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Some properties of random\-terms

René David, Christophe Raffalli, Guillaume Theyssier
(Université de Savoie)
Katarzyna Grygiel, Jakub Kozik, Marek Zaionc
(Jagiellonian University)

Abstract

subject is some experiments made by Jue Wang e [11)).
Most interesting properties of terms are those concerning

We show various (syntactic and behavioral) properties of their behavior. However, to analyze them, one has to con-

randomA-terms. Our main results are that at leet4 of

the terms are strongly normalizing and that any fixed closed

sider some syntactic properties as well.
As far as we know, no asymptotic value for the number

term almost never appears in a random term. Surprisingly, of A-terms of sizex is known. We give (see Secti¢h 4) up-

in combinatory logic (the translation of the-calculus into
combinators) the result is different. We show that almdst al
terms arenot strongly normalizing, because any fixed term
almost always appears in a random term.

Keywords: A-calculus, strong normalization, randomness,
combinatory logic.

1 Introduction

Since the pioneering works of Church, Turieg al,,

more than 70 years ago, a wide range of computational
models have been introduced. It turns out that they are all

equivalent in what thegancompute. However, this equiv-
alence says nothing about whattgpical programs or ma-
chines of each of these models.

This paper addresses the following question. Having a5t
(theoretical) programming language and a property, what
is the probability that a random program satisfies the given
property? In particular, is it true that almost every random

program satisfies the desired property i.e. the probalislity

1? The notion of random program is precisely defined in

Sectior[b.

We concentrate on functional programming languages

and, more specifically, on thecalculus, the simplest such

language (sed 4] §.]10] for similar works on other models

per and lower bounds for this (super-exponential) number.
Although the gap between the lower and the upper bound
is big (exponential), these estimations are sufficient for o
purpose.

We prove several results on the structural form of-a
term. In particular, we show that almost every closed
term begins with “many’\’s (the precise meaning is given
in Theoren{ 16). Moreover, each of them binds “many” oc-
currences of variables (Theorefn$ [7, 18 frjd 19). Finally,
given any fixed closed-term, almost no\-term has this
term as a sub-term (Theore@ 23).

We also give a result on the behavior of terms, our orig-
inal motivation. We show that a random term is strongly
normalizing & N for short) with probability at least/4 and
we conjecture itis 1. Remember, that, in general, b&ing
is an undecidable question.

Combinatory logic is another programming language re-
ed to the\-calculus. It can be seen as an encoding of
A-calculus into a language without variable binding which
is fair for questions we are concerned with. This means that
there are translations, in both directions, which, for exam
ple, preserve the property of beisgV. Surprisingly, our
results concerning random programs are very different from
those for the\-calculus. For example we show that, for ev-
ery fixed termty, almost every term hag as sub-term and
this, of course, implies that almost every term is §6¥.

The different results fo6 N between\-calculus and com-

of computation). The only work that we have found on this i a6y Jogic might come from the large increase of size
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induced by the coding of bound variables in combinatory
logic. This is discussed in Sectifh 7.

The organization of the paper is as follows. In Secﬂon 2
we recall basic definitions of thecalculus. Sectio] 3 gives
combinatorial results we need in our proofs. The lower and
upper bounds for the number afterms of sizen are given



in Sectior[|4. Our main results appear in Secﬁbn 5. SectionDefinition 4. Letn be an integer. We denote by, the set
E contains results in combinatory logic, namely that every of terms of sizex and byL,, its cardinality.
fixed term appears in almost every term. Secﬂon 7 discusseﬁemark

the question of size, gives experimental results for qoesti

for which we have no answers. It also gives open question
and proposes future direction of research. Appendix at the

end gives missing details for some proofs.

Note that, in sectionf§ 2 13 5, we do not aim at providing
the best possible estimations for the analyzed sequence
Most of them can be easily improved. We present results

which are sufficient for our structural results, withoutrsac
fying the simplicity of proofs for better estimations (usse
the result we get is tight).

Acknowledgments

This research has been partially supported by a projec
funded by the French Rhdne-Alpes region and initiated by

P. Lescanne.

2 Generality on the A-calculus

Definition 1. The setA of A-terms (or simply terms) is de-
fined by the following grammar (whetéis a countable set
of variables)

tu:=V | AVt | (tu)

As usual, A\-terms are considered modulo the-

equivalence i.e. two terms equal modulo a change in theirtrees withn inner nodes and: leaves.

bound variables are considered equal. Note tsgrms

S,

This is not the usual definition of size. Most often the
size of a variable is 1. We choose such definition (by anal-
ogy to the research on trees), hoping that our results can be
easily translated to the usual case. The translation turned
out not to be trivial and will be a subject of our future work.

From the point of view of implementation, both definitions

are not realistic (see the discussion in Secﬂon 7).

3 Classical combinatorial results

3.1 Catalan numbers

We denote by’ (n) the Catalan numbersi.e. the number
of binary trees withn inner nodes. We use the following
proposition.

Proposition 5. C'(n) ~ —+—~ and thus, for large enough

n3/2/7

n, we haveC'(n) > 07;43—72 for some constan®’ > 0.
Proof. This is a classical result. See for exam;ﬂe [4].00

3.2 Large Schréder numbers
We denote byM (n, k) the number of unary-binary

LetM(n) =
> k>1 M(n, k) denote the number of unary-binary trees

can be seen as trees. Thus, we often use (without givingWith n inner nodes. These numpers are !<nown as thellarge
the precise definition) the classical terminology abowggre ~Schroder numbers. Note that, since in this paper the size of

(e.g. branch, path, root, leaf, etc.)

Notation2. 1. ¢’ is a sub-term of (denoted a$’ < t) if
t =1t or(t=X.wandt < wu)or(t = (uwv)and
(t' <wort <w))

2. Lett be a term and: = \z.a be a sub-term of.

e We say that\x is binding ifz really occurs free
ina.
e We say thai\z is in head position it = A7 .u

variable is0, we use them instead of the so-called Motzkin
numbers, which enumerate unary-binary trees witiotal
nodes. We use the following proposition.

