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Some properties of randomλ-terms

René David, Christophe Raffalli, Guillaume Theyssier∗,
(Université de Savoie)

Katarzyna Grygiel, Jakub Kozik, Marek Zaionc†

(Jagiellonian University)

Abstract

We show various (syntactic and behavioral) properties of
randomλ-terms. Our main results are that at least3/4 of
the terms are strongly normalizing and that any fixed closed
term almost never appears in a random term. Surprisingly,
in combinatory logic (the translation of theλ-calculus into
combinators) the result is different. We show that almost all
terms arenot strongly normalizing, because any fixed term
almost always appears in a random term.
Keywords: λ-calculus, strong normalization, randomness,
combinatory logic.

1 Introduction

Since the pioneering works of Church, Turinget al.,
more than 70 years ago, a wide range of computational
models have been introduced. It turns out that they are all
equivalent in what theycancompute. However, this equiv-
alence says nothing about what dotypical programs or ma-
chines of each of these models.

This paper addresses the following question. Having a
(theoretical) programming language and a property, what
is the probability that a random program satisfies the given
property? In particular, is it true that almost every random
program satisfies the desired property i.e. the probabilityis
1? The notion of random program is precisely defined in
Section 5.

We concentrate on functional programming languages
and, more specifically, on theλ-calculus, the simplest such
language (see [5, 6, 10] for similar works on other models
of computation). The only work that we have found on this
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subject is some experiments made by Jue Wang (see [11]).
Most interesting properties of terms are those concerning
their behavior. However, to analyze them, one has to con-
sider some syntactic properties as well.

As far as we know, no asymptotic value for the number
of λ-terms of sizen is known. We give (see Section 4) up-
per and lower bounds for this (super-exponential) number.
Although the gap between the lower and the upper bound
is big (exponential), these estimations are sufficient for our
purpose.

We prove several results on the structural form of aλ-
term. In particular, we show that almost every closedλ-
term begins with “many”λ’s (the precise meaning is given
in Theorem 16). Moreover, each of them binds “many” oc-
currences of variables (Theorems 17, 18 and 19). Finally,
given any fixed closedλ-term, almost noλ-term has this
term as a sub-term (Theorem 23).

We also give a result on the behavior of terms, our orig-
inal motivation. We show that a random term is strongly
normalizing (SN for short) with probability at least3/4 and
we conjecture it is 1. Remember, that, in general, beingSN
is an undecidable question.

Combinatory logic is another programming language re-
lated to theλ-calculus. It can be seen as an encoding of
λ-calculus into a language without variable binding which
is fair for questions we are concerned with. This means that
there are translations, in both directions, which, for exam-
ple, preserve the property of beingSN . Surprisingly, our
results concerning random programs are very different from
those for theλ-calculus. For example we show that, for ev-
ery fixed termt0, almost every term hast0 as sub-term and
this, of course, implies that almost every term is notSN .
The different results forSN betweenλ-calculus and com-
binatory logic might come from the large increase of size
induced by the coding of bound variables in combinatory
logic. This is discussed in Section 7.

The organization of the paper is as follows. In Section 2
we recall basic definitions of theλ-calculus. Section 3 gives
combinatorial results we need in our proofs. The lower and
upper bounds for the number ofλ-terms of sizen are given
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in Section 4. Our main results appear in Section 5. Section
6 contains results in combinatory logic, namely that every
fixed term appears in almost every term. Section 7 discusses
the question of size, gives experimental results for questions
for which we have no answers. It also gives open questions
and proposes future direction of research. Appendix at the
end gives missing details for some proofs.

Note that, in sections 2 to 5, we do not aim at providing
the best possible estimations for the analyzed sequences.
Most of them can be easily improved. We present results
which are sufficient for our structural results, without sacri-
fying the simplicity of proofs for better estimations (unless
the result we get is tight).
Acknowledgments

This research has been partially supported by a project
funded by the French Rhône-Alpes region and initiated by
P. Lescanne.

2 Generality on theλ-calculus

Definition 1. The setΛ of λ-terms (or simply terms) is de-
fined by the following grammar (whereV is a countable set
of variables)

t, u := V | λV.t | (t u)

As usual, λ-terms are considered modulo theα-
equivalence i.e. two terms equal modulo a change in their
bound variables are considered equal. Note thatλ-terms
can be seen as trees. Thus, we often use (without giving
the precise definition) the classical terminology about trees
(e.g. branch, path, root, leaf, etc.)

Notation 2. 1. t′ is a sub-term oft (denoted ast′ ≤ t) if
t = t′ or (t = λx.u and t′ ≤ u) or (t = (u v) and
(t′ ≤ u or t′ ≤ v))

2. Lett be a term andu = λx.a be a sub-term oft.

• We say thatλx is binding ifx really occurs free
in a.

• We say thatλx is in head position ift = λ−→y .u
for some, possibly empty, sequence of abstrac-
tionsλ−→y .

3. The unary height of a termt is the maximal number of
λ’s in a branch oft.

4. The binary height of a termt is the maximal number of
applications in a branch oft.

Definition 3. The size (denoted assize(t)) of a termt is
defined by the following rules.

- size(x) = 0 if x is a variable.
- size(λx.t) = size(t) + 1
- size((t u)) = size(t) + size(u) + 1

Definition 4. Letn be an integer. We denote byΛn the set
of terms of sizen and byLn its cardinality.

Remark
This is not the usual definition of size. Most often the

size of a variable is 1. We choose such definition (by anal-
ogy to the research on trees), hoping that our results can be
easily translated to the usual case. The translation turned
out not to be trivial and will be a subject of our future work.
From the point of view of implementation, both definitions
are not realistic (see the discussion in Section 7).

3 Classical combinatorial results

3.1 Catalan numbers

We denote byC(n) the Catalan numbers i.e. the number
of binary trees withn inner nodes. We use the following
proposition.

Proposition 5. C(n) ∼ 4n

n3/2
√

π
and thus, for large enough

n, we haveC(n) ≥ C 4n

n3/2 for some constantC > 0.

Proof. This is a classical result. See for example [4].

3.2 Large Schröder numbers

We denote byM(n, k) the number of unary-binary
trees withn inner nodes andk leaves. LetM(n) =∑

k≥1 M(n, k) denote the number of unary-binary trees
with n inner nodes. These numbers are known as the large
Schröder numbers. Note that, since in this paper the size of
variable is0, we use them instead of the so-called Motzkin
numbers, which enumerate unary-binary trees withn total
nodes. We use the following proposition.

Proposition 6. 1. M(n, k) = C(k − 1)
(
n+k−1
n−k+1

)
.

2. M(n) ∼
(

1
3−2

√
2

)n
1√

πn3/2 .

Proof. (1) A tree enumerated byM(n, k) hasn+ k nodes,
among whichk − 1 are binary andn − k + 1 are unary.
(2) The asymptotic forM(n) is obtained by using standard
tools of the generating function (for this sequence it is equal
tom(x) = 1−x−

√
1−6x+x2

2x ). For more details see [4].

