.
Clearly LB(n, k) < Ln. We choose k = ⌈ n

ln(n)⌉. Then we get:

Ln > C(n− ⌈ n

ln(n)
⌉) · (n

ln(n)
)n− n

ln(n)
−1

& (
4 · n
ln(n)

)n− n
ln(n) · 1

p(n)
,

for some positive polynomial p (the last asymptotic ineqality is a consequence of
Proposition 6). It is easy to see that the last formula is asymptotically greater then(

(4−ε)n
ln(n)

)n− n
ln(n)

6.2 The number of λ’s in a term

Theorem 9.

1. The density of terms having more than 3n
ln(n) λ’s is 0.

2. The density of terms having less than n
3 ln(n) λ’s is 0.

5

Proof. (1) Let S(n, k) be the number of terms of size n containing more than kn
ln(n)

λ’s. We have S(n, k) ≤ ∑
p≥ kn

ln(n)
UB(n, p) where UB(n, p) = M(n, n − p + 1) ·

pn−p+1. This is because a term with p lambdas is a unary binary tree whose
n− p+ 1 leaves can be bound by, at most, p lambdas each. For k > 1 the function
pn−p+1 is decreasing for p ≥ kn

ln(n) . Thus, for every k > 1, we have

S(n, k) ≤
(

kn

ln(n)

)n+1− kn
ln(n)

·
∑

p≥ kn
ln(n)

M(n, p)

≤M(n)

(
kn

ln(n)

)n+1− kn
ln(n)

Using our lower bound for Ln, we find S(n,k)
Ln

≤ Φ(n, (4 − ε)) where

Φ(n, q) =
M(n)

(
kn

ln(n)

)n+1− kn
ln(n)

(
qn

ln(n)

)n− n
ln(n)

To get the result it remains to show that, for k = 3 and any ε > 0, Φ(n, 4 − ε)
tends to 0.

Using that M(n) ∼
(

1
3−2

√
2

)n
1

n
3
2

we have, for n large enough, (we introduce

an extra constant C > 1 to compensate for the equivalent)

Φ(n, q) ≤ C ·

(
1

3−2
√

2

)n (
kn

ln(n)

)n+1− kn
ln(n)

n
3
2

(
qn

ln(n)

)n− n
ln(n)

We get a simpler upper bound by using the n
3
2 to compensate for the +1 expo-

nent:

Φ(n, q) ≤

(
1

3−2
√

2

)n (
kn

ln(n)

)n− kn
ln(n)

(
qn

ln(n)

)n− n
ln(n)

=

(
k

q(3 − 2
√

2)

)n (
kn

ln(n)

) −kn
ln(n)

(
qn

ln(n)

) n
ln(n)

Remarking that
(

kn
ln(n)

) −kn
ln(n)

= e−kn
(

k
ln(n)

) −kn
ln(n)

and
(

qn
ln(n)

) n
ln(n)

= en
(

q
ln(n)

) n
ln(n)

,

we have:

Φ(n, q) ≤
(

ke1−k

q(3 − 2
√

2)

)n (
qk−k

ln2(n)

) n
ln(n)

This means that Φ(n, q) converges toward zero if ke1−k

q(3−2
√

2)
< 1. Since, ke1−k

reaches its maximum 1 in k = 1 and 0 < q(3 − 2
√

2) < 4(3 − 2
√

2) < 1 (recall
that we will use q = 4 − ǫ with ǫ > 0), the equation ke1−k = q(3 − 2

√
2) has two

solutions, one for k > 1 the other for k < 1. It is easy to see that the first solution
is smaller than 3 because 3e1−3 < 3 4

25 < 4(3 − 2
√

2) and ǫ = 4 − q can be chosen
small enough.

(2) The proof of the second part of the theorem is analogous. The computation
is essentially the same with k < 1. It is easy to check that the solution (less than
1) of the equation ke1−k = q(3 − 2

√
2) is less than 1

3 .

6

Remark 10. The theorem above shows that the typical proportion of unary nodes
over binary nodes in lambda terms is far from the typical proportion in ordinary
unary-binary trees which tends a positive constant.

6.3 Upper Bound for Ln

Theorem 11. For all ε > 0 we have

Ln .

(
(12 + ε)n

ln(n)

)n− n
3 ln(n)

Proof. Let Nn be the number of terms of size n with less than 3n
ln(n) and more than

n
3 ln(n) λ’s. Note that, according to Theorem 9 we have Ln ∼ Nn. We have

Nn . C(n− n
3 ln(n) + 1)

(
2n+1

3n
ln(n)

) (
3n

ln(n)

)n+1− n
3 ln(n)

where

• C(n− n
3 ln(n)) +1) corresponds to the number of possibilities of choice of binary

structure (which has less then n− n
3 ln(n) inner nodes).

•
(

2n+1
3 n

ln(n)

)
is an asymptotic upper bound the number of possible distributions of

unary nodes within binary structure.