1. M(n, k)= C(k—1)("*5 ).

Proposition 6. i

2. M)~ (553) " i
Proof. (1) A tree enumerated hy/ (n, k) hasn + k nodes,

among whichk — 1 are binary anch — k£ + 1 are unary.
(2) The asymptotic fod/ (n) is obtained by using standard

for some, possibly empty, sequence of abstrac-tools of the generating function (for this sequence it isatqu

tionsA 7y .

3. The unary height of a terimis the maximal number of
A'sin a branch oft.

4. The binary height of a terinis the maximal number of
applications in a branch of.

Definition 3. The size (denoted asze(t)) of a termt is
defined by the following rules.

- size(x) = 0if z is a variable.

- size(Ax.t) = size(t) + 1

- size((tu)) = size(t) + size(u) + 1

tom(z) = 2=2=1=62+2%y For more details se][4]. O
3.3 Lambert W function

The Lambert functioiV (x) is defined by the equation
x = W (z)e ) which has a unique solution iR, . We
use the following proposition.

Proposition 7. 1. Leta, b, ¢ be positive constants and
M=

e The functionf defined byf(z) =
(az)?=°* is increasing onl0, M] and decreasing on
[M, +o0l.



2. For z large enough, we havin(z) — In(In(z)) <
W(z) <In(z) — In(In(z)) + 1

Proof. The proof is given in Appendix. O

4 Bounds forL,,

As far as we know, no asymptotic analysis of the se-
guencel,, has been made. Moreover, typical combinatorial
techniques does not seem to apply easily for this task.

4.1 Lower Bound for L,

Theorem 8. For anye > 0 and forn large enough we have
_ ™ Ty
L > ((4 s)n)

In(n)
Proof. Let LB(n, k) be the number oh-terms of sizen
with k£ head)\’s and no othen below. Since the lower part
of the term is a binary tree with — k inner nodes with
k possibilities for each leaf, we haveB(n, k) = C(n —
k)kn—*+1 Sincen+1>n—k+1, by PropositiorﬂS we get
LB(n, k) > KM for some constank’. The result
n2
follows from Lemmg below. O

Lemma 9. For any K, ¢ > 0 and forn large enough we
have

n—k+1

~ o (4k)
>

Proof. The proof is given in Appendix.

)

4.2 Upper Bound for L,

The computation of an upper bound uses Theo@m 13.been checked by Maple.

Corollary 11. For all € > 0 and forn large enough

In(L,,)

In(4d—e)—1<
nd—e)-1< 2

—In(n)+In(ln(n)) < In(124-¢)— %

5 Main results

By an analogy to researches on graphs and trees, we de-
fine a notion of a “random” term using asymptotic densities.

Definition 12. Let A be a set of terms.
1) We denote by#(A) the cardinality of A.
2) We denote by(A) the following limit (if it exists):

#ANA,)

lim )

n—oo
Remarks and notation

e Note thatd is not a measure, in the usual sense, since
it is not countably additive. Moreover, note th&tA)
may be undefined if the previous limit does not exist.

e Let P be a property of terms. H({¢ | P(t)holds}) =
«, we say that the density of terms satisfyifRgs «.
If « = 1, we say that a random term satisfies

The idea of proofs

We use two different technics.

In Section, a density 0 is proved by computing
an upper bound on the cardinality of the set we are
considering, by using the lower bound given in Theo-
rem @ and by showing that the quotient tends to zero.
The computation of these limits is quite standard. A
sketch is given in Appendix. The computations have
The corresponding file, to-

Since this result is not used in sectiﬂn 5 the proof is only gether with a pdf of it, can be found at the URL:

given in the appendix.

Theorem 10. For all ¢ > 0 and forn large enough, we
have
o)
L= )

4.3 Comparison between the lower bound
and the upper bound

(124 ¢e)n
In(n)

In the ratio between our lower and upper bounds, the

www.lama.univ-savoie.frbdavid/ftp/limit

In Sectior{ 5.2 we show that a sétof terms has density
0 by defining an injective, size preserving functigrirom
A into A (we call such functions codings). Then we show
that the image of» has density 0. This is done either by
using the fact that it is included in a set, which is already
known to have density 0, or by computing an upper bound
for the cardinality of this image.

Note about the statement of the theorems

dominant factor is exponential. This means that we are far 1. Many of the following sub-sections use results of the

from having an equivalent, but still this is not too bad be-
causeL,, is super-exponential.

The following corollary shows that we know the two first
terms of the asymptotic expansionlafL,,), but we do not
know the linear factor yet.

previous ones. When, in some section, we say: ‘et

a random term”, this implicitly mean that we restrict
ourselves to terms having the properties for which we
have seen, in the previous sub-sections, that it has den-
sity 1. We also assume that its size is big enough.



2. The statement of the theorems sometimes requires tdBecause a variable can only be bound)bybove and be-
give a name to the size of terms. This size is always cause such a term has at mast- " ( 5+ 1 leaves, we
denoted byn. Thus a statement “the density of terms have

satisfyingP(t, n) is o means that

o BUEEA I PEY

5.1 Proofs using calculus

5.1.1 The number of\’s in a term

Theorem 13. 1. The density of terms having more than

3n
Tim) N'sis 0.

2. The density of terms having less thgﬁ‘m A'sis 0.

Proof. (1) Let S(n, k) be the number of terms of size
n_containing more thaq’“—” Ns. We haveS(n, k) <

Zp> kn_ UB(n, p) WhereUB(n p) = M(n,n —p+

T ()
1)p"~P*L. This is because a term with \'s is a unary
binary tree whose — p + 1 leaves are bounded by, at most,
p nodes. By Propositioﬂ 7.(1) the functigfi—?*! is de-
creasing or{m, oo[. Observing that, fok > 1,

+
W (e(n+1)) < lnn
quotient tends t@) we thus have

S(n, k) < (hin))nﬂ% Z;n M(n, p)

= In(n)

kn - mtn
SMW(W@)

Using our lower bound forL,, we find "’“) <
®(n, (4 —¢)) where

®(n,q) =

To get the result it remains to show that, for= 3 and
anye > 0, ®(n,4 — ¢) tends to 0. The proof is given in
Appendix.