3.3 Lambert W function

The Lambert functionW (x) is defined by the equation
x = W (x)eW (x) which has a unique solution inR+. We
use the following proposition.

Proposition 7. 1. Let a, b, c be positive constants and
M = b

cW ( abe
c )

. The functionf defined byf(x) =

(ax)b−cx is increasing on]0, M ] and decreasing on
[M,+∞[.

2



2. For x large enough, we haveln(x) − ln(ln(x)) ≤
W (x) ≤ ln(x) − ln(ln(x)) + 1

Proof. The proof is given in Appendix.

4 Bounds forLn

As far as we know, no asymptotic analysis of the se-
quenceLn has been made. Moreover, typical combinatorial
techniques does not seem to apply easily for this task.

4.1 Lower Bound for Ln

Theorem 8. For anyε > 0 and forn large enough we have

Ln ≥
(

(4 − ε)n

ln(n)

)n− n
ln(n)

Proof. Let LB(n, k) be the number ofλ-terms of sizen
with k headλ’s and no otherλ below. Since the lower part
of the term is a binary tree withn − k inner nodes with
k possibilities for each leaf, we haveLB(n, k) = C(n −
k)kn−k+1. Sincen+1 ≥ n−k+1, by Proposition 5 we get

LB(n, k) ≥ K (4k)n−k+1

n
3
2

for some constantK. The result

follows from Lemma 9 below.

Lemma 9. For anyK, ε > 0 and forn large enough we
have

n∑

k=1

K
(4k)n−k+1

n
3
2

≥
(

(4 − ε)n

ln(n)

)n− n
ln(n)

Proof. The proof is given in Appendix.

4.2 Upper Bound for Ln

The computation of an upper bound uses Theorem 13.
Since this result is not used in section 5 the proof is only
given in the appendix.

Theorem 10. For all ε > 0 and for n large enough, we
have

Ln ≤
(

(12 + ε)n

ln(n)

)n− n
3 ln(n)

4.3 Comparison between the lower bound
and the upper bound

In the ratio between our lower and upper bounds, the
dominant factor is exponential. This means that we are far
from having an equivalent, but still this is not too bad be-
causeLn is super-exponential.

The following corollary shows that we know the two first
terms of the asymptotic expansion ofln(Ln), but we do not
know the linear factor yet.

Corollary 11. For all ε > 0 and forn large enough

ln(4−ε)−1 ≤ ln(Ln)

n
−ln(n)+ln(ln(n)) ≤ ln(12+ε)− 1

3

5 Main results

By an analogy to researches on graphs and trees, we de-
fine a notion of a “random” term using asymptotic densities.

Definition 12. Let A be a set of terms.
1) We denote by#(A) the cardinality of A.
2) We denote byd(A) the following limit (if it exists):

lim
n→∞

#(A ∩ Λn)

#(Λn)
.

Remarks and notation

• Note thatd is not a measure, in the usual sense, since
it is not countably additive. Moreover, note thatd(A)
may be undefined if the previous limit does not exist.

• LetP be a property of terms. Ifd({t | P (t)holds}) =
α, we say that the density of terms satisfyingP is α.
If α = 1, we say that a random term satisfiesP .

The idea of proofs

We use two different technics.
In Section 5.1, a density 0 is proved by computing

an upper bound on the cardinality of the set we are
considering, by using the lower bound given in Theo-
rem 8 and by showing that the quotient tends to zero.
The computation of these limits is quite standard. A
sketch is given in Appendix. The computations have
been checked by Maple. The corresponding file, to-
gether with a pdf of it, can be found at the URL:

www.lama.univ-savoie.fr/∼david/ftp/limit
In Section 5.2 we show that a setA of terms has density

0 by defining an injective, size preserving functionϕ from
A into Λ (we call such functions codings). Then we show
that the image ofϕ has density 0. This is done either by
using the fact that it is included in a set, which is already
known to have density 0, or by computing an upper bound
for the cardinality of this image.

Note about the statement of the theorems

1. Many of the following sub-sections use results of the
previous ones. When, in some section, we say “lett be
a random term”, this implicitly mean that we restrict
ourselves to terms having the properties for which we
have seen, in the previous sub-sections, that it has den-
sity 1. We also assume that its size is big enough.
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2. The statement of the theorems sometimes requires to
give a name to the size of terms. This size is always
denoted byn. Thus a statement “the density of terms
satisfyingP (t, n) is α” means that

lim
n→∞

#({t ∈ Λn | P (t, n)})
#(Λn)

= α.

5.1 Proofs using calculus

5.1.1 The number ofλ’s in a term

Theorem 13. 1. The density of terms having more than
3n

ln(n) λ’s is 0.

2. The density of terms having less thann3 ln(n) λ’s is 0.

Proof. (1) Let S(n, k) be the number of terms of size
n containing more than kn

ln(n) λ’s. We haveS(n, k) ≤∑
p≥ kn

ln(n)
UB(n, p) whereUB(n, p) = M(n, n − p +

1)pn−p+1. This is because a term withp λ’s is a unary
binary tree whosen− p+1 leaves are bounded by, at most,
p nodes. By Proposition 7.(1) the functionpn−p+1 is de-
creasing on[ n+1

W (e(n+1)) ,+∞[. Observing that, fork > 1,
n+1

W (e(n+1)) <
kn

ln(n) for n large enough (this is because the
quotient tends tok) we thus have

S(n, k) ≤
(

kn

ln(n)

)n+1− kn
ln(n) ∑

p≥ kn
ln(n)

M(n, p)

≤M(n)

(
kn

ln(n)

)n+1− kn
ln(n)

Using our lower bound forLn, we find S(n,k)
Ln

≤
Φ(n, (4 − ε)) where

Φ(n, q) =
M(n)

(
kn

ln(n)

)n+1− kn
ln(n)

(
qn

ln(n)

)n− n
ln(n)

To get the result it remains to show that, fork = 3 and
any ε > 0, Φ(n, 4 − ε) tends to 0. The proof is given in
Appendix.

(2) The proof is similar.

5.1.2 Bounds on the unary height of a term

Theorem 14. The set of terms with the unary height greater
than n

3 ln(n) has density 1.

Proof. Let Mn be the number terms of sizen with more
than n

3 ln(n) λ’s and with the unary height less than n
K ln(n)

Because a variable can only be bound byλ above and be-
cause such a term has at mostn − n

3 ln(n) + 1 leaves, we
have

Mn ≤M(n)

(
n

K ln(n)

)n− n
3 ln(n)

+1

Dividing by our lower bound for the number of terms (The-
orem 8) we getMn

Ln
≤ Ψ(n, 4 − ε) where

Ψ(n, q) = M(n)

(
n

K ln(n)

)n− n
3 ln(n)

+1

(
qn
ln n

)n− n
ln(n)

It remains to show that, forK = 3 and anyε > 0,
Ψ(n, 4 − ε) tends to 0. This is done in Appendix.