•
(

3n
ln(n)

)n+1− n
3 ln(n)

corresponds to the possibilities of variable bindings. Indeed,
3n

ln(n) is an upper bound for the number of lambdas above a variable and

n+ 1 − n
3 ln(n) is an upper bound for the number of leafs.

Now it is sufficient to observe that
(

2n+1
3 n

ln(n)

)
is subexponential. (The replacement

of 12n by (12 + ε)n compensates all factors smaller than exponential.)

6.4 Comparison between the lower bound and the upper

bound

In the ratio between our lower and upper bounds, the dominant factor is exponential.
This means that we are far from having an equivalent, but still this is not too bad
because Ln is super-exponential.

The following corollary shows that we know the two first terms of the asymptotic
expansion of ln(Ln), but we do not know the linear factor yet.

Corollary 12. For all ε > 0 and for n large enough

ln(4 − ε) − 1 ≤ ln(Ln)

n
− ln(n) + ln(ln(n)) ≤ ln(12 + ε) − 1

3

6.5 Bounds on the unary height of a term

Theorem 13. The set of terms with the unary height greater than n
3 ln(n) has density

1.

Proof. The same argument as in 9.(2) applies here.

7

7 Proofs using coding

7.1 The number of λ’s in head position

Theorem 14. Let g(n) ∈ o
(√

n/ ln(n)
)
. The density of terms having less than

g(n) head λ’s is 0.

Proof. Let us denote by An the set of typical terms of size n with less than g(n)
head λ’s. We construct an injective, size-preserving function (coding) ϕ : A → Λ
such that its image has density 0.

Let t ∈ An. We can write t = λx1 . . . λxp.M , where p < g(n) and M is a term
starting with an application and containing at least one λ (by Theorem 13). Let
B be the maximal purely applicative prefix of M i.e. B is the term using only
application nodes and variables such that M = B[

−→
t] where terms in

−→
t start with

λ and variables in B are taken from the set {x1, . . . , xp} (see Figure 1).

λx1

λx2

λxp

B

λz1

u1

λz2

u2

λzk

uk

Figure 1: th. 14, the term t ∈ An.

Let us denote by A(n, p, b,
−→
t) the set of terms from An having, as in the de-

composition of t above, p head λ’s, then a purely applicative context (i.e. a context

without any lambda) of size b, and, in that context, a sequence
−→
t of subterms

beginning with λ’s. Because p < g(n) the cardinality of A(n, p, b,
−→
t) is less than

P (b, n) = C(b+ 1)(g(n) + 1)b+1.

Let t ∈ A(n, p, b,
−→
t) where

−→
t = [t1, . . . , tk]. By hypothesis on An, we have

k ≥ 1. Let ti = λzi.ui. Let z be a fresh variable and u′i = ui[zi := z]. Consider the
term T = λzλx1 . . . λxp.(u

′
1 (u′2 (. . . (u′k−1 u

′
k) . . .) which is of size n− b. Let λy.C

denote the term rooted at the leftmost deepest λ of term T and let Y be the set of
variables introduced by the λ’s occurring on the path from the the root to λy. By
Theorem 13 there are at least n

3 ln(n) elements in Y .

Let U be the set of purely applicative terms of size b − 1 whose variables are
chosen from Y . For any u ∈ U , let ρ(t, u) be the term obtained by substituting
sub-term λy.C in T with λy.(u C).

There are at least

Q(b, n) = C(b − 1)

(
n

3 ln(n)

)b

elements in U . Since for n large enough we have P (b, n) < Q(b, n) (because the
limit of the quotient is 0), there exists an injective function h which assigns to any
purely applicative prefix B of size b an element from U . Let ϕ(t) = ρ(t, h(B)) where
B is the purely applicative prefix in the decomposition of t (see Figure 2). By the
injectivity of h, we get that ϕ is injective, too.

8

We also define Ψ(t) = {ρ(t, u) : u ∈ U}. Note that for t ∈ A(n, p, b,
−→
t) the car-

dinal of Ψ(t) is always Q(b, n). Due to the construction, the sets Ψ(t) and Ψ(t′) are
disjoint for any pair of distinct terms t and t′.

λz
λx1

λx2

λxp

u′1
u′2

λy

h(B) C

u′ku
′
k−1

Figure 2: th. 14, the term ϕ(t).

Let us denote by ψ(b, n) = P (b,n)
Q(b,n) . By the assumption on g there is a function ε

such that ε(n) tends to 0 and ψ(b, n) = C(b+1)
3bC(b)

(n
ln(n))

1−b
2 ε(n). For b ≥ 2, (n

ln(n))
1−b
2

is decreasing in b, so C(b+1)
3bC(b)

is bounded. Thus, ψ(b, n) tends to 0 uniformly in b.

Since the A(n, p, b,
−→
t) form a partition of An, the result follows.

7.2 Head λ’s bind “many” occurrences

Theorem 15. Let g(n) ∈ o
(√

n/ ln(n)
)
. The density of terms in which there is at

least one λ among g(n) head λ’s that does not bind any variable is 0.