(2) The proofis similar. O

5.1.2 Bounds on the unary height of a term

Theorem 14. The set of terms with the unary height greater

than —*— has density 1.

TTa(m)

Proof. Let M,, be the number terms of size with more

than 17— Ty A'S and with the unary height less th%—ﬁ(n)

for n large enough (this is because the

n n 5T T
e 200 ()

Dividing by our lower bound for the number of terms (The-
orem[§) we getf= < W(n, 4 — ¢) where

3 lr:l(n) +1

\I/(n, q) _M(n)( PR

(%) ™7
It remains to show that, fokk = 3 and anys > 0,
U(n,4 —¢)tendsto 0. This is done in Appendix. O

5.1.3 Bounds on the binary height of a term

Since the following theorem is not used later, the proof is
given in the appendix.

Theorem 15. The density of terms having binary height
greater than equals 0.

n( n(n
5.2 Proofs using coding

5.2.1 The number of)\’s in head position

Theorem 16. Let g(n) € o(y/n/In(n)). The density of
terms having less thag(n) head\’s is 0.

Proof. Let us denote by, the set of random terms of size
n with less thary(n) head\’'s. We construct an injective,
size-preserving function (coding): A,, — A, such that
its image has density.

Lett € A,. We can writet = Azy ... Az,.M, where
p < g(n) and M is a term starting with an application
and containing at least one(by Theoren{ 14). LeB be
the maximal purely applicative prefix dff i.e. B is the
term usug only appllcatlon nodes and variables such that
M = B[ t] where terms int start with A and variables
in B are taken from the seftzy, ..., z,} (see Figurd]1).
Let us denote byl(n, p, b, ?) the set of terms im,, hav-
ing, as in the decomposition efabove,p head\’s, then a
purely apBIicative context of sizig and, in that context, a
sequencet of subterms beginning by. Because < g(n)
the cardinal ofA(n, p, b, T) is less than

P(b,n) = C(b+1)(g(n) + 1)**+%.

Lett € A(n, p, b, T) where 7 = [t1,...,tk]. By hy-
pothesis o4,,, we havek > 1. Lett; = Az;.u;. Letz be
a fresh variable and] = u;[z; := z]. Consider the term
T = Xzdzy .. Axp.(u) (uhy (- .. (uf_q up) .. .) which is



Figure 1. th.[1§, the ternt € A,,.

of sizen — b. Let A\y.C denote the term rooted at the left-
most deepesk of term 7" and letY be the set of variables
introduced by the\’s occurring on the path from the the root
t}c/) Xy. By Theoren{ 14 there are at leagf’—; elements in
Let U be the set of purely applicative terms of size 1
whose variables are chosen frdih For anyu € U, let
p(t, u) be the term obtained by substituting sub-texmC
in T with Ay.(u C).
There are at least

Q) =c0-1) (5 lj(n)>b

elementsirU. Since forn large enough we hav(b, n) <
Q(b, n) (this is because the limit of the quotient is 0), there
exists an injective functioi which assigns to any purely
applicative prefixB of size b an element fromU. Let
o(t) = p(t, h(B)) whereB is the purely applicative prefix
in the decomposition of (see FigureﬂZ). By the injectivity
of h, we get thatp is injective, too.

We also definel(¢t) = {p(t, u) : u € U}. Note that for
te A(n,p, b, 7) the cardinal of¥(t) is alwaysQ(b, n).
By construction, for any pair fo distinct termsand¢’, the
setsU(t) and¥(¢') are disjoint.

Let us denote by)(b,n) = oG- BY the assump-
tion on g there is a functiore such thats(n) tends to O

and v(sm) = St (). Since St i

bounded, since, fob > 2, (ﬁ)% is decreasing i,

it follows thate (b, n) tends to 0 uniformly irb. Since the
A(n,p, b, 7) form a partition ofA4,,, the result follows. O

P(b,n)

5.2.2 Head\’s bind “many” occurrences

Theorem 17. Let g(n) € o(+/n/In(n)). The density of
terms in which there is at least oneamongg(n) head\’s
that does not bind any variable is 0.

Az
)\.’L‘l
)\IQ

Figure 2. th.[1§, the termp(t).

Proof. Let g(n) € o(+y/n/In(n)) and denote by} the set
of random terms of size for which there exists at least one
A among firsty(n) head\'s that does not bind any variable.
We construct a coding functiop: 7 — A,, such that the
density of its image i§.

LetT = Ay ... z4(,).A be aterm fronil}; and leti be
the smallest integer such that théh head) in T' does not
bind any variable. Take

@(T) = /\Il cee 5171'71171'+1-(117i+1 (/\IiJrQ . .xg(n).A)),

The size ofp(T) is n. Terms from the sep(7?) have less
thang(n) head\’s, so, by Theorerh 16, the density of them
in the setA,, is zero. Since the functiop is injective, the
density ofI? is also zero. O

Theorem 18. Letg(n) € o(In(n)). The density of terms in
which the total number of occurrences of variables bound
by the first three\’s is at mosty(n) is 0.

Proof. Let g(n) € o( In(n)) and denote by}, the set of
random terms of size in which the total number of occur-
rences of variables bound by first thr¥s is at mostg(n).
We construct a coding functiop: 7}y — A,, such that
the image off is of density zero in\,,.

Let us define an equivalence relatien, on the set of
random terms of size in the following way: M ~,, N
iff M andN are equal after substituting all occurrences of
variables bound by first thregs by the variable bound by
the first\. Let us denote byM] the equivalence class of
M.

LetT = Az w2 Aw3.A be a term froni},,,y. There are

at most39(™ elements in the clagg’].



