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Abstract

We present a quantitative analysis of various (syntactic and behavioral)
properties of random λ-terms. Our main results show that asymptotically,
almost all terms are strongly normalizing and that any fixed closed term
almost never appears in a random term. Surprisingly, in combinatory logic
(the translation of the λ-calculus into combinators), the result is exactly
opposite. We show that almost all terms are not strongly normalizing.
This is due to the fact that any fixed combinator almost always appears
in a random combinator.
Keywords: λ-calculus, strong normalization, randomness, combinatory
logic.

1 Introduction

Since the pioneering work of Church, Turing et al., more than 70 years ago, a
wide range of computational models has been introduced. It has been shown
that the feasible models are all equivalent in the sense of computational power.
However, this equivalence says nothing about what typical programs or machines
of each of these models do.
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This paper addresses the following question. Having a theoretical program-
ming language and a property, what is the probability that a random program
satisfies the given property? In particular, is it true that almost every random
program satisfies the desired property?

We concentrate on functional programming languages and, more specifically,
on the λ-calculus, the simplest language of this kind (see [11, 16, 2] for similar
work on other models of computation). To our knowledge, the only work on this
subject is some experiments carried out by Jue Wang (see [19]). Most interesting
properties of λ-terms are those concerning their behavior. However, to analyze
them, one has to consider some syntactic properties as well.

As far as we know, no asymptotic value for the number of λ-terms of size n
is known. We give upper and lower bounds for this super-exponential number
(see Section 5). Although the gap between the lower and the upper bound is big
(exponential), these estimations are sufficient for our purpose.

We prove several results on the structural form of a random λ-term. In par-
ticular, we show that almost every closed λ-term begins with “many” lambdas
(the precise meaning is given in Theorem 35). Moreover, each of them binds
“many” occurrences of variables (Theorems 37, 39 and 41). Finally, given any
fixed closed λ-term, almost no λ-term has this term as a subterm (Theorem 45).

We also give results on the behavior of terms, which is our original motiva-
tion. We show that a random term is strongly normalizing (SN for short) with
asymptotic probability 1. Let us recall that, in general, knowing whether a term
is SN is an undecidable question.

Combinatory logic is another programming language related to the λ-calculus.
It can be seen as an encoding of λ-calculus into a language without variable
binding. Moreover, there are translations, in both directions, which preserve the
property of being SN . Surprisingly, our results concerning random combinators
are very different from those for the λ-calculus. For example, we show that
for every fixed term t0, almost every term has t0 as a subterm. This implies
that almost every term is not SN . The difference of results concerning strong
normalization between λ-calculus and combinatory logic is not contradictory since
the coding of bound variables in combinatory logic induces a large increase of size.
This is discussed in Section 8.

Our interest in statistical properties of computational objects, like λ-terms or
combinators, is a natural extension of similar work on logical objects like formulas
or proofs. This paper is a continuation of the research in which we try to estimate
the properties of random formulas in various logics (especially the probability of
truth, or satisfiability, of random formulas). For the purely implicational logic
with one variable (and simple type systems), the exact value of the density of
true formulas has been computed in [14, 21]. Quantitative relationship between
intuitionistic and classical logics (based on the same language) has also been
analyzed. The exact value describing how large the intuitionistic fragment of the
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classical logic with one variable is has been determined in [12]. For results with
more than one variable, or with other logical connectives, consult [8, 10, 9].

The organization of the paper is as follows. In Section 2 we recall basic
definitions and facts about λ-calculus and combinatory logic. Section 3 gives
combinatorial notations which we will need in our proofs. It introduces generating
functions and basic techniques to compute asymptotics. The notion of density
and its basic properties is introduced in Section 4. The lower and upper bounds
for the number of λ-terms of size n are given in Section 5. In Section 6 we
prove theorems about random λ-terms using coding which is an injective and
size-preserving function on terms. Our main result establishing that the set of
strongly normalizable terms has density 1 appears at the end of this section in
Theorem 50. Section 7 contains results in combinatory logic, namely the fact that
every fixed term appears in almost every term. The main result of this section, in
Theorem 53, states that the density of non-strongly normalizing combinators is 1.
Finally Section 8 discusses future work, open questions and possible applications
of results.

2 λ-calculus and combinatory logic

2.1 λ-calculus

We start with presenting some fundamental concepts of the λ-calculus, as well
as with some new definitions used in this paper. We do this mainly to make our
notations and conventions precise. It should be enough for defining the notion of
size, but for substitution and reduction and normalization we recommend [1].

Definition 1. Let V be a countable set of variables. The set Λ of λ-terms is
defined by the following grammar:

t := V | λV.t | (t t)

We denote by Λ the set of all closed λ-terms. We write t1 t2 . . . tn without
parentheses for (. . . (t1 t2) . . . tn).

As usual, λ-terms are considered modulo α-equivalence, i.e. two terms which
differ only by the names of bound variables are considered equal.

Let us observe that λ-terms can be seen as rooted unary-binary trees.

Definition 2. By a λ-tree we mean a rooted tree of the following form there are
two kinds of inner nodes – labeled with @ and with λ. Nodes labeled with @
have two successors: left and right. Nodes labeled with λ have only one successor.
Each Leaf of a tree is labeled either with a variable or with a pointer to one of
the λ nodes above it.
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For every λ-term t we define the λ-tree G(t) in the following way:

• If t is a variable x, then G(t) is a single node labeled with x.

• If t = t1t2, then G(t1t2) is a tree with the root labeled with @ and two
subtrees G(t1) (left) and G(t2) (right).

• If t = λx.u, then G(t) is obtained from G(u) in four steps:

– add a new root labeled with λ;

– connect the new root with G(u);

– connect all leaves of G(u) labeled with x with the new root;

– remove all labels x.

y

Figure 1: The λ-tree representing the term λz.(λu.zu)(λu.uyz) (labels of inner
nodes are not shown in the figure and can be recovered from their degrees)

Observation 3. If T is a λ-tree then T = G(t) for some λ-term t. Terms t and
u are α-convertible iff G(t) and G(u) are the same tree.

We often use (without giving the precise definition) the classical terminology
about trees (e.g. path, root, leaf, etc.). A path from the root to a leaf is called a
branch.

Definition 4. Let t be a λ-term.

1. A term t′ is a subterm of t (denoted as t′ ≤ t) if

• either t = t′,

• or t = λx.u and t′ ≤ u,

• or t = (u v) and (t′ ≤ u or t′ ≤ v).
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2. Let u = λx.a be a subterm of t. We say that this occurrence of λx is binding
in t if x has a free occurrence in a.

3. The unary height of t is the maximum number of lambdas on a branch in
the λ-tree of t.

4. Two lambdas in t are called incomparable if there is no branch in the λ-tree
containing both of them. The λ-width of t (or simply width of t when there
is no ambiguity) is the maximum number of pairwise incomparable binding
lambdas. Remark: a closed λ-term has width at least 1.

5. We say that t has k head lambdas if its λ-tree starts with at least k unary
nodes.

Definition 5.

• When t and u are terms, t[x := u] denotes the capture avoiding substitution
of u for the free occurrences of the variable x in t. Bound variables of t may
have to be renamed to avoid capture of free variables in u.

• A term of the form (λx.t)u is called a β-redex. A λ-term is in normal
form if it does not contain β-redex subterms. The least relation ⊲ on terms
satisfying (λx.t)u⊲t[x := u] and closed under contexts is called β-reduction.

• A term t is (weakly) normalizing if there is a finite reduction sequence
starting from t and ending in a normal form.

• A term t is strongly normalizing (SN) if all reduction sequences starting
from t are finite. If t is SN , we denote by η(t) the length of its longest
reduction. The fact that such a longest reduction exists follows from König’s
lemma. If t is not SN , η(t) = +∞.

In the λ-tree representation, a redex is a subtree of the λ-tree. Therefore
β-reduction can be seen as an operation on λ-trees (see Fig. 2).

λ

t

u
t

u u

Figure 2: β-reduction scheme
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Definition 6. The size of a term (denoted by size(·)) is defined recursively as
follows:

(i) size(x) = 0 if x is a variable,

(ii) size(λx.t) = 1 + size(t),

(iii) size(t u) = 1 + size(t) + size(u).

As we can see, size(t) is the number of inner nodes in the λ-tree G(t).

Notation 7. Let n be an integer. We denote by Λn the set of closed terms of
size n. Obviously, the set Λn is finite. We denote its cardinality by Ln.

As far as we know, no asymptotic analysis of the sequence
(
Ln

)
n∈N has been

done. Moreover, typical combinatorial techniques do not seem to apply easily for
this task.

2.2 Innocuous and safe λ-terms

This sections introduces the notion of safe λ-terms which is a sufficient condition
for being SN (Proposition 17).

Definition 8.

1. Let t be a term of width 1. We say that t is innocuous if there is no binding
λ on the leftmost branch of t (this includes the root of t).

2. We say that t is safe if either it has width at most 1 or if it has width 2
and for (u v) being the smallest subterm of t of width 2, at least one of the
terms u and v is innocuous.

Definition 9.

• A substitution σ is a partial map from variables to terms such that the
domain of σ is finite. Let t be a term and σ be a substitution. By t[σ] we
denote the term obtained from t by simultaneous replacement of all free
occurrences of variables x from the domain of σ by σ(x).