Proof. Let g(n) ∈ o
(√

n/ ln(n)
)

and denote by Tv the set of random terms for which
there exists at least one λ among first g(n) head λ’s that does not bind any variable,
and let Tn

v = Tv ∩ Λn. We construct a coding function ϕ : Tv → Λ such that the
density of its image is 0.

Let T = λx1 . . . xg(n).A be a term from Tn
v and let i be the smallest integer such

that the i-th head λ in T does not bind any variable. Take

ϕ(T) = λx1 . . . xi−1xi+1.
(
xi+1 (λxi+2 . . . xg(n).A)

)
.

The size of ϕ(T) is n. Terms from the set ϕ(Tn
v) have less than g(n) head λ’s, so,

by Theorem 14, the density of them in the set Λn is zero. Since the function ϕ is
injective, the density of Tn

v is also zero.

Theorem 16. Let g(n) ∈ o
(

ln(n)
)
. The density of terms in which the total number

of occurrences of variables bound by the first three λ’s is at most g(n) is 0.

Proof. Let g(n) ∈ o
(

ln(n)
)

and denote by Tn,g(n) the set of random terms of size n
in which the total number of occurrences of variables bound by first three λ’s is at
most g(n). We construct a coding functions ϕn : Tn,g(n) → Λn such that the density
of the union of images of all functions in Λ is zero.

9

Let us define an equivalence relation ∼n on the set of random terms of size n in
the following way: M ∼n N iff M and N are equal after substituting all occurrences
of variables bound by first three λ’s by the variable bound by the first λ. Let us
denote by [M] the equivalence class of M .

Let T = λx1λx2λx3.A be a term from Tn,g(n). There are at most 3g(n) elements
in the class [T].

Let T ′ = λxy.A[x1 := y, x2 := y, x3 := y]. The size of T ′ is n−1. Let us consider
λa.U the sub-term of T ′ such that λa is the leftmost deepest λ in T ′. Denote by
B(T) the set of variables bound by λ’s occurring in T ′ on the path from λa to λy.
Note that the variable x does not occur neither in T ′ nor in B(T). By Theorem 13,
there are at least n

3 ln(n) − 3 such λ’s. Since 3 ≤ n
6 ln(n) , there are at least n

6 ln(n)

elements in B(T). As g(n) ∈ o(ln(n)), we have

lim
n→∞

3g(n)

(
n

6 ln(n)

) = 0.

Thus, we can find for each class [T] an injective function hT from [T] into the set
B(T).

We define ϕ(T) as the term obtained from T ′ by replacing the sub-term λa.U
with λa.

(
(y B) U

)
, where B = hT.

All terms from the image ϕ(Tn,g(n)) start with a λ that binds no variable. By
Theorem 15 we know that the set of such terms have density zero in Λn. Since f is
injective, the density of

⋃
n∈N

Tg(n) is zero, as well.

Theorem 17. For any fixed integers k and k′, the density of terms in which each
of the first k λ’s binds more than k′ variables is 1.

Proof. Let us fix integers k, k′ and let g(n) =
√

ln(n). We assume that k ≥ 3. By
Theorem 16, the total number of occurrences of variables bound by first k λ’s in a
random term of size n is more than g(n).

For each n and q ≥ g(n) let A(n, q) be the set of typical terms of size n having
exactly q leaves bound by the first k lambdas and let B(n, q) be the set of terms in
A(n, q) for which one of the first k λ’s binds at most k′ variables.

Consider the equivalence relation ∼n defined analogously to the relation from
the proof of Theorem 16, but with respect to the first k (instead of three) head
λ’s. For T ∈ A(n, q) the cardinality of [T] ∩ A(n, q) is kq and the cardinality of
[T] ∩ B(n, q) is at most k · k′ · qk′ · (k − 1)q−k′

and thus the quotient is less than

ψ(q) = k·k′·qk′ ·(k−1)q−k′

kq which, since ψ is eventually decreasing, is less than ψ(g(n)).
Since the [T]∩A(n, q) give a partition of A(q, n) and the A(n, q) give a partition

of the set of typical terms of size n and since ψ(g(n)) has limit 0 when n tends to
∞ this finishes the proof.

7.3 The width of a term

Let us recall that lambda width of a term is the maximal number of incomparable
binding lambdas in the term. In the following proposition we show that lambda
width tends to be very low for typical lambda terms.

Theorem 18. The density of terms having λ-width at most 2 is 1.

Proof. Let us denote by W the set of terms with λ-width greater than 2. As usual
we put Wn = W ∩ Λn. We show that there exists an injective, size preserving
function ϕ : W → Λ such that its image has density 0. Let t be an element of
Wn and let us denote by λx, λy and λz the three highest, pairwise incomparable
binding λ’s (appearing in this order from left to right in t).

10

λx

A

x x

λy

B

y y

λz

C

z z

λa

a a
λy

B

y

A’

y y

C’

a y

Figure 3: th. 18, the terms t and ϕ(t).

