
HAL Id: hal-00372032
https://hal.science/hal-00372032

Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Views: Database Views for Data Mining
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana Prado

To cite this version:
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana Prado. Mining Views:
Database Views for Data Mining. International Conference on Data Engineering, Apr 2008, United
States. pp.1608-1611. �hal-00372032�

https://hal.science/hal-00372032
https://hal.archives-ouvertes.fr

Mining Views: Database Views for Data Mining

Hendrik Blockeel #†1, Toon Calders ∗2, Elisa Fromont #3, Bart Goethals ‡4, Adriana Prado ‡5

#Katholieke Universiteit Leuven, Belgium
†Leiden Institute of Advanced Computer Science, The Netherlands

{1
hendrik.blockeel,

3
elisa.fromont}@cs.kuleuven.be

∗Technische Universiteit Eindhoven, The Netherlands
2
t.calders@tue.nl

‡Universiteit Antwerpen, Belgium

{4
bart.goethals,

5
adriana.prado}@ua.ac.be

Abstract— We present a system towards the integration of
data mining into relational databases. To this end, a relational
database model is proposed, based on the so called virtual mining
views. We show that several types of patterns and models over
the data, such as itemsets, association rules and decision trees,
can be represented and queried using a unifying framework.

I. MOTIVATION

Data mining is not a one-shot activity, but rather an iterative

and interactive process. During the whole discovery process,

typically, many different data mining tasks are performed, their

results are combined, and possibly used as input for other data

mining tasks. To support this knowledge discovery process,

there is a need for integrating data mining with data storage

and management. The concept of inductive databases (IDB)

has been proposed as a means of achieving such integration

[1].

In an IDB, one can not only query the data stored in the

database, but also the patterns that are implicitly present in

these data. The main advantages of integrating data mining

into database systems are threefold: first of all, the data

are mined where they are located: in the database. Hence,

the need for transforming data into an appropriate format is

completely removed. Second, in database systems, there is a

clear separation between the logical and the physical level.

This separation shields the user from the physical details,

making the technology much more accessible for a non-

specialist. Ideally, the user of an inductive database should not

be involved with selecting the best algorithms, the parameter

settings, the storage format of the patterns, etc., but should

instead be able to specify, in a declarative way, the patterns in

which he or she is interested. The third advantage of an IDB is

the flexibility of ad-hoc querying. That is, the user can specify

new types of constraints and query the patterns and models in

combination with the data itself and so forth. Notice that the

functionality of an inductive database goes far beyond that of

data mining suites such as, e.g., Weka [2] and Yale [3]. These

systems typically only share the first advantage of inductive

databases by imposing one uniform data format for a group

of algorithms.

In this work, we focus our attention on determining how

such an inductive database can be designed in practice.

II. DESCRIPTION OF THE SYSTEM

The system proposed in this paper builds upon our prelim-

inary work in [4], [5]. In contrast to the numerous proposals

for data mining query languages, we propose to integrate

data mining into database systems without extending the

query language. Instead, we extend the database schema with

new tables containing, for instance, association rules, decision

trees, or other descriptive or predictive models. As far as the

user is concerned, these tables contain all possible patterns,

trees, and models that can be learned over the data. Of course,

such tables would in most cases be huge. Therefore, these

tables are in fact implemented as views, called virtual mining

views.

Whenever a query is formulated selecting for instance

association rules from these tables, a run of a data mining

algorithm is triggered (e.g., Apriori [6]) that computes the

result of the query, in exactly the same way that normal views

in databases are only computed at query time, and only to the

extent necessary for answering the query. The complete system

is illustrated in Figure 1. When the user formulates his or her

mining query, the parser is invoked by the DBMS creating

an equivalent relational algebra expression. At this point,

the expression is processed by the Mining Extension which

extracts from the query the constraints that can be pushed into

the data mining algorithms. The output of these algorithms

is then materialized in the virtual mining views. After the

materialization, the work-flow of the DBMS continues as usual

and, as a result, the query is executed as if all patterns and

models are stored in the database. Observe that this system

can possibly cover every mining techniques whose output can

be completely stored in relational tables.

This approach also integrates constraint-based mining in a

natural way. Within a query, one can impose conditions on

the kind of patterns or models that one wants to find. In

many cases, these constraints can be pushed into the mining

process. In [4], Calders et al. present an algorithm that extracts

from a query a set of constraints relevant for association

rules to be pushed into the mining algorithm. In this way,

not all possible patterns or models need to be generated, but

only those required to evaluate the query correctly as if all

possible patterns or models were stored. We have extended

Fig. 1. The integration of data mining into a DBMS

PlayTennis

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

.