• A context is a λ-term with a unique hole denoted by []. Traditionally,
contexts are defined by a BNF grammar:

E := [] | λx.E | (E Λ) | (Λ E) where Λ denotes arbitrary terms.

• When E is a context and t is a term, E[t] denotes the result of replacing the
hole in E by t allowing captures (i.e. the lambdas in E can bind variables
in t).
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• For a context E,we define η(E) as η(E[x]) and size(E) as size(E[x]) where
x is an arbitrary variable not captured by E.

• In a few cases, we need contexts with multiple holes. When E is a context
with exactly n holes, E[t1, . . . , tn] denotes the term where the holes of E
are substituted from the leftmost to the rightmost by terms t1, . . . , tn (in
this order).

In some proofs in this section we use the following basic fact concerning strong
normalization of λ-terms:

Fact 10. Let t be a λ-term.

• If t = (x t1 . . . tn), for some variable x, with n ≥ 0, then η(t) = η(t1) +
· · ·+ η(tn). Moreover t is SN if and only if t1, . . . , tn are SN .

• If t = λx.u, then η(t) = η(u) and t is SN if and only if u is SN .

• If t = ((λx.u) v t1 . . . tn) with n ≥ 0 and t is SN , then η(t) > η(u[x :=
v] t1 . . . tn) and η(t) > η(v)+ η(t1) + · · ·+ η(tn). Moreover t is SN if and
only if v and (u[x := v] t1 . . . tn) are SN .

These three cases cover all possible forms of t. Moreover, if x is a variable, then
t is SN if and only if (t x) is SN .

Proof. This facts are “folklore”, but they are not trivial to prove directly from
the definition of β-reduction and the proof is not found in the usual litterature.
Here, we give a proof sketch using the fact that Barendregt’s [1] perpetual norm
(length of the perpetual reduction strategy) is in fact the length of the longest
reduction. This is proved in [15].

The perpetual strategy is the strategy that reduces the left-most redex first,
except when this redex is a K-redex ((λx.u)t when x is not free in u). In this
case, the redex is reduced only when t and u are normal. For a formal definition
see [1] or [15].

The equality about η(t) in the first two items are immediate from this, by
induction on the length of the reduction.

Using the perpetual norm, we have η((λx.u) v t1 . . . tn) = 1 +max(η(u[x :=
v] t1 . . . tn), η(v) + η(u t1 . . . tn)). The two terms in the max correspond re-
spectively to the case where x occurs free in u and the case where the redex is a
K-redex.

For the equivalence, one direction comes from the fact that subterms and
reducts of an SN term are SN . For the other direction we have to prove that
if v and (u[x := v] t1 . . . tn) are SN then so is t = ((λx.u) v t1 . . . tn). This is
done by induction on η(u) + η(v) + η(t1) + · · · + η(tn) looking at the different
possible reductions of t.
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The fact that if t is SN then so is (t x) is proved using the perpetual norm
to establish that η(t x) ≤ η(t) + 1 (in fact η(t x) = η(t) + 1 if t reduces to a term
starting with λ and η(t x) = η(t) otherwise).

Lemma 11. The set of terms of width at most 1 is closed under β-reduction.

Proof. If a term is of width 0, then no reduction can change the width, since
width 0 just means that all variables in the term are free.

Let t be a term of width 1. First, let us remark that all binding lambdas in t
occur on the same branch. We consider a β-reduction:

t = E[(λx.u) v] ⊲ E[u[x := v]] = t′.

There are two cases: either x has no free occurrences in u and t′ = E[u] or it
has some free occurrence in u and v must have width 0, which means that every
variable of v is either free in t or bound by some lambda occurring in the context
E. It is clear that t′ is still of width 1 because the binding lambdas remain on
one branch.

Lemma 12. If t is a term of lambda width at most 1, then t is SN .

Proof. Let N0(t) and N1(t) denote the number of, respectively, non-binding and
binding lambdas in term t. Let us introduce the lexicographic order on pairs
〈N1(t), N0(t)〉. Let t be of width at most 1. Then, performing a β-reduction on
t decreases the pair 〈N1(t), N0(t)〉 while keeping the width at most 1 by Lemma
11. To prove this, we consider a β-reduction: t = E[(λx.u) v] ⊲ E[u[x := v]] = t′

and distinguish two cases:

• If x does not occur in u, then N1(t) is non-increasing. Moreover, it is de-
creasing if v contains some binding lambdas or if E binds some variables
that occur only in v. Therefore, if N1(t) is constant, then N0(t) is decreas-
ing: we erase at least one non-binding λ and do not transform binding ones
into non-binding ones.

• If x occurs in u, then v is of width 0 and contains no binding λ, which
means that we erase one binding λ and only duplicate non-binding lambdas.
Therefore, N1(t) is decreasing.

Lemma 13. If u has width 0 and t1, . . . , tn are SN terms, then the term t =
(u t1 . . . tn) is SN .

Proof. By induction on the size of u. We distinguish three cases:

• If u = x, the result is trivial by Fact 10.
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• If u = (u′ v), v has width 0 and is SN because of Lemma 12. We conclude
by induction on u′.

• For u = λx.u′ we consider two cases: if n = 0, the result follows from Lemma
12; otherwise, by Fact 10, it is enough to show that the head reduct of t is
SN . But, since u has width 0, this reduct is (u′ t2 . . . tn) and the result
follows from the induction hypothesis.

Lemma 14. Let t ∈ SN be a term and σ be a substitution such that, for each x,
there is k such that σ(x) = (u v1 . . . vk) where u has width 0 and v1 . . . vk are
SN . Then t[σ] ∈ SN .

Proof. By induction on 〈η(t), size(t)〉 ordered lexicographically. We consider the
following cases:

• If t = λx.t1 or if t = (x t1 . . . tn) with x not in the domain of σ, it is
enough to prove that for all i, ti[σ] is SN . This follows from the induction
hypothesis because η(ti) ≤ η(t) and size(ti) < size(t).

• If t = ((λx.u) v t1 . . . tn) we show that v[σ] and (u[x := v] t1 . . . tn)[σ] are
SN and apply Fact 10. This follows from the induction hypothesis because
η(v) < η(t) for the first point and because η(u[x := v] t1 . . . tn) < η(t) for
the second.

• If t = (x t1 . . . tn) where x is in the domain of σ. Then we have t[σ] =
(σ(x) t1[σ] . . . tn[σ]) which is SN by Lemma 13 because t1[σ], . . . , tn[σ]
are SN by the induction hypothesis and σ(x) = (u v1 . . . vk) where u has
width 0 and v1 . . . vk are SN .

Definition 15. We define the set of contexts of width at most 1 by the following
BNF grammar (where Λ0 denotes the set of λ-terms of width 0):

E := [] | λx.E | (E Λ0) | (Λ0 E).

This definition means that all the binding lambdas are on the path from the
root to the hole of the context.

Lemma 16. Let E be a context of width 1 and u ∈ SN be a term. Then
E[u] ∈ SN .

Proof. By induction on size(E). Cases E = [] or E = λx.E1 are trivial (in the
second case, since size(E1) < size(E), the proof goes by the induction hypothesis).

If E = (E1 v), where v ∈ Λ0, then E[u] = (E1[u] x)[x := v] where x is a
fresh variable. E1[u] is SN by induction hypothesis because size(E1) < size(E).
Therefore (E1[u] x) is SN by Fact 10 and finally (E1[u] x)[x := v] is SN by
Lemma 14.

If E = (v E1), then E[u] = (x E1[u])[x := v] where x is a fresh variable
and E1[u] is SN by induction hypothesis because size(E1) < size(E). Therefore
(x E1[u]) is SN and finally (x E1[u])[x := v] is SN by Lemma 14.
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Proposition 17. All safe terms are SN .

Proof. If t has width at most one, the result follows directly from Lemma 12. If t
has width 2, let (t1 t2) be the smallest subterm of t of width 2. This means that
t can be written as E[(t1 t2)] where E is a context of width at most 1 and t1 and
t2 are both of width 1. By Lemma 16, it is therefore enough to show that (t1 t2)
is SN .

We know that t is safe. This means that at least t1 or t2 is innocuous. If ti is
innocuous, it can be written F [(u v)] where u has width 0, v has width 1 and F
belongs to the family of contexts defined by the following BNF grammar:

F := [] | λ .F | (F Λ0)

where λ denotes non-binding lambdas and Λ0 denotes terms of width 0.
The context F is defined precisely to denote the beginning of the leftmost

branch until we reach an application node whose argument is of width 1. The
definition of innocuous terms together with the definition of width 1 ensures the
existence of such an application node on the leftmost branch.

This means that (t1 t2) can be written (F [(u v)] t2) ((t1 F [(u v)]) resp.). Let
us define t′ = (F [x] t2) (resp. t

′ = (t1 F [x])), for a fresh variable x.
In both cases, (t1 t2) = t′[x := (u v)]. We can conclude by Lemma 14 that

(t1 t2) is SN since u has width 0 and t′ and v are SN (by Lemma 12, since they
have width 1).

2.3 Combinatory logic

Combinatory logic is a theoretical model of computation introduced by Moses
Schönfinkel in [17] and many years later rediscovered and deeply studied by
Haskell Curry in [4]. For the main reference to the subject we refer to [1]. A
very intelligible approach towards this subject can be found in [18]. It is a well
known fact that both models, the lambda calculus and the combinatory logic,
are equivalent in the sense of expressive power. It turns out, however, that these
two models differ radically as regards the behavior of random terms.