Let λx.A, λy.B and λz.C be sub-terms rooted at those λ’s (see Figure 3). Let
A′ = A[x := y], let a be a new variable, let C′ be the term obtained from C by
replacing the leftmost occurrence of z with a and the others (possibly none) with y.
Let ϕ(t) be the term obtained from t by adding λa at the root, substituting both
sub-terms λx.A and λz.C with a and replacing the leftmost occurrence of y in B
with term (A′ C′). We have size(ϕ(t)) = size(t). Also note that since we chose the
highest three incomparable λ’s no variable becomes free in the constructed term.
The injectivity of ϕ comes from the fact that both λy and the sub-term (A′ C′) of
ϕ(t) are uniquely identifiable (see Figure 3):

• Let vl (resp. vr) be the deepest node above the two left-most (resp. right-
most) occurrences of a. Remark that since there is exactly 3 occurrences of
a, one of these two nodes is above the other. Let v be the deepest one. λy is
the first binding λ on the path from the node v to the middle occurrence of a;

• then, the application node (A′ C′) is the deepest node above the middle
occurrence of a and all the occurrences of y on the left of this middle occurrence
of a.

Since the image of ϕ contains only terms starting with a λ which binds only 3
occurrences of the corresponding variable, by Theorem 17, the density of ϕ(Wn) is
equal to zero. The injectivity of ϕ finishes the proof.

7.4 A random term avoids any fixed closed term

Definition 19. Let t0 be a term. We denote by Λt0 the set of terms having t0 as
a sub-term and by Λt0

n the set Λt0 ∩ Λn

Theorem 20. Let t0 be a term of size k′ with k occurrences of free variables.
Assume k′ ≥ k + 1. Then the density of Λt0

n is 0.

Proof. We construct a size preserving coding ϕ : Λt0 → Λ such that its image is of
density 0.

There are at most k′ − k + 1 occurrences of λ’s and at most k′ + 1 leaves in t0,
so there are at most

K = M(k′)(k′ + 1)k′+1

such terms and we can enumerate them in a fixed way. Let m be the number of
t0. The tree t0 contains at least one occurrence of λ, since otherwise we would have
k′ < k. Let g ∈ o

(
n

3 ln(n)

)
be such that g(n)

n→∞−−−−→ ∞. Let n be an integer satisfying

g(n) > K.

11

Let t ∈ Λt0
n be a random term. By Theorem 14 the term t has more than m

head λ’s since m ≤ K (see Figure 4).

λx1

λx2

λxp

A

t0

λx1

λx2

λxm

λx
λxm+1

λxp

A

U B

Figure 4: th. 20, the terms t ∈ Λt0
n and T ′.

Let us consider the term T which is obtained from the term t by adding an
additional unary node (labelled with λx) at depth m. Let us define ϕ(t) as the
term T ′ obtained by replacing the left-most deepest sub-term t0 in T by the term
t1 = (U B) of size k′ − 1 (see Figure 4), where U is a binary tree such that
U = (x (x (. . . (x x) . . .))) and B = (x1 (x2 (. . . (xk−1 xk) . . .))) (in case where
t0 has no free variables we put t1 = U) . Thus, the size of T ′ is equal to n. The
variable x is bound by the m-th λ in the tree T ′. Since m is the number of the tree
t0, the function ϕ is injective.

By Theorem 17, each of K head λ’s in a random tree of size n binds more than
k′ variables. Trees from the image f(Λn ∩Λt0) do not have this property, since the
m-th λ binds only k′ variables. Thus, those trees are negligible among all trees of
size n.

Corollary 21. Let t0 be a term. If t0 is closed or if there are at least two λ’s in
t0, the density of Λt0 is 0.

Proof. These are special cases of the previous theorem.

7.5 The density of strongly normalizable terms

From theorem 18, we know that almost all terms are of width at most 2. In this sec-
tion, we introduce a notion of ’safeness’ for terms of width 2 with the two following
properties:

• safeness and width at most 2 implies strong normalisation (proposition 23);

• the set of unsafe terms of width 2 has density 0 (proposition 30).

The first part of this section is devoted to proposition 23 and is pure λ-calculus.
We tried to write the proofs to be accessible for non specialist in λ-calculus. Nev-
ertheless, For the basic fact 1 below, see [1] and for similar proofs techniques, see
[18, 19]).

Definition 22 (fair and safe terms).

12

1. Let t be a term of width 1. We say that t is fair if there is no binding λ on
the left branch of t (this includes the root node of t).

2. Let t be a term of width 2 and let (u v) be the smallest sub-term of t of width
2. By definition, u and v have width 1. We say that t is safe if at least one
of the term u or v is fair.

Proposition 23. Let t be a safe term of width at most 2, then t ∈ SN .

Definitions and notation 1.

• Let t be a term. If t is a term we denote by η(t) the length of the longest
reduction starting from t and +∞ if t is not SN.

• Let σ be a substitution (that is a partial map from variables to terms). We
write t[σ] the capture free application of the substitution to t.