LetT' = Axy.Alzy := y, 2 := y, x3 := y|. The size
of T"isn — 1. Let us consideia.U the sub-term off”’
such thatha is the leftmost deepest in T’. Denote by
B(T) the set of variables bound bys occurring in7” on
the path fromha to Ay. Note that the variable does not

occur neither irfl” nor in B(T'). By Theoren{ 14, there are A
at leastz—y — 3 such\’s. Since3 < g7, there are at
| n . Axl Ayl Az
east(gyiry) elements i3(T). As g(n) € o(ln(n)), we
have
) 39(n)
nlinéo _n_ =0. TTr Yy z=z
(6 ln(n))

Thus, we can find for each clagg] an injective function Figure 3. th. 2], the terms and(¢).

hr from [T] into the set3(T).

We definep(T') as the term obtained froffi' by replac-
ing the sub-term\a.U with Xa.((y B) U), where B = e The A\-width of ¢ is the maximal number of pairwise
hiry(T). incomparable binding\’s.

All terms from the image(7y(,,)) start withA that binds
no variable. By Theorerh [L7 we know that the set of such
terms have density zero in,. Since f is injective, the
density ofTy,, is zero, as well. O Proof. Let us denote byV,, the set of terms of size with

A-width greater thar2. We show that there exists an injec-

Theorem 19. For any fixed integerg¢ and £/, the density tive functiony: W,, — A,, such that its image has density

Theorem 21. The density of terms havingwidth at most
2is 1.

of terms in which each of the firét\’s binds more thark’ 0. Lett be an element ofV/,, and let us denote by, \y

variablesis 1. and\z the three highest, pairwise incomparable bindirgy
o (appearing in this order from left to right i).

Proof. Let us fix integers:, " and letg(n) = /In(n). We Let Az.A, \y.B and\z.C be sub-terms rooted at those

assume that > 3. By Theoren] 18, the total number of g (see Figurd]3). Lett’ = Afz = y], leta be a new

occurrences pf variables bound by fikst\'s in a random variable, letC’ be the term obtained fror@ by replacing
term of sizen is more thany(n). the leftmost occurrence of with « and the others (possi-

Foreach andq > g(n) let A(n, ) be the setofrandom |y none) withy. Let o(¢) be the term obtained fromby
terms of sizen having exactly; A's in head position andlet  aqding\q at the root, substituting both sub-terts. A and
B(n, q) be the set of terms ir(n, ¢) for which one of the ), & with ¢ and replacing the leftmost occurrenceyoin
first £ \’s binds at most’ variat?les. Finz/;tlly let) be the B with term (A’ C"). We havesize(p(t)) = size(t). Also
function defined by)(q) = M# Considerthe  note that since we chose the highest three incompaible
equivalence relation,, defined analogously to the relation no variable becomes free in the constructed term. The injec-
from the proof of Theorerh 118, but with respect to the first tivity of . comes from the fact that botty and the sub-term
k (instead of three) heaxls. (A’ C") of p(t) are uniquely identifiable (see Figlﬁle 3):

ForT € A(n,q) the cardinality of{T'] N A(n, ¢) is at
leastk?(™) and the cardinality of7] N B(n, q) is at most
k-k -q¢¥ - (k—1)9* and thus the quotient is less than
¥ (q) which, sincey is decreasing, is less thar{g(n)).

Since the[T] N A(n, q) give a partition ofA(q, n) and
the A(n, ¢) give a partition of the set of random terms of
sizen and since)(g(n)) has limit 0 whem tends toxo this

e Lety; (resp.v,-) be the deepest node above the two left-
most (resp. right-most) occurrencessofRemark that
since there is exactly 3 occurrencesupbne of these
two nodes is above the other. Liebe the deepest one.
Ay is the first binding\ on the path from the nodeto
the middle occurrence af;

finishes the proof. O o then, the application noded’ ) is the deepest node
above the middle occurrence efand all the occur-

523 The width of a term rences ofy on the left of this middle occurrence of

Definition 20. Lett be \-term. Since the image op contains only terms starting with

a A which binds only3 occurrences of the corresponding

e Two \'s in ¢ are called incomparable if there is no  Variable, by Theorerp 19, the density ofiV,,) is equal to
branch containing both of them. zero. The injectivity ofp finishes the proof. O



)\1'1

)\xg ;

)\xl
AT2 % AT,

: AT %
)\xm+1

ALy, ' :

/o\ /6\

Figure 4. th. 24, the terms € A% andT".

5.2.4 Arandom term avoids a fixed closed term

Definition 22. Lett, be aterm. We denote by the set of
terms having, as a sub-term and bj’c the setA’o N A,

Theorem 23. Letty be aterm. I is closed or if there are
at least two\'s in tg, the density of\% is 0.

Proof. These are special cases of the next theorem. I

Theorem 24. Lett, be a term of sizé’ with k£ occurrences
of free variables. Assumié > k + 1. Then the density of
Alois 0.

Proof. We construct a coding: A — A,, such that its
image is of density 0.

There are at most’ — k + 1 occurrences of’'s and at
mostk’ + 1 leaves inty, so there are at most

K =M®#)(K +1)F+

The variabler is bound by then-th X in the treeT”. Since
m is the number of the trefgy, the functiony is injective.

By Theorem[1p, each ok head\'s in a random tree
of sizen binds more that’ variables. Trees from the im-
agef (A, N At) do not have this property, since theth
A binds onlyk’ variables. Thus, those trees are negligible
among all trees of size. O

5.2.5 The density of strongly normalizable terms

Definition 25. e The reduction (denoted asr> t') on
terms is the contextual closure of tffe reduction i.e.
(Az.a b) > az := b

e Atermt is strongly normalizable (denoted &g SN)
if every sequence of reduction starting froms finite.

Theorem 26. The density of strongly normalizing terms is
(if it exists) at least.

Proof. This is done as follows. We use Theorfrh 28 below
(usually known as th€-theorem) which states that a syn-
tactic property (that we call safety) implies strong normal
ization. We then give 4 encodings of unsafe terms in such
a way that the images of these encodings are disjoint and
have the same cardinality (see Theo@n 29). This implies
that, if the set of unsafe terms has a density, this density is
less than;. O

Definition 27. Say that a termt is unsafe if there are
contexts H, E;, E, and terms P, P, such thatt =
H[(E;[M\x;.P] E.[\x,.P,])] and, fori € {l,r}, x; occurs
at least twice inP;.