Definition 18. Combinatory logic

1. The set F of combinatory terms, combinators, is defined by the following
grammar:

F := K | S | I | (F F).

The notational conventions concerning parentheses are the same as for λ-
terms i.e. we write t1 t2 . . . tn without parentheses for (. . . (t1 t2) . . . tn).

2. The reduction on combinators is the least compatible relation ⊲ satisfying
the following rules:

K u v ⊲ u S u v w ⊲ u w (v w) I u⊲ u.
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Combinatory terms can be considered as rooted binary trees whose leaves are
labeled with combinators K, S and I and inner nodes are labeled with an applica-
tion operation. Accordingly, every reduction rule can be seen as a transformation
of combinatory trees.

Definition 19. A combinatory term is in normal form if no reduction can be
performed. A term M is normalizing if there is a reduction sequence starting
from M and ending in a normal form N . A term M is strongly normalizing if all
reduction sequences are finite.

Definition 20. Subterm and size

1. A combinator u is a subterm of v if either u = v or v is of the form v1 v2
and u is a subterm of v1 or v2.

2. The size of a combinator is defined by the following rules:

size(S) = size(K) = size(I) = 0 and size(u v) = 1 + size(u) + size(v).

As we can see size(t) is the number of inner nodes of the combinatory tree of
t.

Notation 21. For an integer n, we denote by Fn the set of combinatory terms
of size n. The set Fn is finite and we denote its cardinality by Fn.

3 Combinatorial results

The following standard notions will be used throughout the whole paper.

Definition 22. Let f, g : N → R.

(i) Functions f and g are said to be asymptotically equal iff limn→∞
f(n)
g(n)

= 1.
We denote it by f ∼ g.

(ii) The asymptotic inequality f & g holds iff there exists a function h : N → R

such that h ∼ g and f(n) ≥ h(n) for all n.

(iii) A function f is said to be of the smaller order than g iff limn→∞
f(n)
g(n)

= 0.

We denote it by f ∈ o(g).

(iv) A function f is said to be subexponential in n iff there exists h : N → R such
that h ∈ o(n) and f(n) = 2h(n).

(v) If x is a real number we denote by ⌊x⌋ (resp. ⌈x⌉) the largest (resp. smallest)
integer n such that n ≤ x (resp. x ≤ n).

Notation

When an unknown function f is, for example, asymptotically equal to an
explicit function (say for example n 7→ n ln(n)) we will write f ∼ n ln(n) or
sometimes f(n) ∼ n ln(n).
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3.1 Generating function method

Many questions concerning the asymptotic behavior of sequences of real positive
numbers can be efficiently resolved by analyzing the behavior of their generating
functions (see [20] for introductory reference). This is the approach we take to
determine the asymptotic fraction of certain combinatory logic trees of a given
size.

The following theorem is a well-known result in the theory of generating func-
tions. Its derivation from the Szegö Lemma (see [13]) can be found, e.g., in [22]
(Theorem 22). We denote by [zn]{v(z)} the coefficient of zn in the expansion of
v.

Theorem 23. Let v, w be functions satisfying the following conditions:

(i) v, w are analytic in |z| < 1 with z = 1 being the only singularity on the
circle |z| = 1,

(ii) v, w have the following expansions in the vicinity of z = 1:

v(z) =
∑

p≥0

vp(1− z)p/2, w(z) =
∑

p≥0

wp(1− z)p/2

where w1 6= 0.

Let ṽ and w̃ be defined by ṽ(
√
1− z) = v(z) and w̃(

√
1− z) = w(z). Then

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} =

v1
w1

=
(ṽ)′(0)

(w̃)′(0)
.

3.2 Catalan numbers

We denote by C(n) the n-th Catalan numbers, i.e., the number of binary trees
with n inner nodes. We use the following classical result (see, for example, [7,
Ch. IV.1]).

Proposition 24.

• C(n+ 1) =
∑n

i=0 C(i)C(n− i) for n > 0 and C(0) = 1. From this we have
C(n+ 1) ≥∑n

i=0 C(i).

• C(n) = 1
n+1

(
2n
n

)
=
∏n

i=2
n+i
i
. From this we have C(n)

C(n−1)
= 2(2n−1)

n+1

• C(n) ∼ 4n

n3/2
√
π
and thus, for n large enough, we have

C(n) ≥ γ 4n

n3/2 for some constant 0 < γ < 1.
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3.3 Large Schröder numbers

We denote by M(n, k) the number of unary-binary trees with n inner nodes and
k leaves. Let M(n) =

∑
k≥1 M(n, k) denote the number of unary-binary trees

with n inner nodes. These numbers are known as the large Schröder numbers.
Note that, since in this paper the size of variables is 0, we use them instead of
the so-called Motzkin numbers which enumerate unary-binary trees with n inner
and outer nodes. We use the following proposition.

Proposition 25. • M(n, k) = C(k − 1)
(
n+k−1
n−k+1

)
.

• M(n) ∼
(

1
3−2

√
2

)n
1√

πn3/2 .

Proof. (1) Every unary-binary tree with n inner nodes and k leaves has k − 1
binary and n− k+ 1 unary nodes. We have C(k − 1) binary trees with k leaves.
Every such a tree has 2k− 1 nodes (inner nodes and leaves). Therefore there are(
n+k−1
n−k+1

)
possibilities of inserting n− k+1 unary nodes (we can put a unary node

above every node of a binary tree).
(2) The asymptotics for M(n) is obtained by using standard tools of the

generating function method (see, e.g., [7, Ch.VII.4] for exact computations).

4 Densities

4.1 Main notations

For any finite set A we denote by #A its cardinality. To attribute a precise
meaning to sentences like “asymptotically almost all λ-terms have property P”
we use the following definition of asymptotic density.

Definition 26. Let B ⊂ Λ, assume that B contains closed terms of every large
enough size. For A ⊆ B, if the limit

lim
n→∞

#(A ∩ Λn)

#(B ∩ Λn)

exists, then we call it the asymptotic density of A in B and denote it by dB(A).

Remarks and notations

• The asymptotic density dB(A) can also be interpreted as an asymptotic
probability of finding a λ-term from the class A among all λ-terms from B.

• dB is finitely additive: if A1 and A2 are disjoint classes of λ-terms such that
dB(A1) and dB(A2) exist then dB(A1 ∪ A2) also exists and dB(A1 ∪ A2) =
dB(A1) + dB(A2).
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• It is straightforward to observe that for any infinite B, meeting the condition
of definition 26, and finite set A the density dB(A) exists and is 0. Dually
for co-finite sets A the density dB(A) = 1.

• The density dB is not countably additive, so in general the formula

dB

( ∞⋃

i=0

Ai

)
=

∞∑

i=0

dB(Ai)

is not true for all classes of pairwise disjoint sets {Ai}i∈N. A counterexample
for the equation is to take B = Λ and Ai the singleton containing the i-th
lambda term from our language under any natural enumeration of terms.
On the left hand side of the equation we get dΛ(Λ) which is 1 but on right
hand side dΛ(Ai) = 0 for all i ∈ N and so the sum is 0.

• Let P be a property of closed λ-terms. If dΛ({t ∈ Λ | t satisfies P}) = α,
we say that the density of terms satisfying P is α. By analogy to research
on graphs and trees, whenever we say that “a random term satisfies P” we
mean that “the density of terms satisfying P is 1”.

5 Proofs using calculus

In this section we state a few theorems which provide bounds for Ln (the number
of closed λ-terms of size n). We also find a lower bound for the unary height in
a random term.

5.1 Lower bound for Ln

The estimation for Ln which we provide is rather imprecise but sufficient for our
purpose.

Theorem 27. For any ε ∈ (0, 4) we have

Ln &

(
(4− ε)n

ln(n)

)n− n
ln(n)

.

Proof. Let LB(n, k) denote the number of closed λ-terms of size n with k head
lambdas and no other λ below. Since the lower part of the term is a binary
tree with n − k inner nodes and each leaf can be bound by k lambdas, we have
LB(n, k) = C(n − k)kn−k+1. Clearly, Ln ≥ LB(n, k) for all k = 1, . . . , n. Let

14



k =
⌈

n
ln(n)

⌉
. Then we get:

Ln ≥ C

(
n−

⌈
n

ln(n)

⌉) (⌈
n

ln(n)

⌉)n−⌈ n
ln(n)⌉+1

∼ 4n−⌈
n

ln(n)⌉
(
n−

⌈
n

ln(n)

⌉)3/2 √
π

(⌈
n

ln(n)

⌉)n−⌈ n
ln(n)⌉+1

by Proposition 24

&

(
4n

ln(n)

)n− n
ln(n) 1

p(n)
for some positive polynomial p

&

(
(4− ε)n

ln(n)

)n− n
ln(n)

since

(
4

4− ε

)n− n
ln n

& p(n).

5.2 Number of lambdas in a term

In this part we focus on the number of unary and binary nodes in random λ-terms.
We need the following lemma:

Lemma 28. For all sufficiently large n, the function f(p) = pn−p+1 is

(i) decreasing on [ 3n
ln(n)

,+∞),

(ii) increasing on (0, n
3 ln(n)

].

Proof. Let us start by computing the derivative of the function f on (0,+∞):

f ′(p) =
(
pn−p+1

)′
=
(
e(n−p+1) ln(p)

)′
= e(n−p+1) ln(p)

(
n− p+ 1

p
− ln(p)

)
.