• A context, is a λ-term with a unique hole denoted []. Traditionally context
are defined by a BNF. If E is an arbitrary context, it is given by the following
BNF:

E := [] | λx.E | (E Λ) | (Λ E) where Λ denote arbitrary terms.

• When E is a context and t is a term, E[t] denotes the replacement of the hole
in E by t allowing capture: the λ’s in E can bind variables in t.

• For a context E, η(E) = η(E[x]) and size(E) = size(E[x]) where x is an
arbitrary variable not captured by E.

Fact 1 (Basic fact on λ-terms and strong normalisation). For some proofs in this
section, we use the fact that a λ-term can be written in one of the following forms:

• t = (x t1 . . . tn) with n ≥ 0 in which case η(t) = η(t1) + · · · + η(tn) and t is
SN if and only if t1, . . . , tn are SN.

• t = λx.u in which case η(t) = η(u) and t is SN if and only if u is SN.

• t = ((λx.u) v t1 . . . tn) with n ≥ 0 in which case η(t) < η(u[x := v] t1 . . . tn)
and t is SN if and only if (u[x := v] t1 . . . tn) is SN.

Moreover, if t is a term and x is a variable, then t is SN if and only (t x) is SN.
This can be shown by induction on the size of t using the above case analysis.

Lemma 24.

1. The set of terms of width 0 (resp. of width at most 1) is closed by reduction.

2. If t is a term of width at most 1 then t ∈ SN .

Proof. (1) for width 0 is easy because substitution and reduction can not bind
variables and width 0 means that all variables are free. For width 1, we first remark
that width 1 means that all binding λ’s occur on the same branch. We consider
such a term t and a β-reduction: t = E[(λx.u) v] ⊲ E[u[x := v]] = t′. There are
two cases: either x is not bound in u and t′ = E[u] or it is bound in u and v must
have width 0 which means that all the free variables of v are free or bound by the
context. In both cases, it is clear the t′ is still of width 1 because the binding λ’s
remain on one branch.

(2) follows from the fact that a reduction decreases the pair 〈N1(t), N0(t)〉 for the
lexicographic ordering, where N1(t) (resp. N0(t)) is the number of binding (resp.
non binding) λ’s. To prove this, We consider again such a term t and a β-reduction:

13

t = E[(λx.u) v] ⊲ E[u[x := v]] = t′. If x is not bound in u, N1(t) is non increasing
(it is decreasing if v contains some binding λ’s) and N0(t) is decreasing (we erase
at least one non binding λ). If x is bound in u, we know that v is of width 0 and
contain no binding λ, which means that we create no binding λ and therefore N1(t)
is decreasing.

Lemma 25. If u has width 0 and t1, . . . , tn are SN terms then the term (u t1 . . . tn)
is SN.

Proof. By induction on the size of u, we distinguish three cases:

• If u = x, the result is trivial by the fact 1.

• If u = (u′ v), because of lemma 24, v is SN and we conclude by induction on
u′.

• If u = λx.u′, we use lemma 24 if n = 0 and we get that (u′ t2 . . . tn) is SN
by induction otherwise.

Lemma 26. Let t ∈ SN be a term and σ be a substitution such that, for each x,
there is k such that σ(x) = (u v1 . . . vk) where u has width 0 and v1 . . . vk are SN.
Then, t[σ] ∈ SN .

Proof. By induction on 〈η(t), size(t)〉. We consider the following cases:

• If t = (x t1 . . . tn) and x is not in the domain of σ or t = λx.t1. In this case,
it is enough to prove that for all i, ti[σ] is SN. This follows from the induction
hypothesis because η(ti) ≤ η(t) and size(ti) < size(t).

• If t = ((λx.u) v t1 . . . tn) we have to show that (u[x := v] t1 . . . tn)[σ] is SN
which follows from the induction hypothesis because η(u[x := v] t1 . . . tn) <
η(t).

• If t = (x t1 . . . tn) and x is in the domain of σ. Then, t[σ] = (σ(x) t1[σ] . . . tn[σ])
which is SN by lemma 25 because t1[σ],. . . ,tn[σ] are SN by induction hypoth-
esis and σ(x) = (u v1 . . . vk) where u has width 0 and v1 . . . vk are SN.

Definition 27. We define the set of context of width 1 by the following BNF (where
Λ0 denotes the set of λ-terms of width 0):

E := [] | λx.E | (E Λ0) | (Λ0 E)

This definition means that all the binding λ’s are on the path from the root to
the hole of the context. This justifies the name of such a context.

Lemma 28. Let E be a context of width 1 and u ∈ SN be a term. Then E[u] ∈ SN

Proof. By induction on size(E). The cases E = [] or E = λx.E1 are trivial (by
induction in the second case because size(E1) < size(E)).

If E = (E1 v) where v ∈ Λ0, then E[u] = (E1[u] x)[x := v] where x is a
fresh variable and E1[u] is SN by induction hypothesis because size(E1) < size(E).
Therefore (E1[u] x) is SN by fact 1 and finally (E1[u] x)[x := v] is SN by Lemma
26.