5.1.3 Bounds on the binary height of a term

Since the following theorem is not used later, the proof is
given in the appendix.

Theorem 15. The density of terms having binary height
greater than n√

ln(ln(n))
equals 0.

5.2 Proofs using coding

5.2.1 The number ofλ’s in head position

Theorem 16. Let g(n) ∈ o
(√

n/ ln(n)
)
. The density of

terms having less thang(n) headλ’s is 0.

Proof. Let us denote byAn the set of random terms of size
n with less thang(n) headλ’s. We construct an injective,
size-preserving function (coding)ϕ : An → Λn such that
its image has density0.

Let t ∈ An. We can writet = λx1 . . . λxp.M , where
p < g(n) andM is a term starting with an application
and containing at least oneλ (by Theorem 14). LetB be
the maximal purely applicative prefix ofM i.e. B is the
term using only application nodes and variables such that
M = B[

−→
t ] where terms in

−→
t start withλ and variables

in B are taken from the set{x1, . . . , xp} (see Figure 1).
Let us denote byA(n, p, b,

−→
t ) the set of terms inAn hav-

ing, as in the decomposition oft above,p headλ’s, then a
purely applicative context of sizeb, and, in that context, a
sequence

−→
t of subterms beginning byλ. Becausep < g(n)

the cardinal ofA(n, p, b,
−→
t ) is less than

P (b, n) = C(b + 1)(g(n) + 1)b+1.

Let t ∈ A(n, p, b,
−→
t ) where

−→
t = [t1, . . . , tk]. By hy-

pothesis onAn, we havek ≥ 1. Let ti = λzi.ui. Let z be
a fresh variable andu′i = ui[zi := z]. Consider the term
T = λzλx1 . . . λxp.(u

′
1 (u′2 (. . . (u′k−1 u

′
k) . . .) which is
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λx1

λx2

λxp

B

λz1

u1

λz2

u2

λzk

uk

Figure 1. th. 16, the termt ∈ An.

of sizen − b. Let λy.C denote the term rooted at the left-
most deepestλ of termT and letY be the set of variables
introduced by theλ’s occurring on the path from the the root
to λy. By Theorem 14 there are at leastn3 ln(n) elements in
Y .

LetU be the set of purely applicative terms of sizeb− 1
whose variables are chosen fromY . For anyu ∈ U , let
ρ(t, u) be the term obtained by substituting sub-termλy.C
in T with λy.(u C).

There are at least

Q(b, n) = C(b − 1)

(
n

3 ln(n)

)b

elements inU . Since forn large enough we haveP (b, n) <
Q(b, n) (this is because the limit of the quotient is 0), there
exists an injective functionh which assigns to any purely
applicative prefixB of size b an element fromU . Let
ϕ(t) = ρ(t, h(B)) whereB is the purely applicative prefix
in the decomposition oft (see Figure 2). By the injectivity
of h, we get thatϕ is injective, too.

We also defineΨ(t) = {ρ(t, u) : u ∈ U}. Note that for
t ∈ A(n, p, b,

−→
t ) the cardinal ofΨ(t) is alwaysQ(b, n).

By construction, for any pair fo distinct termst andt′, the
setsΨ(t) andΨ(t′) are disjoint.

Let us denote byψ(b, n) = P (b,n)
Q(b,n) . By the assump-

tion on g there is a functionε such thatε(n) tends to 0
and ψ(b, n) = C(b+1)

3bC(b)
( n
ln(n))

1−b
2 ε(n). Since C(b+1)

3bC(b)
is

bounded, since, forb ≥ 2, ( n
ln(n) )

1−b
2 is decreasing inb,

it follows thatψ(b, n) tends to 0 uniformly inb. Since the
A(n, p, b,

−→
t ) form a partition ofAn, the result follows.

5.2.2 Headλ’s bind “many” occurrences

Theorem 17. Let g(n) ∈ o
(√

n/ ln(n)
)
. The density of

terms in which there is at least oneλ amongg(n) headλ’s
that does not bind any variable is 0.

λz
λx1

λx2

λxp

u′1
u′2

λy

h(B) C

u′ku′
k−1

Figure 2. th. 16, the termϕ(t).

Proof. Let g(n) ∈ o
(√

n/ ln(n)
)

and denote byTn
v the set

of random terms of sizen for which there exists at least one
λ among firstg(n) headλ’s that does not bind any variable.
We construct a coding functionϕ : Tn

v → Λn such that the
density of its image is0.

Let T = λx1 . . . xg(n).A be a term fromTn
v and leti be

the smallest integer such that thei-th headλ in T does not
bind any variable. Take

ϕ(T ) = λx1 . . . xi−1xi+1.
(
xi+1 (λxi+2 . . . xg(n).A)

)
.

The size ofϕ(T ) is n. Terms from the setϕ(Tn
v ) have less

thang(n) headλ’s, so, by Theorem 16, the density of them
in the setΛn is zero. Since the functionϕ is injective, the
density ofTn

v is also zero.

Theorem 18. Letg(n) ∈ o
(

ln(n)
)
. The density of terms in

which the total number of occurrences of variables bound
by the first threeλ’s is at mostg(n) is 0.

Proof. Let g(n) ∈ o
(

ln(n)
)

and denote byTg(n) the set of
random terms of sizen in which the total number of occur-
rences of variables bound by first threeλ’s is at mostg(n).
We construct a coding functionϕ : Tg(n) → Λn such that
the image off is of density zero inΛn.

Let us define an equivalence relation∼n on the set of
random terms of sizen in the following way: M ∼n N
iff M andN are equal after substituting all occurrences of
variables bound by first threeλ’s by the variable bound by
the firstλ. Let us denote by[M ] the equivalence class of
M .

Let T = λx1λx2λx3.A be a term fromTg(n). There are
at most3g(n) elements in the class[T ].

5



Let T ′ = λxy.A[x1 := y, x2 := y, x3 := y]. The size
of T ′ is n − 1. Let us considerλa.U the sub-term ofT ′

such thatλa is the leftmost deepestλ in T ′. Denote by
B(T ) the set of variables bound byλ’s occurring inT ′ on
the path fromλa to λy. Note that the variablex does not
occur neither inT ′ nor inB(T ). By Theorem 14, there are
at least n

3 ln(n) − 3 suchλ’s. Since3 ≤ n
6 ln(n) , there are at

least
(

n
6 ln(n)

)
elements inB(T ). As g(n) ∈ o(ln(n)), we

have

lim
n→∞

3g(n)

(
n

6 ln(n)

) = 0.

Thus, we can find for each class[T ] an injective function
hT from [T ] into the setB(T ).

We defineϕ(T ) as the term obtained fromT ′ by replac-
ing the sub-termλa.U with λa.

(
(y B) U

)
, whereB =

h[T ](T ).
All terms from the imageϕ(Tg(n)) start withλ that binds

no variable. By Theorem 17 we know that the set of such
terms have density zero inΛn. Sincef is injective, the
density ofTg(n) is zero, as well.