(i) We want to show that f ′(p) < 0 for any p ∈
[

3n
ln(n)

,+∞
)
. This is equivalent

to the following inequality: n + 1 < p(ln(p) + 1). The expression on the
right reaches the minimum in the considered interval at p = 3n

ln(n)
, thus it is

sufficient to prove that

n+ 1 <
3n

ln(n)

(
ln

(
3n

ln(n)

)
+ 1

)
.

But the right expression is equal to

3n

ln(n)
(ln(n)− ln(ln(n)) + ln 3 + 1)

= 2n +
n

ln(n)
(ln(n)− 3 ln(ln(n)) + 3 ln 3 + 3)

> n + 1,
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which finishes the proof. The last inequality is obvious for sufficiently large
n.

(ii) We want to show that f ′(p) > 0 for any p ∈
(
0, n

3 ln(n)

]
. This is equivalent

to the following inequality: n + 1 > p(ln(p) + 1). The expression on the
right reaches the maximum in the considered interval at p = n

3 ln(n)
, thus it

is sufficient to prove that

n + 1 >
n

3 ln(n)

(
ln

(
n

3 ln(n)

)
+ 1

)
.

But the right expression is equal to
n

3 ln(n)
(ln(n)− ln(ln(n))− ln 3 + 1) = n

3
− n

3 ln(n)
(ln(ln(n)) + ln 3− 1)

= n− n
3 ln(n)

(2 ln(n) + ln(ln(n)) + ln 3− 1)

< n+ 1,

which finishes the proof. The last inequality is obvious for sufficiently large
n.

The next theorem shows that the typical proportion of unary nodes to binary
ones in λ-terms is far from the typical proportion in ordinary unary-binary trees,
in which case it tends to a positive constant.

Notation 29. Let A denote the class of closed terms t ∈ A that satisfies all the
following conditions:

(i) the number of lambdas in t is at most 3 size(t)
ln(size(t))

,

(ii) the number of lambdas in t is at least size(t)
3 ln(size(t))

,

(iii) the unary height of t is at least size(t)
3 ln(size(t))

.

Theorem 30. The density of A in Λ is 1.

Proof. Let us consider terms of size n with exactly p lambdas. Such terms have
exactly n − p + 1 leaves and each of them can be bound by at most p lambdas.
Since the number of unary-binary trees of size n and with n−p+1 leaves is equal
toM(n, n−p+1) (see 3.3), we obtain the following upper bound for the number
of considered terms: pn−p+1M(n, n− p+ 1).

Now, we show that each of properties (i)–(iii) characterizing the class A is
valid for random terms. Obviously, property (iii) implies property (ii), but our
proof of (iii) uses (ii) as intermediate result so we make it explicit.
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(i) Let Pn denote the number of closed terms of size n containing more than
3n

ln(n)
lambdas. We have Pn ≤

∑
p≥ 3n

ln(n)
pn−p+1M(n, n− p+ 1).

By Lemma 28 the function p 7→ pn−p+1 is decreasing in the interval
[

3n
ln(n)

, n
]
.

Thus,

Pn ≤
∑

p≥ 3n
ln(n)

M(n, n− p+ 1)

(
3n

ln(n)

)n+1− 3n
ln(n)

≤M(n)

(
3n

ln(n)

)n+1− 3n
ln(n)

.

By the lower bound for Ln from 5.1 and the computations above, we get

Pn

Ln
.
M(n)

(
3n

ln(n)

)n+1− 3n
ln(n)

(
(4−ε)n
ln(n)

)n− n
ln(n)

.

To get the result it remains to show that for some ε ∈ (0, 4) this expression
tends to 0.

By Proposition 25, M(n) ∼
(

1
3−2

√
2

)n
1

√
πn

3
2
. Using this equivalence, we

deduce that there is some positive constant γ such that we have:

Pn

Ln
. γ

(
1

3−2
√
2

)n (
3n

ln(n)

)n+1− 3n
ln(n)

n
3
2

(
(4−ε)n
ln(n)

)n− n
ln(n)

.

(
1

3−2
√
2

)n (
3n

ln(n)

)n− 3n
ln(n)

(
(4−ε)n
ln(n)

)n− n
ln(n)

since
3γn

ln(n)
. n

3
2

=

(
3

(4− ε)(3− 2
√
2)

)n (
3n

ln(n)

) −3n
ln(n)

(
(4− ε)n

ln(n)

) n
ln(n)

=

(
3

(4− ε)(3− 2
√
2)

)n (
3−3(4− ε) ln2(n)

n2

) n
ln(n)

Notice that for any α, (n2−α)
n/ ln(n)

= eln(n)(2−α) n
ln(n) = e(2−α)n. Thus, we

obtain

Pn

Ln
.

(
3

(4− ε)(3− 2
√
2)e2−α

)n (
3−3(4− ε)

ln2(n)

nα

) n
ln(n)

.

Let α and ε be positive and small enough so that 3 < (4− ε)(3−2
√
2)e2−α.

Then the whole expression tends to 0 as n tends to infinity, which finishes
the proof.
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(ii) Let Rn denote the number of terms of size n containing less than n
3 ln(n)

lambdas. We have Rn ≤
∑

p≤ n
3 ln(n)

pn−p+1M(n, n− p+ 1).

By Lemma 28 the function p 7→ pn−p+1 is increasing in the interval
[
0, n

3 ln(n)

]
.

Thus,

Rn ≤
∑

p≤ n
3 ln(n)

M(n, n− p+ 1)

(
n

3 ln(n)

)n+1− n
3 ln(n)

≤M(n)

(
n

3 ln(n)

)n+1− n
3 ln(n)

.

By the lower bound for Ln from Theorem 27 and the computations above,
we get

Rn

Ln
.
M(n)

(
n

3 ln(n)

)n+1− n
3 ln(n)

(
(4−ε)n
ln(n)

)n− n
ln(n)

. γ

(
1

3−2
√
2

)n (
n

3 ln(n)

)n+1− n
3 ln(n)

n
3
2

(
(4−ε)n
ln(n)

)n− n
ln(n)

for some γ > 0

.

(
1

3−2
√
2

)n (
n

3 ln(n)

)n− n
3 ln(n)

(
(4−ε)n
ln(n)

)n− n
ln(n)

since
γn

3 ln(n)
. n

3
2

=

(
1

3(4− ε)(3− 2
√
2)

)n (
3(4− ε)3n2

(ln(n))2

) n
3 ln(n)

=

(
e2/3

3(4− ε)(3− 2
√
2)

)n (
3(4− ε)3

(ln(n))2

) n
3 ln(n)

since n
2n

3 ln(n) = e
2
3
n.

For ε > 0 small enough the whole expression tends to 0, which finishes the
proof.

(iii) Let Sn be the number of closed terms of size n with more than n
3 ln(n)

lambdas
and with the unary height less than n

3 ln(n)
.

Such a term has at most n− n
3 ln(n)

+1 leaves and each of them can be bound
by one of at most n

3 ln(n)
lambdas. Therefore, we have

Sn ≤M(n)

(
n

3 ln(n)

)n− n
3 ln(n)

+1
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Dividing it by the lower bound for Ln and performing exactly the same
calculations as in the proof of (ii), we obtain the desired result.

5.3 Upper bound for Ln

Now we are ready to provide an upper bound for Ln. Once again, this estimation
is very rough, however, it turns out to be sufficient for our main goal.

Lemma 31. Let α(n) be either n 7→
⌈

3n
ln(n)

⌉
or n 7→

⌊
3n

ln(n)

⌋
. Then the function

n 7→
(

3n
α(n)

)
is subexponential.

Proof. Using the Stirling formula

n! ∼
√
2πn

(n
e

)n

we obtain, for some polynomial function γ(n), the asymptotic majoration:

(
3n

α(n)

)
. γ(n)

(3n)3n

(
3n−

⌈
3n

ln(n)

⌉)3n−⌈ 3n
ln(n)⌉ (⌈ 3n

ln(n)

⌉)⌈ 3n
ln(n)⌉

. γ(n)E(n)

where E(n) can be written

E(n) =
33n

(
3− ⌈ 3n

ln(n)⌉
n

)3n−⌈ 3n
ln(n)⌉ (⌈ 3n

ln(n)⌉
n

)⌈ 3n
ln(n)⌉

Let us compute the logarithm of E(n):

ln
(
E(n)

)
= 3n ln(3)−

(
3n−

⌈
3n

ln(n)

⌉)
ln


3−

⌈
3n

ln(n)

⌉

n


−

⌈
3n

ln(n)

⌉
ln




⌈
3n

ln(n)

⌉

n




≤ 3n ln(3)−
(
3n− 3n

ln(n)
− 1

)
ln

(
3− 3

ln(n)
− 1

n

)
−
(

3n

ln(n)
+ 1

)
ln

(
3

ln(n)

)

After some simplifications we obtain that ln
(
E(n)

)
. 3n ln ln(n)

ln(n)
+ o

(
n ln(ln(n))

ln(n)

)
.

Since the polynomial function γ(n) belongs to o
(
eαn

ln(ln(n))
ln(n)

)
for any positive α,

we finally deduce that:
(

3n

α(n)

)
. eδn

ln ln(n)
ln(n) for some δ > 0.
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Theorem 32. For any ε > 0 we have

Ln .