The case E = (v E1) is symmetric.

14

Proof of proposition 23. If t has width at most one, this is lemma 24. If t has width
2, let (t1 t2) be the smallest sub-term of t of width 2. This means that t can be
written E[t1 t2] where E is a context of width 1 and t1 and t2 have width 1. By
lemma 28, it is therefore enough to show that (t1 t2) is SN.

We know that t is safe. This means that either t1 or t2 is fair. If ti is fair, it can
be written F [u v] where u has width 0, v has width 1 and F is a context using the
following BNF:

F := [] | λ .F | (F Λ0) where λ . denotes non binding λ’s and Λ0 terms of width 0.

The context F is defined precisely to denote the beginning of the left branch
until we reach an application node whose argument is of width 1. The definition of
fair term of width 1 ensures the existence of such an application node on the left
branch.

This means that (t1 t2) can be written (F [u v] t2) (resp. (t1 F [u v])). Let us
define t′ = (F [x] t2) (resp. t′ = (t1 F [x])).

Therefore in both cases, t = t′[x := (uv)], because the context F can not bind
variables. Thus, we can conclude by lemma 26 because u has width 0 and because
t′ and v are SN (by lemma 24, since they have width 1).

To end this section and the proof of the main result (corollary 31), we establish
a density result about unsafe terms of width 2.

Lemma 29. The density of the set A of terms containing two consecutive non-
binding λ is 0.

Proof. We define an injective and size-preserving coding from A to the set of terms
whose leading λ binds only once and the proof follows from theorem 17. The
coding is as follows: in a term t ∈ A of size n, we replace the subterm t1 rooted at
an occurence of 2 non-binding lambdas, t1 = λa.λb.u, by the term x u where x is a
fresh variable. We get a term t′ of size n−1 and the final coded term is λx.t′ which
is of size n.

Proposition 30. The set of unsafe lambda terms with lambda width 2 has density
0.

Proof. For every such a term, the root of the minimal subterm of width 2 is called
the branching node and is always binary.

Let us divide the set of unsafe terms of width 2 into to parts:

S1: the set of terms such that both the lengths of paths from the branching node
to the two highest independent binding lambdas is not greater then ln(n)

S2: the set of remaining unsafe terms with lambda width 2.

The set S1 can be encoded to the set of all terms in the following two steps. First,
remove two highest independent binding lambdas and put one lambda, binding
their variables, at the root of the whole term. The resulting size is smaller by 1
and the branching node is uniquely determined. Second, insert one lambda that
binds nothing between the head lambdas of a term. According to Theorem 14 we
have more then ln(n)2 head lambdas. Therefore we can encode the lengths of the
paths from the branching node to the two highest binding lambdas by the position
of this new lambda. Theorem 15 grants that the image of such transformation have
density 0.

For the set S2 proceed as follows: First, choose the path that is longer than
ln(n). Let t0 be the subterm rooted at the binding lambda at the end of this path

15

(we assume it is the left path, the case of the right one is analogous). By lemma 29
we can suppose that at least half of the nodes on this path are binary. Let t1, . . . , tk
be the right subtrees of the consecutive binary nodes on the path (the path goes
always to the left since the term is unsafe). Second, chose some leaf v belonging to
some subtree t1, . . . , tk and exchange it with the subterm t0. Independently of a
choice of the leaf, the encoding can be reversed since the position of t0 is uniquely
identifiable as a highest binding lambda of the fair subtree of the branching node.
The encoding is size preserving and the number of possibilities for the choice of a
leaf v exceeds ln(n)/2 therefore S2 has density 0.

Corollary 31. The set of strongly normalizable terms has density 1.

Proof. First, by theorem 18, we can focus on terms of width at most 2. Proposi-
tion 30 shows in addition that we can restrict to the following types of terms:

• terms of width at most 1,

• safe terms of width 2.

Proposition 23 shows that they are all strongly normalizable.

8 Combinatory logic

Definition 32.

1. The set C of combinators is defined by the following grammar

C := K | S | I | (C C)

2. The size of a combinator is defined by the following rules: size(S) = size(K) =
size(I) = 1 and size((u v)) = size(u) + size(v).

3. The reduction on combinators is the closure by contexts of the following rules.
(K u v) ⊲ u (S u v w) ⊲ (u w (v w)) (I u) ⊲ u

Remark: It is easy to see that the number of internal nodes in a binary tree
represented by a combinator is smaller by 1 than its size. Therefore, all the results
concerning densities would be the same if we had defined the size as a number of
internal nodes (like we have for λ-terms).

Proposition 33.

1. The generating function f enumerating the set of combinators is f(z) =
1−

√
1−12z
2 .

2. The generating function ft0 enumerating set of all combinators having t0 as

a sub-term is ft0(z) = −
√

1−12 z
2 +

√
1−12 z+4 zn0

2 .

Proof.

1. The function f thus satisfies

f(z) = 3z + f(z)2.

Solving the equation and choosing between the two possibilities (f(0) = 0)
gives the solution.