Theorem 28(2-theorem) If t ¢ SN thent is unsafe.
Proof. This is theorem 1.4.13 p34 ifi][7]. O

Theorem 29. If the set of unsafe terms has a density, this
density is less than.

Proof. Since this proof is rather involved, we give in the

such terms and we can enumerate them in a fixed way. Letappendix, a simpler one where we show that the density of

m be the number ofg.
occurrence of\, since otherwise we would havé < k.
n—oo

Letg € o(5yy) e such thag(n) = occ. Letn be an
integer satisfyingy(n) > K.

Lett € Al® be a random term. By Theorgm] 16 the term

t has more thamn head\’s sincem < K (see Figure[l4).
Let us consider the terff which is obtained from the term
t by adding an additional unary node (labelled with) at
depthm. Let us definep(t) as the terml” obtained by
replacing the left-most deepest sub-teégin 7" by the term
t; = (U B) of sizek’ — 1 (see Figurd]4), wher# is a
binary tree such thdf = (z (z (... (z z)...))) andB =
(z1 (z2 (... (xxg_1 xx) . ..))) (in case where, has no free
variables we put; = U) . Thus, the size df” is equal ton.

The treety contains at least one

the set of unsafe terms is less than

By definition [2T writet = H[(M; M,.)] where, fori €
{l,r}, M; = E;[Az;.P;] andz; has at least two occurrences
in P;. Assume thatM; M,.) is the left-most highest pattern
in t with the given property and that, foie {I, r}, Az;.P; is
the left-most highest pattern itf; with the given property.
We partition the set of unsafe terms in four disjoint suhsets

1. LetU, o be the set of unsafe terms of sizéor which,
for bothi in {I, 7}, F; binds no variable inz;. P;.

2. LetU,, (resp.U, ) be the set of unsafe terms of size
n for which E; (resp. E,.) binds at least one variable
in \z;.P, (resp. Az,..P.) and E,. (resp. E;) binds no
variable in\x,.. P, (resp.\x;.P,).
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Figure 5. th. P9, the termg and F (¢).

3. Letl, ; be the set of unsafe terms of sizéor which

E; and E,. bind respectively at least one variable in

Az;. P, and\z,.. P,

Note that, by these definitions, whéf binds a variable
y; in Az;.P; there is exactly one occurrencegfin P;.

We first show that that/, ; is negligible. This is done
by giving an injective functior¥' from U, 1 to a negligi-
ble sub-set ofA,, (see figurd]5). Foi e {I,r} write

Ei[] = Ai[\y:.B;[]] where)y; is the firstA in the path
of M; (down-up) fromAz;.P; to the root such thay; has

an occurrence inP;. Let z,y be fresh variables. Let
B; = Bilyl, P/ = Pj[x; := z,y; = y]. Finally let
F(t) = My, z. H{(A[(B] )] A (B P)])]. Itis clear

that F'(¢) is closed, has size and thatF" is injective. Since
F(t) has exactly 4 occurrences gf by Theoren] 19, this
finishes the proof thdt,, ; is negligible.

The encodings are defined in the following way. ket
be a fresh variable?! = P;[x; := x] andE! = E;[x].

1. If t € Uy, (see figurg]6) let
Ei(t) = e H[(E] E[(F P))),
B(t) =X H[(El[(Pl POl EL,
B(t) = e H[(F E-[(E; P)))]
Fy(t) = o H[(P] E.[(P] E})])].
Note that, since € U, o, the Fj(t) are closed.

2. Fort € U,,, (see figurd]7) write&,[| = A,[\y,.B,[]]
where )y, is the firstA in the path of)M, (down-up)
from \z,.. P, to the root such that,. has an occurrence
in P,. Letx, y be fresh variables. Fgre {1, 2, 3, 4},
let Fi(t) = eH[(Eft] = Ay,.B,[G(1)]))
whereG () = (P F}), Ga(t) = (P! P), Gs(t) =
(P Q) where Q.. is obtained fromP, by replac-
ing the left-most occurrence af by y and G4(t) =
(P Q) where@! is obtained fromP,. by replacing
the right-most occurrence af by y. Sincet € U, ,,
the F;(¢) are closed.

and

Figure 6. th.R9,t € U0, Fi (1), Fo(t), B3(t), Fi(t).

3. Fort € Uy let Fi(t) = \e.H[(E.[G)(t)] Eifz])]
where theG’; are computed as thé; by permuting
the roles of the indicek r.

To finish the proof, it remains to check that

- 5 1 U, is injective for eachi, j. This is done (as
in previous proofs) by showing that each new node can be
recovered.

- Each F; preserves the size and, for eaghthe cardi-
nality of the images of thé; | U, ; are identical . This is
immediate.

- Theimages ofthé; | U, _; are all disjoint. This is quite
fastidious but easy. Most often, looking at the number of
occurrences of in some branches is enough but, for some
cases, we must also look at other variables. For example to
show thatF (t) # Fi(t') fort € U,o andt’ € U, we
use the fact that in some part Bf(¢) there is no binding\
whereas there is one ifi (t'). O

6 Combinatory logic

Definition 30. 1. The set” of combinators is defined by
the following grammar

C=K|S|I]|(CC)

2. The size of a combinator is defined by the following



Proof. The proof uses standard tools on generating func-
tions. It follows from Proposition 33 and Theorénj 34 be-
low and some easy computations. The details are given in
Appendix. O

Proposition 33. 1. The generating functiofi enumerat-
ing the set of combinators j§(z) = 1—12@

2. The generating functiorf;, enumerating set of all

combinators having, as a sub-term isf;,(z) =
VI—12 2 VI—=12 zF4 z"0
T2 + 2 '

Proof. The proof is given in Appendix. O

In the next theorem, the symbpI*]{ F'} represents the
coefficient ofz™ in the series expansion of the generating
function F.