P layTennis Concepts

cid Day Outlook Temp Humidity Wind Play

1 ? Sunny ? High ? No

2 ? Sunny ? Normal ? Yes

3 ? Overcast ? ? ? Yes

4 ? Rain ? ? Strong No

5 ? Rain ? ? Weak Yes

6 ? ? ? ? ? ?

. .

Fig. 2. The PlayTennis data table and its corresponding Concepts table.

this constraint extraction algorithm to extract constraints from

queries over decision trees. The user can refer to [7] for more

details on the algorithm.

III. FRAMEWORK REPRESENTATION

Given a table T (A1, . . . , An), let Dom(T) = Dom(A1) ×
. . .×Dom(An) denote the domain of T . We create a Concepts

table T Concepts(cid , A1, . . . , An), such that for every tuple

t in T , there exist 2n unique tuples {t′1, . . . , t
′
2n} in ConceptsT

such that t′i.Aj = t.Aj or t′i.Aj = ′?′ for all i ∈ [1, 2n] and j ∈
[1, n]. We denote the special value ′?′ as the wildcard value

and assume it doesn’t exist in the domain of any attribute. As

each of the concepts can actually cover more than one tuple

in T , a unique identifier cid is associated to each concept.

A tuple, or concept, (cid , a1, . . . , an) ∈ T Concepts

represents all tuples from Dom(T) satisfying the condition∧
i|ai 6=′?′ Ai = ai.

Figure 2 shows a data table for the classic PlayTennis

example [8], together with a sample of its corresponding

Concepts table.

A. Representing models as sets of concepts

In this section, we explain how a variety of models can be

represented using virtual mining views. We assume from now

Sets

cid supp sz . . .

1 40 2 . . .

2 60 3 . . .

.

Rules

rid cida cidc cid conf . . .

1 8 10 11 0.5 . . .

.

Trees Play

treeid cid

M1 1

M1 2

M1 3

M1 4

M1 5

Outlook

sunny
qqq

qqq
overcast rain

KKK

KKK

Humidity

high
��

��
normal

<<

<<<

?>=<89:;Yes Windy

strong
��

��
weak

88

88

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Treescharac Play

treeid acc sz . . .

1 0.7 8 . . .

.

Fig. 3. Framework for an Inductive Database

on that the Concepts table presented above is implemented as

a virtual mining view. In this context, given a data table T and

its corresponding virtual mining view T Concepts , the virtual

mining views for itemsets, association rules and decision trees,

based on T Concepts , are given in Figure 3. Although all

virtual mining views are defined over T , in this text we omit

the prefix T when it is clear from the context.

Notice again that Figure 3 only gives one possible instan-

tiation of the proposed approach. As pointed out in Section

II, virtual mining views for other mining techniques can be

added to the system.

The proposed framework can be described as follows:

1) Itemsets and Association Rules: The result of fre-

quent itemset mining can therefore be represented by a view

Sets(cid , supp, sz). For each itemset, there is a tuple with cid

the identifier of the itemset (concept), supp its support, and

sz its size. Other attributes, such as χ2 or any correlation

measure, could also be added to the view to describe the

itemsets. Similarly, association rules can be represented by a

view Rules(rid , cida, cidc, cid , conf), where rid is the rule

identifier, cida and cidc are the identifiers for the concepts

representing the antecedent and the consequent of the rule

respectively, cid is the union (disjunction) of these, and conf

is the confidence of the rule. Many other attributes, such as

lift, conviction, or gini index, could be added to describe the

rules.

2) Decision trees: We represent all decision trees that can

be learned from T for one specific target attribute Ai by

the view Trees Ai(treeid , cid). A unique identifier treeid is

associated with each decision tree and each of the decision

trees is described using a set of concepts (there is at least

one concept describing one leaf). If the user prefers to build

a decision tree from only a subset of the attributes, he should

first create a view on the data table containing exactly those

attributes, such that the mining view Concepts associated with

this view can then be used to describe the tree. We added

a view Treescharac Ai(treeid , acc, sz) to represent several

characteristics of a decision tree learned for one specific target

attribute Ai. For every tree, there is a tuple with a tree identifier

treeid , acc its accuracy and sz its size (number of nodes).

Again, other attributes could be added to describe the decision

trees. Figure 3 shows a decision tree built to predict the

attribute Play using all other attributes in the data table, and

its representation in the mining view Trees, using the first five

concepts of the mining view Concepts from Figure 2.

IV. MODEL QUERYING

In this section, we give some concrete examples of common

data mining tasks that can be expressed with SQL queries

over the virtual mining views. These examples support our

claim that the virtual mining views provide an elegant way to

incorporate data mining capacities to database systems without

changing the query language.