Theorem 19. For any fixed integersk andk′, the density
of terms in which each of the firstk λ’s binds more thank′

variables is 1.

Proof. Let us fix integersk, k′ and letg(n) =
√

ln(n). We
assume thatk ≥ 3. By Theorem 18, the total number of
occurrences of variables bound by firstk λ’s in a random
term of sizen is more thang(n).

For eachn andq ≥ g(n) letA(n, q) be the set of random
terms of sizen having exactlyq λ’s in head position and let
B(n, q) be the set of terms inA(n, q) for which one of the
first k λ’s binds at mostk′ variables. Finally letψ be the

function defined byψ(q) = k·k′·qk′ ·(k−1)q−k′

kq . Consider the
equivalence relation∼n defined analogously to the relation
from the proof of Theorem 18, but with respect to the first
k (instead of three) headλ’s.

For T ∈ A(n, q) the cardinality of[T ] ∩ A(n, q) is at
leastkg(n) and the cardinality of[T ] ∩ B(n, q) is at most
k · k′ · qk′ · (k − 1)q−k′

and thus the quotient is less than
ψ(q) which, sinceψ is decreasing, is less thanψ(g(n)).

Since the[T ] ∩ A(n, q) give a partition ofA(q, n) and
theA(n, q) give a partition of the set of random terms of
sizen and sinceψ(g(n)) has limit 0 whenn tends to∞ this
finishes the proof.

5.2.3 The width of a term

Definition 20. Let t beλ-term.

• Two λ’s in t are called incomparable if there is no
branch containing both of them.

λx

A

x x

λy

B

y y

λz

C

z z

λa

a a
λy

B

y

A’

y y

C’

a y

Figure 3. th. 21, the termst andϕ(t).

• Theλ-width of t is the maximal number of pairwise
incomparable bindingλ’s.

Theorem 21. The density of terms havingλ-width at most
2 is 1.

Proof. Let us denote byWn the set of terms of sizen with
λ-width greater than2. We show that there exists an injec-
tive functionϕ : Wn → Λn such that its image has density
0. Let t be an element ofWn and let us denote byλx, λy
andλz the three highest, pairwise incomparable bindingλ’s
(appearing in this order from left to right int).

Let λx.A, λy.B andλz.C be sub-terms rooted at those
λ’s (see Figure 3). LetA′ = A[x := y], let a be a new
variable, letC′ be the term obtained fromC by replacing
the leftmost occurrence ofz with a and the others (possi-
bly none) withy. Let ϕ(t) be the term obtained fromt by
addingλa at the root, substituting both sub-termsλx.A and
λz.C with a and replacing the leftmost occurrence ofy in
B with term(A′ C′). We havesize(ϕ(t)) = size(t). Also
note that since we chose the highest three incomparableλ’s
no variable becomes free in the constructed term. The injec-
tivity of ϕ comes from the fact that bothλy and the sub-term
(A′ C′) of ϕ(t) are uniquely identifiable (see Figure 3):

• Letvl (resp.vr) be the deepest node above the two left-
most (resp. right-most) occurrences ofa. Remark that
since there is exactly 3 occurrences ofa, one of these
two nodes is above the other. Letv be the deepest one.
λy is the first bindingλ on the path from the nodev to
the middle occurrence ofa;

• then, the application node(A′ C′) is the deepest node
above the middle occurrence ofa and all the occur-
rences ofy on the left of this middle occurrence ofa.

Since the image ofϕ contains only terms starting with
a λ which binds only3 occurrences of the corresponding
variable, by Theorem 19, the density ofϕ(Wn) is equal to
zero. The injectivity ofϕ finishes the proof.
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Figure 4. th. 24, the termst ∈ Λt0
n andT ′.

5.2.4 A random term avoids a fixed closed term

Definition 22. Let t0 be a term. We denote byΛt0 the set of
terms havingt0 as a sub-term and byΛt0

n the setΛt0 ∩ Λn

Theorem 23. Let t0 be a term. Ift0 is closed or if there are
at least twoλ’s in t0, the density ofΛt0 is 0.

Proof. These are special cases of the next theorem.

Theorem 24. Let t0 be a term of sizek′ with k occurrences
of free variables. Assumek′ ≥ k + 1. Then the density of
Λt0

n is 0.

Proof. We construct a codingϕ : Λt0
n → Λn such that its

image is of density 0.
There are at mostk′ − k + 1 occurrences ofλ’s and at

mostk′ + 1 leaves int0, so there are at most

K = M(k′)(k′ + 1)k′+1

such terms and we can enumerate them in a fixed way. Let
m be the number oft0. The treet0 contains at least one
occurrence ofλ, since otherwise we would havek′ < k.
Let g ∈ o

(
n

3 ln(n)

)
be such thatg(n)

n→∞−−−−→ ∞. Letn be an
integer satisfyingg(n) > K.

Let t ∈ Λt0
n be a random term. By Theorem 16 the term

t has more thanm headλ’s sincem ≤ K (see Figure 4).
Let us consider the termT which is obtained from the term
t by adding an additional unary node (labelled withλx) at
depthm. Let us defineϕ(t) as the termT ′ obtained by
replacing the left-most deepest sub-termt0 in T by the term
t1 = (U B) of sizek′ − 1 (see Figure 4), whereU is a
binary tree such thatU = (x (x (. . . (x x) . . .))) andB =
(x1 (x2 (. . . (xk−1 xk) . . .))) (in case wheret0 has no free
variables we putt1 = U ) . Thus, the size ofT ′ is equal ton.

The variablex is bound by them-th λ in the treeT ′. Since
m is the number of the treet0, the functionϕ is injective.

By Theorem 19, each ofK headλ’s in a random tree
of sizen binds more thank′ variables. Trees from the im-
agef(Λn ∩ Λt0) do not have this property, since them-th
λ binds onlyk′ variables. Thus, those trees are negligible
among all trees of sizen.

5.2.5 The density of strongly normalizable terms

Definition 25. • The reduction (denoted ast ⊲ t′) on
terms is the contextual closure of theβ- reduction i.e.
(λx.a b) ⊲ a[x := b]

• A termt is strongly normalizable (denoted ast ∈ SN )
if every sequence of reduction starting fromt is finite.

Theorem 26. The density of strongly normalizing terms is
(if it exists) at least34 .

Proof. This is done as follows. We use Theorem 28 below
(usually known as theΩ-theorem) which states that a syn-
tactic property (that we call safety) implies strong normal-
ization. We then give 4 encodings of unsafe terms in such
a way that the images of these encodings are disjoint and
have the same cardinality (see Theorem 29). This implies
that, if the set of unsafe terms has a density, this density is
less than1

4 .

Definition 27. Say that a termt is unsafe if there are
contextsH, El, Er and terms Pl, Pr such that t =
H [(El[λxl.Pl] Er[λxr .Pr])] and, fori ∈ {l, r}, xi occurs
at least twice inPi.