Theorem 34. Letv, w be functions satisfying the following
hypotheses:

e v, w are analytic in|z| < 1 with z = 1 being the only
singularity at the circlgz| = 1.

e v(2), w(z) in the vicinity ofz = 1 have expansions of

the form
v(z):va(l—z)p/2, w(z):pr(l—z)p/2.
p=>0 p>0

Let v and w be defined byo(v/1—2) = wv(z) and
w(v1—z) =w(z). Then

o e} @)

n—oo n (o) '
rules: size(S) = size(K) = size(I) = 1 and [z H{wiz)} - @)(0)
size((uv)) = size(u) + size(v). Proof. This is a standard result in the theory of generating

functions. For example, seE[lS]. O
3. The reduction on combinators is the closure by

contexts of the following rules. (K u v) > u
(Suvw)> (uw (vw)) (Iu)>u

7 Conclusion

i ] 7.1 Other notions of size
Remark: Itis easy to see that the number of internal nodes

in a binary tree represented by a combinator is smaller by 1 The difference between Theorejm] 23 in thealculus
than its size. Therefore, all the results concerning diessit and Theorenf 32 in combinatory logic may be surprising
would be the same if we had defined the size as a numbesince there are translations between these systems which
of internal nodes (like we have forterms). respect many properties (for example the one of being ter-
minating). However, these translations do not preserve the
Theorem 31. The density of non strongly normalizing com-  size.
binators is 1. The usual translation, which we denote’ly from com-
binatory logic toA-calculus is linear, i.e. there is a constant
Proof. LetQ = (S 11 (S11)). ThenQ reducestoitself such that, for all termssize(Ti (t)) < k * size(t). Note
and is thus not strongly normalizing. The theorem is thus that this translation is far from being surjective: its irrag
an immediate consequence of the next theorem. [ has density 0. The usual translati@pin the other direc-
tion (see |[Il]) is not linear. As far as we know, there is no
Theorem 32. Let?, be a combinator. The density of com-  known bound on the size df(t) but it is not difficult to
binators having, as a sub-termis 1. find examples whereize(T5(t)) is of ordersize(t)?.



The point is thafl; has to code the binding in some way - Give the density of typable terms. Numerical experi-
and this takes place. The difference between the two the-ments done by Jue Wang (s [11]) seem to show that this
orems comes probably from the definition of size that we density is 0.
have used for the variables in thecalculus. The one we - Compute the densities of sets studied in Sedfjon 5 with
have used (or the one with the size of a variable being 1) other notions of size.
are, for the implementation point of view, not realistic be-
cause, in case a term has a lot of distinct variables, it is notReferences
realistic to use a constant number of bits to code them. The
usual way to implement this coding is to replace the names
of variables by their de Bruijn indices: a variable is replc
by the number of\’s that occur, on the path from the vari-
able to the root, between the variable and Aéhat binds  [2] L. Comtet, Advanced combinatorics. The art of finite
it. Note that, in this case, different occurrences of theessam  and infinite expansionsRevised and enlarged edition,
variable may be represented by different indices. Reidel, Dordrecht, 1974.

Choosing the way in which we code de Bruijn indices
gives different ways of defining the size of a term. This can
be done in the following ways:

- using unary notation, i.e. the size of the indexs
simply n itself;

- using binary notation, i.e. the size of the indexs
[log2(n)], i.e. the logarithm of: in base 2. [4] P. Flajolet and R. Sedgewicinalytic combinatorics

Cambridge University Press, 2008.

[1] H. Barendregt,The Lambda Calculus. Its Syntax and
Semantics Studies in Logic and The Foundations of
Mathematics, vol 103, North-Holland.

[3] Philippe Flajolet and Zhicheng Gao and Andrew M.
Odlyzko and L. Bruce Richmondlhe Distribution of
Heights of Binary Trees and Other Simple Tregdume
2 of Combinatorics, Probability & ComputingCam-
bridge University Press, 1993.

7.2 Some experiments [5] J.D. Hamkins and A. MiasnikoZ he halting problem is
decidable on a set of asymptotic probability ohmtre

Although the results we proved concern only the model Dame J. Formal Logic 47 (2006) (4), pp. 515-524.

where the size of a variable 5 we did some experiments
on the other models. There is an easy algorithm (polyno-[6] A. Rybalov, On the strongly generic undecidability
mial time inn) to computel,, for each model of size. This of the Halting Problem Theoretical Computer Science,
algorithm can be sometimes adapted to compute (still in  Volume 377, Issues 1-3, 31 May 2007, Pages 268-270.
polynomial time) the number of terms of sizehaving a
given propertyP. We did this for several simple syntactical
properties until size 1000. It is always a strange exeraise t
guess the limit of a sequence from its first values, but our

[7]1 M.H.B Sgrensen,Normalization in A-calculus and
Type theory,PhD thesis University of Copenhagen.
ftp://ftp.diku.dk/diku/semantics/papers/D-367.ps.gz

results, at least, suggest the following: [8] M. Sgrensen and P. Urzyczybectures on the Curry-
- Almost all terms start with severals for model with Howard Isomorphismvolume 149 ofStudies in Logic
constant size variables (99.99% start with at least)ofw and the Foundations of Mathematidslsevier Science,

size 1000), whereas it is not clear that terms starting witha  2006.
application are negligible for other models;

- Identity almost always (exceptions represent a frac-
tion of terms less thah0~> for size 500) occur for models
with non-constant size of variables, whereas at least 80%[10] G. TheyssietHow common can be universality in cel-

[9] G. Szegd,Orthogonal polynomialsfourth ed., AMS,
Colloquium Publications, 23, Providence, 1975.

of terms don't contain identity for model with variables of lular automata? 22nd Symposium on Theoretical As-
constant size (for variables of sife we now that it goes pects of Computer Science. Volume 3404 of Lecture
toward 100%). Notes in Computer Science, pp 121-132, 2005.
. [11] Jue Wang,Generating Random Lambda Calculus
7.3 Future work and open questions Terms http://cs-people.bu.edu/juewang/research.html
We give here some questions for which it will be desir- [12] H.S. Wilf, generatingfunctionologgecond ed., Aca-
able to have an answer. demic Press, Boston. 1994.

- Give an asymptotic equivalence fby, or, at least, bet-
ter upper and lower bounds.