(
(12 + ε)n

ln(n)

)n− n
3 ln(n)

Proof. Let Tn be the number of terms of size n with less than 3n
ln(n)

and more
than n

3 ln(n)
lambdas. According to Theorem 30 we have Ln ∼ Tn. In λ-terms

enumerated by Tn the number of binary nodes is at most n − n
3 ln(n)

and the
number of leaves is at most greater by one. We compute the upper bound for Tn
in the following way:

• first, we consider binary trees built on at most n−
⌊

n
3 ln(n)

⌋
binary nodes —

their number does not exceed Catalan number C
(
n−

⌊
n

3 ln(n)

⌋
+ 1
)
(the

+1 in the argument is obtained through Proposition 24 because we sum

C(i) over all possible i up to n−
⌊

n
3 ln(n)

⌋
),

• then, we insert in such trees at most 3n
ln(n)

(the maximum number of lamb-

das) unary nodes — this can be done in less than
(

3n

⌈ 3n
ln(n)⌉

)
ways (3n−

⌈
3n

ln(n)

⌉

is an upper bound for the number of possible places for insertions into a
binary tree of size n− n

3 ln(n)
+ 1),

• finally, we have at most n+1− n
3 ln(n)

leaves in such trees and each of them

can by bound by at most 3n
ln(n)

lambdas — thus the number of possible ways

of binding is not greater than
(

3n
ln(n)

)n+1− n
3 ln(n)

.

Thus, we get

Tn . C

(
n−

⌊
n

3 ln(n)

⌋
+ 1

)(
3n⌈
3n

ln(n)

⌉
) (

3n

ln(n)

)n+1− n
3 ln(n)

.

Using the asymptotic expansion of Catalan numbers (Proposition 24), we
obtain

Tn .

(
3n⌈
3n

ln(n)

⌉
)

4n−⌊ n
3 ln(n)

⌋+1

√
π
(
n− n

3 ln(n)
+ 1
)3/2

(
3n

ln(n)

)n+1− n
3 ln(n)

.

(
3n⌈
3n

ln(n)

⌉
) (

12n

ln(n)

)n− n
3 ln(n)

.

(
(12 + ε)n

ln(n)

)n− n
3 ln(n)

,

for any ε > 0. The last line follows from the fact that
( 2n+1

⌈ 3n
ln(n)⌉

)
is subexponential

(by Lemma 31).
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Remark. The ratio between the upper and lower bounds obtained for Ln is
exponential, but Ln is super-exponential itself.

6 Proofs using coding

In this section we prove theorems about random λ-terms using the following
scheme. First, we consider a set Λn(P) of terms of size n satisfying some property
P. Next, we define an injective and size-preserving function ϕP

n : Λn(P) → Λn

(called a coding) such that its image has density 0 among all closed lambda terms.
This is sufficient to prove that this property is not satisfied by random terms.

We consider successive sets of terms X1, . . . , Xk with Xi+1 ⊆ Xi and we
prove:

1. X1 has density 1 (Theorem 30);

2. Xi+1 has density 1 because Xi \Xi+1 has density 0 (successive theorems of
this section).

By choice of Xk, we finally get that SN terms have density 1. Below, these sets
X1, X2, . . . are denoted A, B, . . . and depend on some parameters (integers or
functions).

Some proofs need the following lemma:

Lemma 33. Let An be a sequence of non empty finite sets of terms and Bn be
subsets of An. Let (An,i)i∈In be a partition of An and let Bn,i = An,i ∩Bn. Let an
(resp. bn, an,i, bn,i) be the cardinality of An (resp. Bn, An,i, Bn,i). Assume

bn,i

an,i

tends to 0 uniformly in i as n tends to infinity, formally:

∀ε > 0, ∃N, ∀n ≥ N, ∀i ∈ In :
bn,i
an,i

≤ ε.

Then bn
an

tends to 0 as n tends to infinity.

Proof. Let ε > 0. Let N be the corresponding integer guaranteed by the uniform
convergence and let n be any integer with n ≥ N . We have:

bn
an

=

∑
i∈In bn,i

an
=
∑

i∈In

bn,i
an,i

an,i
an

≤
∑

i∈In

ε
an,i
an

= ε.

We have shown lim
n→∞

bn
an

= 0.
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6.1 The number of lambdas in head position

We start with showing that a random term starts with a long chain of lambdas.
In the next theorem and until the end of the paper, we denote by g a lower bound
on the length of this chain (as a function of the size of the term). Theorem 35
below shows that any g ∈ o

(√
n/ ln(n)

)
is an admissible lower bound. However,

the reader can think of g as the function n 7→ ln(n)2 + 3 since the main theorem
(Theorem 50) and all intermediate results can be proved using this particular
choice of g (see Proposition 49).

Notation 34. Let g : N → N We define Bg as the class of terms t such that

1. t ∈ A (see Notation 29),

2. t has at least g(size(t)) head lambdas.

Additionally, we denote by Bg = A \ Bg the complement of the set Bg in A and

by Bg
n the set of terms from Bg of size n.

Theorem 35. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
. The

density of Bg in Λ is 1.

Proof. Let us fix g ∈ o
(√

n/ ln(n)
)
. Our aim is to construct a family of injec-

tive and size-preserving functions (codings) ϕB
n : Bg

n → Λn such that the fraction

#ϕB
n

(
Bg
n

)
/Ln tends to 0 as n tends to infinity.

λx1
λx2

λxp

v

λz

u1

λz

u2

λz

uk

Figure 3: A term from Bg
n(
−→
t , ℓ) where

−→
t = (λz.u1, . . . , λz.uk)

Let n0 > 1 be such that g(n) < n
3 ln(n)

for all n ≥ n0. Such n0 exists because

g ∈ o
(√

n/ ln(n)
)
. In the rest of the proof we always assume that n ≥ n0.

We define a partition of Bg
n as follows (see Figure 3). Let

−→
t be a non-empty

sequence of (not necessarily closed) terms such that each of the elements of
−→
t

starts with a λ. Let ℓ ≥ 1 be an integer such that 0 ≤ n − ℓ− size(
−→
t ) ≤ g(n),
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where size(
−→
t ) denotes the sum of sizes of its components. We define Bg

n(
−→
t , ℓ)

as the set of terms of the form:

λx1 . . . λxp.v[t1, . . . , tk]

where v is a purely applicative context with k holes,
−→
t = (t1, . . . , tk) and

p = n− ℓ− size(
−→
t ). Therefore, ℓ is the size of the applicative context v (where

the hole are counted with size 0 like variables).

First, it is clear that nonempty sets Bg
n(
−→
t , ℓ) form a partition of Bg

n: they

are pairwise disjoint by definition and every u ∈ Bg
n belongs to A so it contains

some λ not in the chain of head lambdas (because p ≤ g(n) < n
3 ln(n)

), therefore

it belongs to some Bg
n(
−→
t , ℓ) for some non-empty

−→
t and some ℓ ≥ 1.

Terms from Bg
n(
−→
t , ℓ) differ only by applicative contexts, so the cardinality of

Bg
n(
−→
t , ℓ) is less than the number of all binary trees of size ℓ in which each leaf is

either labeled with a variable (for which we have at most g(n)− 1 possibilities)
or is an empty place where some sub-term can be plugged. Thus, we have for all
n ≥ n0:

#Bg
n(
−→
t , ℓ) ≤ P (n, ℓ) := C(ℓ)(g(n))ℓ+1.

Let t ∈ Bg
n(
−→
t , ℓ) and

−→
t = (t1, . . . , tk) for some k ≥ 1 and v be the purely

applicative context in the decomposition of t. We can write ti = λz.ui. Consider
the term

t′ = λzλx1 . . . λxp.(u1 (u2 (. . . (uk−1 uk) . . .)))

which is of size

n− ℓ = n − ℓ︸︷︷︸
v removed

− k︸︷︷︸
head lambdas from ti removed

+ 1︸︷︷︸
head λz

+ k − 1︸ ︷︷ ︸
applicative nodes

.

We rename bound variables, so that a variable distinct from z in t is renamed
to xk where k is number of lambdas from the root to the lambda binding that
variable (inclusive). Let Vn be the set of variables {x1, . . . , x⌈ n

3 ln(n)⌉}. Let λy.s

denote the term rooted at the leftmost deepest λ of term t′.
Since the unary height of t is the same as that of t′, and since t ∈ A, all the

variables in Vn are bound on the path from the root to λy.s (in the worst case,
y is x⌈ n

3 ln(n)⌉ and must also be counted on the path).

Let Un,l be the set of purely applicative (therefore not closed) terms of size
ℓ− 1 whose variables are chosen from Vn.There are at least

Q(n, ℓ) = C(ℓ− 1)

(
n

3 ln(n)

)ℓ

elements in Un,l.

23



Let ψ(n, ℓ) = P (n,ℓ)
Q(n,ℓ)

. By the assumption about g, there is a function ε such

that lim
n→∞

ε(n) = 0 and P (n, ℓ) ≤ C(ℓ)

(√
n

ln(n)
ε(n)

)ℓ+1

. Therefore, we have

ψ(n, ℓ) ≤ C(ℓ)

3 C(ℓ− 1)

(
n

ln(n)

) 1−ℓ
2

(3 ε(n))ℓ+1.