Theorem 28(Ω-theorem). If t 6∈ SN thent is unsafe.

Proof. This is theorem 1.4.13 p34 in [7].

Theorem 29. If the set of unsafe terms has a density, this
density is less than14 .

Proof. Since this proof is rather involved, we give in the
appendix, a simpler one where we show that the density of
the set of unsafe terms is less than1

2 .
By definition 27 writet = H [(Ml Mr)] where, fori ∈

{l, r},Mi = Ei[λxi.Pi] andxi has at least two occurrences
in Pi. Assume that(Ml Mr) is the left-most highest pattern
in twith the given property and that, fori ∈ {l, r}, λxi.Pi is
the left-most highest pattern inMi with the given property.
We partition the set of unsafe terms in four disjoint subsets.

1. LetUn,0 be the set of unsafe terms of sizen for which,
for bothi in {l, r}, Ei binds no variable inλxi.Pi.

2. LetUn,l (resp.Un,r) be the set of unsafe terms of size
n for whichEl (resp.Er) binds at least one variable
in λxl.Pl (resp. λxr .Pr) andEr (resp.El) binds no
variable inλxr .Pr (resp.λxl.Pl).
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Figure 5. th. 29, the termst andF (t).

3. LetUn,1 be the set of unsafe terms of sizen for which
El andEr bind respectively at least one variable in
λxl.Pl andλxr .Pr

Note that, by these definitions, whenEi binds a variable
yi in λxi.Pi there is exactly one occurrence ofyi in Pi.

We first show that thatUn,1 is negligible. This is done
by giving an injective functionF from Un,1 to a negligi-
ble sub-set ofΛn (see figure 5). Fori ∈ {l, r} write
Ei[] = Ai[λyi.Bi[]] whereλyi is the firstλ in the path
of Mi (down-up) fromλxi.Pi to the root such thatyi has
an occurrence inPi. Let x, y be fresh variables. Let
B′

i = Bi[y], P ′
i = Pi[xi := x, yi := y]. Finally let

F (t) = λy, x.H [(Al[(B
′
l P

′
l )] Ar[(B

′
r P

′
r)])]. It is clear

thatF (t) is closed, has sizen and thatF is injective. Since
F (t) has exactly 4 occurrences ofy, by Theorem 19, this
finishes the proof thatUn,1 is negligible.

The encodings are defined in the following way. Letx
be a fresh variable,P ′

i = Pi[xi := x] andE′
i = Ei[x].

1. If t ∈ Un,0 (see figure 6) let
F1(t) = λx.H [(E′

l Er[(P
′
l P

′
r)])],

F2(t) = λx.H [(El[(P
′
l P

′
r)] E

′
r)],

F3(t) = λx.H [(P ′
l Er[(E

′
l P

′
r)])] and

F4(t) = λx.H [(P ′
r Er[(P

′
l E

′
l)])].

Note that, sincet ∈ Un,0, theFj(t) are closed.

2. Fort ∈ Un,r (see figure 7) writeEr[] = Ar[λyr.Br[]]
whereλyr is the firstλ in the path ofMr (down-up)
fromλxr .Pr to the root such thatyr has an occurrence
in Pr . Letx, y be fresh variables. Forj ∈ {1, 2, 3, 4},
let Fj(t) = λx.H [(El[x] = Ar[λyr.Br[Gj(t)]])]
whereG1(t) = (P ′

l P
′
r), G2(t) = (P ′

r P
′
l ), G3(t) =

(P ′
l Q

′
r) whereQ′

r is obtained fromP ′
r by replac-

ing the left-most occurrence ofx by y andG4(t) =
(P ′

l Q
′′
r ) whereQ′′

r is obtained fromP ′
r by replacing

the right-most occurrence ofx by y. Sincet ∈ Un,r,
theFj(t) are closed.
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λxl
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xl xl
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λxr

Pr

xrxr

λx

H

E′
l

x

Er

P ′
l

x x

P ′
r

xx

λx

H

E′
r

x

El

P ′
r

x x

P ′
l

x x

λx

H

P ′
l

x x

Er

E′
l

x

P ′
r

xx

λx

H

P ′
r

x x

Er

P ′
l

x x

E′
l

x

Figure 6. th. 29,t ∈ Un,0, F1(t), F2(t), F3(t), F4(t).

3. For t ∈ Un,l let Fj(t) = λx.H [(Er [G
′
j(t)] El[x])]

where theG′
j are computed as theGj by permuting

the roles of the indicesl, r.

To finish the proof, it remains to check that
- Fi ↾ Un,j is injective for eachi, j. This is done (as

in previous proofs) by showing that each new node can be
recovered.

- EachFi preserves the size and, for eachj, the cardi-
nality of the images of theFi ↾ Un,j are identical . This is
immediate.

- The images of theFi ↾ Un,j are all disjoint. This is quite
fastidious but easy. Most often, looking at the number of
occurrences ofx in some branches is enough but, for some
cases, we must also look at other variables. For example to
show thatF1(t) 6= F1(t

′) for t ∈ Un,0 and t′ ∈ Un,r we
use the fact that in some part ofF1(t) there is no bindingλ
whereas there is one inF1(t

′).

6 Combinatory logic

Definition 30. 1. The setC of combinators is defined by
the following grammar

C := K | S | I | (C C)

2. The size of a combinator is defined by the following
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Figure 7. th. 29,t ∈ Un,r, F1(t), F2(t), F3(t), F4(t).

rules: size(S) = size(K) = size(I) = 1 and
size((u v)) = size(u) + size(v).

3. The reduction on combinators is the closure by
contexts of the following rules. (K u v) ⊲ u
(S u v w) ⊲ (u w (v w)) (I u) ⊲ u

Remark: It is easy to see that the number of internal nodes
in a binary tree represented by a combinator is smaller by 1
than its size. Therefore, all the results concerning densities
would be the same if we had defined the size as a number
of internal nodes (like we have forλ-terms).

Theorem 31. The density of non strongly normalizing com-
binators is 1.

Proof. Let Ω = (S I I (S I I)). ThenΩ reduces to itself
and is thus not strongly normalizing. The theorem is thus
an immediate consequence of the next theorem.

Theorem 32. Let t0 be a combinator. The density of com-
binators havingt0 as a sub-term is 1.

Proof. The proof uses standard tools on generating func-
tions. It follows from Proposition 33 and Theorem 34 be-
low and some easy computations. The details are given in
Appendix.

Proposition 33. 1. The generating functionf enumerat-
ing the set of combinators isf(z) = 1−

√
1−12z
2 .

2. The generating functionft0 enumerating set of all
combinators havingt0 as a sub-term isft0(z) =

−
√

1−12 z
2 +

√
1−12 z+4 zn0

2 .

Proof. The proof is given in Appendix.

In the next theorem, the symbol[zn]{F} represents the
coefficient ofzn in the series expansion of the generating
functionF.

Theorem 34. Letv, w be functions satisfying the following
hypotheses:

• v, w are analytic in|z| < 1 with z = 1 being the only
singularity at the circle|z| = 1.