- Give the density of strongly normalizable terms. We
conjecture that it is 1.

[13] M. Zaionc,Probability distribution for simple tautolo-
gies Theoretical Computer Science, 355(2):243-260,
2006.
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8 Appendix

8.1 Proof of Proposition [q

The first point is immediate. The second is as follows.

Let A(z) = In(z) — In(In(z)) and f (y) = yeY.

Since f is increasing, to show that(z) < W(x) it is
enough to show that(A(x)) < x which is trivial since this
means:

(In(a)

which is true forz > e.
Using the fact thaf is convex we get (see Figuﬂe 8):

— hl(ln(x))eln(z)7ln(1n(z)) - (1 _ 1n1(11)r2$))) <z

In(In(x))
In(z)—In(In(z))+1

W(zr) < A(z) — L= = A(r) +

f7(A(=))

which is less thati(x) + 1 for « large enough.
8.2 A useful lemma

Lemma 35.

3n =0 (8

 mn(n)
In(n) )
In(n)

Proof. Let v, = (*%1).

Tn(n)
replacep ! by CpPt2e~? and gety,, ~ w,,. By developing
In(wy,) we getln(w,,) = 3n% +o(n W) which
gives the desired result. O

Use Stirling approximation to

8.3 Proof of Lemma f

Let « = k/n. By Propositionl]7(1) the maximum
of f(a) = (4na)""~*! is obtained fora = ki =

W(42?;11+1))_ Let ko = W. By Proposition[[7(2)
we have
n(In(4e(n + 1)) — W(4e(n +1)))
k1 — kg =

W(4e(n + 1)) In(4de(n + 1))

n(ln(ln(4de(n +1))) — 1)
In?(4e(n + 1))

Thus,®(n) > ¥(n) where

k=1 nz
_ n(In(In(4e(n +1))) — 1) | (4ky)nFo+!
wn) = | el 1) | Gl

11

[f(A
f7(A(=))

(z))—=|

Figure 8. Bound for Lambert W function

The result follows then immediately from the following
fact:
Fact lim r{n)

n—+oo [ (4—c)n\ " W
In(n)

Proof ReplacingK andln(In(4e(n + 1))) — 1 by any con-
stantC' we get the following inequalities fot large enough:

= +o0o foranye > 0.

(4k0)nfk0+1

3
n2

\I/(TL) = Oln2(4e7(ln+1))

n+1
NG a(n+1) " Wm@Ee(nF1)
z Oln3(4e(n+1)) (ln(4e(n+l)))
Using n < " we get
In(de(n+1)) = In(n)’
C NG A(ng1)  \"T 0D
= In3(4e(n+1)) \ In(4e(n+1))
1
Then, we use lim _ Il =1
n——+00 ln(4e(n +1))
NG Ant1) \"T D
= Oln3(n) (ln(4e(n+1)))
" :
Ve > 0, lim <n+ ) = e gives:
n—-+4oo n
\Vn 4n " )
> Clna(n) (ln(4e(n+1)))
, 41n(n) " o
Ve >0, nllgloo (( —€) In(4e(n + 1))) = toogives:
yn_ (A= )" T
> Clng(n) ( In(n) )

This ends the proof becaukey,,_, 1 ﬁ =



8.4 Proof of theorem [L( ( k n e \ O gn O\ mm
“(wm) (i) (5)

4(3 —2v/2)
Let N,, be the number of terms of sizewith less than

ln(n and more thanm X's. Note that, here, we use Remarking that( o ))W _ efkn( k )lnw and
TheoremEIS and that the proportion of unary nodes over

binary nodes in such trees is far from the typical proportion (ln(n)) e =e" (%) 7, we have:
in ordinary unary-binary trees which tends to some nonzero
constant. We have

. n+1—_ ;ln k 1—k n k*k ﬁ
N < Co- i) () () v = (555) (i)
where q

. This means that®(n,q) converges toward zero if
e C(n — 335y ln’én))) corresponds to the binary structure .- 1. Since, by Propositiof] 7.(e!~* reaches
(which has at most — binary nodes). G2 S oY P e
its maximuml in & = 1 and0 < ¢(3 — 2v/2) < 4(3 —
o (??n#) is an upper bound the number of possible dis- 2v/2) < 1 (recall that we will usg = 4 — e with ¢ > 0), the
2(m) equationke! =% = ¢(3 — 2v/2) has two solutions, one for
trlbut|ons of unary nodes within binary structure. This
. . . k > 1the otherfork < 1. Itis easy to see that the first solu-
is because, in general, the number of possible ways,. ~ . 13 4
; : : g tion is smaller than 3 becauge' —3 < 3. < 4(3 — 2v/2)
of insertingg unary nodes in a tree of sizeis (*79) 25
a ande = 4 — ¢ can be chosen small enough.

(including leaves in the size and the order of insertion (2) The computation is essentially the same with

:g\r”:g dr;(; ;lefaalggits?fvfh(:\'/n(f th<e ;;ei f Z:j 1. It is easy to check that the solution (less than 1) of the
B4 equationke! = = ¢(3 — 21/2) is less thart.

g < 125 We also need to remark thatts < 2ot
for n large enough.

3 ln(n))

8.6 End of proof of Theorem [[4

n+17 :’Vl . et
. (13&)) " corresponds to the possibilities of n. ) u )(Klzm))"*ﬁ“
o n, = n ——n
bindings. Indeedg %5 is an upper bound for the num- (.4 ( ()" i
. . 3
ber of \'s above a var|able and + 1 — #(n) is an we compensate the exponent with then ™2
upper bound for the number of leafs. in the asymptotic fon/ (n)