For ℓ ≥ 1,
(

n
ln(n)

) 1−ℓ
2

is decreasing in ℓ and since C(ℓ)
C(ℓ−1)

= 2(2ℓ−1)
ℓ+1

, it follows

that ψ(ℓ, n) tends to 0 uniformly in ℓ.
From this, for n large enough, we get P (n, ℓ) < Q(n, ℓ) (uniform convergence

of ψ is needed only later) and there exists an injective function hn,ℓ which as-
signs an element from Un,l to any purely applicative context using variables in
{x1, . . . , xp} (i.e. applicative context v used in the decomposition of a term in

Bg
n(
−→
t , ℓ)).
For any u ∈ Un,l, let ρ(t

′, u) be the term obtained by substituting the subterm
λy.s in t′ with λy.(u s).

λz
λx1
λx2

λxp

u1
u2

λy

h(v) s

ukuk−1

Figure 4: The term ϕB
n(t) from Theorem 35

Let ϕn,
−→
t ,ℓ(t) = ρ(t′, hn,ℓ(v)) (see Figure 4). It is easy to check that the size

of ϕn,
−→
t ,ℓ is n and that, by the injectivity of hn,ℓ, ϕn,

−→
t ,ℓ is injective, too.

Let ϕB
n =

⋃
ℓ,
−→
t ϕn,

−→
t ,ℓ. The function ϕB

n is an injection because codomains

of the ϕn,
−→
t ,ℓ are all disjoint by construction. Since the sets Bg

n(
−→
t , ℓ) form a

partition of Bg
n, by means of Lemma 33, it is enough to show that P (n,ℓ)

Q(n,ℓ)
tends

uniformly in l to 0 as n tends to infinity, which was done above.
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6.2 Head lambdas bind “many” occurrences

Now we are ready to present some theorems showing that in a random term head
lambdas are used, i.e. they really bind some variables. The first result shows that
in a random term many of head lambdas are binding.

Notation 36. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
. By Dg

we denote the class of terms such that t ∈ Dg iff

1. t ∈ Bg+1, where g + 1 is the function n 7→ g(n) + 1,

2. each of first g(size(t)) head lambdas in t is binding.

Additionally, we denote by Dg
n = Bg+1 \ Dg the complement of the class Dg in

Bg+1 and by Dg
n the set of terms from Dg of size n.

Theorem 37. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
. The

density of Dg in Λ is 1.

Proof. Let us fix g ∈ o
(√

n/ ln(n)
)
. We construct a family of codings ϕD

n : Dg
n →

Λn such that their images are negligible in Λn, i.e. the fraction ♯ϕ
D
n (Dg

n)/Ln tends
to 0 as n tends to infinity.

Let t = λx1 . . . xg(n)+1.u be a term from Dg
n and let i ≤ g(n) be the smallest

integer such that the i-th head lambda in t does not bind any variable. Take

ϕD
n (t) := λx1 . . . xi−1xi+1.

(
xi+1 (λxi+2 . . . xg(n)+1.u)

)
.

The size of ϕD
n (t) is n. Terms from the set ϕD

n (Dg
n) have less than g(n) + 1

head lambdas. By Theorem 35, the density of such terms in Λ is zero. Since the
function ϕD

n is injective, the density of Dg is also zero.

Notation 38. Let g, h : N → N be functions such that g ∈ o
(√

n/ ln(n)
)
, g(n) ≥

3 for all n and h ∈ o
(
log3

(
n

ln(n)

))
. By Eg,h we denote the class of closed terms

such that t ∈ Eg,h iff

1. t ∈ Dg,

2. the total number of occurrences of variables bound by the first three lambdas
in t is greater than h(size(t)).

Additionally, we denote by Eg,h = Dg \ Eg,h the complement of the class Eg,h in

Dg and by Eg,h
n the set of terms from Eg,h of size n.

Theorem 39. Let g, h : N → N be functions such that g ∈ o
(√

n/ ln(n)
)
, g(n) ≥

3 for all n and h ∈ o
(
log3

(
n

ln(n)

))
. The density of Eg,h in Λ is 1.
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Proof. Let g and h be functions as in the assumptions of the theorem. We

construct a family of codings ϕE
n : Eg,h

n → Λn such that their images are negligible
in Λn as n tends to infinity.

Let us define an equivalence relation ∼n on the set of terms of size n in the
following way: u ∼n v iff u and v are equal after substituting all occurrences of
variables bound by first three lambdas by the variable bound by the first λ. Let
us denote by [u] the equivalence class of u.

Let t = λx1λx2λx3.u be a term from Eg,h
n . There are at most 3h(n) elements

in the class [t].
Let ψ(t) = λxy.u[x1 := y, x2 := y, x3 := y]. The size of ψ(t) is n−1. Let λa.v

be the subterm of ψ(t) such that λa is the leftmost deepest λ in ψ(t). Denote
by V (t) the set of variables introduced by lambdas occurring in ψ(t) on the path
from λa to λy. Note that the variable x occurs neither in ψ(t) nor in V (t).

By Theorem 30(iii), there are at least n
3 ln(n)

− 2 such lambdas. As h ∈
o
(
log3

(
n

ln(n)

))
, we have

lim
n→∞

3h(n)(
n

3 ln(n)
− 2
) = 0.

Thus, we can find for each class [t] an injective function f[t] from [t] into the
set V (t).

We define ϕE
n(t) as the term obtained from ψ(t) by replacing the subterm λa.v

with λa.(w v), where w = f[t](t).

All terms from the image ϕE
n(Eg,h

n ) start with a λ that binds no variable. By
Theorem 37 we know that such terms are negligible in Λn. Since ϕ

E
n is injective,

the density of Eg,h is zero, as well.

Notation 40. Let k and ℓ be natural numbers. Let g : N → N be functions
such that g ∈ o

(√
n/ ln(n)

)
, g(n) ≥ 3 for all n, limn→∞ g(n) = ∞, and let

h(n) =

⌊√
log3

(
n

ln(n)

)⌋
. Notice that h ∈ o

(
log3

(
n

ln(n)

))
. By Gg,k,ℓ we denote

the class of closed terms such that t ∈ Gg,k,ℓ iff

1. t ∈ Eg,h,

2. each of first k lambdas in t binds more than ℓ variables.

Additionally, we denote by Gg,k,ℓ = Eg,h \ Gg,k,ℓ the complement of the class Gg,k,ℓ

in Eg,h and by Gg,k,ℓ
n the set of terms from Gg,k,ℓ of size n.

Theorem 41. Let k and ℓ be integers. Let g : N → N be a function such that
g ∈ o

(√
n/ ln(n)

)
, limn→∞ g(n) = ∞, and g(n) ≥ 3 for all n. The density of

Gg,k,ℓ in Λ is 1.
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Proof. Let g be a function as in the assumptions of the theorem and let us
fix integers k and ℓ. Without loss of generality we can assume that k ≥ 3.
By Theorem 39, the total number of occurrences of variables bound by first k

lambdas in terms from Gg,k,ℓ
n is greater than h(n) =

⌊√
log3

(
n

ln(n)

)⌋
.

For m ≥ h(n) let us denote by Eg,h
n (m, k) the set of terms from Eg,h

n with ex-

actly m leaves bound by the first k lambdas and let Gg,k,ℓ
n (m) = Gg,k,ℓ

n ∩Eg,h
n (m, k).

By definition, terms from Gg,k,ℓ
n (m) have exactly m leaves bound by the first k

lambdas and at least one of these lambdas binds at most ℓ variables.
Consider the equivalence relation ∼n on Eg,h

n (m, k) defined analogously to the
relation with the same notation within the proof of Theorem 39, but with respect
to the first k (instead of three) head lambdas. Denote by [t] the equivalence class
of t for this relation.

Let t ∈ Eg,h
n (m, k). By hypothesis on g and for large enough n, each of the

first k head lambdas of t are binding. Of the m leaves bound by these lambdas,
give the k leftmost leaves distinct labels. For each of m− k other leaves we have
k possibilities. Thus, we know that the cardinality of [t] is greater than km−k.

Now, let us estimate the upper bound for the cardinality of [t]∩Gg,k,ℓ
n (m). In

such terms there exists at least one lambda among first k lambdas which binds ℓ′

leaves with 1 ≤ ℓ′ ≤ ℓ (we can choose them out of m ones) and the other leaves
(their number is equal to m− ℓ′ ≤ m−1) can be bound by k−1 lambdas. Thus,
we obtain the upper bound equal to

∑
1≤ℓ′≤ℓ k

(
m
ℓ′

)
(k − 1)m−ℓ′ ≤ kmℓ(k − 1)m−1.

This holds because
∑

1≤ℓ′≤ℓ

(
m
ℓ′

)
≤ mℓ which can be proved by induction over ℓ

when m ≥ 2 (here m ≥ k ≥ 3).
Therefore, the quotient of the two cardinalities is less than

kmℓ(k − 1)m−1

km−k
= kkmℓ

(
k − 1

k

)m−1

for all m ≥ h(n).