A. Prediction

In order to classify a new example using one or more of

the learned decision trees, one simply looks up the concept

that covers the new example. More generally, if we have a

test set S, all predictions of the examples in S are obtained by

equi-joining S with the semantic representation of the decision

tree given in the virtual mining view Concepts. We join S to

Concepts using a variant of the equi-join that requires that

either the values are equal, or there is a wildcard value.

Consider the PlayTennis example of Figure 2. Figure 4 illus-

trates a query that predicts the attribute Play for all unclassified

examples in table Test Set, considering all possible decision

trees of size ≤ 5.

B. Constraints

For itemsets and association rules, we consider constraints

such as minimal and maximal size, minimal and maximal

support, minimal and maximal confidence, plus the constraints

that a certain item must be in the antecedent, in the consequent

of the rules, and Boolean combinations of these. For decision

trees, we consider constraints on size and accuracy. In addition

to these, we also consider constraints posed on the concepts

that describe the trees. Next to these well-known constraints,

in our approach, the user has also the ability to come up with

new, ad-hoc constraints.

Test Set

Day Outlook Temp Humidity Wind

D7 Sunny Hot High Weak

D8 Rain Hot High Strong

D9 Overcast Hot High Weak

D10 Overcast Mild High Weak

D11 Overcast Cool Normal Weak

D12 Sunny Cool High Strong

select T.treeid, S.*, C.Play

from Test_Set S,

Trees_Play T,

Concepts C,

Treescharac_Play D

where T.cid = C.cid

and (S.Outlook = C.Outlook or C.Outlook = ’?’)

and (S.Temp = C.Temp or C.Temp = ’?’)

and (S.Humidity = C.Humidity or C.Humidity = ’?’)

and (S.Wind = C.Wind or C.Wind = ’?’)

and T.treeid = D.treeid

and D.sz <= 5

Fig. 4. Prediction

(A)

select R.rid,

C1.*, C2.*,

R.conf

from Sets S,

Rules R,

Concepts C1,

Concepts C2

where R.cid = S.cid

and C1.cid = R.cida

and C2.cid = R.cidc

and S.supp >= 30

and R.conf >= 80

and S.sz <= 4

(B)

select T.treeid, C.*
from Treescharac_Play D,

Trees_Play T,

Concepts C

where T.cid = C.cid

and T.treeid = D.treeid

and D.sz <= 5

and D.acc =

(select max(acc)

from Treescharac_Play D1

where D1.sz <= 5)

(C)

select distinct D.*
from Trees_Play T1,

Trees_Play T2,

Treescharac_Play D,

Concepts C1,

Concepts C2

where T1.treeid = T2.treeid

and T1.cid = C1.cid

and C1.Outlook= ’Sunny’

and T2.cid = C2.cid

and C2.Wind = ’Weak’

and T1.treeid = D.treeid

and D.sz <= 5

and D.acc >= 70

(D)

select distinct D.*
from Trees_Play T,

Treescharac_Play D,

Concepts C

where T.cid = C.cid

and T.treeid = D.treeid

and D.sz <= 5

and not exists

(select *
from Trees_Play T1,

Treescharac_Play D1,

Concepts C1

where T1.cid = C1.cid

and T1.treeid = D1.treeid

and D1.sz <= 5

and C1.cid = C.cid

and C1.Temp = ’?’)

Fig. 5. Example mining queries

Figure 5 illustrates several mining queries that can be posed

in our inductive database shown in Figures 2 and 3. Some

constraints can be directly imposed using the tables Sets,

Rules and Treescharac as shown in queries (A) and (B).

Query (A) asks for association rules having support of at

least 30, confidence of at least 80%, and size of at most 4.

Query (B) selects decision trees having the attribute Play

as the target attribute and having maximal accuracy among

all possible decision trees of size ≤ 5. The user can also

constrain the concepts by which the models are described.

For example, query (C) asks for decision trees having a test

on “Outlook=Sunny” and on “Wind=Weak”, while query (D)

asks for trees where the attribute Temp is never a wildcard

TABLE I

EXECUTION TIMES FOR THE QUERIES IN FIGURE 5

Time (s) #Concepts #Rules Output (rows)

(A) 0,60 2397 11525 11525

Time (s) #Concepts #Trees Output (rows)

(B) 4,35 652 439 31
(C) 1,36 76 33 2
(D) 4,59 652 439 36

value (the attribute is present in every leaf of the tree).

Hence, many well-known and common constraints can be

expressed quite naturally in our model. The declarative nature

of the queries also improves the ability to extract and exploit

constraints in the queries imposed by the user for making the

underlying mining operations more efficient.