2n
) 25 (0 T
Lemma[3F and Propositidi 5 allow to conclude. Note (qK(372\/§)) (K 3)™t0 (ln(n))

that the replacement df* by (4 4 £)™ compensates all fac- usmgnww = e™, we find:
tors smaller than exponential. o3 " 1m0 O\
= (q—m—z@) (@K™ (rt5)
8.5 End of proof of Theorem [L3
. Thus it is clear that |fw < 1, thatis if K >
i ~J ; 1 .
Using that)M (n) (3_2\/5) — we have, fom large (4—5)(3—2\/5) ~ 2.84 < 3, then we have:

enough, (we introduce an extra consténht- 1 to compen-

sate for the equivalent) hrf U(n,4—¢) =0.
LN e\ 8.7 Proof of theorem
oo < o) ()
T nd ( an )nﬂn?w We will use the following theorem.
In(n)
Theorem 36. Let C,[fh] denote the number of binary trees
We get a simpler upper bound by using the to com- of sizen with height greater tharh. For1 < h < n we
pensate for the-1 exponent: have: .
Or[z>h] — O(Cnn3/2€7h /(4n))
(37%5) (mk(%) e Proof. It is a part of the Theorem 1.3 fronf[3]. Although,
®(n, q) 1 as the authors say, this upper bound is rather poor for big
(lf&)) heights, it is sufficient for our needs. O
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Let A,, be the number of terms of sizehaving at most
3W A’'s and having binary-height greater th TR
— n+1 _ .
Letu, = m andb, = n+ 1 — u,. By Proposi-

tion[3.(1), the paifu,, b,,) gives, for fixedn, the “optimal”

proportion between numbers of leaves and of unary nodes.

Then,

bn

n

)u

° C,[fh] bounds the number of all possible binary struc-
tures of terms fromA.

. (

e ub» bounds the number of all possible variable bind-
ings.

In(n)

where

2n-+1
n
31n(n)

) is justified as in the proof of theorejm]| 10.

Using our lower bound fof.,, and Theorenh 36 it remains
to show that the following quotient tends to zero:

C(n)n3/26_h2/(4") ( 2t Jube

In(n)

((4—e)n)"‘1n<+w
In(n)
This is as follows. By Propositicﬂ 7.(2),, ~ ln(Ln) In fact

we use only thati,, + 1 < m?’(—’}l) for n big enough.
Since we know that — b,, = u, +1 ~ %, we can

In(n)
use—hf’(fl) as an asymptotic upper bound for it, we get

)

4n In(In(n))
In(n)

Ap
lim =2 < lim cn?
n—oo n n—oo

(4—13&) e*(4 o (n)) )+

4n In(In(n))
Tn(n)

)

Tty @symptotically

= lim c¢- 6(2 In(n)+In(4) 1113(2) — Ty T
n—oo

It is easy to verify that the term

dominates all the other terms in the exponent. It means that®. =

the exponent goes taoco, asn increases, and consequently

8.8 Proof of d(SN) > 3
Proposition 37. If the set of unsafe terms has a density, this
density is less thas.

Proof. By definition (27, write ¢t
A[(L[Ax1.a1] B[A\z2.a2])] where z; has at least one
occurrence ina; (we only use a weak version of the
definition since we do not ask for at least two occurrences).

See Figurd]9. We assume that, each time there is a possibl@nd(12)" ([="]{f(2)}) : _
choice for a pattern, we choose the leftmost deepestf, SO as to satisfy the following equationf(v/1 — z)

occurrence of the pattern. By taking the highest binding

13
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Figure 9. The termg andy(t).

in L[Az1.a1] we may assume that in the branchlofrom
the root to the nodaz; there is no binding.

Let o(t) Ax. A[(L[z] B[(b1 b2)])] whereb;
ai[z; == z] (see Figurg|9). Note thaize(p(t)) = size(t)
and that, since the branch éfto Az;.a; has no binding
A, ¢(t), no variable become bound or free, during the en-
coding. Since the occurrence ofin L[z] is the leftmost
deepest occurrence ofin ¢(¢) and since the nod@, b2)
is the leftmost deepest node having all the occurrences of
in t, ¢ is injective.

Letvy(t) = Az.A[(B[(b1 b2)] L[z])]. For the same rea-
sons as beforg is injective. Itis clear that the set ofimages
of non safe terms by and are disjoint and have the same
cardinalities. This gives the desired result. O

8.9 Proof of Theorem B2

In order to satisfy assumptions of Theor@ 34 we nor-
malize functions in such a way to have the closest to the
origin singularity located inz| < 1 at the position in
1. So, we define functiong;, (z) = f:,(z/12) and
f(2) = f(2/12). Therefore we have:

e — 1—z+44 (&)™
T(z) = _\/12 + \/ . ()
Fz) = %—%m

This representation reveals that the closest singulafity o
fio(2) andf(2) located inz| < lisindeed: = 1. We have

to remember that change of a caliber of the radius of conver-
gence for functiong;, andf effects accordingly sequences
represented by the new functions. Therefore those new
functions enumerate two sequend@®)” ([2"]{ fi,}(z))

. Now let us define functiong and

f(2) andf;(\/l —72) = fu(2). Functionsf and f;, are



defined in the following way:

244 (59)"

folz) = -
flz) =

N —
[N
N | = +

The derivatives{f;)’ and(f)’ are the following:

(2z -8 (1;222)% no - z)

(FuV(e) = —3+ :
4(1-22)/22+4 (15 )
FYe) =
Finally derivatives(f,,)'(0) = —1 and(f

To conclude the proof we use accordlngly Theo@ 34

"oy (2)) A" e (2]
$0: limy, oo “aprfyy = Moo “mpEfET
(ft~0) (0) _

A0

8.10 Proof of Proposition 33

1. The functionf thus satisfies

F(2) = 32+ f(2)2

Solving the equation and choosing between the two
possibilities (f(0) = 0) gives the solution.

2. Assume that, = size(ty). Using the fact that every
combinator havingt, as a sub-term is eitheg or has
the form¢ = (¢1 t2) where either, is a sub-term of
t1 but not ofty or ¢y is sub-term oft, but not oft;
or finally ¢y is sub-term of botht; and¢, we get the
following equation.

fro(2) = 2" + 21 (2) (F (2) = fto(2)) + (fuo (2))?
which can be simplified to

fto(z) =2z"+2- fto(z) : f(Z) - (fto(z))2

Solving the quadratic equation with unknown func-
tion f;, and choosing between the two possibilities
(ft,(0) = 0) gives the solution.
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