As n tends to infinity, the above quotient tends to 0 uniformly in m. To establish
this, we define f(x) = xℓR

x
2 with R = k−1

k
< 1. Thus we have

kkmℓ

(
k − 1

k

)m−1

≤ kkf(m)R
m
2
−1

Then, f ′(x) = xℓ−1R
x
2 (l+x ln(R)

2
) and we see that f(x) reaches a maximum on R+

for x = A = − 2ℓ
ln(R)

(which is a positive constant because R = k−1
k

< 1), which
gives:

kkmℓ

(
k − 1

k

)m−1

≤ kkf(A)R
m
2
−1 ≤ kkf(A)R

h(n)
2

−1

For t ∈ Λn and m ≥ h(n) the sets [t] ∩ Gg,k,ℓ
n (m) form a partition of Gg,k,ℓ

n .
Now Lemma 33 finishes the proof.
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As a simple corollary of the above theorem, we obtain the following result:

Notation 42. Let k and ℓ be positive integers. Let g : N → N be a function such
that g ∈ o

(√
n/ ln(n)

)
, limn→∞ g(n) = ∞, and g(n) ≥ 3 for all n. By Hg,k,ℓ we

denote the class of terms such that t ∈ Hg,k,ℓ iff

1. t ∈ Gg,k,ℓ,

2. there are no two consecutive non-binding lambdas in t.

Additionally, we denote by Hg,k,ℓ = Gg,k,l \ Hg,k,ℓ the complement of the class

Hg,k,l in Gg,k,ℓ and by Hg,k,ℓ
n the set of terms from Hg,k,ℓ of size n.

Lemma 43. Let k and ℓ be positive integers. Let g : N → N be a function such
that g ∈ o

(√
n/ ln(n)

)
, limn→∞ g(n) = ∞, and g(n) ≥ 3 for all n. The density

of Hg,k,ℓ in Λ is 1.

Proof. We define a family of injective and size-preserving functions ϕH
n fromHg,k,ℓ

n

into the set of terms whose leading λ binds only one variable occurrence.

Let t be a term from Hg,k,ℓ

n . Let t1 be a subterm rooted at a highest leftmost
occurrence of two non-binding lambdas, t1 = λx.λy.u. We replace this subterm
by the application (z u), where z is a fresh variable. We obtain the term t′

of size n − 1 and, finally, we define ϕH
n (t) = λz.t′. The result follows from

Theorem 41.

6.3 A random term avoids any fixed closed term

Notation 44. Let j be a positive integer and k(j) =
∑

i≤j Li (let us recall that
Li denotes the number of closed terms of size i). Let g : N → N be a function
such that g ∈ o

(√
n/ ln(n)

)
, g(n) ≥ 3 for all n and limn→∞ g(n) = ∞. By Ig,j

we denote the class of closed terms such that t ∈ Ig,j iff

1. t ∈ Hg,k(j),k(j),

2. t does not contain any term from
⋃

i≤j Λi as a subterm.

Additionally, we denote by Ig,j = Hg,k(j),k(j) \ Ig,j the complement of the class

Ig,j in Hg,k(j),k(j) and by Ig,j
n the set of terms from Ig,j of size n.

Theorem 45. Let j be a positive integer and let g : N → N be a function such
that g ∈ o

(√
n/ ln(n)

)
, g(n) ≥ 3 for all n and limn→∞ g(n) = ∞. The density of

Ig,j in Λ is 1.

Proof. Let us fix a positive integer j and a function g as in the assumptions of

the theorem. We construct a family of codings ϕI
n : Ig,j

n → Λn such that their
images are negligible in Λn.
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There are k(j) =
∑

i≤j Li elements in
⋃

i≤j Λi. Thus, there is a bijection f
from

⋃
i≤j Λi to {1, . . . , k(j)}.

Let n be an integer satisfying g(n) > k(j) and n > k(j) + j. Let t ∈ Ig,j
n . By

hypothesis the term t belongs to Bg+1, so it has more than k(j) head lambdas
since k(j) < g(n) (see Figure 5).

λx1
λx2

λxk(j)

u

λx1
λx2

λxm−1

λx
λxm

λxk(j)

v

Figure 5: Terms t ∈ Ig,j
n and ϕI

n(t) from Theorem 45

In term t, consider the smallest m such that f(u) = m for some closed u

occurring in t (there is at least one such m because t ∈ Ig,j
n . Let us consider the

term s which is obtained from the term t by adding an additional unary node
(labeled with λx) at depth m. Let us define ϕI

n(t) obtained by replacing the left-
most deepest occurrence of subterm u in s by the term v = (x (x (. . . (x x) . . .)))
of size i−1 where i is the size of u (see Figure 5). Thus, the size of ϕI

n(t) is equal
to n.

By Theorem 41, each of the first k(j) head lambdas in a term from Hg,k(j),k(j)

of size n binds more than k(j) variables. Therefore, among the first k(j) head
lambdas of ϕI

n(t), only the m-th λ binds less than k(j) variables (recall that u is
closed which means that the number of variables bound by λxi for 1 ≤ i ≤ k(j)
is the same in t and ϕI

n(t)). Since f(u) = m and f is injective, the function ϕI
n

is injective. Terms from the image ϕI
n(Ig,j

n ) are not in Hg,k(j),k(j) since the m-th
λ binds only i ≤ j ≤ k(j) variables. Thus, those terms are negligible among all
terms of size n.

6.4 The λ-width of a term

Let us recall that λ-width of a term is the maximum number of incomparable
binding lambdas in the term. In the following proposition we show that λ-width
of typical λ-terms is small.
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Notation 46. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
, g(n) ≥ 3

for all n and limn→∞ g(n) = ∞. By J g we denote the class of closed terms such
that t ∈ J g iff

1. t ∈ Gg,1,4

2. λ-width of t is at most 2.

Additionally, we denote by J g = Gg,1,4 \ J g the complement of the class J g in

Gg,1,4 and by J g
n the set of terms from J g of size n.

Theorem 47. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
, g(n) ≥ 3

for all n and limn→∞ g(n) = ∞. The density of J g in Λ is 1.

Proof. Let us fix a function g as in the assumptions of the theorem. We construct
a family of codings ϕJ

n : J g
n → Λn such that their images are negligible in Λn.

Let t be an element of J g
n , therefore the λ-width of t is at least 3. Let us denote

by λx, λy and λz the first three highest leftmost pairwise incomparable binding
lambdas (appearing in this order from left to right in t).

λx

u

x x

λy

v

y y

λz

w

z z

λa

a a
λy

v

y

u′

y y

w′

a y

Figure 6: The terms t and ϕJ
n (t) from Theorem 47

Let λx.u, λy.v and λz.w be subterms rooted at those lambdas (see Figure 6).
Let u′ = u[x := y], let a be a new variable, and let w′ be the term obtained
from w by replacing the leftmost occurrence of z with a and the others (possibly
none) with y. Let ϕJ

n (t) be the term obtained from t by adding λa at the root,
substituting both subterms λx.u and λz.w with a and replacing the leftmost
occurrence of y in v with term (u′ w′). We have size(ϕJ

n (t)) = size(t). Also note
that since we choose the highest three incomparable binding lambdas no variable
becomes free in the constructed term.

We can reconstruct the term t from ϕJ
n (t) by indicating places for λy and the

subterm (u′ w′):
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• Let νl (resp. νr) be the deepest node above the two leftmost (resp. right-
most) occurrences of a. Remark that since there are exactly 3 occurrences
of a, one of these two nodes is above the other. Let ν be the deepest one. λy
is the first binding λ on the path from the node v to the middle occurrence
of a;

• then, the application node (u′ w′) is the deepest node above the middle
occurrence of a and all the occurrences of y on the left of this middle
occurrence of a.

Since the image of ϕJ
n contains only terms starting with a λ which binds

only 3 occurrences of the corresponding variable, by Theorem 41, the density of
ϕJ
n (J g

n ) is equal to zero. The injectivity of ϕJ
n finishes the proof.

6.5 The density of strongly normalizable terms

From Theorem 47 (using g(n) = ln(n)2 + 3 for instance) we know that almost
all terms are of width at most 2. In Section 2 we introduced the notion of ’safe’
terms of width 2 which implies strong normalization (Proposition 17).

Now we prove that the set of unsafe terms of width 2 has density 0.

Notation 48. Let g : N → N be a function such that g ∈ o
(√

n/ ln(n)
)
, g(n) ≥ 3

for all n and limn→∞ g(n) = ∞. By Kg we denote the class of closed terms such
that t ∈ Kg iff

1. t ∈ J g,

2. t is safe.

Additionally, we denote by Kg = J g \ Kg the complement of the class Kg in J g

and by Kg
n the set of terms from Kg of size n. Note that terms from Kg are of

λ-width at most 2 and are unsafe, therefore they are of width exactly 2 (because
terms of width 1 are safe by definition).

Proposition 49. Let g : N → N be the function defined by g(n) = ln(n)2 + 3.
The density of Kg in Λ is 1.

Proof. The root of the minimal subterm of width 2 of a term is called the branch-
ing node and is always binary. We show that the density of Kg in Λ is 0. Let us
divide the set Kg

n into two disjoint subsets:

Kg,1
n : the set of terms of size n such that neither of the lengths of paths from the

branching node to the two highest incomparable binding lambdas is greater than
ln(n),

Kg,2
n : the set of remaining terms.
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We can construct a family of codings from the set Kg,1
n into Λn in the following

two steps:

1. Remove the two highest pairwise incomparable binding lambdas and put
one lambda, binding their variables, at the root of the whole term. The
size of the obtained term is smaller by 1 and the branching node is uniquely
determined.

2. Insert one non-binding lambda among the head lambdas of the term. By

choice of g and by definition of Kg, terms from Kg,1
n have more than ln(n)2

head lambdas. Therefore we can encode the lengths of the paths from
the branching node to the two highest binding lambdas as the position of
this new lambda. By Theorem 39 the image of such a transformation has
density 0.