• v(z), w(z) in the vicinity ofz = 1 have expansions of
the form

v(z) =
∑

p≥0

vp(1 − z)p/2, w(z) =
∑

p≥0

wp(1 − z)p/2.

Let ṽ and w̃ be defined bỹv(
√

1 − z) = v(z) and
w̃(

√
1 − z) = w(z). Then

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} =

(ṽ)′(0)

(w̃)′(0)
.

Proof. This is a standard result in the theory of generating
functions. For example, see [13].

7 Conclusion

7.1 Other notions of size

The difference between Theorem 23 in theλ-calculus
and Theorem 32 in combinatory logic may be surprising
since there are translations between these systems which
respect many properties (for example the one of being ter-
minating). However, these translations do not preserve the
size.

The usual translation, which we denote byT1, from com-
binatory logic toλ-calculus is linear, i.e. there is a constant
k such that, for all terms,size(T1(t)) ≤ k ∗ size(t). Note
that this translation is far from being surjective: its image
has density 0. The usual translationT2 in the other direc-
tion (see [1]) is not linear. As far as we know, there is no
known bound on the size ofT2(t) but it is not difficult to
find examples wheresize(T2(t)) is of ordersize(t)3.
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The point is thatT2 has to code the binding in some way
and this takes place. The difference between the two the-
orems comes probably from the definition of size that we
have used for the variables in theλ-calculus. The one we
have used (or the one with the size of a variable being 1)
are, for the implementation point of view, not realistic be-
cause, in case a term has a lot of distinct variables, it is not
realistic to use a constant number of bits to code them. The
usual way to implement this coding is to replace the names
of variables by their de Bruijn indices: a variable is replaced
by the number ofλ’s that occur, on the path from the vari-
able to the root, between the variable and theλ that binds
it. Note that, in this case, different occurrences of the same
variable may be represented by different indices.

Choosing the way in which we code de Bruijn indices
gives different ways of defining the size of a term. This can
be done in the following ways:

- using unary notation, i.e. the size of the indexn is
simplyn itself;

- using binary notation, i.e. the size of the indexn is
⌈log2(n)⌉, i.e. the logarithm ofn in base 2.

7.2 Some experiments

Although the results we proved concern only the model
where the size of a variable is0, we did some experiments
on the other models. There is an easy algorithm (polyno-
mial time inn) to computeLn for each model of size. This
algorithm can be sometimes adapted to compute (still in
polynomial time) the number of terms of sizen having a
given propertyP . We did this for several simple syntactical
properties until size 1000. It is always a strange exercise to
guess the limit of a sequence from its first values, but our
results, at least, suggest the following:

- Almost all terms start with severalλ’s for model with
constant size variables (99.99% start with at least oneλ for
size 1000), whereas it is not clear that terms starting with an
application are negligible for other models;

- Identity almost always (exceptions represent a frac-
tion of terms less than10−5 for size 500) occur for models
with non-constant size of variables, whereas at least 80%
of terms don’t contain identity for model with variables of
constant size (for variables of size0, we now that it goes
toward 100%).

7.3 Future work and open questions

We give here some questions for which it will be desir-
able to have an answer.

- Give an asymptotic equivalence forLn or, at least, bet-
ter upper and lower bounds.

- Give the density of strongly normalizable terms. We
conjecture that it is 1.

- Give the density of typable terms. Numerical experi-
ments done by Jue Wang (see [11]) seem to show that this
density is 0.

- Compute the densities of sets studied in Section 5 with
other notions of size.

References
[1] H. Barendregt,The Lambda Calculus. Its Syntax and

Semantics.Studies in Logic and The Foundations of
Mathematics, vol 103, North-Holland.

[2] L. Comtet, Advanced combinatorics. The art of finite
and infinite expansions. Revised and enlarged edition,
Reidel, Dordrecht, 1974.

[3] Philippe Flajolet and Zhicheng Gao and Andrew M.
Odlyzko and L. Bruce Richmond,The Distribution of
Heights of Binary Trees and Other Simple Trees, volume
2 of Combinatorics, Probability & Computing. Cam-
bridge University Press, 1993.

[4] P. Flajolet and R. Sedgewick,Analytic combinatorics.
Cambridge University Press, 2008.

[5] J.D. Hamkins and A. Miasnikov,The halting problem is
decidable on a set of asymptotic probability one,Notre
Dame J. Formal Logic 47 (2006) (4), pp. 515-524.

[6] A. Rybalov, On the strongly generic undecidability
of the Halting Problem,Theoretical Computer Science,
Volume 377, Issues 1-3, 31 May 2007, Pages 268-270.

[7] M.H.B Sørensen,Normalization in λ-calculus and
Type theory,PhD thesis University of Copenhagen.
ftp://ftp.diku.dk/diku/semantics/papers/D-367.ps.gz

[8] M. Sørensen and P. Urzyczyn.Lectures on the Curry-
Howard Isomorphism, volume 149 ofStudies in Logic
and the Foundations of Mathematics. Elsevier Science,
2006.

[9] G. Szegö,Orthogonal polynomials, fourth ed., AMS,
Colloquium Publications, 23, Providence, 1975.

[10] G. Theyssier,How common can be universality in cel-
lular automata? 22nd Symposium on Theoretical As-
pects of Computer Science. Volume 3404 of Lecture
Notes in Computer Science, pp 121-132, 2005.

[11] Jue Wang,Generating Random Lambda Calculus
Terms. http://cs-people.bu.edu/juewang/research.html

[12] H.S. Wilf, generatingfunctionology,second ed., Aca-
demic Press, Boston. 1994.

[13] M. Zaionc,Probability distribution for simple tautolo-
gies. Theoretical Computer Science, 355(2):243-260,
2006.

10



8 Appendix

8.1 Proof of Proposition 7

The first point is immediate. The second is as follows.
LetA(x) = ln(x) − ln(ln(x)) andf(y) = yey.

Sincef is increasing, to show thatA(x) ≤ W (x) it is
enough to show thatf(A(x)) ≤ x which is trivial since this
means:

(ln(x) − ln(ln(x))eln(x)−ln(ln(x)) = x
(
1 − ln(ln(x))

ln(x)

)
≤ x

which is true forx ≥ e.
Using the fact thatf is convex we get (see Figure 8):

W (x) ≤ A(x) − f(A(x))−x

f′(A(x))
= A(x) + ln(ln(x))

ln(x)−ln(ln(x))+1

which is less thatA(x) + 1 for x large enough.

8.2 A useful lemma

Lemma 35.
(

2n+ 1
3n

ln(n)

)
= o

(
e4n ln(ln(n))

ln(n)

)

Proof. Let vn =
(
2n+1

3n
ln(n)

)
. Use Stirling approximation to

replacep ! byCpp+ 1
2 e−p and getvn ∼ wn. By developing

ln(wn) we getln(wn) = 3n ln(ln(n))
ln(n) + o(n ln(ln(n))

ln(n) ) which
gives the desired result.