V. IMPLEMENTATION

The system was developed into PostgreSQL [9] (written in

C), as follows. When the user writes a query, PostgreSQL gen-

erates a data structure representing its corresponding relational

algebra expression. After this data structure is generated, our

Mining Extension is called (see Figure 1). Here, we process

the relational algebra structure, extract the constraints, trigger

the data mining algorithms and materialize the results in the

virtual mining views. Just after the materialization, the work-

flow of the DBMS continues and the query is executed as if

the patterns or models were there all the time.

The system is currently linked to algorithms for association

rule discovery and exhaustive decision tree learning [5]. All the

constraints listed in Section IV-B and represented as attributes

of the mining views (size, accuracy, support, confidence) can

be extracted and efficiently exploited by the integrated data

mining algorithms. Some types of constraints, however, are

currently not extracted by our implementation (for instance,

the constraint “maximal accuracy” in query (B)); others are

extracted but cannot be exploited by the mining algorithms.

This may affect the efficiency of the system but not its

correctness: the remaining constraints can be used to filter the

results afterwards.

A. Experiments

We now present a set of experiments, which were conducted

for the UCI dataset ZOO [10], with 101 examples, for the SQL

queries showed in Figure 5. For queries (B), (C), and (D),

the target attribute was the attribute “Class”, the tests “Out-

look=Sunny” and “Wind=Weak” were replaced by “Hair=true”

and “Feathers=false”, respectively, and the test “Temp=?” was

changed to “Feathers=?”. Our platform was an AMD ATLON

3.2 GHz processor, with 1 GB of memory, using Linux.

Table I presents the total execution times (in seconds),

the number of intermediate generated concepts, rules (when

applicable), trees (when applicable), and the size of the output

(in rows) for the example queries.

For query (A), the constraints “supp>=30”, “conf>=80”

and “sz<=4” were all exploited by the system. Observe that

the number of rows in its output corresponds to the exact

number of rules that were intermediately generated.

For query (B), the constraint “sz<=5” was also exploited.

This was not the case of the constraint “max(accuracy)”,

however. Yet, this query was correctly computed. The output

consisted of 9 trees with 31 concepts, in total.

Regarding queries (C) and (D), the constraints “sz<=5”

and “acc>=70” were both exploited. The constraints on the

concepts that describe the decision trees are examples of

constraints that were extracted by the system, but not exploited

by the data mining algorithms. The results were nevertheless

correctly computed.

As can be seen in table I, the execution times of the queries

are rather low, which shows the usefulness and elegance of

the proposed approach. The execution times consist mainly of

the time spent by the data mining algorithms plus the time for

materializing the results.

VI. DEMONSTRATION

The demonstration will focus on showing how the system

works on different datasets using a set of constraints, such

as those presented in Figure 5. Every time a data table T

is created in the system, all virtual mining views associated

with T are automatically created and the user can immediately

query for itemsets, association rules or decision trees over T .

ACKNOWLEDGMENT

Hendrik Blockeel is a post-doctoral fellow from the Re-

search Foundation – Flanders (FWO-Vlaanderen). This re-

search was funded through K.U.Leuven GOA project 2003/8

“Inductive Knowledge bases”, FWO project “Foundations for

inductive databases”, and the EU project “Inductive Queries

for Mining Patterns and Models”.

REFERENCES

[1] T. Imielinski and H. Mannila, “A database perspective on knowledge
discovery,” Communications of the ACM, vol. 39, no. 11, pp. 58–64,
1996.

[2] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques, 2nd ed. Morgan Kaufmann, 2005.
[3] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “Yale:

Rapid prototyping for complex data mining tasks,” in Proc. 12th ACM

SIGKDD Int. Conf. on Knowledge discovery and data mining. ACM,
2006, pp. 935–940.

[4] T. Calders, B. Goethals, and A. B. Prado, “Integrating pattern mining in
relational databases,” in Proc. 10th European Conf. on Principles and

Practice of Knowledge Discovery in Databases, PKDD. Springer, 2006.
[5] E. Fromont, H. Blockeel, and J. Struyf, “Integrating decision tree

learning into inductive databases,” in Knowledge Discovery in Inductive

Databases (KDID), 5th International Workshop, Revised Selected and

Invited Papers, S. Dzeroski and J. Struyf, Eds., 2007.
[6] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules,” in Proc. 20th Int. Conf. Very Large Data Bases, VLDB, J. B.
Bocca, M. Jarke, and C. Zaniolo, Eds. Morgan Kaufmann, 1994, pp.
487–499.

[7] H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A. Prado,
“Mining views: Database views for data mining,” in ECML/PKDD-

2007 International Workshop on Constraint-Based Mining and Learning

(CMILE), 2007.
[8] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[9] [Online]. Available: http://www.postgresql.org/

[10] D. N. A. Asuncion, “UCI machine learning repository,” 2007. [Online].
Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