For the set Kg,2
n we do not construct an injection, but a relation that associates

to terms in Kg,2
n disjoint set of terms of cardinals greater than ln(n)/2. This is

enough to show that Kg,2
n has density 0. Precisely, we proceed as follows:

1. Choose the leftmost path among the one or two paths longer than ln(n)
(without loss of generality we can assume it is the left path, the case of
the right one is analogous). Consider the binding lambda at the end of
this path and let t0 be the subterm rooted at this lambda. Let t1, . . . , tk
be the right subtrees rooted at the binary nodes on the path between the
branching node and t0 (the path goes always to the left since the term is
unsafe). By Lemma 43 at least half of the nodes on this path are binary
(since there are no two consecutive non-binding lambdas in the tree). This
means that k ≥ ln(n)/2. Moreover, the terms t1, . . . , tk contain no binding
lambda otherwise, the lambda width of the term would be greater than 2.

2. Choose some leaf x belonging to some subtree among t1, . . . , tk and ex-
change it with the subterm t0. Independently of the choice of the leaf, the
encoding can be reversed since:

(a) the position of t0 in the encoded term is uniquely identifiable as the
highest binding lambda of the innocuous subtree below the branching
node (the innocuousness identifies the modified branch);

(b) the position of the variable x in the encoded term is identifiable as
the leftmost leaf of the subtree rooted at the branching node of the
resulting term which is still of width 2 (in the case of the right branch,
it is the leftmost leaf of the right sub-term of the branching node).

The encoding preserves size and the number of possibilities for the choice
of a leaf x is the number of leafs of t1, . . . , tk, which is greater than ln(n)/2.

Therefore, terms from Kg,2
n are negligible in Λn as n tends to infinity.

32



Main Theorem 50. The set of strongly normalizable terms has density 1.

Proof. Proposition 49 shows the existence of a set of safe terms that has density
1. Proposition 17 shows that they are all strongly normalizable.

7 Combinatory logic

In this section we show that our main result about strong normalization of ran-
dom λ-terms does not hold in the world of random combinatory terms. On the
contrary, a random combinatory term is not strongly normalizing. The main
technique used in this section is the theory of generating functions.

As stated in Section 2 we can look at combinatory terms as at rooted binary
trees whose leaves are labeled with combinators K, S and I. We denote by Fn

the number of such trees with n inner nodes (see Section 2.3). Obviously the
set Fn is finite. We denote its cardinality by Fn. It is trivial to notice that
Fn = C(n)3n+1 where C(n) is the n-th Catalan number (see Proposition 24).

Proposition 51. 1. The generating function f enumerating cardinality of the
set of combinators (sequence Fn) is given by

f(z) =
1−

√
1− 12z

2z
.

2. Let t0 ∈ Fn0 be a combinator of size n0 ≥ 1 . The generating function ft0
enumerating cardinality of the set of all combinators having t0 as a subterm
is given by

ft0(z) =
−
√
1− 12z +

√
1− 12z + 4zn0+1

2z
.

Proof. 1. Fn denotes the number of combinators of size n. Since there are
three combinators of size 0, we have F0 = 3. Combinators of size n ≥ 1
are built of two combinators of sizes i and n − i − 1 (i = 0, . . . , n − 1),
respectively, thus Fn =

∑n−1
i=0 FiFn−i−1. From this recurrence relation we

obtain that the generating function f for the sequence (Fn) satisfies the
equation

f(z) = 3 + z(f(z))2.

Solving this equation in f(z) we get two solutions:

1−
√
1− 12z

2z
and

1 +
√
1− 12z

2z
.

We have F0 = 3, so limz→0 f(z) = 3. Thus, the desired generating function
is given by the first solution.
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2. Let t be a combinator having t0 as a subterm. Then either t is equal to
t0 or t is of the form of application t = t1 t2 in which case either t0 is a
subterm of t1 but not of t2 or t0 is a subterm of t2 but not of t1 or, finally,
t0 is a subterm of both t1 and t2. We get the following equation:

ft0(z) = zn0 + 2zft0(z) (f(z)− ft0(z)) + z(ft0(z))
2,

which can be simplified to

ft0(z) = zn0 + 2zft0(z)f(z)− z(ft0(z))
2.

Solving this equation in ft0 gives us two possible solutions:

−
√
1− 12z +

√
1− 12z + 4zn0+1

2z
and

−
√
1− 12z −

√
1− 12z + 4zn0+1

2z
.

Since n0 ≥ 1, there is no term of size 0 having t0 as a subterm. Thus,
limz→0 ft0(z) = 0. The first function satisfies this condition, so this is the
wanted generating function.

The following theorem shows that the result similar to Theorem 45 is not
valid in combinatory logic.

Theorem 52. Let t0 be a combinator. The density of combinators having t0 as
a subterm is 1.

Proof. We prove this result applying Theorem 23. We start by normalizing the
functions ft0 and f in such a way that the closest singularity to the origin is
located at z = 1. Hence, we define functions ft0(z) := zft0(z/12) and f(z) :=
zf(z/12). We get

ft0(z) = −
√
1− z

2
+

√
1− z + 4

(
z
12

)n0+1

2
, f(z) =

1

2
− 1

2

√
1− z.

Since

√

1−z+4 ( z
12)

n0+1

2
is analytic for |z| ≤ 1, the representation above reveals

that the only singularity of ft0(z) and f(z) located in |z| ≤ 1 is indeed at z = 1
and both functions ft0 and ft0 have expansions in the vicinity of z = 1 of forms∑

p≥0 vp(1 − z)p/2 and
∑

p≥0 wp(1 − z)p/2, respectively, with w1 = −1/2 6= 0.
We have to remember that the multiplication by z and the change of the radius
of convergence for functions ft0 and f affect sequences represented by the new
functions. Therefore, ft0 and f enumerate sequences (12)1−n ([zn−1]{ft0(z)}) and
(12)1−n ([zn−1]{f(z)}), respectively.

Now, let us consider functions f̃ and f̃t0 satisfying the following equations:

f̃(
√
1− z) = f(z) and f̃t0(

√
1− z) = ft0(z). They are defined in the following

way:

f̃t0(z) = −z
2
+

√
z2 + 4

(
1−z2

12

)n0+1

2
, f̃(z) =

1

2
− 1

2
z.
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By analyticity of functions (f̃t0)
′ and (f̃)′ for |z| < 1, their derivatives in this

circle exist and are as follows:

(f̃t0)
′(z) = −1

2
+

(
2 z − 8

12
(n0 + 1)z

(
1−z2

12

)n0
)

4

√
z2 + 4

(
1−z2

12

)n0+1
, (f̃)′(z) = −1

2
.

Finally, by computing the values of those derivatives at z = 0 we get (f̃t0)
′(0) =

−1
2
and (f̃)′(0) = −1

2
.

To complete the proof we apply Theorem 23, obtaining:

lim
n→∞

[zn]{ft0(z)}
[zn]{f(z)} = lim

n→∞

(12)1−n[zn−1]{ft0(z)}
(12)1−n[zn−1]{f(z)}

=
(f̃t0)

′(0)

(f̃)′(0)
= 1.

Main Theorem 53. The density of non-strongly normalizing combinators is 1.

Proof. Let Ω = S I I (S I I). The combinator Ω reduces to itself and thus is
not strongly normalizing. The thesis follows directly from Theorem 52, since the
density of combinators containing Ω as a subterm is 1.

8 Discussion

The difference between Theorem 50 in the λ-calculus and Theorem 53 in combi-
natory logic may be surprising since there are translations between these systems
which respect many properties (including strong normalization). However, these
translations do not preserve the size.

The usual translation, which we denote by T1, from combinatory logic to λ-
calculus, is linear: there is a constant k such that, for all term t, size(T1(t)) ≤
k size(t). Note that this translation is far from being surjective: its image has
density 0. The usual translation T2 in the other direction (see [1]) is not linear
but exponential. As far as we know, size(T2(t)) is of order 3size(t). The point is
that T2 has to code the variable binding in some way and this requires the use of
many combinators.

8.1 Future work and open questions

We present here some questions left open.

1. Give the asymptotics of Ln or, at least, better upper and lower bounds.

2. Give the density of typable terms. Numerical experiments done by Jue
Wang (see [19]) seem to show that this density is 0 for simple types.
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3. Compute the densities of strongly normalizing terms with other notions of
size, mainly by changing the size of variables, and eventually making it non
constant.For what notions of size do we get a density 1 as in Theorem 50
or a density 1 as in Theorem 53? Are they sizes for which the density is
neither 0 nor 1?

8.2 Possible applications

It is now popular to test programs written in functional languages using randomly
generated inputs [3]. For higher-order functional programs where inputs are
functions, this also means the ability to generate typical functions under certain
known distributions.

For many typed languages such as OCaml or Haskell, functional programs
can be tested by supplying random typed λ-terms generated in compliance with
their natural distribution (probably different for different types of programs).

For untyped languages such as LISP, the problem of testing programs is very
close to the capability of generating pure random λ-terms. In our case, those
terms automatically enjoy important properties such as strong normalization, if
they do not use recursive definitions. However, it would be nice to have a distri-
bution where terms with other computationally good properties have density 1.

One could argue that width at most 2 is a negative result since it shows
that random terms do not contain any tuple of more than 2 functions, whereas
’natural’ programs do contain such kind of subterms.

Anyway, results and methods presented in this paper can be used as the start-
ing point for further research based on other notions of size which are meaningful
for applications.
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