8.3 Proof of Lemma 9

Let α = k/n. By Proposition 7(1) the maximum
of f(α) = (4nα)

n(1−α)+1 is obtained forα = k1 =
n+1

W (4e(n+1)) . Let k0 = n+1
ln(4e(n+1)) . By Proposition 7(2)

we have

k1 − k0 =
n(ln(4e(n+ 1)) −W (4e(n+ 1)))

W (4e(n+ 1)) ln(4e(n+ 1))

≥ n(ln(ln(4e(n+ 1))) − 1)

ln2(4e(n+ 1))

Thus,Φ(n) ≥ Ψ(n) where

Φ(n) =
n∑

k=1

K
(4k)n−k+1

n
3
2

Ψ(n) = K

⌊
n(ln(ln(4e(n+ 1))) − 1)

ln2(4e(n+ 1))

⌋
(4k0)

n−k0+1

n
3
2

x

W (x)A(x)

f(A(x))

0.95 1.15

1

2

3

4

|f(A(x)) − x|

|f(A(x))−x|
f ′(A(x))

x = f(y)

Figure 8. Bound for Lambert W function

The result follows then immediately from the following
fact:

Fact lim
n→+∞

Ψ(n)
(

(4−ε)n
ln(n)

)n− n
ln(n)

= +∞ for anyε > 0.

Proof ReplacingK andln(ln(4e(n+ 1)))− 1 by any con-
stantC we get the following inequalities forn large enough:

Ψ(n) ≥ C n
ln2(4e(n+1))

(4k0)n−k0+1

n
3
2

≥ C
√

n
ln3(4e(n+1))

(
4(n+1)

ln(4e(n+1))

)n− n+1
ln(4e(n+1))

Using
n+ 1

ln(4e(n+ 1))
≤ n

ln(n)
, we get

≥ C
√

n
ln3(4e(n+1))

(
4(n+1)

ln(4e(n+1))

)n− n
ln(n)

Then, we use lim
n→+∞

ln(n)

ln(4e(n+ 1))
= 1

≥ C
√

n
ln3(n)

(
4(n+1)

ln(4e(n+1))

)n− n
ln(n)

∀ǫ > 0, lim
n→+∞

(
n+ 1

n

)n

= e gives:

≥ C
√

n
ln3(n)

(
4n

ln(4e(n+1))

)n− n
ln(n)

∀ǫ > 0, lim
n→+∞

(
4 ln(n)

(4 − ǫ) ln(4e(n+ 1))

)n

= +∞ gives:

≥ C
√

n
ln3(n)

(
(4−ǫ)n
ln(n)

)n− n
ln(n)

This ends the proof becauselimn→+∞
√

n
ln3(n)

= +∞.
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8.4 Proof of theorem 10

Let Nn be the number of terms of sizen with less than
3n

ln(n) and more than n
3 ln(n) λ’s. Note that, here, we use

Theorem 13 and that the proportion of unary nodes over
binary nodes in such trees is far from the typical proportion
in ordinary unary-binary trees which tends to some nonzero
constant. We have

Nn ≤ C(n− n
3 ln(n) )

(
2n+1

3n
ln(n)

) (
3n

ln(n)

)n+1− n
3 ln(n)

where

• C(n − n
3 ln(n)) ) corresponds to the binary structure

(which has at mostn− n
3 ln(n)) binary nodes).

•
(

2n+1
3 n

ln(n)

)
is an upper bound the number of possible dis-

tributions of unary nodes within binary structure. This
is because, in general, the number of possible ways
of insertingq unary nodes in a tree of sizep is

(
p+q

q

)

(including leaves in the size and the order of insertion
having no importance). Here (since the tree hasn in-
ner nodes andn+1 leaves) we havep+q ≤ 2n+1 and
q ≤ 3n

ln(n) . We also need to remark that3n
ln(n) <

2n+1
2

for n large enough.

•
(

3n
ln(n)

)n+1− n
3 ln(n)

corresponds to the possibilities of

bindings. Indeed,3n
ln(n) is an upper bound for the num-

ber ofλ’s above a variable andn + 1 − n
3 ln(n) is an

upper bound for the number of leafs.

Lemma 35 and Proposition 5 allow to conclude. Note
that the replacement of4n by (4 + ε)n compensates all fac-
tors smaller than exponential.

8.5 End of proof of Theorem 13

Using thatM(n) ∼
(

1
3−2

√
2

)n
1

n
3
2

we have, forn large

enough, (we introduce an extra constantC > 1 to compen-
sate for the equivalent)

Φ(n, q) ≤ C

(
1

3−2
√

2

)n (
kn

ln(n)

)n+1− kn
ln(n)

n
3
2

(
qn

ln(n)

)n− n
ln(n)

We get a simpler upper bound by using then
3
2 to com-

pensate for the+1 exponent:

Φ(n, q) ≤

(
1

3−2
√

2

)n (
kn

ln(n)

)n− kn
ln(n)

(
qn

ln(n)

)n− n
ln(n)

=

(
k

4(3 − 2
√

2)

)n (
kn

ln(n)

) −kn
ln(n)

(
qn

ln(n)

) n
ln(n)

Remarking that
(

kn
ln(n)

) −kn
ln(n)

= e−kn
(

k
ln(n)

) −kn
ln(n)

and
(

qn
ln(n)

) n
ln(n)

= en
(

q
ln(n)

) n
ln(n)

, we have:

Φ(n, q) ≤
(

ke1−k

q(3 − 2
√

2)

)n (
qk−k

ln2(n)

) n
ln(n)

This means thatΦ(n, q) converges toward zero if
ke1−k

q(3−2
√

2)
< 1. Since, by Proposition 7.(1)ke1−k reaches

its maximum1 in k = 1 and0 < q(3 − 2
√

2) < 4(3 −
2
√

2) < 1 (recall that we will useq = 4− ǫwith ǫ > 0), the
equationke1−k = q(3 − 2

√
2) has two solutions, one for

k > 1 the other fork < 1. It is easy to see that the first solu-
tion is smaller than 3 because3e1−3 < 3 4

25 < 4(3 − 2
√

2)
andǫ = 4 − q can be chosen small enough.

(2) The computation is essentially the same withk <
1. It is easy to check that the solution (less than 1) of the
equationke1−k = q(3 − 2

√
2) is less than13 .

8.6 End of proof of Theorem 14

Ψ(n, q) = M(n)
( n

K ln(n) )
n−

n
3 ln(n)

+1

( qn
ln n )

n−
n

ln(n)

we compensate the exponent+1 with then− 3
2

in the asymptotic forM(n)

≤
(

1
qK(3−2

√
2)

)n

(qK
1
3 )

n
ln(n)

(
n

ln(n)

) 2n
3 ln(n)

usingn
n

ln(n) = en, we find:

≤
(

e
2
3

qK(3−2
√

2)

)n

(qK
1
3 )

n
ln(n)

(
1

ln(n)

) 2n
3 ln(n)

Thus it is clear that if e
2
3

(4−ǫ)K(3−2
√

2)
< 1, that is ifK >

e
2
3

(4−ǫ)(3−2
√

2)
≃ 2.84 < 3, then we have:

lim
n→+∞

Ψ(n, 4 − ǫ) = 0.