16

2. Assume that n0 = size(t0). Using the fact that every combinator t having
t0 as a sub-term is either t0 or has the form t = (t1 t2) where either t0 is a
sub-term of t1 but not of t2 or t0 is sub-term of t2 but not of t1 or finally t0
is sub-term of both t1 and t2 we get the following equation.

ft0(z) = zn0 + 2ft0(z) (f(z) − ft0(z)) + (ft0(z))
2

which can be simplified to

ft0(z) = zn0 + 2 · ft0(z) · f(z) − (ft0(z))
2

Solving the quadratic equation with unknown function ft0 and choosing be-
tween the two possibilities (ft0(0) = 0) gives the solution.

In the next theorem, the symbol [zn]{F} represents the coefficient of zn in the
series expansion of the generating function F.

Theorem 34. Let v, w be functions satisfying the following hypotheses:

• v, w are analytic in |z| < 1 with z = 1 being the only singularity at the circle
|z| = 1.

• v(z), w(z) in the vicinity of z = 1 have expansions of the form

v(z) =
∑

p≥0

vp(1 − z)p/2, w(z) =
∑

p≥0

wp(1 − z)p/2.

Let ṽ and w̃ be defined by ṽ(
√

1 − z) = v(z) and w̃(
√

1 − z) = w(z). Then

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} =

(ṽ)′(0)

(w̃)′(0)
.

Proof. This is a standard result in the theory of generating functions. For example,
see [17].

Theorem 35. Let t0 be a combinator. The density of combinators having t0 as a
sub-term is 1.

Proof. The proof uses standard tools on generating functions. It follows from Propo-
sition 33 and Theorem 34 below and some easy computations.

In order to satisfy assumptions of Theorem 34 we normalize functions in such a
way to have the closest to the origin singularity located in |z| ≤ 1 at the position
in z = 1. So, we define functions ft0(z) = ft0(z/12) and f(z) = f(z/12). Therefore
we have:

ft0(z) = −
√

1 − z

2
+

√
1 − z + 4

(
z
12

)n0

2

f(z) =
1

2
− 1

2

√
1 − z

This representation reveals that the closest singularity of ft0(z) and f(z) located in
|z| ≤ 1 is indeed z = 1. We have to remember that change of a caliber of the radius
of convergence for functions ft0 and f effects accordingly sequences represented
by the new functions. Therefore those new functions enumerate two sequences

(12)n ([zn]{ft0}(z)) and (12)n ([zn]{f(z)}). Now let us define functions f̃ and f̃t0

17

so as to satisfy the following equations: f̃(
√

1 − z) = f(z) and f̃t0(
√

1 − z) = ft0(z).

Functions f̃ and f̃t0 are defined in the following way:

f̃t0(z) = −z
2

+

√
z2 + 4

(
1−z2

12

)n0

2

f̃(z) =
1

2
− 1

2
z

The derivatives (f̃t0)
′ and (f̃)′ are the following:

(f̃t0)
′(z) = −1

2
+

(
2 z − 8

(
1−z2

12

)n0

n0 · z
)

4 (1 − z2)
√
z2 + 4

(
1−z2

12

)n0

(f̃)′(z) = −1

2

Finally derivatives (f̃t0)
′(0) = − 1

2 and (f̃)′(0) = − 1
2 . To conclude the proof we

use accordingly Theorem 34 so: limn→∞
[zn]{ft0 (z)}
[zn]{f(z)} = limn→∞

(12)n[zn]{ft0 (z)}
(12)n[zn]{f(z)} =

(fft0)′(0)

(ef)′(0)
= 1.

Theorem 36. The density of non strongly normalizing combinators is 1.

Proof. Let Ω = (S I I (S I I)). Then Ω reduces to itself and is thus not strongly
normalizing. The theorem is thus an immediate consequence of the theorem 35.

9 Discussion

9.1 Other notions of size

The difference between Theorem 21 in the λ-calculus and Theorem 35 in combi-
natory logic may be surprising since there are translations between these systems
which respect many properties (including strong normalization). However, these
translations do not preserve the size.

The usual translation, which we denote by T1, from combinatory logic to λ-
calculus is linear, i.e. there is a constant k such that, for all terms, size(T1(t)) ≤
k ∗ size(t). Note that this translation is far from being surjective: its image has
density 0. Moreover, the usual translation T2 in the other direction (see [1]) is not
homogeneous: linear for some terms and non-linear for others. The point is that T2

has to code the variable binding in some way and this takes place.
The difference between the two theorems comes probably from the definition

of size that we have used for the variables in the λ-calculus. The usual way to
implement coding of variables is to replace the names of variables by their de Bruijn
indices: a variable is replaced by the number of λ’s that occur, on the path from
the variable to the λ that binds it. Note that, in this case, different occurrences of
the same variable may be represented by different indices.

Choosing the way in which we code de Bruijn indices gives different ways of
defining the size of a term. This can be done in the following ways:

- using unary notation, i.e. the size of the index n is simply n itself;
- using binary notation, i.e. the size of the index n is ⌈log2(n)⌉, i.e. the logarithm

of n in base 2.

18

9.2 Some experiments

Although the results we proved concern only the model where the size of a variable
is 0, we did some experiments on the other models. There is an easy algorithm
(polynomial time in n) to compute Ln for each model of size. This algorithm can
be sometimes adapted to compute (still in polynomial time) the number of terms
of size n having a given property P . We did this for several simple syntactical
properties until size 1000. It is always a strange exercise to guess the limit of a
sequence from its first values, but our results, at least, suggest the following:

- Almost all terms start with several λ’s for model with constant size variables
(99.99% start with at least one λ for size 1000), whereas it is not clear that terms
starting with an application are negligible for other models;

- Identity almost always (exceptions represent a fraction of terms less than 10−5

for size 500) occur for models with non-constant size of variables, whereas at least
80% of terms don’t contain identity for model with variables of constant size (for
variables of size 0, we now that it goes toward 100%).

9.3 Future work and open questions

We give here some questions for which it will be desirable to have an answer.
- Give an asymptotic equivalence for Ln or, at least, better upper and lower

bounds.
- Give the density of typable terms. Numerical experiments done by Jue Wang

(see [16]) seem to show that this density is 0.
- Compute the densities of strongly normalizing terms with other notions of size

(mainly by changing the size of variables, and eventually making it non caonstant).
If we can not simplify the present proof of density 1 of SN terms (corollary 31), it
seems very difficult to extend this result if only for variables having size 1: most
encoding techniques really use the fact that variables have size 0. However, we
believe that proving theorem 14 is an achievable goal for variables of size 1.

References

[1] H. Barendregt, The Lambda Calculus. Its Syntax and Semantics. Studies in
Logic and The Foundations of Mathematics, vol 103, North-Holland.

[2] B. Chauvin, P. Flajolet, D. Gardy and B. Gittenberger. And/Or trees revisited,
Combinatorics, Probability and Computing, 13(4-5):475-497, 2004.

[3] P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University
Press, 2008.

[4] H. Fournier, D. Gardy, A. Genitrini, M. Zaionc Classical and intuitionistic logic
are asymptotically identical, Computer Science Logic 2007, Lecture Notes in Com-
puter Science 4646, pp 177-193.

[5] D. Gardy. Random Boolean expressions, Colloquium on Computational Logic
and Applications, Chambéry (France), June 2005. In Discrete Mathematics and
Theoretical Computer Science proceedings AF, pp 1-36, 2006.

[6] D. Gardy and A. Woods. And/or tree probabilities of Boolean function, Discrete
Mathematics and Theoretical Computer Science,pp 139-146, 2005.

[7] Antoine Genitrini, Jakub Kozik, Quantitative comparison of Intuitionistic and
Classical logics - full propositional system, LFCS09, Lecture Notes in Computer
Science 5407 (2009) pp. 280-294.

19

[8] A. Genitrini, J. Kozik, M. Zaionc, Intuitionistic vs. Classical Tautologies, Quan-
titative Comparison, Lecture Notes in Computer Science 4941, (2008) pp. 100-109.

[9] J.D. Hamkins and A. Miasnikov, The halting problem is decidable on a set of
asymptotic probability one, Notre Dame J. Formal Logic 47 (2006) (4), pp. 515-
524.

[10] Z. Kostrzycka and M. Zaionc. Statistics of intuitionnistic versus classical logic,
Studia Logica, 76(3):307-328, 2004.

[11] A. Rybalov, On the strongly generic undecidability of the Halting Problem,
Theoretical Computer Science, Volume 377, Issues 1-3, 31 May 2007, Pages 268-
270.

[12] H. Lefmann and P. Savický. Some typical properties of large And/Or Boolean
formulas, Random Structures and Algorithms, vol 10, pp 337-351, 1997.

[13] M. Moczurad, J. Tyszkiewicz and M. Zaionc. Statistical properties of simple
types, Mathematical Structures in Computer Science, 10(5):575-594, 2000.

[14] L. Boyer and G. Theyssier, On Local Symmetries and Universality
in Cellular Automata 26th International Symposium on Theoretical As-
pects of Computer Science (STACS), 2009. Dagstuhl Seminar Proceedings,
http://stacs2009.informatik.uni-freiburg.de/proceedings.php.

[15] M. Zaionc. On the asymptotic density of tautologies in logic of implication and
negation, Reports on Mathematical Logic, vol 39, pp 67-87, 2005.

[16] Jue Wang, Generating Random Lambda Calculus Terms. http://cs-
people.bu.edu/juewang/research.html

[17] M. Zaionc, Probability distribution for simple tautologies. Theoretical Com-
puter Science, 355(2):243-260, 2006.

[18] R. David, Normalization without reducibility. APAL n 107 (2001) p 121-130.

[19] R. David, A short proof of the strong normalization of the simply typed lambda
calculus. http://www.lama.univ-savoie.fr/~david/

20