8.7 Proof of theorem 15

We will use the following theorem.

Theorem 36. LetC [>h]
n denote the number of binary trees

of sizen with height greater thanh. For 1 ≤ h ≤ n we
have:

C [>h]
n = O(Cnn

3/2e−h2/(4n))

Proof. It is a part of the Theorem 1.3 from [3]. Although,
as the authors say, this upper bound is rather poor for big
heights, it is sufficient for our needs.
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LetAn be the number of terms of sizen having at most
3 n

ln(n) λ’s and having binary-height greater than n√
ln(ln(n))

.

Let un = n+1
W (e(n+1)) andbn = n + 1 − un. By Proposi-

tion 7.(1), the pair(un, bn) gives, for fixedn, the “optimal”
proportion between numbers of leaves and of unary nodes.
Then,

An ≤ C [>h]
n

(
2n+ 1

3 n
ln(n)

)
ubn

n ,

where

• C
[>h]
n bounds the number of all possible binary struc-

tures of terms fromA.

•
(

2n+1
3 n

ln(n)

)
is justified as in the proof of theorem 10.

• ubn
n bounds the number of all possible variable bind-

ings.

Using our lower bound forLn and Theorem 36 it remains
to show that the following quotient tends to zero:

C(n)n3/2e−h2/(4n)
(

2n+1
3 n

ln(n)

)
ubn

n

(
(4−ε)n
ln(n)

)n− n
ln(n)

This is as follows. By Proposition 7.(2),un ∼ n
ln(n) . In fact

we use only thatun + 1 ≤ 3n
ln(n) for n big enough.

Since we know thatn − bn = un + 1 ∼ n
ln(n) , we can

use 3n
ln(n) as an asymptotic upper bound for it, we get

lim
n→∞

An

Ln
≤ lim

n→∞
cn2

(
4

3n
ln(n) e−( n

4 ln(ln(n)) )+
4n ln(ln(n))

ln(n)

)

= lim
n→∞

c · e(2 ln(n)+ln(4) 3n
ln(n)

− n
4 ln(ln(n))

+ 4n ln(ln(n))
ln(n) )

It is easy to verify that the term− n
4 ln(ln(n)) asymptotically

dominates all the other terms in the exponent. It means that
the exponent goes to−∞, asn increases, and consequently

lim
n→∞

An

Ln
= 0.

8.8 Proof of d(SN) ≥ 1
2

Proposition 37. If the set of unsafe terms has a density, this
density is less than12 .

Proof. By definition 27, write t =
A[(L[λx1.a1] B[λx2.a2])] where xi has at least one
occurrence inai (we only use a weak version of the
definition since we do not ask for at least two occurrences).
See Figure 9. We assume that, each time there is a possible
choice for a pattern, we choose the leftmost deepest
occurrence of the pattern. By taking the highest bindingλ

A

L

λx1

a1

x1

B

λx2

a2

x2

λx

A

B

b1

x

b2

x

L

x

Figure 9. The termst andϕ(t).

in L[λx1.a1] we may assume that in the branch ofL from
the root to the nodeλx1 there is no bindingλ.

Let ϕ(t) = λx.A[(L[x] B[(b1 b2)])] where bi =
ai[xi := x] (see Figure 9). Note thatsize(ϕ(t)) = size(t)
and that, since the branch ofL to λx1.a1 has no binding
λ, ϕ(t), no variable become bound or free, during the en-
coding. Since the occurrence ofx in L[x] is the leftmost
deepest occurrence ofx in ϕ(t) and since the node(b1 b2)
is the leftmost deepest node having all the occurrences ofx
in t, ϕ is injective.

Let ψ(t) = λx.A[(B[(b1 b2)] L[x])]. For the same rea-
sons as beforeψ is injective. It is clear that the set of images
of non safe terms byϕ andψ are disjoint and have the same
cardinalities. This gives the desired result.

8.9 Proof of Theorem 32

In order to satisfy assumptions of Theorem 34 we nor-
malize functions in such a way to have the closest to the
origin singularity located in|z| ≤ 1 at the position in
z = 1. So, we define functionsft0(z) = ft0(z/12) and
f(z) = f(z/12). Therefore we have:

ft0(z) = −
√

1 − z

2
+

√
1 − z + 4

(
z
12

)n0

2

f(z) =
1

2
− 1

2

√
1 − z

This representation reveals that the closest singularity of
ft0(z) andf(z) located in|z| ≤ 1 is indeedz = 1.We have
to remember that change of a caliber of the radius of conver-
gence for functionsft0 andf effects accordingly sequences
represented by the new functions. Therefore those new
functions enumerate two sequences(12)n ([zn]{ft0}(z))
and(12)n ([zn]{f(z)}). Now let us define functions̃f and
f̃t0 so as to satisfy the following equations:̃f(

√
1 − z) =

f(z) and f̃t0(
√

1 − z) = ft0(z). Functionsf̃ and f̃t0 are

13



defined in the following way:

f̃t0(z) = −z
2

+

√
z2 + 4

(
1−z2

12

)n0

2

f̃(z) =
1

2
− 1

2
z

The derivatives(f̃t0)
′ and(f̃)′ are the following:

(f̃t0)
′(z) = −1

2
+

(
2 z − 8

(
1−z2

12

)n0

n0 · z
)

4 (1 − z2)
√
z2 + 4

(
1−z2

12

)n0

(f̃)′(z) = −1

2

Finally derivatives(f̃t0)
′(0) = − 1

2 and (f̃)′(0) = − 1
2 .

To conclude the proof we use accordingly Theorem 34

so: limn→∞
[zn]{ft0 (z)}
[zn]{f(z)} = limn→∞

(12)n[zn]{ft0 (z)}
(12)n[zn]{f(z)} =

( fft0 )′(0)

( ef)′(0)
= 1.

8.10 Proof of Proposition 33

1. The functionf thus satisfies

f(z) = 3z + f(z)2.

Solving the equation and choosing between the two
possibilities (f(0) = 0) gives the solution.

2. Assume thatn0 = size(t0). Using the fact that every
combinatort havingt0 as a sub-term is eithert0 or has
the formt = (t1 t2) where eithert0 is a sub-term of
t1 but not of t2 or t0 is sub-term oft2 but not of t1
or finally t0 is sub-term of botht1 andt2 we get the
following equation.

ft0(z) = zn0 + 2ft0(z) (f(z) − ft0(z)) + (ft0(z))
2

which can be simplified to

ft0(z) = zn0 + 2 · ft0(z) · f(z) − (ft0(z))
2

Solving the quadratic equation with unknown func-
tion ft0 and choosing between the two possibilities
(ft0(0) = 0) gives the solution.
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